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Introduction to the research workshop
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Organizational
• four observing groups a 3 or 2: we want to mix the students, so please can

each student from Brno join another group

•
observing night 1 2 3 4 5 6 7 8
spectroscopy A C B D A B C D
photometry B D A C

observations start at ∼ 19 : 00, so if you observe, please bring something for
dinner

• Lecture plan: https://stelweb.asu.cas.cz/en/seminars/
workshops/workshop-2021/

• Lectures start at 14:00, if there were no observations, and 16:00 if one or two
groups did observe the last night

• one supervisor will be there during the day from 10:00 to help the students,
who did not observe, with data reduction, analysis, results ....

• it is also possible to do some work during the observations

https://stelweb.asu.cas.cz/en/seminars/workshops/workshop-2021/
https://stelweb.asu.cas.cz/en/seminars/workshops/workshop-2021/
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Organizational
• second week: each group works on a different research project using data

observed and reduced by different groups
• requirement for passing the course: every group reduces their own data,

(short) paper about the research project with focus on the scientific goal, tar-
get selection, analysis methods, data analysis and discussion of results

• Deadline: 17.09.2021 (you should finish a draft the day before, so that you
can work in feedback)
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Photometric project
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Photometric project 1

Hot subdwarf stars of spectral type B (sdB)
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Photometric project 2

Formation of sdB binary

Han et al. (2002,2003)
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Photometric project 3

Eclipsing Reflection effect systems


Microsoft Game DVR

tk

reflection.mp4
Media File (video/mp4)
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Photometric project 4

Eclipsing Reflection effect systems
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Photometric project 5

Ground-based lightcurve surveys
OGLE
Optical Gravitational Lensing Experiment

→ observation of the lightcurve of
many stars in different fields
→ discovery of planetary transits,
pulsators, eclipsing binaries

ATLAS
Asteroid Terrestrial-impact Last Alert System

→ a robotic astronomical survey look-
ing for near-earth objects
→ located in Hawaii, planned in the
southern hemisphere

CRTS, PTF, ZTF, BlackGEM, ....
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Photometric project 6

150 HW Vir candidate systems: P = 0.05 − 1.26 d
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Photometric project 7

The EREBOS project
EREBOS (Eclipsing Reflection Effect Binaries from Optical
Surveys)

• homogeneous data analysis of all newly discovered HW
Vir systems

• photometric and spectroscopic follow-up of all targets to
determine fundamental (M , R), atmospheric (Teff, log g)
and system parameters (a, P)

• spectroscopic and photometric follow-up

Key questions:

• minimum mass of the companion necessary to eject the
common envelope?

• fraction of close substellar companions to sdB stars

• better understanding of the CE phase and the reflection
effect

EREBOS
God of darkness
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Photometric project 8

Lightcurve analysis with lcurve

A light curve can be generated as follows:
• Generate grids covering all objects (stars,

disc, ...)
• set their surface brightness including all ef-

fects, e.g. limb darkening, gravity darkening,
reflection effect, Doppler beaming, ...

• At every phase compute what can and can-
not be seen, add up the fluxes.

• Deriving inclination, radii, masses by comb-
ing with spectroscopic data
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Photometric project 9

Introduction to photometry/spectroscopy
Research workshop on evolved stars

Veronika Schaffenroth

06.09.2021

Institute for Physics and Astronomy
Email: schaffenroth@astro.physik.uni-potsdam.de

Room: 2.118

schaffenroth@astro.physik.uni-potsdam.de
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Telescopes
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Refractive telescope 1

The Galilean telescope

+ upright image 
+ Magnification = |fo/fe| 
-  small field of view

fo=objective  
focal length

fe=eyepiece  
focal length

our eye is a 
lens focussing  

rays on the retina 
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Refractive telescope 2

The Keplerian telescope

+ intermediate focus 
+ large magnification easier 
+ larger Field of View 
- Image inverted 

(needs an erector)
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Refractive telescope 3

Chromatic aberration

Due to the wavelength dependence of the refractive index of glass n(𝜆)

