
Stellar Spectroscopy with Virtual Observatory

Petr Škoda

Astronomical Institute of the Czech Academy of Sciences, Ondřejov

Faculty of Information Technology, Czech Technical University in Prague

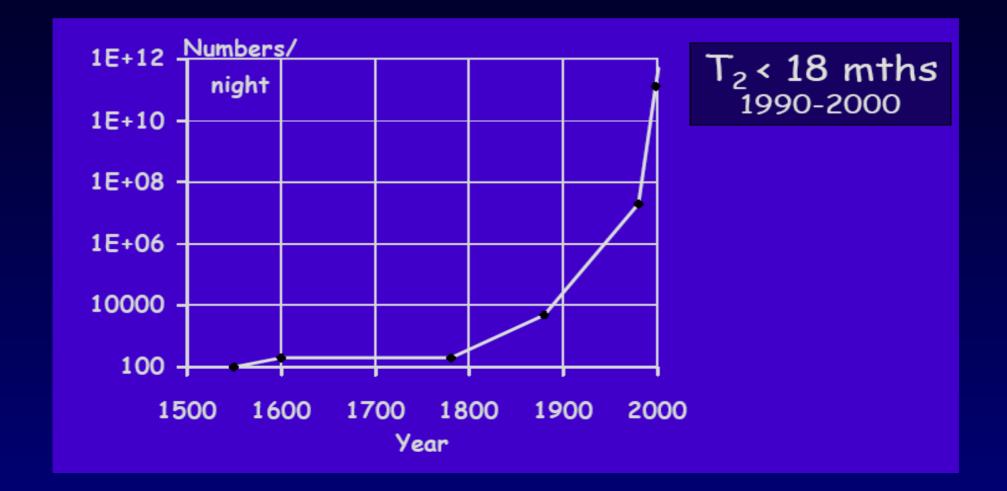
Credits

The presentation is based on many different sources – mainly the on-line published slides from IVOA meetings, slides from Astroinformatics and COST meetings or pictures found on Internet.

Astronomy - the leader of technology

Astronomy - the leader of technology

Antikythera mechanism 150-100 BC


Freth et al. Nature Sci. Rep. 11, 5821 (2021)

Data Avalanche

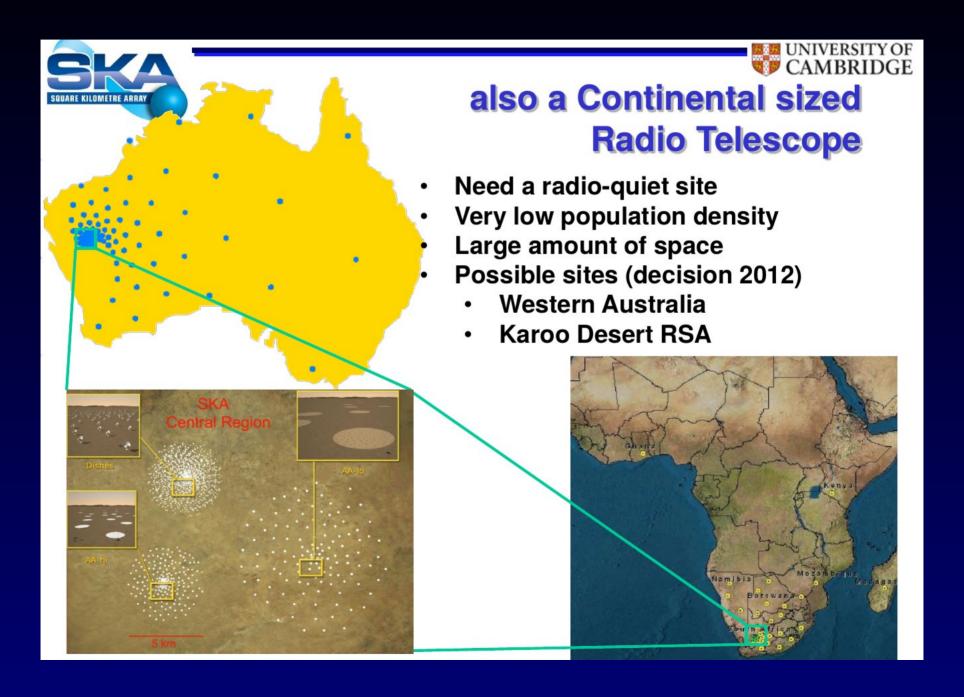
Moore law for chips -doubling 1.5 year

Data in astronomy – doubling < 1 yr! (9 month current)

