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SINGULAR EQUIVALENCES TO LOCALLY COHERENT HEARTS OF
COMMUTATIVE NOETHERIAN RINGS

MICHAL HRBEK AND SERGIO PAVON

Abstract. We show that Krause’s recollement exists for any locally coherent Grothendieck
category such that its derived category is compactly generated. As a source of such categories,
we consider the hearts of intermediate and restrictable t-structures in the derived category of
a commutative noetherian ring. We show that the induced tilting objects in these hearts give
rise to an equivalence between the two Krause’s recollements, and in particular to a singular
equivalence.
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Introduction

It has been known since the dawn of derived categories that the resolutions of unbounded com-
plexes are more delicate then their bounded counterparts. Namely, to be able to lift computations
to the homotopy category, it does not in general suffice to replace an unbounded complex by a
quasi-isomorphic complex with injective components. The correct concept is that of a dg-injective
resolution, as explained by Spaltenstein [42]. Nevertheless, a decade and a half later Krause showed
that the homotopy category K(Inj) of complexes with injective components deserves an attention
of its own. In [19], Krause showed that if G is a locally noetherian Grothendieck category such
that its derived category is compactly generated (e.g. the category of quasi-coherent sheaves over
a noetherian scheme) then K(Inj(G)) is a compactly generated category, and the Verdier localiza-
tion functor Q : K(Inj(G))→ D(G) gives rise to a recollement Kac(Inj(G)) K(Inj(G)) D(G) .
Here, the full subcategory Kac(Inj(G)) of K(Inj(G)) consisting of acyclic complexes is called the
stable derived category of G in [19]. An important point is that the recollement renders Kac(Inj(G))
compactly generated as well, and in fact its compact objects form a category equivalent (up to
retracts) to the singularity category Dsg(G) = Db(fp(G))/Dc(G), an important concept introduced
by Buchweitz in order to measure the failure of a scheme to be regular.

Another decade later, Šťovíček in [43] showed that we obtain a similar picture if we replace
the locally noetherian condition by a much more general one of being locally coherent. This gen-
eralization required employment of very different approach, including model category techniques,
viewing K(Inj(G)) as the coderived category of G in the sense of Becker [4]. To obtain the Krause’s
recollement in the locally coherent setting however, an additional hypothesis was used in [43] — G
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2 MICHAL HRBEK AND SERGIO PAVON

is assumed to have a set of finitely presented generators of finite Yoneda projective dimension. The
first aim of the present paper is to show that this assumption is unnecessary and the Krause’s rec-
ollement exists for any locally coherent Grothendieck category with compactly generated derived
category (Theorem 2.14). In particular, we define the singularity category of these Grothendieck
categories. We also show that the vanishing of the singularity category of a separated coherent
scheme admits the expected homological interpretation (Corollary 2.23).

We then proceed to consider a specific source of such Grothendieck categories — the hearts of
restrictable t-structures in the unbounded derived category D(Mod-R) of a commutative noetherian
ring R. These categories might fail to satisfy the hypothesis used in [43] (Example 3.8) and also,
such hearts are rarely locally noetherian [23, Proposition 5.6]. Any such heart H is induced by
a cotilting object of D(Mod-R), and its derived category is known to be triangle equivalent to
D(Mod-R). We show that there is also an equivalence between the coderived categories of H and
Mod-R. In fact, we construct an equivalence between Krause’s recollements of the two locally
coherent Grothendieck categories (Theorem 4.10). In particular, we obtain an equivalence between
their singularity and stable derived categories (Corollary 3.4, Theorem 4.10).

We remark that there is no shortage of the t-structures satisfying our assumptions (see Re-
mark 1.7); for example, whenever R admits a dualizing complex then the Cohen-Macaulay t-
structure in Db(mod-R) in the sense of [1] extends to such a t-structure in D(Mod-R). In the
literature (see e.g. [17, Lemma 4.1]), singular equivalences are found to be induced by derived
equivalences between the bounded derived categories of coherent objects over schemes or rings. In
our situation however, the derived equivalences come from the “large” tilting theory as developed
in [34], [29], and [44]. This forces us to use different techniques to obtain the singular equivalence,
including working with an enhancement in the form of stable derivators.

Acknowledgement. We are grateful to Leonid Positselski for very useful discussions concerning
the paper.

1. Preliminaries

1.1. Compact objects in triangulated categories. A major role in our discussion will be
played by compact objects.

Definition 1.1. Let T be a triangulated category. An object C ∈ T is said to be compact if, for
every family (Xi | i ∈ I) of objects whose coproduct exists in T, the canonical morphism∐

i∈I
HomT(C,Xi)→ HomT(C,

∐
i∈I

Xi)

is an isomorphism. The full subcategory of compact objects of T (which is a thick subcategory)
will be denoted by Tc. If T has all coproducts, it is said to be compactly generated if it coincides
with its smallest triangulated subcategory closed under coproducts and containing Tc.

We will often employ a dévissage argument, which is a standard tool. For the convenience of
the reader, we spell out once the application we will use the most.

Lemma 1.2 (Double dévissage). Let T, S be compactly generated triangulated categories, and
F : T → S a triangle functor. Assume that F preserves coproducts, and that it restricts to an
equivalence Tc → Sc. Then F is an equivalence.

Proof. We first prove that F is fully faithful. For every X,Y in T, consider the natural map

ηX,Y : HomT(X,Y )→ HomS(FX,FY )

induced by F . Let Y ⊆ T be the full subcategory of the objects Y such that ηC,Y is an isomorphism
for every C ∈ Tc. It is easily seen to be triangulated; moreover, since F preserves coproducts and
the objects C and FC are compact in T and S respectively, Y is also closed under coproducts. By
hypothesis, Tc ⊆ Y, and therefore Y = T. Now, let X ⊆ T be the full subcategory of the objects X
such that ηX,Y is an isomorphism for every Y ∈ T. Again, it is triangulated; this time it is also
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automatically closed under coproducts, and by the previous discussion Tc ⊆ X. We conclude that
X = T, i.e. that F is fully faithful. Now, consider the essential image of F in S. Since F is a
full triangle functor, its image is a triangulated subcategory (fullness is needed for closure under
extensions). Moreover, it is also closed under coproducts, because F preserves them, and contains
Sc, by hypothesis. We deduce that F is also essentially surjective, i.e. an equivalence. �

1.2. t-structures. [6] Let T be a triangulated category. A pair T = (U,V) of full subcategories of
T is a t-structure provided that the following axioms hold:
(t-1) HomT(U,V) = 0,
(t-2) U is closed under the suspension functor, and
(t-3) for any X ∈ T there is a triangle U → X → V → U [1] with U ∈ U and V ∈ V.
We call the subcategory U (resp. V) the aisle (resp. the coaisle) of the t-structure T. It

follows from the axioms that U = ⊥0V = {X ∈ T | HomT(X,V) = 0} and V = U⊥0 , and
so any t-structure is uniquely determined by its aisle or by its coaisle. The triangle from the
axiom (t-3) is unique and functorial. In fact, the triangle is isomorphic to a triangle of the form
τU(X) → X → τV(X) → τU(X), where τU : T → U (resp. τU : T → U) is the right (resp. left)
adjoint to the inclusion of the aisle (resp. coaisle) into T. The heart of the t-structure T is defined
as H = U ∩ V[1] and it is an abelian category with the exact structure induced by the triangles of
T whose terms belong to H.

Assuming that T has a suitable enhancement, see [34, §3, Theorem 3.11] or [44, §4], there
is a triangulated functor realbT : Db(H) → T which extends the inclusion H ⊆ T. Any functor
satisfying these two properties is called the (bounded) realization functor associated to the
t-structure T. Realization functors are not uniquely determined in general, but as shown in [34,
Proposition 3.17], bounded derived equivalences of abelian categories are always of the form realbT
for a suitable t-structure T up to an exact equivalence of abelian categories.

A t-structure T = (U,V) is called stable if its aisle U (equivalently, its coaisle V) is a triangulated
subcategory of T. The aisles of stable t-structures are precisely the coreflective thick subcategories
of T ([21, Proposition 4.9.1]). Such subcategories are automatically localising, i.e. triangulated
and closed under existing coproducts.

1.3. Recollements and their equivalences. [6] Let U,V,T be triangulated categories. A rec-
ollement (of T) is a diagram of triangle functors

(1) V T U
i∗

i!

i∗

j∗

j∗

j!

such that:
(i) (i∗, i∗, i

!) and (j!, j
∗, j∗) are adjoint triples,

(ii) i∗, j!, j∗ are fully faithful,
(iii) Im(i∗) = Ker(j∗).

We say that two recollements V T U and V′ T′ U′ are equivalent if there
are triangle equivalences F : T → T′ and G : U→ U′ such that the diagram

T U

T′ U′

∼=F

j∗

∼=G

j∗
′

is commutative (up to a natural equivalence). It follows from [30] that this situation is enough to
induce a triangle equivalence H : V→ V′ and the commutativity of all of the six possible squares
corresponding to the six different functors from the definition of recollement Eq. (1).

It is well-known that any recollement as in Eq. (1) induces a (stable) TTF triple (j!U, i∗V, j∗U),
that is, a pair of two adjacent (automatically stable) t-structures (j!U, i∗V) and (i∗V, j∗U). In fact,
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this assignment yields a bijective correspondence between equivalence classes of recollements of T
and TTF triples in T.

1.4. Categories of complexes and the coderived category. Let G be an abelian category.
We will deal with many categories whose objects are complexes with terms in G, so we proceed to
fix the notation, to recall some less known definitions and to point out the relations among them.

