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ABSTRACT. We give a new proof of the known criteria for the inequality

([ (L)) ([ )

The innovation is in the elementary nature of the proof and its versatility.

1. INTRODUCTION

Consider the two-weight Hardy inequality

w (L) s

in which C' is a positive constant independent of a nonnegative measurable function f on
(0,00), v and w are fixed nonnegative measurable functions on (0,00) (weights), p € [1,00),
and g € (0,00). The requirement p € [1,00) is reasonable since for p € (0,1) there are
functions in weighted LP which are not locally integrable.

The problem of characterizing pairs of weights for which (1.1) is true has a long and rich
history and it would be impossible to mention here every contribution. For p = ¢ > 1,
v=1,w(t) =t"%and C = p/, it is just the boundedness of the integral averaging operator
on LP(0,00), a result almost one century old, which appears in classical Hardy’s papers in
1920’s, see [5]. The beginning of investigation of a general weighted case goes back to 1950’s,
and it starts with the paper by Kac and Krein [6] in which a characterization for p = ¢ = 2
and v = 1 can be found. In 1950’s and 1960’s, plenty of partial results were obtained by
Beesack, see e.g. [1]. In late 1960’s and in 1970’s, a boom in the so-called convex case (p < g,

named after the convexity of ¢ — t%) was seen. For p = ¢, a characterization was obtained by
Tomaselli [15], Talenti [14] and Muckenhoupt [9]. It was extended to p < ¢ by Bradley [4], the
same result is also stated without proof in [7]. Many authors referred further to an untitled
and unpublished manuscript by Artola, and in [10], a paper by D.W. Boyd and J.A. Erdds
was quoted, which most likely was never published. In any case, (1.1) holds if and only if

o] % t - o
sup / w /vp <oo forl<p<yqg
te(0,00) t 0
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and

e’} q 1
sup </ w> ess sup — < oo for1=p<q.
te(0,00) \Jt 5€(0,t) v(s)

Here and throughout, if p € (0, 0o}, then p’ denotes the conjugate exponent defined by I%—F Z% =
1. Observe that 1 and oo are conjugate exponents and that p’ is negative when p € (0, 1).
The non-convex case (p > ¢) turned out to be more difficult to handle, and it had to wait
till 1980’s and 1990’s for appropriate treatment. The first characterization, for 1 < ¢ < p <
o0, was obtained by Maz’ya and Rozin, see [8], who proved that a necessary and sufficient

condition is
[e%s} [e%s) 2 t , i ,
/ (/ w) (/ vl_p> v(t)P dt < oo,
0 t 0

where r = %. A universal characterization, sheltering both the convex and the non-convex
cases and involving more general norms was obtained by Sawyer [11], but the condition in the
non-convex case is expressed in terms of a discretized condition. While discretization tech-
niques proved later to be of colossal theoretical importance, conditions expressed in terms of
discretizing sequences are difficult to verify. Later, Sinnamon [12] characterized the inequality
for 0 < g <1 < p < oco. The criterion turns out to be the same as that of Maz’ya and Rozin
but the proof, based on Halperin’s level function, is very different. The case 0 < ¢ <p =1
was treated by Sinnamon and Stepanov [13], who moreover observed that, unless p = 1,
Sinnamon’s and Mazya-Rozin’s results can be proved in a unified manner. The case p = 1,
however, still required separate treatment. In [3], restriction of (1.1) to the cone of non-
increasing functions is studied, together with its discrete version. Some ideas developed there
are useful also for the unrestricted case.
In this note we present a short, uniform and elementary proof, in which

e all cases are covered,

e p > 1 is not separated from p = 1,

e only Fubini’s theorem, Holder’s inequality, Minkowski’s integral inequality and Hardy’s
lemma are used.

2. THE THEOREM AND ITS PROOF

Theorem 2.1. Let v,w be weights on (0,00), p € [1,00) and q € (0,00). Fort € (0,00),
denote
1
t 1_p/>? .
v =4 (o if p € (1,00),
€ss SUPye(0,4) Wls) ifp=1,

and

Then there exists a positive constant C such that (1.1) holds for every nonnegative measurable
function f on (0,00) if and only if A < oo, where

sup VIOW(H)1 ifp<q,
A = { te(0,00)
_p _Pq
JXWradViea  ifp>q,
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in which the latter integral should be understood in the Lebesgue—Stieltjes sense with respect
_pq_
to the (monotone) function Vr=a.

Proof. Sufficiency. Fix e € (0,1). We claim that, for every nonnegative measurable function
f on (0,00), one has

(2.1) /Otf < </0t fpvspu>p V() for t > 0.