100 PB today, 100 TB/night

LSST - Vera C. Rubin Observatory

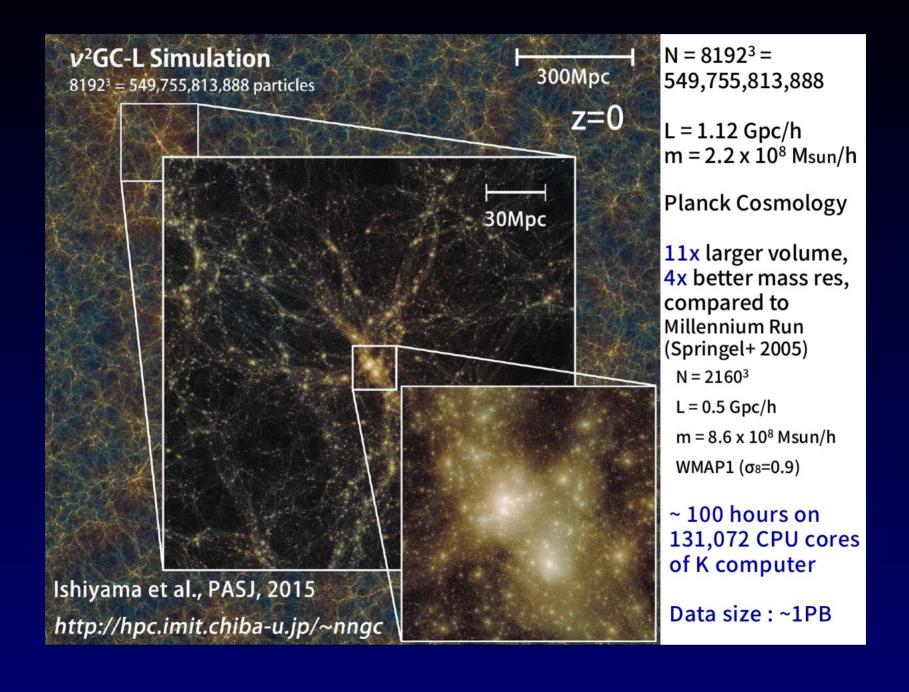
201 CCD 4kx4k,
3.2 Gpix every 15 sec
3.5 deg FOV (64cm)
20 TB/day=6 PB/yr RAW
1.5 PB catalogue !!!
detection of changes 60s!
10 million allerts/night!
38 billion objects x 1000
32 tril. meas. -5 PB table



LOFAR network

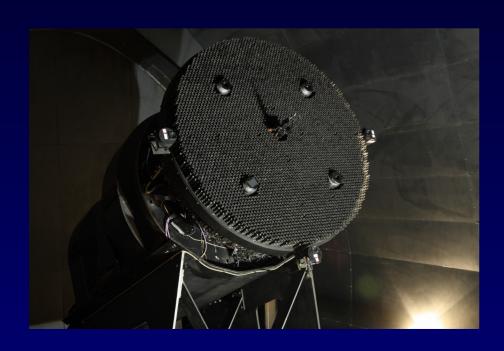
SKA

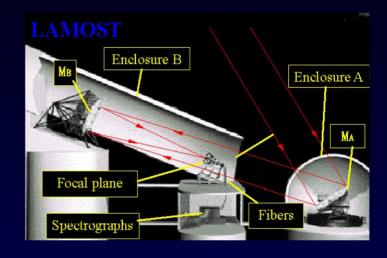
SKA



SKA Archive Volumes

- ~0.5 10 PB/day of image data
- Source count ~10⁶ sources per square degree
- ~10¹⁰ sources in the accessible SKA sky, 10⁴ numbers/record
- ~1 PB for the catalogued data


100 Pbytes – 3 EBytes / year of fully processed data


Simulation of Universe

LAMOST (Guoshoujing)

- Xinglong, China
- 4 m mirror (30 deg meridian)
- 4000 fibres

LAMOST Spectral Surveys

DR1 (end 2013) 2 204 860 spectra

1 085 404 stars classified by pipeline

DR2 (beg 2015) 4 132 782 spectra

3 779 674 stars

307 000 unknown!

DR5 (half 2017) 9 017 844 spectra

DR6 (half 2018) + 739 006

+ 249 591 low res.

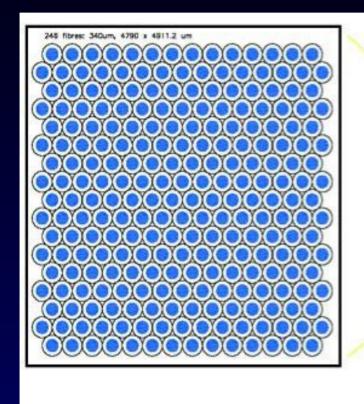
+ 3 508 695 mid res.

Each fibre – 2 motors double arm 33mm circle

Fibre collects light from 3.3 arcsec circle on sky

Hobby Eberly Telescope (HET)

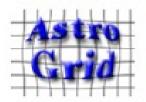
Mc Donald Observatory Texas


Equiv diameter 9.5m (11m)


Fixed in position during observation - only primary tracker

HETDEX Survey

In theory 34944 spectra every 20min!


VIRUS 78 IFU = 156 spectrographs
IFU= 448 fibers
34944 fibers , FOV 22 arcmin, 3500-5500 A, R=800
1 million spectra of galaxies (only part - statistic hits)

Virtual Observatory: Key Definitions

- "The Virtual Observatory will be a system that allows astronomers to interrogate multiple data centers in a seamless and transparent way, which provides new powerful analysis and visualization tools within that system, and which gives data centers a standard framework for publishing and delivering services using their data".
- Standardization of data and metadata, and of data exchange methods.
- Registry, listing available services and what can be done with them.