As usual, C(G) denotes the category of complexes and cochain maps. Inside C(G), one can
consider the acyclic complexes, and among them contractible ones. By forming the quotient over
the contractible complexes, one obtains the homotopy category K(G) of G. Inside K(G) there
are again the acyclic complexes, whose subcategory is denoted by Kac(G). The derived category
D(G) of G is defined as the Verdier localisation K(G)/Kac(G), and in all the occurrences in this
paper this construction will result in an honest (triangulated) category. The localisation functor
will be denoted by Q : K(G) → D(G). Notice that when G has exact coproducts, Q commutes
with coproducts. We denote by Db(G) the bounded derived category of G — the full triangulated
subcategory of D(G) consisting of objects whose cohomology vanishes in all but finitely many
degrees.

Now let G be a Grothendieck abelian category. Inside K(G) there is the subcategory K(Inj(G)) of
complexes with injective terms. Its left Hom-orthogonal is the subcategory Kcoac(G) of coacyclic
objects. These are equivalently defined in C(G) as those complexes X such that Ext1C(G)(X,Y ) = 0

for every complex Y with injective terms (see [43, Definition 6.7], and [4, 32] for the original
definitions). The pair of subcategories (Kcoac(G),K(Inj(G))) is a stable t-structure in K(G); the
corresponding right truncation will be denoted by Iλ : K(G) → K(Inj(G)) (see [22, Corollary 7
and Example 5]). The coderived category (in Becker’s sense) of G is defined as the Verdier
localisation Dco(G) := K(G)/Kcoac(G), and it is equivalent to K(Inj(G)) via the functor induced by
Iλ. Coacyclic complexes are in particular acyclic (otherwise they would have a non-zero morphism
to the injective envelopes of their non-zero cohomologies), so there is a localisation Dco(G)→ D(G),
which corresponds to Q after identifying Dco(G) ∼= K(Inj(G)).

Remark 1.3. There is a different definition of a coderived category in the literature, which is
due to Positselski [32]. The two definitions are known to coincide in many situations, for example
if the underlying Grothendieck category is locally noetherian [32, §3.7], but it seems to be an
open question even for module categories whether they coincide in general (see e.g. [33, Example
2.5(3)]). However, as we will see in Corollary 3.7, for the locally Grothendieck categories we
are most interest in, that is the hearts of intermediate restrictable t-structure over commutative
noetherian rings, the two definitions of a coderived category are indeed equivalent, and so there is
no need to distinguish them.

1.5. Derivators. For some of our arguments to work correctly, we will need to consider D(G)
enhanced with the structure of a stable derivator. For basics about the standard derivator of a
Grothendieck category which covers most of what is needed in our application see e.g. [45] or [16,
Appendix] and the references therein. Here we recall only some particular aspects and terminology
of the theory.

Let CAT denote the large 2-category of all categories, Cat denote the 2-category of all small
categories and G be a Grothendieck category. For any I ∈ Cat we consider the Grothendieck
category GI of all I-shaped diagrams in G, that is, of all functors I → G. Since C(GI) is naturally
isomorphic to C(G)I , we can view objects of D(GI) as I-shaped diagrams in the category C(G) of
cochain complexes. The standard derivator of G is a 2-functor DG : Catop → CAT satisfying
several properties. First, for any small category I, the image DG(I) is the triangulated category
D(GI). In particular, if ? denotes the category with a single object and a single morphism, we
see that DG(?) recovers the derived category D(G). Another property is that given any morphism
u : I → J in Cat, the induced functor DG(u) : DG(J)→ DG(I) is triangulated and it admits both
the left and the right adjoint which are called the left and right Kan homotopy extensions
along u. For the full definition of an abstract stable derivator, we refer the reader e.g. to [45,
Definition 5.9, Definition 5.11].
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For any small category I and any object i ∈ I let ιi : ? → I denote the unique functor which
maps the only object of ? to i. The collection of functors DG(ιi) : DG(I)→ DG(?) induce a functor
diagI : DG(I) → DG(?)I = D(G)I called the diagram functor. It is essentially the reason why
theory of derivators exists that the diagram functor is usually not an equivalence. We call objects
of DG(I) the coherent diagrams of shape I in D(G), in contrast with objects of the diagram
category DG(?)I which are sometimes called incoherent diagrams. It is convenient to denote for
any coherent diagram X ∈ DG(I) by Xi the i-th coordinate of the incoherent diagram diagI(X).

For any small category I, denote the unique functor I → ? by πI . The left Kan extension along
πI has a special name — it is the homotopy colimit functor hocolimI : DG(I)→ DG(?) = D(G),
and it is equivalent to the left derived functor of the colimit functor C(GI) = C(G)I → C(G). In
particular, if I is a directed category, the associated homotopy colimit functor hocolimI is computed
on a diagram X ∈ D(GI) simply by computing the direct limit lim−→I

(X) of the diagram X ∈ C(G)I

inside the Grothendieck category C(G).
There is also a notion of a morphism and equivalence between derivators, we refer the reader

to [45, §5] and [11]. For our purposes, it will be enough to say that if G,E are two Grothendieck
categories, then a morphism of derivators η : DG → DE induces functors ηI : DG(I) → DE(I)
such that for each morphism u : I → J the following square commutes (up to natural equivalence):

(2)
DG(J) DG(I)

DE(J) DE(I)

ηJ

DG(u)

ηI

DE(u)

The morphism of derivators η is an equivalence if all the functors ηI are equivalences. If this is
the case, then η is an honest equivalence in a suitable category of derivators [11, Proposition 2.11],
and all the equivalences ηI are triangle equivalences [45, Proposition 5.12]. Furthermore, if η is an
equivalence then one can check by passing to adjoint functors that η is also compatible with left
and right Kan extensions along any morphism u in Cat. In particular, we get the commutative
square for any I ∈ Cat:

(3)
DG(I) DG(?)

DE(I) DE(?)

∼=ηI

hocolimI

∼=η?

hocolimI

Note that since cohomology is computed coordinate-wise, an object X of the bounded derived
category Db(GI) is an I-shaped diagram in C(G) such that the cohomologies of the coordinates Xi
are uniformly bounded, that is, there are integers l < m such that Hj(Xi) = 0 for all j < l or
j > m and all i ∈ I. By the exactness of direct limits in C(G), we see that for any small directed
category I the homotopy colimit functor restricts to a functor hocolimI : Db(GI)→ Db(G). We say
that an equivalence of standard derivators η : DG → DE is bounded if for any small category I
the triangle equivalence ηI restricts to a triangle equivalence ηI : Db(GI)→ Db(EI). If I is directed,
the above commutative square restricts to another one:

Db(GI) Db(G)

Db(EI) Db(E)

∼=ηI

hocolimI

∼=η?

hocolimI

We remark that the bounded property can be naturally reformulated in terms of restriction to
bounded standard derivators Db

G, as it is done in [44]. These derivators are defined similarly to the
standard derivators DG, but one needs to replace Cat by the full subcategory of all suitably finite
categories to reflect the fact that Db(G) is not (co)complete.
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In our context, equivalences of standard derivators will appear in the form of enhancements
of (unbounded) realization functors. If T is a t-structure in D(G) with heart H satisfying certain
assumptions, Virili constructs in [44, Theorem B, §6] a morphism realT : DH → DG between
standard derivators such that the functor real?T : D(H) → D(G) is triangulated and restricts to a
realization functor Db(H)→ D(G). We will discuss the cases when this occurs in (co)tilting theory
in Section 1.8.

1.6. Intermediate and standard t-structures in D(G). Let G be an abelian category. For any
integer n ∈ Z, there is a t-structure (D≤n,D>n), where D≤n = {X ∈ D(G) | Hi(X) = 0 ∀i > n}
and D>n = {X ∈ D(G) | Hi(X) = 0 ∀i ≤ n}, called the (n-th shift of the) standard t-structure.
The left truncation functor τD≤n is induced by the soft truncation of complexes and denoted
simply by τ≤n, similarly the right truncation is the soft truncation functor τ>n.

A t-structure T = (U,V) in D(G) is intermediate if there are integers l < m such that D≤l ⊆
U ⊆ D≤m, or equivalently, D>m ⊆ V ⊆ D>l. It is easy to see that the intermediacy of the
t-structure T yields that the realization functor realbT : Db(HT) → D(G) corestricts to a functor
realbT : Db(HT)→ Db(G) between the bounded derived categories.

1.7. Compactly generated and restrictable t-structures in D(Mod-R). A t-structure T =
(U,V) is compactly generated if there is a set S ⊆ Tc such that V = S⊥0 , or equivalently, if
V = (S ∩ Tc)⊥0 .

Alonso Tarrío, Jeremías López, and Saorín [1] showed that compactly generated t-structures
admit a full classification in geometric terms in the case T = D(Mod-R), the unbounded derived
category of a commutative noetherian ring R. Let Spec(R) denote the Zariski spectrum of R.
A subset V of Spec(R) is called specialization closed if V is a union of Zariski-closed sets
(equivalently, V is an upper subset of the poset (Spec(R),⊆)). An sp-filtration of Spec(R) is an
order-preserving function Φ : Z→ 2Spec(R) such that Φ(n) is a specialization closed subset for each
n ∈ Z.