(We write < when the expression to the left of it is majorized by a constant times that on
the right.) To show (2.1), fix t € (0,00). If p € (1, 00), then, by Hélder’s inequality,

t t L 1 t % t , )
/ f :/ fvevgv—av—g < </ fpvapv> </ V —¢ep vl—P)
0 0 0 0

By a change of variables, we obtain

t t s —€ 1 S 1—-¢ 1
/V—ap/vl_P’:/ / o o1 P s = / 1P _ V(t)(l—s)p’
0 0 0 1—¢ 0 1—¢ ’
hence
t t .
[ ([ rve) v
0 0

and (2.1) follows. If p = 1, then we get (2.1) from

/Otf = /Ot fofvuTE < </Ot fV%) V(t)e.

Let p < g. Then A < oo implies V' < W, Using this and (2.1), we get

t t £p % e—1
/ < (/ fPqu> W(t) « fort>0.
0 0

Raising to ¢ and integrating with respect to w(t) dt, we obtain

[7([ 1) weraes [ ([ srwes o ds)z W0 () .

Next we apply Minkowski’s integral inequality (note that % > 1 and all the expressions in the

1
7

bS]

play are nonnegative) in the form

/OOO (/OOO F(s,t) dm(s)>g dpa(t) < (/OOO (/OOO Fls.t)? dw@))‘; dul(s)>z,



4 AMIRAN GOGATISHVILI AND LUBOS PICK

Ep

in which F'(s,t) = x(0,) () f(5)?, x denotes the characteristic function, du(s) = W(s) ¢ v(s)ds
and dus(t) = W(t)*tw(t) dt. We thus obtain

/O - < /0 FPW () ol ds> % W ()" () dt

P q

< ( | rerwe Fue) ( | wr e dt) ’ ds) E

z(/o‘”fpv)?

(We write &~ when both < and 2> apply.) Altogether, we arrive at

[ () ons ([ )
and (1.1) follows.

Let p > q. Fix a € (0,00). We shall use the symbol V(oo) for lim; o V(¢) (this limit
always exists, either finite or infinite, owing to the monotonicity of V). By (2.1)

)

[T ) woms [T ([ ) viorsvtsonu

S /O h ( / t fpvapv) ’ (V)P — V(00)=°P) » V() A==+ay(t) dt

0

o0 t 1

+ / ( fpV%) TV )=yt dt - V(oo) = = I + 11
0 0

If V(00) = 00, one has II = 0. Since
t pq rq
V(t)tmetedd & / VU Sq(Vesa) for t >0
0

and

V()= — V(00)=P = / d(—V=P) fort>0,
t

monotonicity and Fubini’s theorem yield

I< /0 h < /t h ( /0 ) fpvaqu) d(—v—ap)(s)> ( /0 s ree 2 dvp”—qq> w(t) dt
< /O - ( /0 t < / h ( /0 ' fpV%) d(—V‘O‘p)(T)>Z V(s)“—”a)q—fidvﬂ(s)) w(t) dt

- /ooo </oo (/0 f V) d(-V ap><r>)g V(s) T W (5)dV 7 (s).

B
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Thus, owing to A < oo, Holder’s inequality, and Fubini’s theorem,

q

[ ([ rreacr - St
() (oo o))
/0 00( fﬁ/%) 7)@erd( v—ap)(f)f

o0

)e (a—e)p —ap LU A ™
st pvy)/y yeapg(_y )dy) </0 fv>

If V(c0) < 00, we have

11 < /OOO (/Ot f%)p V()3 (1) dt - V(00) ™ < (/OOO fpv)z (/Ooo V(1+a>qw) V(00) ™9,

Owing to A < oo, Fubini’s theorem, and Holder’s inequality, we get

00 00 t 00
/ Y ata)a,, ~ / (/ Vaq+q—p’v1—p’> w(t)dt = / yeata—p' 1=p'p7
0 0 0 0

pP—q

o0 1 % o0 P pg \ P
< / Verpvylop / W (t)r=a dV »-a < V(0)™,
0 0

establishing 1T < ( fooo fpv)%. This shows sufficiency.
Necessity. Let p < g and assume that (1.1) holds. Fix ¢t € (0,00). Then

[ () orwe [ () s (1)

Therefore, (1.1) yields

1

AN A
TN TN N N

)

t
(2.2) c> W(t)% sup %.