R.J.Hanisch, P.J.Quinn, in "IVOA – Guidelines for participation"

IVOA (established 2002)

Ecosystem of VO – level 0

LEVEL 0

USERS

COMPUTERS

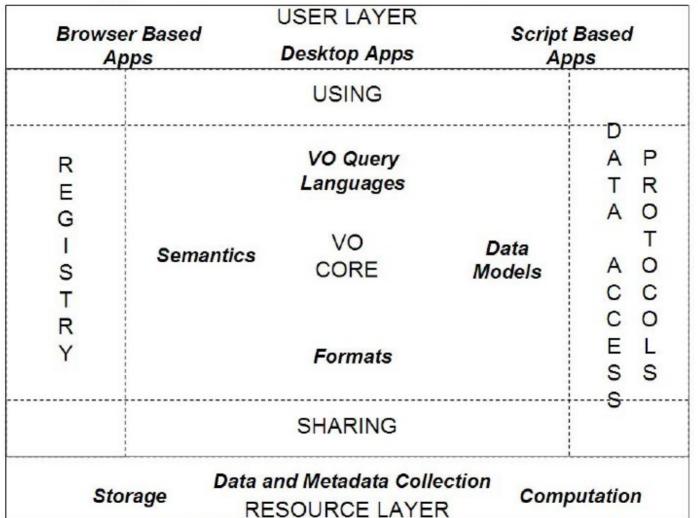
	USER LAYER	
	OSER LATER	
	USING	
F - ND - NG	VO CORE	GETTTZG
	SHARING	
	RESOURCE LAYER	•

20101004 **IVOA Architecture**

PROVIDERS

Ecosystem of VO – level 1

LEVEL 1 empty



COMPUTERS

REC

InProgress

20101004 IVOA Architecture

PROVIDERS

which while the first fight or with and bread for the or and and bread for the or by and first with

Ecosystem of VO – level 2

Big Data handling

VO Space Moving big tables across (load only results)

SSO Authentication, authorization, groups and consortia

UWS Universal worker service (job synch, asynch)

PDL Parameter Description Language

SIM-DB Simulations, theory data

Technology of VO

Unified data format- VOTable, UCD (Vizier)

Transparent transport (unit conversion)

Web services (WS)

VOregistry (DNS like) Google for data+WS protocols

ConeSearch (searching in circle on sky)

SIAP (Simple Image Access Protocol)

SSAP(Simple Spectral Access Protocol)

SLAP(Simple Line Access Protocol) - VAMDC

TAP (Table Access Protocol) – query e.g. whole SDSS

VOEVENT (transients, robotic telescopes, Sun)

datacubes, DATALINK on-the-fly data processing

Technology of VO

ADQL (Astronomical Data Query Language)

XMATCH, REGION (2 catalogues – shifted)

Application interoperability — SAMP

Allows develop applications as bricks sending VOTABLES (catalogue-spectra-images)

Science Portals

ESASky

https://sky.esa.int/

ESO Archive Science Portal

https://archive.eso.org/scienceportal/home

IRSA IPAC archive (Firefly)

https://irsa.ipac.caltech.edu/irsaviewer/

FITS standard

>30 years, separation of metadata (human readable and data)

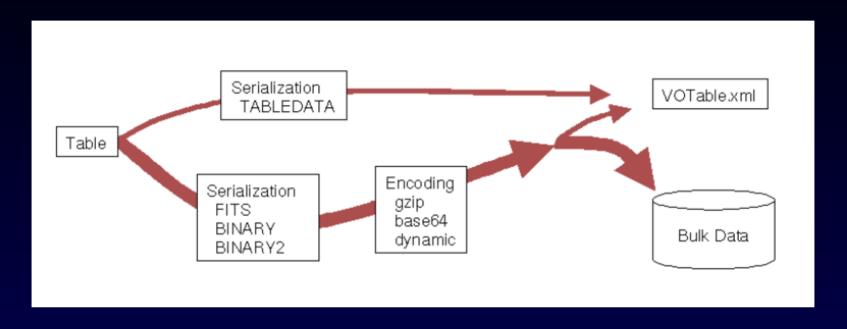
```
SIMPLE =
                            T / file does conform to FITS standard
                            16 / number of bits per data pixel
BITPIX =
NAXIS
                             2 / number of data axes
NAXIS1
                          2048 / length of data axis 1
NAXIS2 =
                          2048 / length of data axis 2
                             T / FITS dataset may contain extensions
EXTEND =
          FITS (Flexible Image Transport System) format is defined in 'Astronomy
COMMENT
          and Astrophysics', volume 376, page 359; bibcode: 2001A&A...376..359H
COMMENT
BZER0
                         32768
BSCALE =
                             1 / REAL=TAPE*BSCALE+BZERO
ORIGIN = 'PESO
                               / AsU AV CR Ondrejov
                               / Name of observatory (IRAF style)
OBSERVAT= 'ONDREJOV'
                      49.91056 / Telescope latitude (degrees), +49:54:38.0
LATITUDE=
                      14.78361 / Telescope longitud (degrees), +14:47:01.0
LONGITUD=
                           528 / Height above sea level [m].
HEIGHT =
TELESCOP= 'ZEISS-2m'
                               / 2m Ondrejov observatory telescope
GAIN
                             2 / Electrons per ADU
READNOIS=
                            10 / Readout noise in electrons per pix
TELSYST = 'COUDE
                               / Telescope setup - COUDE or CASSegrain
INSTRUME= 'OES
                               / Coude echelle spectrograph
CAMERA = 'VERSARRAY 2048B'
                               / Camera head name
DETECTOR= 'EEV 2048x2048'
                               / Name of the detector
CHIPID = 'EEV 42-40-1-368'
                               / Name of CCD chip
```