Theorem 1.4. ([1, Theorem 3.10]) Let R be a commutative noetherian ring. There is a bijective
correspondence between sp-filtrations Φ of Spec(R) and the set of compactly generated t-structures
in D(Mod-R). The bijection assigns to Φ a t-structure with the aisle UΦ defined as follows:

UΦ = {X ∈ D(Mod-R) | SuppHn(X) ⊆ Φ(n) ∀n ∈ Z}.

Definition 1.5. Let G be a locally coherent Grothendieck category, that is, a locally finitely
presented Grothendieck category such that the full subcategory fp(G) of finitely presented objects
forms an abelian subcategory of G. A t-structure T = (U,V) in D(G) is restrictable if the pair
(U ∩ Db(fp(G)),V ∩ Db(fp(G))) is a t-structure in Db(fp(G)).

Under mild assumption on a commutative noetherian ring R, the restrictability of a compactly
generated t-structure in D(Mod-R) can be read rather directly from the associated sp-filtration.
For the definition of a pointwise dualizing complex we refer the reader e.g. to [1, § 6], in particular,
any (classical) dualizing complex is a pointwise dualizing complex.

Theorem 1.6. ([1, Corollary 4.5, Theorem 6.9]) Let R be a commutative noetherian ring and let T
be the compactly generated t-structure corresponding to an sp-filtration Φ. Consider the following
two conditions:

(i) T is restrictable (to Db(mod-R)),
(ii) Φ satisfies the weak Cousin condition, that is, whenever p ( q are prime ideals such

that q is minimal over p, then for any n ∈ Z the implication q ∈ Φ(n) =⇒ p ∈ Φ(n− 1)
holds.

Then (i) =⇒ (ii) holds. Furthermore, if R admits a pointwise dualizing complex then also
(ii) =⇒ (i) holds.

Remark 1.7. Let R be a commutative noetherian ring. Restrictable t-structures in D(Mod-R)
are ubiquitous:
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• [31, Theorem 2.16, Remark 2.7] A Happel-Reiten-Smalø (HRS) t-structure obtained from
a hereditary torsion pair in Mod-R is compactly generated and restrictable. In view of
Theorem 1.4, these t-structures correspond to sp-filtrations Φ such that Φ(n) = Spec(R)
for all n < 0 and Φ(n) = ∅ for all n > 0.
• Assume that d is a codimension function on Spec(R), that is, a function d : Spec(R)→ Z

such that d(q) = d(p) + 1 whenever p ( q are primes with q minimal over p. Then the
assignment Φd(n) = {p ∈ Spec(R) | d(p) > n} defines an sp-filtration which satisfies the
weak Cousin condition.

Furthermore, any pointwise dualizing complex D induces a codimension function dD
[13, p. 287], and therefore a restrictable t-structure, see [1, §6].

• If R admits a dualizing complex D, the restrictable t-structure induced by the codimen-
sion function dD has a particularly nice description, we follow [1, §6.4]. The functor
RHomR(−, D) induces a duality functor on the category Db(mod-R), and therefore it
sends the standard t-structure to another t-structure on Db(mod-R), called the Cohen-
Macaulay t-structure. This t-structure then naturally lifts to a restrictable t-structure
in D(Mod-R), see [25, §3], and coincides with the compactly generated t-structure corre-
sponding to the sp-filtration ΦdD .

1.8. Silting and cosilting t-structures and realization functors. Let T be a triangulated
category and M ∈ T. We define the full subcategories M⊥>0 = {X ∈ T | HomT(M,X[i]) ∀i > 0}
and ⊥>0M = {X ∈ T | HomT(X,M [i]) ∀i > 0}, the subcategories M⊥≤0 ,M⊥<0 and ⊥≤0M,⊥<0M
are defined analogously.

Following Psaroudakis-Vitória [34] and Nicolás-Saorín-Zvonareva [29], an object T in T is silting
if the pair (T⊥>0 , T⊥≤0) is a t-structure in T, which we call a silting t-structure. A silting object
C (as well as the induced t-structure) is called tilting if Add(T ) ⊆ T⊥<0 , where Add(T ) is the
smallest subcategory of T containing T and closed under all coproducts and retracts. Dually,
an object C ∈ T is cosilting if the pair (⊥≤0C,⊥>0C) is a t-structure in T, which we call a
cosilting t-structure. A cosilting object C (as well as the induced t-structure) is called cotilting
if Prod(C) ⊆ ⊥<0C, where Prod(C) is the smallest subcategory of T containing C and closed under
all products and retracts.

(Co)silting and (co)tilting objects serve to study triangle equivalences, often induced by the
realization functors associated to the induced (co)silting t-structures. Let us specialize now to the
case T = D(G), where G is a Grothendieck category. Given a (co)silting objectM ∈ D(G) denote the
heart of the silting t-structure TM byHM and the induced realization functor as realM : Db(HM )→
D(G). We call a (co)silting object in D(G) bounded if the induced (co)silting t-structure in is
intermediate. Recall that the intermediacy implies that the realization functor factors through
Db(G). Specializing the result of Psaroudakis and Vitória to Grothendieck categories, we have the
following tilting theorem.

Theorem 1.8. [34, Corollary 5.2] Let G be a Grothendieck category and M ∈ D(G) a bounded
(co)silting object. Then realM : Db(HM )→ Db(G) is a triangle equivalence if and only if the object
M is (co)tilting.

We remark that if T is a silting object thenHT is an abelian category with a projective generator
[2]. If T is (additively equivalent to) a compact object of D(G) then it follows that HT is equivalent
to a module category, and if in addition T is tilting then we have HT

∼= Mod-EndD(G)(T ) [34,
Corollary 4.7]. On the other hand, consider a module category Mod-R and a bounded cosilting
object C ∈ D(Mod-R). Then it is known that the heart HC is a Grothendieck category [24,
Proposition 3.10].

In [44], Virili extended the (co)tilting realization functors to the unbounded level by construct-
ing realization equivalences of standard derivators. See also the formulation [44, Theorem E]
characterizing restrictable derived equivalences.
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Theorem 1.9. [44, Theorem C, D] Let G be a Grothendieck category and M ∈ D(G) a bounded
tilting (resp. cotilting) object. Then there is an equivalence realM : DHM

→ DG of derivators
which is bounded.

In the situation of Theorem 1.9, we denote the triangle equivalence on the base as realM := real?M .
Then the triangle equivalence realM : D(HM ) → D(G) is an unbounded realization functor [44,
Theorem 7.7, Theorem 7.9] which restricts to a bounded realization functor Db(HM ) → Db(G)
which is an equivalence.

A compilation of known results gives a nice characterization of t-structures in D(Mod-R) in-
duced by bounded cotilting objects amongst all intermediate t-structures when R is commutative
noetherian.

Theorem 1.10. ([34],[16]) Let R be a commutative noetherian ring and T an intermediate t-
structure in D(Mod-R). The following are equivalent:

(i) there is a triangle equivalence D(HT)→ D(Mod-R) which restricts to the bounded level and
HT is a locally finitely presented Grothendieck category,

(ii) the realization functor realbT : Db(HT) → Db(Mod-R) is an equivalence and HT is a
Grothendieck category,

(iii) T is a cotilting t-structure.

Proof. (i)⇒ (ii) : Clear.
(ii)⇒ (iii) : This is Theorem 1.8.
(iii) ⇒ (i) : The first part follows by Theorem 1.9. Since R is commutative noetherian, it is is

known that TT is a compactly generated t-structure [15],[16] and the heart HT is a locally finitely
presentable Grothendieck category [40]. �

Finally, we record a recently established strong connection between the cotilting property and
restrictability of the associated t-structure.

Theorem 1.11 ([31, Corollary 6.18]). Let R be a commutative noetherian ring and T be an
intermediate, compactly generated, and restrictable t-structure in D(Mod-R). Then T is a cotilting
t-structure.

2. Krause’s recollement for locally coherent Grothendieck categories

Let G be a locally coherent Grothendieck category such that D(G) is compactly generated. Our
goal is to extend [19, Corollary 4.3] from the locally noetherian to the locally coherent case, that
is, to show that Krause’s recollement exists for G.

This was shown by Šťovíček [43, Theorem 7.7] under the additional assumption that G admits a
set of finitely presented generators of finite Yoneda projective dimension (see [43, Hypothesis 7.1]).
This assumption implies that D(G) is compactly generated, but it is strictly stronger: we demon-
strate an example, which is a Happel-Reiten-Smalø tilt in the derived category of a commutative
noetherian ring, in Example 3.8. Our approach here is closer to the original one of Krause, but
relies on some of the results of Šťovíček [43, Section 6] (these do not depend on the aforementioned
[43, Hypothesis 7.1]).

Recall that fp(G) denotes the subcategory of all finitely presented objects of G, an exact abelian
subcategory in case G is locally coherent. Our starting point is the following result of Šťovíček.

Theorem 2.1. [43, Corollary 6.13] Let G be a locally coherent Grothendieck category. Then
K(Inj(G)) is compactly generated and the functor assigning to an object of Db(fp(G)) its injective
resolution induces an equivalence Db(fp(G)) ∼= K(Inj(G))c.

Corollary 2.2. Let G be a locally coherent Grothendieck category. Then the functor Q : K(Inj(G))→
D(G) admits a right adjoint Qr.

Furthermore, the equivalence Db(fp(G)) ∼= K(Inj(G))c of Theorem 2.1 is induced by the restrictions
of the adjoint functors Qr and Q.
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Proof. By Theorem 2.1, K(Inj(G)) is compactly generated. Since G has exact coproducts, the
functor Q preserves coproducts, and so [28, Theorem 4.1] applies and produces the desired right
adjoint.