Glass is also very heavy, big lenses are hard to manufacture and mount
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Reflective telescopes 1

Newton’s reflector / telescope

Uses mirror to  
prevent chromatic 
aberrations present in 
refractors: nglass(λ) 

Reflection is achromatic!
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Reflective telescopes 2

Reflection at a Spherical Surface

• Mirror equation 1/s′ + 1/s = 2/R
• assuming s = ∞ ⇒ f = s′ = R/2
• two mirror system ⇒ effective focal length f = f1f2/(f1 + f2 − d)
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Reflective telescopes 3

Spherical aberration
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Reflective telescopes 4

Telescope design considerations

• Field of view: f number f = F/D, the smaller the larger is FoV (f/(F/D)
→ Limited by size of secondary mirror, vignetting

• Collecting area: number of photons ∼ D2

• thermal stability
• angular resolution, Rayleigh criterion 1.22𝜆/D
• image quality: aberrations at large distance from optical axis, coma, astigma-

tism
• mounts: equatorial, Altitude-Azimuth (altaz)
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Reflective telescopes 5

Telescope design considerations
• Focus:

Subaru telescope
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Reflective telescopes 6

Perek 2-m telescope
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Reflective telescopes 7

Perek 2-m telescope

• Manufacturer: Carl Zeiss Jena
• Type of mount: Equatorial
• Primary parabolic mirror D=2 m,

thickness 0.3 m, weight 2340 kg
• Original optical setting: primary,

Cassegrain, coudé focus
• Current optical setting: optical fiber

from primary to coudé focus
• Effective focal length: F=63.5 m
• Effective focal rati: f/4.5 in primary

and f/32 in coudé.
• Instruments:

– single order spectrograph
– echelle spectrograph
– photometric camera
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Reflective telescopes 8

Ondrejov 65cm-Telescope

• 65 cm primary paraboloidal
mirror with 234 cm focal
length

• Moravian G2-3200 CCD
camera in primary focus

• BVRI filters
• effecive focal ratio: f/3.6
→ quite noticeable coma:
Paracorr coma corrector
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Photometry
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Basics 1

What is Photometry?

from Greek photo- ("light") and -metry ("measure") aims at measuring the
flux or intensity of electromagnetic radiation emitted by astronomical objects
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Basics 2

Magnitudes

• apparent magnitude m

m1 − m2 = −2.5 log(F1/F2) (3.1)

• absolute magnitude M
m − M = 5 log(d) − 5 (3.2)

Bolometeric and extinction corrections may be necessary!
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Basics 3

Planck’s Radiation Law
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Stefan-Boltzmann law: Flux (power emitted
per square-meter surface) of a blackbody:

F = B =
∫︁ ∞

0
B𝜆(𝜆) d𝜆 = 𝜎T 4

where 𝜎 = 5.67 × 10−8 W m−2 K−4

“hotter bodies have a much higher luminosity”

Wien’s displacement law: Wavelength of
maximum blackbody emission:

𝜆maxT = 2.898 × 10−3 m K

“hotter bodies radiate higher energetic radiation”
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Basics 4

Photometric filters

photometric system

• set of well-defined passbands (or filters)

• standard stars for each photometric system

• observations of lightcurves usually in one or
several filters

Bolometric correction

• converts observed magnitude in a certain
filter to its bolometric magnitude (dependent
on spectral type)

BCV = Mbol − MV (3.3)

Johnson filters

SDSS filters
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Basics 5

Color-temperature relation
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Basics 6

Interstellar Reddening

Extinction AV

• absorption and scattering of electromagnetic
radiation by dust and gas between an emit-
ting astronomical object and the observer

• shorter wavelengths (blue) are more heavily
reddened than longer (red) wavelengths

• colour index B − V , colour excess EB−V

EB−V = (B − V ) − (B − V )0 (3.4)

AV = RVEB−V , RV ≈ 3.1 (Milky Way)
(3.5)

• true distance

d = 100.2(m−M+5−AV ) (3.6)
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Basics 7