VOTable Example

```
<?xml version="1.0"?>
<VOTABLE version="1.3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"</p>
xmlns="http://www.ivoa.net/xml/V0Table/v1.3"
xmlns:stc="http://www.ivoa.net/xml/STC/v1.30" >
 <RESOURCE name="mvFavouriteGalaxies">
    <TABLE name="results">
      <DESCRIPTION>Velocities and Distance estimations
     <GROUP utype="stc:CatalogEntryLocation">
        <PARAM name="href" datatype="char" arraysize="*"
               utype="stc:AstroCoordSystem.href" value="ivo://STClib/CoordSys#UTC-ICRS-TOPO"/>
        <PARAM name="URI" datatype="char" arraysize="*"
               utype="stc:DataModel.URI" value="http://www.ivoa.net/xml/STC/stc-v1.30.xsd"/>
        <FIELDref utype="stc:AstroCoords.Position2D.Value2.C1" ref="col1"/>
        <FIELDref utype="stc:AstroCoords.Position2D.Value2.C2" ref="col2"/>
     </GROUP>
      <PARAM name="Telescope" datatype="float" ucd="phys.size;instr.tel"</pre>
            unit="m" value="3.6"/>
     <FIELD name="RA" ID="col1" ucd="pos.eq.ra;meta.main"</pre>
            datatype="float" width="6" precision="2" unit="deg"/>
     <FIELD name="Dec" ID="col2" ucd="pos.eq.dec;meta.main"</pre>
            datatype="float" width="6" precision="2" unit="deg"/>
     <FIELD name="Name" ID="col3" ucd="meta.id:meta.main"</pre>
            datatype="char" arraysize="8*"/>
     <FIELD name="RVel" ID="col4" ucd="spect.dopplerVeloc" datatype="int"
            width="5" unit="km/s"/>
     <FIELD name="e_RVel" ID="col5" ucd="stat.error;spect.dopplerVeloc"</pre>
            datatype="int" width="3" unit="km/s"/>
     <FIELD name="R" ID="col6" ucd="pos.distance;pos.heliocentric"
            datatype="float" width="4" precision="1" unit="Mpc">
        <DESCRIPTION>Distance of Galaxy, assuming H=75km/s/Mpc</DESCRIPTION>
     </FIELD>
      <DATA>
        <TABLEDATA>
          <TD>010.68</TD><TD>+41.27</TD><TD>N 224</TD><TD>-297</TD><TD>5</TD><TD>0.7</TD>
        </TR>
        <TR>
          <TD>287.43</TD><TD>-63.85</TD><TD>N 6744</TD><TD>839</TD><TD>6</TD><TD>10.4</TD>
        </TR>
        <TR>
          <TD>023.48</TD><TD>+30.66</TD><TD>N 598</TD><TD>-182</TD><TD>3</TD><TD>0.7</TD>
        </TR>
       </TABLEDATA>
     </DATA>
    </TABLE>
  </RESOURCE>
</VOTABLE>
```

Header with metadata first

Unknown end

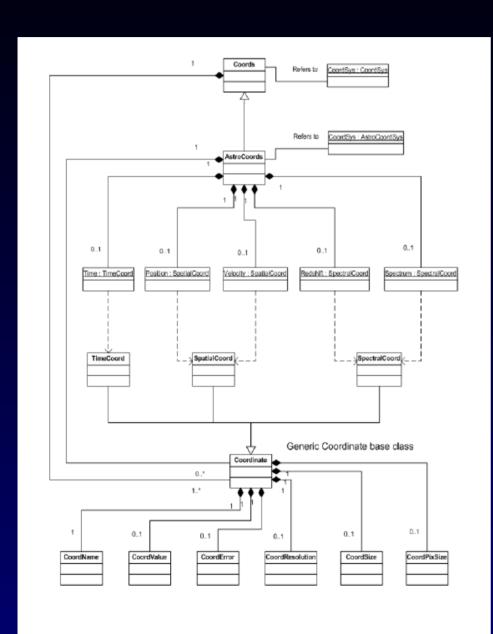

BIG DATA transfer

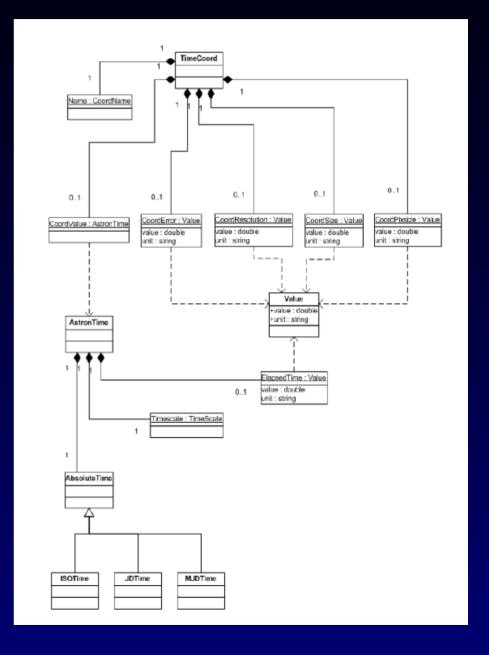
Links to streams...