It follows directly from the adjunction that for any X ∈ D(G), Qr(X) is homotopy equivalent to
a dg-injective resolution of X (which exists by [41]). By Theorem 2.1 we have that Qr(X) restricts
to the equivalence Db(fp(G)) ∼= K(Inj(G))c with the inverse equivalence being the restriction of Q
to K(Inj(G))c. �

2.1. Compact objects of D(G) and the (small) singularity category. The main obstacle in
extending Krause’s proof to the locally coherent case is showing that any compact object of D(G)
belongs to Db(fp(G)), and therefore representes a compact object also in K(Inj(G)) via Qr; the proof
in the locally noetherian case [19, Lemma 4.1] does not generalize directly.

Following Gillespie [8], an object M of a Grothendieck category G is said to be of type FP∞ if
the functor ExtiG(M,−) naturally preserves direct limits for all i ≥ 0. It will be convenient for our
purposes to extend this notion to any object of the bounded derived category.

Definition 2.3. Let G be a Grothendieck category. An object X ∈ Db(G) is of type FP∞ if for
any direct system (Mi | i ∈ I) in G and any n ∈ Z the natural map

lim−→
i∈I

HomDb(G)(X,Mi[n])→ HomDb(G)(X, lim−→
i∈I

Mi[n])

is an isomorphism.

Not very surprisingly, Definition 2.3 admits a somewhat more internal characterization using
homotopy colimits of bounded directed coherent diagrams, which in turn provides a “bounded”
version of the following notion from the theory of stable derivators.

Definition 2.4 ([39, Definition 5.1]). Given a directed small category I, X ∈ D(G), and Y ∈ D(GI),
there is a natural map (see [45, Definition 6.5])

lim−→
i∈I

HomD(G)(X,Yi)→ HomD(G)(X, hocolimIY).

An object X ∈ D(G) is called homotopically finitely presented if the map above is an isomor-
phism for any choice of I and Y.

Lemma 2.5. Let G be a Grothendieck category. An object X ∈ Db(G) is of type FP∞ if and only
if for any directed small category I and any coherent diagram Y ∈ Db(GI) the natural map

lim−→
i∈I

HomDb(G)(X,Yi)→ HomDb(G)(X, hocolimIY)

is an isomorphism.

Proof. Since Y ∈ Db(GI), the coherent diagram Y is represented by a direct system (Yi | i ∈ I) in
C(G) such that the cohomology of the complexes Yi is uniformly bounded. Therefore, there is n ∈ Z
and k ≥ 0 such that for all i ∈ I, the cohomology of Yi vanishes outside of degrees n, . . . , n+ k. If
k = 0, by applying the soft truncation we may assume that Y is such that (Yi | i ∈ I) is a direct
system of stalk complexes in degree n, and therefore the required isomorphism is provided by the
definition of an object of type FP∞. The general case follows by induction on k > 0. Indeed,
applying hocolimI to the soft truncation triangle of Y in Db(GI) we obtain the triangle

hocolimIτ
≤nY→ hocolimIY→ hocolimIτ

>nY
+−→

in Db(G). Notice that soft truncations commute naturally with the component functors (−)i, and
we have triangles in Db(G)

τ≤nYi → Yi → τ>nYi
+−→ .

Then there is following commutative diagram, in which the horizontal maps are induced by the
two triangles above and the vertical ones are the natural maps (we write (A,B) := HomD(G)(A,B),
to lighten the notation):
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lim−→i∈I(X, τ
>nYi[−1]) lim−→i∈I(X, τ

≤nYi) lim−→i∈I(X,Yi) lim−→i∈I(X, τ
>nYi) lim−→i∈I(X, τ

≤nYi[1])

(X, hocolimIτ
>nY[−1]) (X, hocolimIτ

≤nY) (X, hocolimIY) (X, hocolimIτ
>nY) (X, hocolimIτ

≤nY[1])

Then the induction step follows directly by Five lemma, as both the coherent diagrams τ>nY
and τ≤nY are subject to the induction hypothesis for k − 1. �

Lemma 2.6. Let G be a Grothendieck category. The objects of type FP∞ of X ∈ Db(G) form a
thick subcategory of Db(G)c.

Proof. By exactness of coproducts in G, the coproducts in Db(G) are precisely the coproducts
of collections of objects with uniformly bounded cohomology computed in D(G). Therefore, any
coproduct in Db(G) can be realized as a directed homotopy colimit of a suitable diagram of Db(GI)
whose components are finite subcoproducts. In this way Lemma 2.5 shows that any object of
type FP∞ in Db(G) is compact in Db(G). The fact that objects of type FP∞ form a triangulated
subcategory follows from the Five lemma similarly as in the proof of Lemma 2.5, the closure under
retracts is clear. �

Lemma 2.7. Let G be a locally coherent Grothendieck category. An object X ∈ Db(G) is of type
FP∞ if and only if X ∈ Db(fp(G)).

Proof. An object F ∈ fp(G) is of type FP∞ as an object in Db(G), see [8, Theorem 3.21]. By
Lemma 2.6, any object in the thick closure of fp(G) in Db(G) is of type FP∞, which shows that
X ∈ Db(fp(G)) implies that X is of type FP∞.

For the converse implication, let X ∈ Db(G) be of type FP∞ and let n be a maximal inte-
ger such that Hn(X) 6= 0. For any M ∈ G the soft truncation yields a natural isomorphism
HomDb(G)(X,M [−n]) ∼= HomG(Hn(X),M). Since X is of type FP∞, it follows that the functor
HomG(Hn(X),−) : G → Mod-Z preserves direct limits, and so Hn(X) belongs to fp(G). Using
the previous paragraph and Lemma 2.6 we infer that the soft truncation τ<nX is of type FP∞.
Continuing by finite induction we conclude that all cohomologies of X belong to fp(G), and so
X ∈ Db(fp(G)), see e.g. [18, Theorem 15.3.1]. �

Remark 2.8. Combining Lemma 2.7 and Lemma 2.6 we obtain the inclusion Db(fp(G)) ⊆ Db(G)c.
We do not know whether the converse inclusion holds true in general for a locally coherent
Grothendieck category such that D(G) is compactly generated. However, in Section 3, we will
show that this these two categories coincide in case G is the heart of an intermediate cotilting
t-structure over a commutative noetherian ring.

Proposition 2.9. Let G be a locally coherent Grothendieck category. There is an inclusion D(G)c ⊆
Db(fp(G)).

Proof. Let C be a compact object of D(G). For each n ∈ Z there is a natural map C →
E(Hn(C))[−n] in D(G) to a shift of the injective envelope of Hn(C). This induces a morphism
C →

∏
n∈ZE(Hn(C))[−n]. Products in D(G) are computed as component-wise products of dg-

injective resolutions; so in this case, the compontent-wise product of the E(Hn(C))[−n]. In this
particular case, it coincides with the component-wise coproduct. This is also the coproduct in
D(G), since G has exact coproducts. Therefore we obtain a morphism C →

∐
n∈ZE(Hn(C))[−n]

in D(G). By compactness of C, this map factors through a finite subcoproduct. It follows that C
has finitely many non-zero cohomologies.

By [39, Proposition 5.4], C is homotopically finitely presented in D(G). In particular, C is of
type FP∞ in Db(G). Therefore, C ∈ Db(fp(G)) by Lemma 2.7. �

Remark 2.10. Let G be a locally coherent Grothendieck category. Proposition 2.9 shows that
D(G)c is a thick subcategory of Db(fp(G)), and therefore we can form the Verdier quotient Dsg(G) =
Db(fp(G))/D(G)c. Following the locally noetherian case [19], we call Dsg(G) the (small) singularity
category of G.
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2.2. The left adjoint.

Lemma 2.11. Let G be a locally coherent Grothendieck category. For any C ∈ D(G)c and any
Y ∈ K(Inj(G)), there is a natural isomorphism

HomD(G)(C,QY ) ∼= HomK(Inj(G))(QrC, Y ).

Proof. Consider the natural transformation

ηC,Y : HomK(Inj(G))(QrC, Y )→ HomD(G)(QQrC,QY )

induced by Q. By Corollary 2.2, the functors Qr and Q induce an equivalence Db(fp(G)) ∼=
K(Inj(G))c. We see that QQrC is naturally isomorphic to C and also, in view of Proposition 2.9,
that ηC,Y is an isomorphism whenever Y ∈ K(Inj(G))c. Consider the subcategory K of K(Inj(G))
consisting of all objects Y such that ηC,Y is an isomorphism for all C ∈ D(G)c. A standard argument
shows that K is a triangulated subcategory. Since C is compact in D(G) and QrC is compact in
K(Inj(G)), the subcategory K is closed under coproducts. Then K is a localizing subcategory of
K(Inj(G)) containing all compact objects, and therefore K = K(Inj(G)) by Theorem 2.1. �

Lemma 2.12. Let G be a locally coherent Grothendieck category such that D(G) is compactly
generated. Then the functor Q : K(Inj(G))→ D(G) admits a left adjoint Ql.

Proof. Let L be the localizing subcategory of K(Inj(G)) generated by Qr(D(G)c). Then L is a
compactly generated triangulated category, and the restriction Q�L : L → D(G) is a functor be-
tween compactly generated triangulated categories that preserves coproducts and by Corollary 2.2
restricts further to an equivalence Lc ∼= D(G)c. Then Q�L is an equivalence by Lemma 1.2, and
so there is an inverse equivalence P : D(G)

∼−→ L. We define Ql as the composition of P and the
inclusion ι : L ↪→ K(Inj(G)).