720 ([5° o)
We claim that

(2.3) sup fO =V (t).
A o

Indeed, if p > 1, then we have, by Hélder’s inequality,

L= fas=([oe) ([r) = ([ ) e

for every measurable f > 0. On the other hand, this inequality is saturated by the choice
f= vlfplx(oyt), since fPv = f, and, consequently,

-

1 1
Y

L= ([ ([ ) =([ 7)o
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If p =1, then we, once again, obtain

/Otf:/otfvv‘l swt)/otfvsww/ooofv

for every measurable f > 0. In order to saturate this inequality, fix any A < V/(¢). Then there
exists a set £ C (0,¢) of positive measure such that 1 > X on E. Set f = XE. Then

/Otfz/EizAlEIZA/Ooofv-

On letting A — V(t)_, we get
t o]
[r=ve [
0 0

In any case, (2.3) follows. Since t was arbitrary, plugging (2.3) into (2.2) yields

1 fg o 1
C> sup W(t)asup———— = sup W(t)sV(¢),
t€(0,00) >0 (fooo fpv) P t€(0,00)

establishing A < oo.

Let p > g and p > 1, denote r = % and B = fooo VIWrw. Let 6 € (ﬁ,oo) and set

1
f(t) = (/ W;wVT—W) P V(t)(e_l)(p,_l)v(t)l_p/ for ¢ > 0.
t

By Fubini’s theorem,

/ fPo= / ( / W;wV”ep/> V() O=VP (1) 7 gt

0 0 t

= [T Wy e ( / vw—l)p'vl—p'> ds ~ B.
0 0

On the other hand, by monotonicity,

00 t q 00 t q 0o 4
/ (/ f) w(t)dtz/ (/ v<91><P’1>u1P’> (/ prvrap’>Pw(t)dt
0 0 0 0 t
(o] t / q [ee) 1
>/ </ V(e—l)(p’—l)%—gﬁvl—p’) </ W£w>p w(t)dt ~ B.
0 0 t

1 1
Altogether, (1.1) implies B¢ < Br. Using a standard approximation argument, we obtain

Br < 00, hence B < co. Since A ~ B owing to integration by parts, we get A < co.
Finally, let p =1 and p > ¢. Fix some o > 1 and define

Ep={te (0,00):0" <V(t) <ot} fork e Z

Set A = {k € Z : E, # 0}. Then (0,00) = Upea Ex, in which the union is disjoint and
each E} is a nondegenerate interval (which could be either open or closed at each end) with
endpoints aj and by, ap < bi. For every k € A, we find d; > 0 so that ag + d; < by and

be bk
(2.4) Wiiw < o

ag ap+ok

q
Wi-aw,
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which is clearly possible, and then we define the set

1
Gk:{te(ak,ak—l—dk):v(t)>ak}.

Since V' is non-decreasing and left-continuous, |G| > 0 for every k € A. Set h =3, .,
Then, for every k € A, one has

XGy,
|Gxl*

ap+0k q ar+0g q 1 q k
(2.5) / ho 'V 1a > / ho 'Vita = —— [ Viay !>oTa.
0 ay |Gk‘ Gg
Fix ¢t € (0,00). Then there is a uniquely defined k € A such that ¢ € (ag, bg]. Consequently,
1 Eooey o
n o
/ Wit < > / vitie Y S oo
jEA ]<k .7’ Gj j:foo ol-a — 1

On the other hand,

/dV1q>/ dVT0 = V(ay) T Y > ot

The last two estimates yield
t q t q
(2.6) / hV 1=a 5/ dVi-a fort > 0.
0 0

1
Since W1-4 is non-increasing, we can apply Hardy’s lemma (whose version for Lebesgue
integrals can be found in [2, Chapter 2, Proposition 3.6] - note that the proof presented there
works verbatim for Lebesgue—Stieltjes integrals) to (2.6) and get

R S B 1 _q
(2.7) / WTEW T < / Wiy .
0 0
Finally, using subsequently integration by parts, decomposition of (0, 00) into (J,cs Er, the

definition of Ej, the fact that each Ej is an interval with endpoints ay, by, (2. 4) (2. 5)

monotonicity of functions given by integrals, (1.1) applied to p =1 and f = hv™ LW a,
and (2.7), we get

/ a=Ties §2/ viw qw—QZ/ viaw qw<Zak1+lq>q/ W
0 0 Ex

keA keA

(k+1) ak+5k ¢ rbw
<§aqu/ quw<§j</ vV T / W Tsaw
ap+0k a

kEA kcA k+0k

bk q e’} t q
gz/ </ hv_lvlzq) W(t)lqu(t)dtg/ </ hv—lviqwﬁq> w(t) dt
ap+0k 0 0 0

keA

< [e] g 1 q 00 1 g q
< / th—qu—q> 5(/ Wl—qul—q) :
0 0

in which the multiplicative constants depend only on C' and ¢. This establishes, via a standard
approximation argument, that A'~% < oo, which in turn yields A < co. The proof is complete.
O
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