Live pre-processing URLs

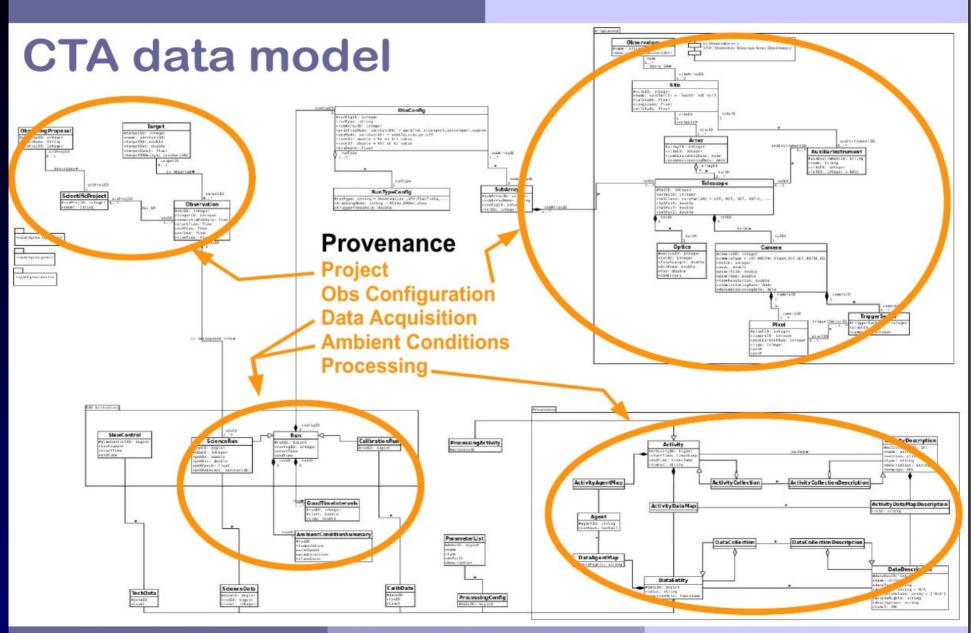
On-the-fly creation of data

VOTable Serialization


Universal Content Descriptors


S em.IR	Infrared part of the spectrum
S em.IR.J	Infrared between 1.0 and 1.5 micron
S em.IR.H	Infrared between 1.5 and 2 micron
S em.IR.K	Infrared between 2 and 3 micron
S em.IR.3-4um	Infrared between 3 and 4 micron
S em.IR.4-8um	Infrared between 4 and 8 micron
S em.IR.8-15um	Infrared between 8 and 15 micron
S em.IR.15-30um	Infrared between 15 and 30 micron
S em.IR.30-60um	Infrared between 30 and 60 micron
S em.IR.60-100um	Infrared between 60 and 100 micron

S pos.eq	Equatorial coordinates
Q pos.eq.dec	Declination in equatorial coordinates
Q pos.eq.ha	Hour-angle
Q pos.eq.ra	Right ascension in equatorial coordinates
Q pos.eq.spd	South polar distance in equatorial coordinates
S pos.errorEllipse	Positional error ellipse
Q pos.frame	Reference frame used for positions (FK5, ICRS,)
S pos.galactic	Galactic coordinates
Q pos.galactic.lat	Latitude in galactic coordinates
Q pos.galactic.lon	Longitude in galactic coordinates


P	stat.stdev	Standard deviation
S	stat.uncalib	Qualifier of a generic incalibrated quantity
Q	stat.value	Miscellaneous statistical value
P	stat.variance	Variance
Р	stat.weight	Statistical weight
Q	l time	Time, generic quantity in units of time or date
Q	time.age	Age
Q	time.creation	Creation time/date (of dataset, file, catalogue,)
Q	time.crossing	Crossing time
Q	time.duration	Interval of time describing the duration of a generic event or
		phenomenon
Q	time.end	End time/date of a generic event

Space-Time-Coordinate Data Model

Cherenkov Telescope Array Data Model

VO Registry – XML

```
<validationLevel validatedBy="ivo://archive.stsci.edu/nyoregistry">2</validationLevel>
 <title>Hubble Space Telescope Spectra</title>
 <shortName>HST Spectra</shortName>
 <identifier>ivo://mast.stsci/ssap/hst</identifier>
▼<curation>
   <publisher>MAST</publisher>
  ▼<creator>
     <name>MAST</name>
   </creator>
   <version>1.0</version>
  ▼<contact>
     <name>Archive Branch, STScI</name>
     <email>archive@stsci.edu</email>
   </contact>
 </curation>
▼<content>
   <subject>UV</subject>
   <subject>Optical</subject>
   <subject>and Infrared Astronomy</subject>
  ▼<description>
     Spectra from the following HST instruments are available: GHRS (processed by CADC), FOS (processed by ECF), and STIS (1st
     order). Service is still under development. Links point to new (but incomplete) VO-compatible FITS files created by MAST staff.
   </description>
   <referenceURL>http://archive.stsci.edu/</referenceURL>
   <type>Archive</type>
   <contentLevel>Research</contentLevel>
 </content>
▼<capability standardID="ivo://ivoa.net/std/SSA" xsi:type="ssa:SimpleSpectralAccess">
  ▼<interface role="std" version="0.5" xsi:type="vs:ParamHTTP">
     <accessURL use="base">http://archive.stsci.edu/ssap/search.php?id=HST&</accessURL>
     <quervTvpe>GET</quervTvpe>
   </interface>
   <complianceLevel>query</complianceLevel>
   <dataSource>pointed</dataSource>
   <creationType>archival</creationType>
   <maxSearchRadius>360.0/maxSearchRadius>
   <maxRecords>10000</maxRecords>
   <defaultMaxRecords>10000</defaultMaxRecords>
   <maxAperture>180.0</maxAperture>
   <maxFileSize>1000000000/maxFileSize>
 </capability>
▼<coverage>
  ▼<STCResourceProfile xmlns="http://www.ivoa.net/xml/STC/stc-v1.30.xsd">
     <AstroCoordSystem id="mast.stsci_ssap_hstUTC-FK5-TOPO" xlink:href="ivo://STClib/CoordSys#UTC-FK5-TOPO" xlink:type="simple"/>
   ▼<AstroCoords coord system id="mast.stsci ssap hstUTC-FK5-TOPO">
     ▼<Position1D>
        <Size pos unit="arcsec">0.0500000007450581</Size>
      </PositionID>
     </AstroCoords>
   </STCResourceProfile>
   <waveband>UV</waveband>
   <waveband>Optical</waveband>
 </coverage>
</ri:Resource>
```