The inclusion ι of L into K(Inj(G)) has a right adjoint τ : K(Inj(G))→ L, see e.g. [28, Theorem
4.1]. It follows that Ql = ι ◦P has a right adjoint Q ◦ τ . It remains to show that Q ◦ τ is naturally
equivalent to Q. Applying Q to the counit transformation ι◦τ → idK(Inj(G)) we see that it is enough
to show that any object of L⊥0 is sent to zero by Q, i.e. L⊥0 ⊆ Kac(Inj(G)). If Y ∈ L⊥0 then
HomK(Inj(G))(QrC, Y ) = 0 for all C ∈ D(G)c. By Lemma 2.11, this implies HomD(G)(C,QY ) = 0 for
all C ∈ D(G)c, and since D(G) is compactly generated, we have QY = 0, as desired. �

We record the following auxiliary property of the adjoints of Q for later use.

Lemma 2.13. In the setting of Lemma 2.12 we have an isomorphism QrC ∼= QlC for all C ∈
D(G)c.

Proof. By Lemma 2.12 and Lemma 2.11, there are natural isomorphisms for all Y ∈ K(Inj(G))

HomK(Inj(G))(QlC, Y ) ∼= HomD(G)(C,QY ) ∼= HomK(Inj(G))(QrC, Y ).

The isomorphism QrC ∼= QlC thus follows from the Yoneda lemma. �

Theorem 2.14. Let G be a locally coherent Grothendieck category such that D(G) is compactly
generated. Then there is a recollement:

Kac(Inj(G)) K(Inj(G)) D(G)
i∗

i!

i∗

Q

Qr

Ql

Proof. Recall that the functor Q is a Verdier localization functor whose kernel is the full subcate-
gory Kac(Inj(G)). By a standard argument (see [19, Lemma 3.2]), it is enough to establish that Q
admits both left and right adjoint functors, which we showed in Corollary 2.2 and Lemma 2.12. �
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Corollary 2.15. In the setting of Theorem 2.14, the category Kac(Inj(G)) is compactly generated
and the subcategory of compact objects Kac(Inj(G))c is equivalent up to retracts to the singularity
category Dsg(G) of G.

Proof. This follows directly from [27, Theorem 2.1] applied to the situation of Theorem 2.14. �

Corollary 2.16 (cf. [19, Corollary 4.4]). Let G be a locally coherent Grothendieck category such
that D(G) is compactly generated. Then any product of acyclic complexes of injective objects is
acyclic.

Remark 2.17. In the locally noetherian situation [19], the category Kac(Inj(G)) is called the stable
derived category of G and denoted by S(G), while other sources [4], [43] call it the (large)
singularity category of G. In the latter two citations, it is shown that S(G) is a homotopy
category of C(G) endowed with a suitable abelian model structure. It is also explained in [43,
§7] that S(G) naturally identifies with the subcategory of all acyclic complexes of the coderived
category Dco(G) via the equivalence K(Inj(G)) ∼= Dco(G), and the same equivalence identifies the
recollement of Theorem 2.14 with the recollement of the form

S(G) Dco(G) D(G)
⊆ Q

2.3. The singularity category of a locally coherent Grothendieck category. The next goal
is to interpret the vanishing of the singularity category Dsg(G) in terms of homological dimension
of objects of G. For this, we need to impose a relatively mild condition on G. Following Roos [36],
a Grothendieck category G is Ab4∗−d for a non-negative integer d if for any set I, the product
functor

∏
I : GI → G has cohomological dimension at most d, we refer the reader to [14] for

further details. In particular, G satisfies Ab4∗−0 if and only if the products are exact in G. Recall
that the product

∏
i∈IMi in D(G) is computed as the product

∏
i∈I Ei in C(G) for any choice of

injective resolutions Ei of Mi. Therefore, G satisfies Ab4∗−d if and only if the (component-wise)
product

∏
i∈I Ei belongs to D≤d whenever Ei are complexes of injective objects of G concentrated

in non-negative degrees with the only non-vanishing cohomology in degree zero.

Lemma 2.18. Let G be Grothendieck category which is Ab4∗−d for some d ≥ 0. Then
∏
i∈I Xi ∈

D≤d for any collection of objects Xi ∈ D≤0 (in other words, the standard t-structure (D≤0,D>0) in
D(G) is d-cosmashing, see [44, Definition 5.4]).

Proof. Let Ei be a dg-injective replacement of Xi for any i ∈ I [41]. Now we need to show
that the (component-wise) product

∏
i∈I Ei is in D≤d. First, let us assume that there is k ≤ 0

such that all components of Ei in degrees below k are zero. If k = 0 then Ei are injective
resolutions of objects of G and so

∏
i∈I Ei ∈ D≤d by the definition of the Ab4∗−d property.

The case of k < 0 is proved using induction and brutal truncations, using the fact that brutal
truncations commute with component-wise products. Finally, if there is no such k we argue using
the following isomorphism:

∏
i∈I Ei

∼= lim−→n<0
σ>n

∏
i∈I Ei

∼= lim−→n<0

∏
i∈I σ

>nEi, where σ>n is
the brutal truncation to degrees above n. Then

∏
i∈I σ

>nEi ∈ D≤d by the previous case, and the
directed colimit also stays in D≤d by exactness. �

Lemma 2.19. (cf. [20, §1.6], [14, Theorem 1.3]) Let G be a Grothendieck category satisfying
Ab4∗−d for some d ≥ 0. Then for any collection Mn ∈ G of objects indexed by n ∈ Z we have an
isomorphism

∐
n∈ZMn[n] ∼=

∏
n∈ZMn[n] in D(G) (the product is computed in D(G)).

Proof. Consider the canonical morphism η :
∐
n∈ZMn[n] →

∏
n∈ZMn[n] in D(G) and let us show

that η is a an isomorphism. Let l ∈ Z and let us compute H l(η). Since coproducts are ex-
act in G, the coproduct is equivalently computed in C(G) and H l(

∐
n∈ZMn[n]) is clearly just

Mn. On the other hand, the product
∏
n∈ZMn[n] isomorphic in D(G) to the product

∏
n∈ZEn[n]
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computed in C(G), where En is an injective resolution of Mn for each n. Consider the decomposi-
tion

∏
n∈ZEn[n] =

∏
n>−l+dEn[n]×

∏
n=−l,...,−l+dEn[n]×

∏
n<−lEn[n]. Clearly,

∏
n<−lEn[n] ∈

D>l. For any n > −l + d, we have En[n] ∼= Mn[n] ∈ D<l−d, and using Lemma 2.18 we
conclude that

∏
n>−l+dEn[n] ∈ D<l. It follows that H l(η) factors as a map H l(η) : Ml →

H l(
∏
n=−l,...,−l+dEn[n]) =

∏
n=−l,...,−l+dH

l(En[n]) = H l(El[l]), and this is clearly an isomor-
phism. �

The following definition is not necessarily standard.

Definition 2.20. An object X of D(G) is of finite projective dimension if there is n ∈ Z such
that HomD(G)(X,D

≤n) = 0.

Remark 2.21. If X ∈ D(G) is of finite projective dimension in the sense of Definition 2.20, then
in particular we have that HomD(G)(X,G[i]) = 0 for i � 0. If X is an object of G, this means
precisely that ExtiG(X,−) = 0 for i � 0, i.e. that X has finite Yoneda projective dimension;
see e.g. [43, Hypothesis 7.1]. The converse implication is however not so clear, at least without
further assumptions on G. If D(G) is left-complete [34, Definition 6.2], that is if any X ∈ D(G)
is isomorphic to the homotopy limit of its soft truncations from below, then a standard argument
similar to the one in the following paragraph shows that these two definitions are equivalent. It is
shown in [14, Theorem 1.3] that D(G) is left-complete whenever G satisfies Ab4∗−d for some d ≥ 0.

Even without additional assumptions on G, the two definitions coincide wheneverX is a compact
object of D(G). Indeed, then the condition HomD(G)(X,D

≤n) = 0 can be checked just on bounded
complexes from D≤n by a standard argument using homotopy colimits of hard truncations and the
fact that X is compact. Arguing by dimension shifting and finite extensions, HomD(G)(X,D

≤n) = 0
is then equivalent to HomD(G)(X,G[−n]) = 0.

Proposition 2.22. Let G be a locally coherent Grothendieck category satisfying Ab4∗−d for some
d ≥ 0 such that D(G) is compactly generated. Then the following conditions are equivalent:

(i) Dsg(G) = 0,
(ii) S(G) = 0,
(iii) any object F ∈ fp(G) has finite projective dimension.

Proof. The equivalence of (i) and (ii) is clear from Corollary 2.15.
(i) ⇒ (iii) : Suppose that there is F ∈ fp(G) which is not of finite projective dimension, and

assume towards contradiction that F is compact as an object of D(G). In view of Remark 2.21,
there are objects Mn ∈ G for all n ≥ 0 such that ExtnH(F,Mn) 6= 0. By Lemma 2.19 there is an
isomorphism

∐
n≥0Mn[n] ∼=

∏
n≥0Mn[n] in D(G), and so there is a morphism F ⇒

∐
n≥0Mn[n]

which does not factor through any finite subcoproduct of
∐
n≥0Mn[n] in D(G) (cf. [45, Remark

1.11]). It follows that F is not compact in D(G), and therefore F is a non-zero object of Dsg(G) =
Db(fp(G))/D(G)c.