Atmospheric extinction

• V = V0 + 𝜅(𝜆)X (z)
𝜅(𝜆) is the extinction
coefficient
z is the zenith dis-
tance
X is the air mass
X (z) ≈ cos−1 z

• extinction greater for
blue than for red

Standard stars to correct for atmospheric extinction and calibrate the sensitivity
of the instrument
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Basics 8

Atmospheric extinction

• V = V0 + 𝜅(𝜆)X (z) 𝜅(𝜆) is
the extinction coefficient
z is the zenith distance
X is the air mass
X (z) ≈ cos−1 z

• extinction wavelength-
dependent

• blue stars are getting weaker
compared to red stars
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Basics 9

Absolute vs. differential photometry

Absolute photometry

Absolute photometry refers to photometric measurements reported in a standard
photometric system by means of a calibration process. This procedure permits
to obtain the absolute flux of a given source.

⇒ spectral type, gravity, reddening, age, distance

Differential photometry

Differential photometry refers to photometric measurements of a given source
with respect to one or more comparison sources which absolute flux is not nec-
essarily known.

⇒ relative flux variations, lightcurves
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Basics 10

"Vega" magnitudes

• definition of an absolute magnitude system?

• system bases on the flux of Vega, mVega ≡ 0 at all wavelengths

• m ≡ −2.d log f𝜆 + 2.5 log f𝜆,Vega

• zero-point depends on the flux of Vega and is different in different bands

• Landolt system based on A0 stars standard magnitude system

• SDSS ugriz sytem: based on measurement of 140 standard stars measured
relative to Vega

• work on a new photometric system not reliant on Vega
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Basics 11

Lightcurves

Lightcurve = brightness versus time

• time-series observations

• period P: time between successive minima / maxima,
for binaries equal orbital period

• Amplitude A: difference between magnitude at minimum and maximum
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Basics 12

Julian Date
Julian Date JD

• time in days and fractions of a day since:

1. January -4712 BC, 12:00 UT

21. May 2019, 04:47:30.62 UT ≡ 2458624.69966

Modified Julian Date MJD

• MJD = JD - 2400000.5

Heliocentric Julian Date HJD

• corrected for differences in the Earth’s position with
respect to the Sun (maximum correction ±8.3 min)

Barycentric Julian Date BJD

• corrected for differences in the Earth’s position with
respect to the barycentre of the Solar System

• difference between HJD and BJD is up to ±4 s
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Detectors 1

Quantum efficiency of various detectors
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Detectors 2

Noise in CCDs
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Spectroscopy
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Basics 1

What is spectroscopy?

technique of splitting light (or more precisely electromagnetic radiation) into its
constituent wavelengths (a spectrum)

Simple	Spectrograph

primary

collimator

grating

camera
lens

slit

Notes:	
1)	For	ease	of	sketching,	this	shows	a	transmissive system	(refracting	telescope,	
transmission	grating).	Most	telescopes	use	a	reflecting	system.

2)	The	focal	ratio	(fL/D)	of	primary	and	collimator	must	be	matched!

Joseph von Fraunhofer saw 1814 almost 600 lines in the spectrum of the sun
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Basics 2

What can we learn from stellar spectra?

Spectra provide a lot of information about an astronomical object:

• temperature
• density
• pressure
• magnetic fields
• stellar winds
• chemical composition
• abundances
• distance
• motion:

Doppler effect v
c = Δ𝜆

𝜆
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Basics 3

Formation of stellar spectra



4–5

Basics 4

Hydrogen spectrum
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Basics 5

Energy level population and ionization stage
Line strength: # of absorbers x line absorption cross-section 𝜎ij

𝜎ij =
𝜋e2

mc
fijΦ𝜈 (4.1)

fij is the oscillator strength, which is related to the transition probability, Φ𝜈 the
absorption profile

Boltzmann-equation: population of the energy levels within an atom
depends in a detailed way upon the mechanisms for populating and de-
populating them: radiative, collisional & spontaneous

Nj

Ni
=

gj

gi
e−Ej−Ei

kT (4.2)

gi/gj are statistical weights that take into account degeneracy of energy states

Saha equation: number of atoms in a given ionization stage

N(Xr+1)
N(Xr )