Simple Spectra Access Protocol Spectral Data Model

Simple Spectral Access Protocol V1.04

International

Virtual

Observatory

Alliance

Simple Spectral Access Protocol

Version 1.04
IVOA Recommendation Feb 01, 2008

This version:

http://www.ivoa.net/Documents/REC/DAL/SSA-20080201.htm

Latest version:

http://www.ivoa.net/Documents/latest/SSA.html

Previous version(s):

Version 1.03, December 2007 Version 1.02, September 2007 Version 1.01, June 2007 Version 1.00, May 2007 Version 0.97, November 2006

Version 0.96, September 2006 Version 0.95 May 2006 Version 0.91 October 2005

Version 0.90 May 2005

Editors:

D.Tody, M. Dolensky

Authors:

D.Tody, M. Dolensky, J. McDowell, F. Bonnarel, T.Budavari, I.Busko, A. Micol, P.Osuna, J.Salgado, P.Skoda, R.Thompson, F.Valdes, and the data access layer working group.

International

Virtual

Observatory

Alliance

IVOA Spectral Data Model

Version 1.03

IVOA Recommendation 2007-10-29

This version (Recommendation Rev 1)

http://www.ivoa.net/Documents/REC/DM/SpectrumDM-20071029.pdf

Latest version:

http://www.ivoa.net/Documents/latest/SpectrumDM.html

Previous versions:

http://www.ivoa.net/Documents/PR/DM/SpectrumDM-20070913.html

Editors:

Jonathan McDowell, Doug Tody

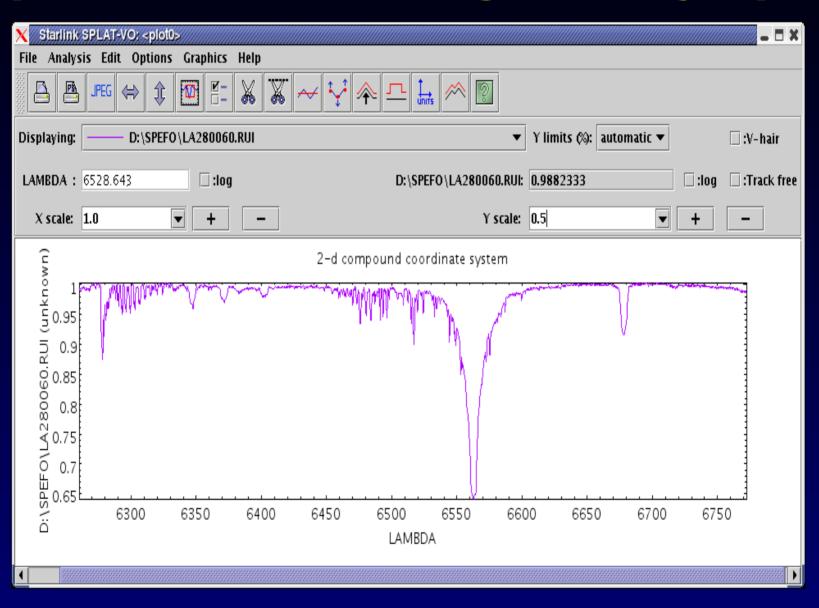
Contributors:

Jonathan McDowell, Doug Tody, Tamas Budavari, Markus Dolensky, Inga Kamp, Kelly McCusker, Pavlos Protopapas, Arnold Rots, Randy Thompson, Frank Valdes, Petr Skoda, and the IVOA Data Access Layer and Data Model Working Groups.