(iii)⇒ (i) : It is enough to show that any F ∈ fp(G) is compact as an object of D(G). Because F
is of finite projective dimension, there is an n ≤ 0 such that we can use soft truncations to obtain for
any collection of objects Xi ∈ D(G), i ∈ I a chain of natural isomorphisms HomD(G)(F,

∐
i∈I Xi) ∼=

HomD(G)(F, τ
≥nτ≤0

∐
i∈I Xi) ∼= HomD(G)(F,

∐
i∈I τ

≥nτ≤0Xi). It follows that F is compact in D(G)

if and only if it is compact in Db(G). But F ∈ (Db(G))c by Remark 2.8. �

We conclude this section by showing that Proposition 2.22 specializes neatly to the case of the
category of quasicoherent sheaves over a scheme. Following [10], a quasicompact and quasiseparated
scheme X is coherent if it admits a cover X =

⋃
i∈I Spec(Ri) by open affine sets such that Ri

is a coherent commutative ring for all i ∈ I. By a standard argument [12, Corollary 2.1], this is
equivalent to any open affine subset Spec(R) of X being such that the ring R is coherent. By [10,
Proposition 9.2], X is coherent if and only if the Grothendieck category Qcoh-X of quasicoherent
sheaves is locally coherent. It follows that fp(Qcoh-X) = coh-X, the category of coherent sheaves,
and Db(fp(Qcoh-X)) = Db(coh-X).
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The classical notion of a regular noetherian ring admits the following generalization to coherent
rings, here we follow [5] and [9]. A coherent commutative ring R is regular if any finitely generated
ideal has finite projective dimension. By [9], this is equivalent to any finitely presented R-module
being of finite projective dimension.

It is then natural to call a coherent scheme X regular if it admits a cover X =
⋃
i∈I Spec(Ri)

where Ri are regular coherent rings. Since regular coherent rings descent along faithfully flat
morphisms [9, Theorem 6.2.5], this is equivalent to any open affine subset Spec(R) of X being such
that R is regular coherent.

Corollary 2.23. Let X be a separated coherent scheme. Then the followng are equivalent:

(i) Dsg(Qcoh-X) = 0,
(ii) X is regular,
(iii) any coherent sheaf has finite projective dimension in Qcoh-X.

Proof. Since X is separated, the derived category D(Qcoh-X) is compactly generated by [7, §3],
and the compact objects are up to isomorphism precisely the perfect complexes, that is, complexes
which are locally quasi-isomorphic to bounded complexes of vector bundles.

(i) ⇔ (ii): If F ∈ Db(coh-X), we can check whether F ∈ D(Qcoh-X)c locally on an open
affine cover, and any such restriction becomes a bounded complex of finitely presented modules.
Therefore, since regularity is also a local property, the task reduces to the case of X being an affine
scheme. But this case follows directly from Proposition 2.22, because for an affine scheme X the
category Qcoh-X is equivalent to a module category, and thus has exact products.

(i) ⇔ (iii) : Since coh-X = fp(Qcoh-X), this follows from Proposition 2.22 because Qcoh-X
satisfies Ab4∗−d for some d ≥ 0 by [14, Remark 3.3]. �

3. Restrictable t-structures

Recall from Theorem 1.10 that if R is a commutative noetherian ring and T is an interme-
diate cotilting t-structure, then T is compactly generated and H is a locally finitely presentable
Grothendieck category by [40, Theorem 1.6]. In view of the previous section, we are mostly inter-
ested in the case when H is in addition locally coherent. Therefore, in this section we consider the
following setting.

Setting 3.1. Let R be a commutative noetherian ring. Let TC be a t-structure, with heart HC ,
such that:

(C1) TC is the cotilting t-structure associated to a cotilting object C.
(C2) TC is intermediate.
(C3) HC is a locally coherent Grothendieck category.

Condition (C2) is equivalent to the requirement that C ∈ Kb(Inj(R)), which is sometimes in-
cluded in the definition of a cotilting object. The fact that C is cotilting provides us with a triangle
equivalence

realC : D(HC)→ D(Mod-R)

which restricts to the level of bounded derived categories and which lifts to an equivalence between
the standard derivators, see Section 1.8.

The main goal of this section is to characterize Setting 3.1 using the restrictability of the t-
structure TC . To do that, we first need to better understand the compact objects in the bounded
derived category ofHC . Recall from Remark 2.8 that we have an inclusion Db(fp(HC)) ⊆ Db(HC)c.
We will use the derived equivalence to Mod-R to show that this inclusion is an equality.

Lemma 3.2. Let G and E be Grothendieck categories and η : DG → DE a bounded equivalence of
derivators. Then for an object X ∈ Db(G) is of type FP∞ if and only if η?(X) is of type FP∞ in
Db(E).
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Proof. Let I be a directed small category and Y ∈ Db(GIC). Then there is the following commutative
square induced by application of the equivalence η between derivators, where all of the maps are
the naturally induced ones:

lim−→i∈I HomD(G)(X,Yi) lim−→i∈I HomD(E)(η
?X, (ηIY)i)

HomD(G)(X, hocolimIY) HomD(E)(η
?X, hocolimI(η

IY))

∼=

∼=

Note that both the horizontal isomorphisms are induced by the triangle equivalence η?. Indeed,
this follows from the two canonical isomorphisms induced by the derivator equivalence η:

hocolimI(η
IY) ∼= η?(hocolimIY) and (ηIY)i ∼= η?(Yi),

see Eq. (3) and Eq. (2). Since the equivalence η is bounded, ηIY ∈ Db(EI). Therefore, if η? is of
type FP∞ then the right vertical map is an isomorphism by Lemma 2.5. Then the square implies
that the left vertical map is an isomorphism for any choice of Y ∈ Db(GI), and so X is of type FP∞.
The converse implication follows similarly using the fact that η? and ηI are equivalences between
the bounded derived categories. �

Lemma 3.3. In Setting 3.1, we have (Db(HC))c = Db(fp(HC)). In particular, the derived equiv-
alence realC restricts to an equivalence Db(fp(HC))→ Db(mod-R).

Proof. Recall from Theorem 1.9 that the cotilting t-structure T induces a bounded equivalence
realC : DHC

→ DMod-R of derivators. In particular, we have a triangle equivalence Db(HC)
∼−→

Db(Mod-R) obtained by restriction of real?C : D(HC)
∼−→ D(Mod-R). Then real?C further restricts

to an equivalence Db(HC)c
∼−→ Db(Mod-R)c between the categories of compact objects. Since R is

noetherian, Db(Mod-R)c = Db(mod-R) by [37, Corollary 6.17], and Db(mod-R) is also precisely the
subcategory of Db(Mod-R) consisting of objects of type FP∞, see Lemma 2.7. Then Lemma 3.2
applies and shows that Db(HC)c coincides with the subcategory of all objects of type FP∞ of
Db(HC). But by Lemma 2.7 this is precisely the subcategory Db(fp(HC)).

Finally, note that we proved the second statement along the way, since realC = real?C . �

Corollary 3.4. In Setting 3.1, the functor realC induces a triangle equivalence Dsg(HC) →
Dsg(Mod-R) between singularity categories.

Proof. By Lemma 3.3, the derived equivalnce realC : D(HC) → D(Mod-R) restricts to an equiva-
lence Db(fp(HC))→ Db(mod-R). Since realC also restricts to an equivalence D(HC)c → D(Mod-R)c

between the subcategories of compact objects, the result follows formally by passing to Verdier
quotients. �

Now we are ready to formulate the main result of this section, that is, to characterize the case
in which the heart HC is a locally coherent category. Our results can be seen as a refinement of
the characterization of the locally coherent property of hearts due to Marks and Zvonareva [25,
Corollary 4.2], but only in the special case of intermediate compactly generated t-structures in
D(Mod-R).

Theorem 3.5. Let R be a commutative noetherian ring and T be an intermediate compactly
generated t-structure in D(Mod-R) with heart H. Then the following are equivalent:

(i) we are in Setting 3.1, that is, realbT is an equivalence and H is locally coherent;
(ii) the t-structure T restricts to Db(mod-R).

Proof. Recall that realbT being an equivalence amounts to T being induced by a cotilting object C
by Theorem 1.10, and therefore the description in (i) indeed corresponds to Setting 3.1.

The two claims of the implication (ii) ⇒ (i) are proven in [31, Corollary 6.17] and [38, Theo-
rem 6.3], respectively.

It remains to show (i) ⇒ (ii). Assume now that H is locally coherent. To establish that
T is restrictable, we just need to recall from Lemma 3.3 that the derived equivalence realC :
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D(H)
∼−→ D(Mod-R) restricts to an equivalence Db(fp(H))

∼−→ Db(mod-R). The t-structure T
corresponds under real to the standard t-structure on D(H), which clearly restricts to a t-structure
in Db(fp(H)). �

As another application of Lemma 3.3, we can show that the two versions of coderived categories
of HC due to Becker and Positselski coincide. Recall that an object M ∈ HC is fp-injective if
Ext1HC

(F,M) = 0 for all F ∈ fp(HC). Furthermore,M ∈ HC is of finite fp-injective dimension
if M is isomorphic in D(HC) to a bounded complex of fp-injective objects concentrated in non-
negative degrees.

Lemma 3.6. In Setting 3.1, any object in HC of finite fp-injective dimension is of finite injective
dimension.