=
2kTgr+1

Pegr

(︂
2𝜋mekT

h2

)︂3/2

e−𝜒i/kT (4.3)
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Basics 6

Line strength vs temperature
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Fundamental Astronomy: Karttunen et al.
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Basics 7

Line broadening

Natural line broadening: from the uncertainty principle due to finite life time

Φrad
𝜈 =

𝛾rad/4𝜋2

(𝜈 − 𝜈ij)2 + (𝛾rad/4𝜋)2, 𝛾rad =
1
𝜏low

+
1
𝜏up

(Lorentzian) (4.4)

Pressure broadening: due to collisions with other atoms, or charged particles
in the plasma; linear Stark effect for Hydrogen lines, quadratic Stark effect for
non-hydrogenic atoms and ions, Van der Waals broadening: non-hydrogenic
atoms with neutral hydrogen

Thermal broadening: Doppler shift due to thermal movement of the atoms

ΦDoppler
𝜈 =

1√
𝜋Δ𝜈D

exp(−(𝜈 − 𝜈0)/Δ𝜈D)2, Δ𝜈D =
𝜈0

c

√︂
2kT
m

(Gaussian)

(4.5)
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Basics 8

Line broadening

Rotational broadening: Doppler shift due to stellar rotation, we can observe
the projection of the rotational velocity in line-of-sight

Instrumental profile: additional broadening depending from the spectral resolv-
ing power R = 𝜆/Δ𝜆

FWHM = c/2
√

ln 2R (Gaussian) (4.6)

Total line Profile
Φ𝜈 = ΦGaussian

𝜈 ⋆ ΦLorentz
𝜈 ≡ ΦVoigt

𝜈 (4.7)

Other effects: Zeeman Splitting, stellar winds
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Spectrographs 1

Properties of Spectrographs

• Spectral resolution

R =
𝜆

Δ𝜆
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Spectrographs 2

Properties of Spectrographs

• Spectral resolution

R =
𝜆

Δ𝜆

• wavelength range
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Spectrographs 3

Properties of Spectrographs

• Spectral resolution

R =
𝜆

Δ𝜆

• wavelength range

• wavelength calibration and
stability
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Spectrographs 4

Properties of Spectrographs

• Spectral resolution

R =
𝜆

Δ𝜆

• wavelength range

• wavelength calibration and
stability

• throughput for best efficiency

• efficiency in the blue/red

• limiting magnitude
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Spectrographs 5

Long-slit spectrograph

telescope

light beam

light beam

∆α/2 b

collimator slit in the
focal plane

of the telescope

B
la
ze

gr
at

in
g

lens

cam
era

C
C
D

de
te

ct
or

fKoll

f
cam



4–15

Spectrographs 6

Grating equation

normal of the step

normal of the grating

incom
ing

beam

dispersing beam

d
· ·

·

ΘB

ΘB

β

α

∆α/2

n𝜆 = d sin𝛼 + d sin 𝛽 , 𝛼 + 𝛽 = 2ΘB (4.8)
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Spectrographs 7

The role of the slit

telescope

light beam

light beam

∆α/2 b

collimator slit in the
focal plane

of the telescope
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lens
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cam

b = fKollΔ𝛼, Δ𝜆 =
d𝜆
d𝛼

Δ𝛼 =
d
n

cos𝛼Δ𝛼 = const

Rslit =
nfKoll

db cos𝛼
𝜆 (4.9)
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Spectrographs 8

A long-slit spectrum
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Spectrographs 9

Echelle spectrograph

CCD detector

order n

order n+ 1

Incoming light

Echelle grating

cross-dispersion element

• optimized for high inci-
dence angles ΘB > 45∘

and high orders

• separate overlapping orders by cross-dispersion
element

• Blaze wavelength n𝜆0
n = d [sin𝛼 + sin(2ΘB −𝛼)]

REchelle = fKoll
b cos𝛼[sin𝛼 + sin(2ΘB − 𝛼)] = const
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Spectrographs 10

Echelle spectrum
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