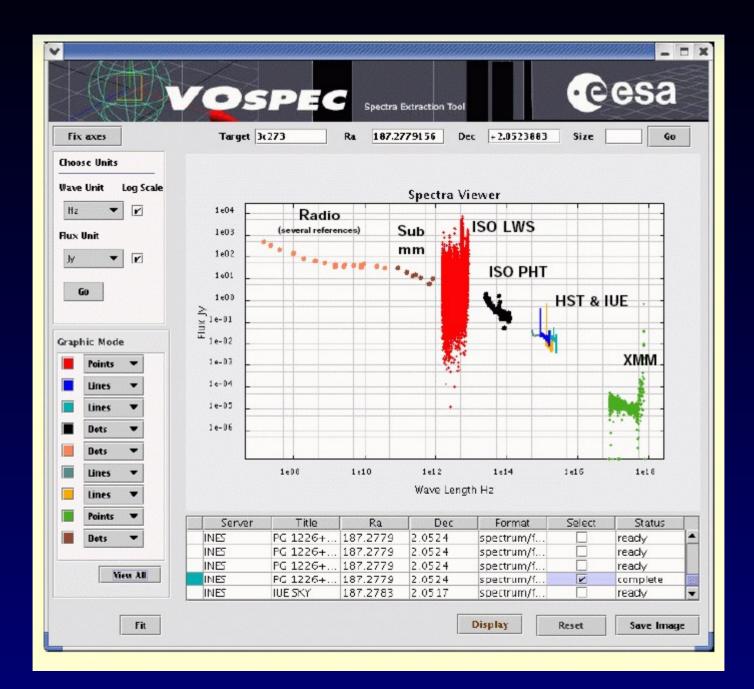
SSAP Parameters

4.1.1 Mandatory Query Parameters

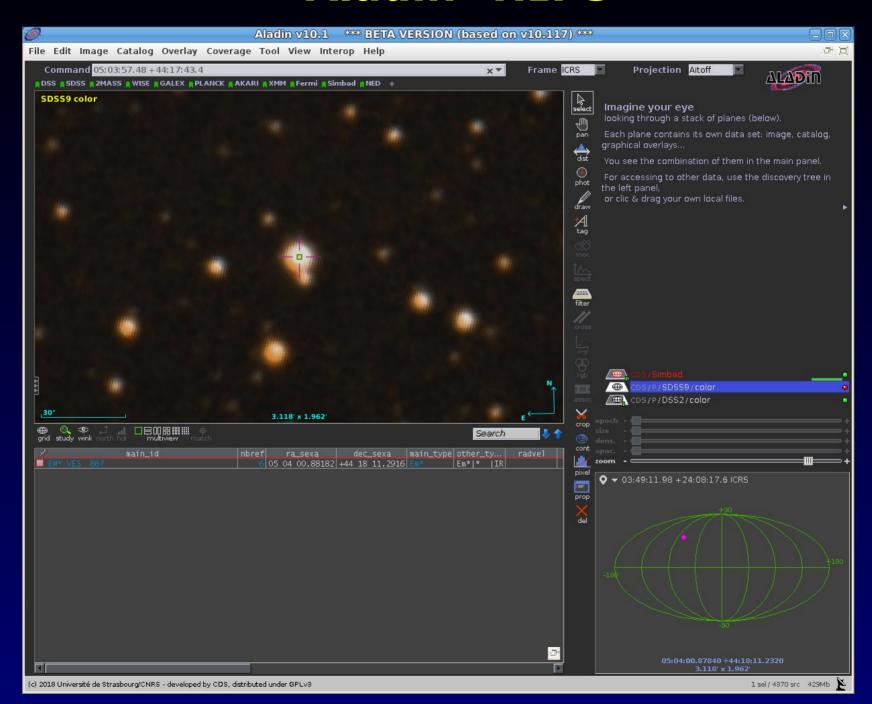
The following parameters must be implemented by a compliant service:

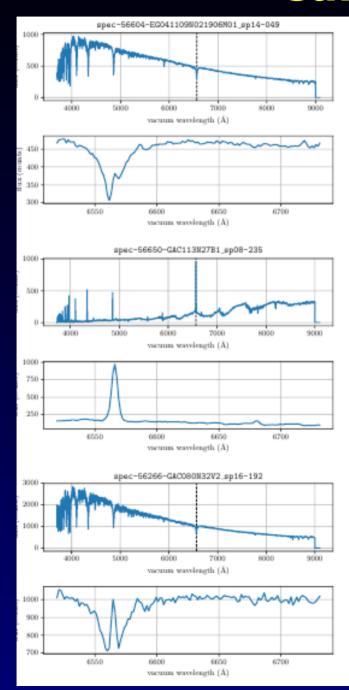

Parameter	Sample value	Physical unit	Datatype
POS	52,-27.8	degrees; defaults to ICRS	string
SIZE	0.05	degrees	double
BAND	2.7E-7/0.13	meters	string
TIME	1998-05-21/1999	ISO 8601 UTC	string
FORMAT	votable	-	string

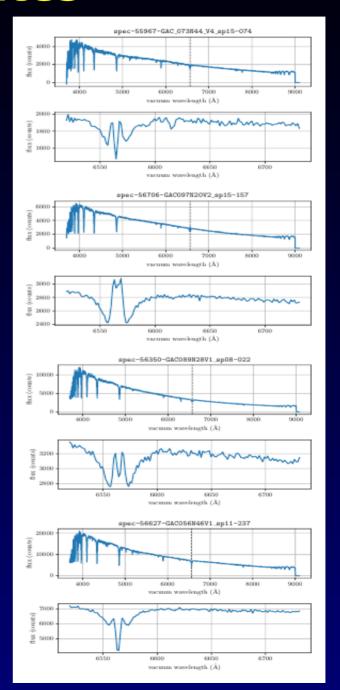
4.1.2 Recommended and Optional Query Parameters


Parameter	Sample value	Unit	Req	Datatype
APERTURE	0.00028 (=1°)	degrees	OPT	double
SPECRP	2000	λ/dλ	REC	double
SPATRES	0.05	degrees	REC	double
TIMERES	31536000 (=1yr)	seconds	OPT	double
SNR	5.0	dimensionless	OPT	double
REDSHIFT	1.3/3.0	dimensionless	OPT	string
VARAMPL	0.77	dimensionless	OPT	string
TARGETNAME	mars		OPT	string
TARGETCLASS	star		OPT	string
FLUXCALIB	relative		OPT	string
WAVECALIB	absolute		OPT	string
PUBDID	ADS/col#R5983		REC	string
CREATORDID	ivo://auth/col#R1234		REC	string
COLLECTION	SDSS-DR5		REC	string
TOP	20	dimensionless	REC	int
MAXREC	5000		REC	string
MTIME	2005-01-01/2006-01-01	ISO 8601	REC	string
COMPRESS	true		REC	boolean
RUNID			REC	string
		_		

The condition are also and firm a condition of the date was all be acceded as access and a