Proof. Let M ∈ HC , put X = realC(M) ∈ Db(Mod-R), and let us denote the converse equivalence
to realC as real−1

C : D(Mod-R)
∼−→ D(HC). Since the t-structure T is intermediate, and using

Lemma 3.3, there is an integer n ∈ Z such that real−1
C (mod-R) ⊆ D(fp(HC)) ∩ D≥n. If M is

of finite fp-injective dimension then HomD(HC)(D(fp(HC))≥n,M [i]) = 0 for all i � 0. Applying
realC we therefore obtain HomD(Mod-R)(mod-R,X[i]) = 0 for all i � 0, which amounts to X ∈
Db(Mod-R) being of finite injective dimension in D(Mod-R), since R is noetherian. Equivalently,
we have HomD(Mod-R)(D(Mod-R)≥0, X[i]) = 0 for i � 0. But using the intermediacy of T again,
we know that realCHC [j] ⊆ D(Mod-R)≥0 for j � 0, and so it follows by applying real−1

C that
HomD(HC)(HC ,M [i + j]) = 0 for i + j � 0, which in turn implies that M is of finite injective
dimension in HC . �

Corollary 3.7. In Setting 3.1, the coderived category K(Inj(HC)) (in Becker’s sense) is equivalent
to the coderived category in Positselski’s sense.

Proof. This follows directly from [32, §3.7, Theorem] in view of Lemma 3.6 . �

We finish this section with an example of a locally coherent Grothendieck category which does
not satisfy [43, Hypothesis 7.1] even though its derived category is compactly generated. In fact,
we obtain it as a heart HT in D(Mod-R) induced by a compactly generated, intermediate and
restrictable t-structure.

Example 3.8. Let (R,m) be a commutative and noetherian local ring, of dimension 1, which is not
Cohen-Macaulay; for example, take R to be the localisation of k[x, y]/(x2, xy), for an algebraically
closed field k, at the maximal ideal m = (x, y). In particular, we have 1 = dim(R) > depth(R) =
0; and then, by the Auslander-Buchsbaum formula, every non-zero finitely generated module is
projective or has infinite projective dimension (in other words, the small finitistic global dimension
of R is 0). Moreover, since R is not Cohen-Macaulay, m is an associated prime of R; and the other
primes are minimal, so they are associated as well, i.e. Ass(R) = Spec(R). Therefore, every cyclic
module R/pR for a prime p is a subobject of a projective module (R itself). It follows from Matlis’
Theorem and [3, Theorem 7.1] that the finitistic injective global dimension of R and, by duality,
also the finitistic weak global dimension of R are 0. We recall that this means that any R-module
of finite flat dimension is automatically flat.

Let V = {m}, consider the associated hereditary torsion pair t = (T,F) in Mod-R, and let H

be the HRS-tilt of Mod-R with respect to t; namely, H = F[1] ∗ T, we refer to [31] for terminology
and details. Notice that since D(H) ∼= D(Mod-R) (by [31, Corollary 5.11]) the former is compactly
generated. Also, H is the heart of the Happel-Reiten-Smalø t-structure corresponding to the torsion
pair (T,F), and this is an intermediate t-structure which is compactly generated and restrictable
([31, Remark 4.8 and Theorem 2.16(3)]).

Nonetheless, we shall show that there are no non-zero finitely presented objects of finite (Yoneda)
projective dimension in H, and therefore [43, Hypothesis 7.1] is not satisfied.

Since R has dimension 1, every subset of Spec(R) is coherent, and therefore V corresponds to
a flat ring epimorphism R→ S; given our choice of V , S will be a regular ring of dimension 0. In
H, there is a hereditary torsion pair s = (T,Mod-S[1]) (see [31, §4.2]).
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Let X be a finitely presented object of H, i.e. X ∈ H ∩ Db(mod-R), and assume it has finite
projective dimension. Note that this implies that X is of finite projective dimension also as an
object of D(Mod-R). Consider its approximation sequence with respect to s in H, i.e. the triangle

T → X → L[1]→ T [1]

with T ∈ T and L an S-module. In particular, since gl.dim(S) = 0, L is a projective S module;
since S is a flat R-module, it has finite projective dimension over R [35, Seconde partie, Corollaire
3.2.7], and then so does L. From the triangle above, we deduce that T has finite projective
dimension as well. Then, its flat dimension in Mod-R is also finite, and since the finitistic weak
global dimension of R is 0, T is a flat R-module. Now, we claim that this implies T = 0. Indeed,
consider a presentation

0→ K → F → T → 0

with F = R(α) a free R-module. Since T is flat, this sequence is pure exact, and therefore the
torsion radical t of t gives a short exact sequence

0→ tK → tF → T → 0.

By construction, tR is supported on V = {m}, and since it is finitely generated, this means that
V (ann(tR)) = {m}. Hence m =

√
ann(tR), and since R is noetherian it follows that there exists n

such that mntR = 0. Therefore, tR, tF = (tR)(α) and also T are R/mn-modules. T is also flat over
R/mn, and since this is an artinian local ring, T is free, i.e. T ∼= (R/mn)(β). But then, if T 6= 0,
its direct summand R/mn should be a finitely presented flat R-module, and therefore projective,
which is a contradiction because it would force R to be artinian (and therefore 0-dimensional).

It follows that our finitely presented object X of H is isomorphic to L[1]. But then, L is a
finitely presented R-module of finite projective dimension, hence it is projective, hence free. Now,
since L is also an S-module, if L 6= 0 this would imply that R ∈ Mod-S. In particular, R would
be torsion-free with respect to t, which is not the case since m ∈ Ass(R). We conclude that
X ∼= L[1] = 0.

4. The equivalence of recollements

Let R be a commutative noetherian ring. By Theorem 3.5, Setting 3.1 characterises the case in
which we have an intermediate compactly generated restrictable t-structure T.

Consider now the following seemingly new situation.

Setting 4.1. Let H be a locally coherent Grothendieck category, and assume that there exists an
object T in D(H) such that:
(T1) T is compact tilting.
(T2) T has finite projective dimension, i.e. HomD(H)(T,H[i]) = 0 for i� 0 (cf. Remark 2.21).
(T3) EndD(H)(T ) is isomorphic to a commutative noetherian ring R.

Condition (T1) assures that D(H) is compactly generated. Since T is compact, it belongs to
Db(G), see Proposition 2.9. Under this assumption, similarly to before, condition (T2) is equivalent
to requiring the tilting t-structure TT of D(H) associated to T to be intermediate. Conditions (T1)
and (T3) imply that its heart HT is isomorphic to Mod-R, and we have a triangle equivalence

realT : D(Mod-R) = D(HT )→ D(H).

Using the equivalences realC and realT , we see that these two settings are the two sides of the
same picture: starting from Setting 3.1, the choices H := HC and T := real−1

C (R) fit Setting 4.1;
conversely, taking C := real−1

T (W ) for an injective cogenerator W of H, one obtains the t-structure
TC as the pullback along realT of the standard t-structure of D(H). In the following we will work
with Setting 4.1, with Setting 3.1 serving as motivation.

Since H is locally coherent and D(H) is compactly generated (by T ), we have the recollement
of Theorem 2.14; and there is also the Krause’s recollement for Mod-R:

Kac(Inj(H)) K(Inj(H)) D(H) Kac(Inj(R)) K(Inj(R)) D(Mod-R)
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Our goal is to construct an equivalence between these two recollements. In order to do that, we
replace the derived equivalence realC by another one which we are able to lift to the coderived
level. We start by fixing a convenient resolution of T .

Lemma 4.2. Up to shift, T admits a resolution T := (F−n → F−n+1 → · · · → F0) with finitely
presented objects Fi ∈ fp(H).

Proof. Since T is compact, by Proposition 2.9 it belongs to Db(fp(H)), so it is quasi-isomorphic to
a complex over the abelian category fp(H). By taking soft truncations this complex can be made
strictly bounded. �

Now we consider the functor Hom(T,−) : C(H) → C(Z), defined as the totalisation of the
bicomplex Hom•,•(T,−). Notice that this bicomplex is always bounded along the direction of T
(because we chose a strictly bounded resolution of T ).

Since R is commutative, D(H) ∼= D(Mod-R) is an R-linear category, and then so is H. The
bicomplex Hom•,•(T,−) and its totalisation Hom(T,−) have therefore terms in Mod-R and R-
linear differentials; this gives us a functor

(4) Ψ := Hom(T,−) : C(H)→ C(R).

Moreover, if X ∈ C(H) is contractible, then the rows of Hom•,•(T,X) are also contractible,
since HomH(Fi,−) is an additive functor for all −n ≤ i ≤ 0. It follows that Hom(T,X) ∈ C(R) is
also contractible, which gives us a functor

(5) Ψ := Hom(T,−) : K(H)→ K(R).

In particular, by restriction of the domain, Ψ induces functors on the subcategories K(Inj(H)) ⊆
K(fpInj−H) ⊆ K(H), which we will continue to denote by Ψ.

We record immediately that Ψ induces a derived equivalence D(H) ∼= D(Mod-R).

Lemma 4.3. The functor RHomH(T,−) := QΨQr : D(H)→ D(Mod-R) is an equivalence. More-
over, it restricts to an equivalence Db(H)→ Db(Mod-R), and also to an equivalence Db(fp(H))→
Db(mod-R).

Proof. By (T1) and (T3) we have RHomH(T, T ) ∼= EndD(H)(T ) ∼= R, so the functor RHomH(T,−)
sends a compact generator of D(H) to a compact generator of D(Mod-R). Moreover, since
RHomH(T,−) is R-linear on Hom-sets, it must induce the isomorphism EndD(H)(T ) ∼= EndR(R) =
R of endomorphism rings. Since T is a compact generator of D(H) and R is a compact gen-
erator of D(Mod-R), a standard arguments shows that RHomH(T,−) induces an equivalence
D(H)c

∼−→ D(Mod-R)c between the categories of compact objects (see e.g. [26, Proposition 6]).
Lastly, RHomH(T,−) preserves coproducts, since T is compact. Then, the derived equivalence is
established by double dévissage (Lemma 1.2).

For the claim about the bounded equivalence, let X ∈ D(H). Then its image RHomH(T,X)
belongs to Db(Mod-R) if and only if HomD(H)(T,X[i]) = 0 for all but finitely many i ∈ Z; and
this means that X has finitely many cohomologies with respect to TT . Since TT is intermediate,
this is equivalent to X belonging to Db(H). Therefore, RHomH(T,−) restricts to an equivalence
Db(H)

∼−→ Db(Mod-R), and therefore also to an equivalence Db(H)c
∼−→ Db(Mod-R)c between

compact objects of the bounded derived categories. By Lemma 3.3 and [37, Corollary 6.17], this
last equivalence is the same as the desired equivalence Db(fp(H))

∼−→ Db(mod-R). �

Lemma 4.4. Ψ: C(H) → C(R) preserves direct limits (and in particular coproducts). Therefore,
also the induced functor Ψ: K(H) → K(R) and its restriction Ψ: K(fpInj−H) → K(R) preserve
coproducts.

Proof. Coproducts in K(H) are computed termwise, as in C(H). Moreover, since fpInj−H is closed
under coproducts in H, coproducts in K(fpInj−H) are computed as in K(H). It is then enough to
prove the claim for Ψ: C(H)→ C(R).
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Now, let Xα := (· · · → Xi
α → Xi+1

α → · · · ) ∈ C(H) be a direct system of objects, and consider
their direct limit lim−→Xα = (· · · → lim−→Xi

α → lim−→Xi+1
α → · · · ). Ψ sends it to the totalisation of the

bicomplex

· · · HomH(F0, lim−→Xi
α) HomH(F0, lim−→Xi+1

α ) · · ·

· · · HomH(F−1, lim−→Xi
α) HomH(F−1, lim−→Xi+1

α ) · · ·

...
...

· · · HomH(F−n, lim−→Xi
α) HomH(F−n, lim−→Xi+1

α ) · · ·

Since the Fi’s are finitely presented in H, the functors HomH(Fi,−) commute naturally with the
direct limits, so Hom•,•(T, lim−→Xα) is isomorphic in C(C(H)) to the direct limit of the bicomplexes
Hom•,•(T,Xα). Totalisation also commutes with direct limits, and so Ψ preserves them. �

In order to obtain a functor between the coderived categories, we want Ψ to preserve coacyclicity.
Recall that a locally finitely presentable Grothendieck category G admits a natural notion of a pure
exact sequence, and that a complex in C(G) is pure-acyclic if it is acyclic and in addition, each
exact sequence 0→ Zi(X)→ Xi → Zi+1(X)→ 0 induced by the cocycles is pure exact in G.

We start by recalling the following fact.

Proposition 4.5 ([43]). Over a locally coherent Grothendieck category, pure-acyclic complexes are
coacyclic.

Proof. This follows mainly from [43, §6.2]; we recollect the argument for the convenience of the
reader. Let G be a locally coherent Grothendieck category, and X a complex in C(G). Then X
corresponds to a coacyclic object of K(G) if and only if it is Ext1C-orthogonal to C(Inj(G)), i.e. if
it belongs to the left class of the functorially complete cotorsion pair generated by disks of fp(G).
Now, this left class is closed under retracts and transfinite extensions, and pure-acyclic complexes
are (retracts of) transfinite extensions of disks of fp(G) in C(G) by [43, Lemma 5.6]. �

Lemma 4.6. The restriction Ψ: K(fpInj−H)→ K(R) preserves coacyclic complexes.

Proof. As a partial converse of Proposition 4.5, a complex X ∈ C(H) of fp-injectives is coacyclic
in K(H) if and only if it is pure-acyclic [43, Proposition 6.11]. By [43, Lemma 4.14], a complex X
in C(H) is pure-acyclic if and only if it is a direct limit of bounded contractible complexes. Since
Ψ: C(H) → C(R) preserves both direct limits (Lemma 4.4) and contractibility, Ψ(X) will also be
pure-acyclic by the same characterisation. Then we conclude by Proposition 4.5 that Ψ(X) is also
coacyclic. �

In view of the equivalences

K(Inj(H)) K(fpInj−H)/{pure acyclics} Dco(H)
⊆
∼= ∼=

by Lemma 4.6 we deduce that Ψ induces a functor

(6) RcoΨ: Dco(H)→ Dco(R).

On an object X ∈ Dco(H), RcoΨ is computed by first resolving X by a complex of fp-injectives (or
even injectives), then applying Ψ and considering the resulting complex as an object of Dco(R).
When identifying Dco(H) ∼= K(Inj(H)) and Dco(R) ∼= K(Inj(R)), RcoΨ is then the composition

(7) RcoΨ: K(Inj(H)) K(H) K(R) K(Inj(R)).
⊆ Ψ Iλ

Proposition 4.7. RcoΨ: Dco(H)→ Dco(R) is an equivalence.
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Proof. We want to argue by double dévissage.
First, RcoΨ: Dco(H)→ Dco(R) preserves coproducts, since Ψ does (Lemma 4.4).
Now we show that it induces an equivalence between the subcategories of compact objects. In

view of the identification Dco(H) ∼= K(Inj(H)), a compact object of Dco(H) is identified with the
dg-injective resolution X of an object in Db(fp(H)); in particular, this is a bounded below complex.
When we apply Ψ and then Iλ, as in (7), we obtain again a bounded below complex, first in K(R)
and then in K(Inj(R)). This last object Y := IλΨ(X), in particular, is a dg-injective complex.
Since we have X ∼= QrQX and Y ∼= QrQY in K(Inj(H)) and K(Inj(R)), respectively, we can write

RcoΨ(X) = Y ∼= QrQY = QrQIλΨX = QrQΨX ∼= QrQΨQrQX =: (∗)

Now, by definition, RHomH(T,−) := QΨQr, so we can continue

(∗) = Qr RHomH(T,QX)

It is therefore sufficient to show that Qr RHomH(T,Q−) is an equivalence between K(Inj(H))c and
K(Inj(R))c. Now, Q : K(Inj(H))c → Db(fp(H)) and Qr : Db(mod-R)→ K(Inj(R))c are equivalences,
and RHomH(T,−) : Db(fp(H))→ Db(mod-R) is an equivalence by Lemma 4.3. �

Now that we have the equivalence between the coderived categories, we show that it preserves
the recollements. First we need a technical lemma.

Lemma 4.8. IλT ∼= QlQIλT in Dco(H) ∼= K(Inj(H)).

Proof. Let E be the dg-injective resolution of T ; we have a triangle in K(H)

A→ T → E → A[1]

with A acyclic. Since T is bounded below, E and then A are also bounded below. A is therefore
also coacyclic. This means that E ∼= IλT in K(Inj(H)). Now, since E is dg-injective we have
E ∼= QrQE ∼= QrQT ; but QT is compact in D(H), and therefore QrQT ∼= QlQT by Lemma 2.13.
We conclude as wanted that IλT ∼= QlQT in K(Inj(H)). �

Lemma 4.9. RcoΨ: Dco(H)→ Dco(R) preserves acyclics.

Proof. Identifying Dco(H) ∼= K(Inj(H)) and in view of (7), let X ∈ K(Inj(H)) be acyclic. For every
n ∈ Z we have

HnIλΨX ∼= HnΨX = HnHom(T,X) ∼=

∼= HomK(H)(T,X[n]) ∼= HomK(Inj(H))(IλT,X[n])
(1)∼=

∼= HomK(Inj(H))(QlQT,X[n]) ∼= HomD(H)(QT,QX[n])
(2)
= 0

where (1) is by Lemma 4.8 and (2) because QX = 0. �

Theorem 4.10. RcoΨ: Dco(H)→ Dco(R) induces an equivalence of recollements, that is, there is
a diagram

S(H) Dco(H) D(H)

S(Mod-R) Dco(Mod-R) D(Mod-R)

SΨ ∼= RcoΨ ∼= RΨ ∼=

in which the rows are the recollements from Remark 2.17 of H and Mod-R and such that all the
six obvious squares commute.

Proof. Identify Dco(H) ∼= K(Inj(H)) and Dco(R) ∼= K(Inj(R)). By Proposition 4.7, RcoΨ is an equiv-
alence. By Lemma 4.9, it preserves acyclicity. In view of basic results on recollement equivalences
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(see Section 1.3), it is enough to show that the following square is commutative up to equivalence

K(Inj(H)) D(H)

K(Inj(R)) D(Mod-R)

∼=RcoΨ

Q

∼=RΨ

Q

where RΨ = RHomH(T,−). Since RcoΨ preserves acyclics, the composition QRcoΨ kills ob-
jects from Kac(Inj(H)), and thus the approximation triangle with respect to the stable t-structure
(Kac(Inj(G)), Qr(D(G)) in K(Inj(G)) yields a natural equivalence QRcoΨ ∼= QRcoΨQrQ. Then we
can compute similarly as in Proposition 4.7:

QRcoΨQrQ = QIλΨQrQ ∼= QΨQrQ = RΨQ.

The rest follows by denoting the induced triangle equivalence S(H)→ S(Mod-R) by SΨ. �
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