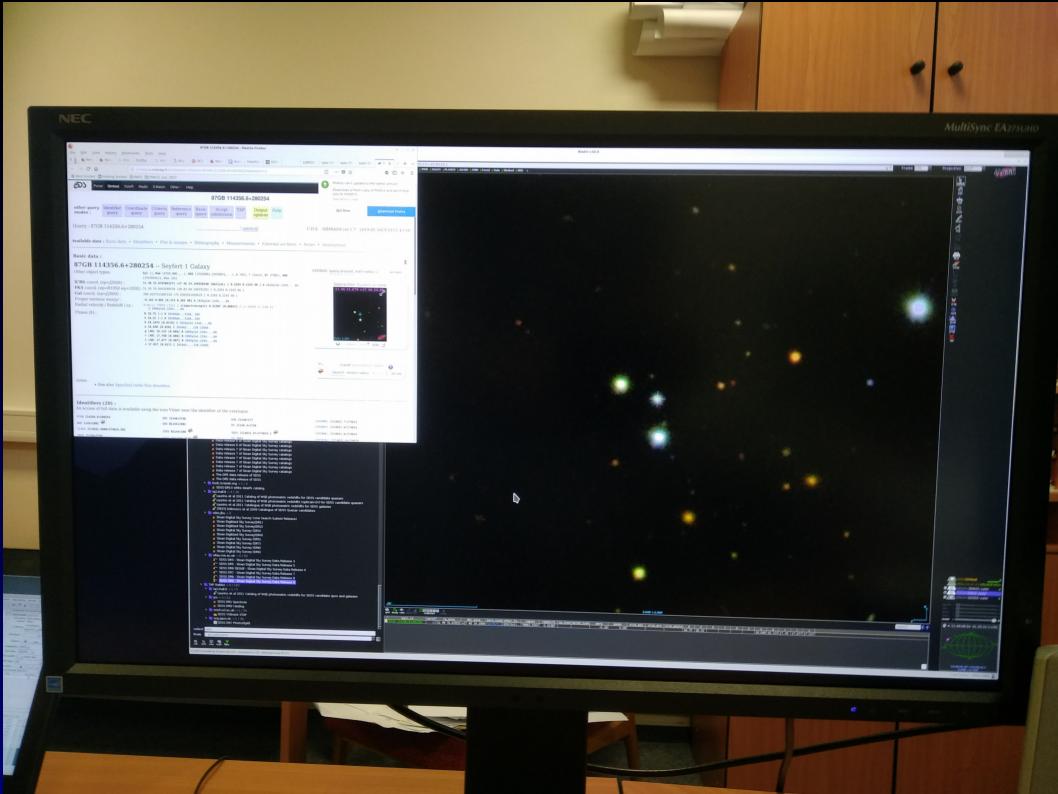

SPLAT-VO (Starlink, Heidelberg, Ondrejov)

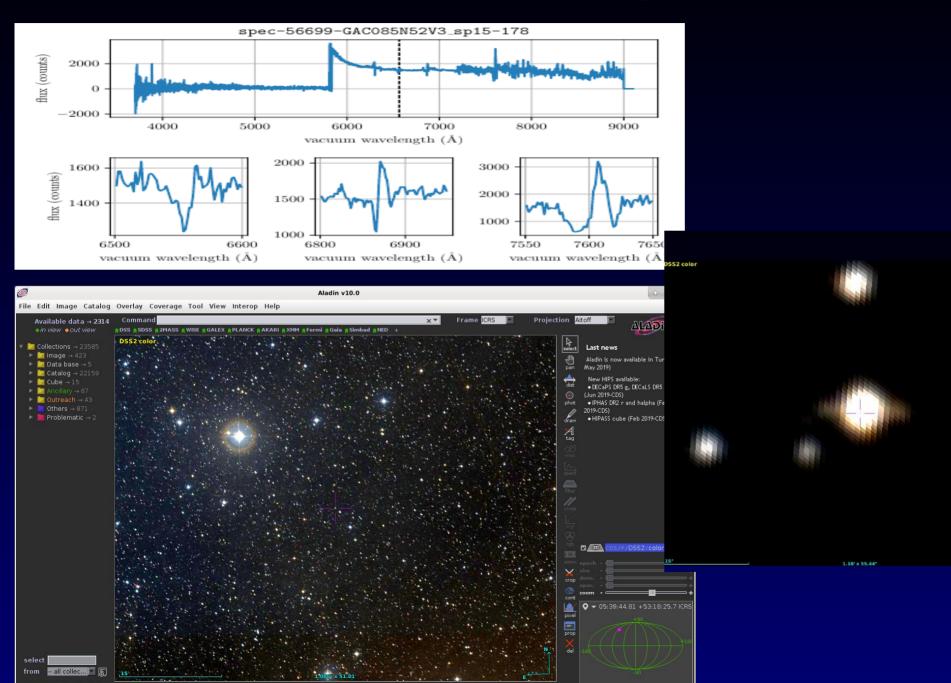

VOspec (ESAC)



Aladin- HIPS

Single-peak & Double-peak Candidates




Analysis

Visual Verification of Object with Disk

Gravitational lensing???

6.7 arcsec from center star – absolute symmetry, no time evolution

PanSTARRS-1	Archive
2011-2014	

≪ Gaia DR2 source	е
ra_epoch2000	84.93979285120
dec_epoch2000	53.30720574190
errHalfMaj	0.013
errHalfMin	0.013
errPosAng	90
source_id	263908015009666176
ra	84.93980026419
ra_error	0.4277
dec	53.30720143583
dec_error	0.4478
parallax	-0.2022
parallax_error	0.4712
pmra	1.029

1st lens – Twin QSO 0957+561 A+B 1979 2.1m Kitt Peak

6 arcsec distance

Tutorial of VO

https://hendhd.github.io/ivoa newcomers/

https://www.canfar.net/storage/list/pdowler/ivoa/virtual2021a

Thank You