Photosynthetica, 2020 (vol. 58), SPECIAL ISSUE

Photosynthetica 2020, 58(2):358-368 | DOI: 10.32615/ps.2019.172

Special issue in honour of Prof. Reto J. Strasser – Action of alamethicin in photosystem II probed by the fast chlorophyll fluorescence rise kinetics and the JIP-test

W. XIAO1, H. WANG1, W. LIU1, X. WANG1, Y. GUO1, R.J. STRASSER1,2, S. QIANG1, S. CHEN1, Z. HU3
1 Weed Research Laboratory, Nanjing Agricultural University, 210095 Nanjing, China
2 Bioenergetics Laboratory, University of Geneva, CH-1254 Jussy/Geneva, Switzerland
3 Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 475004 Kaifeng, China

Alamethicin (AMT) is a linear antimicrobial peptide isolated from fungi Trichoderma viride. To date, the mode of action of AMT in plant cells remains unknown. Our experimental results indicate that AMT causes leaf lesion attributed to its multiple effects on PSII. AMT decreases the O2 evolution rate of PSII. Based on chlorophyll fluorescence data, similar to the classical herbicide diuron, AMT interrupts PSII electron transfer beyond QA at the acceptor side, leading to the inactivation of the PSII reaction centers. Additionally, AMT decreases chlorophyll content and destroys the architecture of PSII pigment assemblies. However, AMT does not affect the oxygen-evolving complex at the donor side of PSII. Thus, it is concluded that AMT is a natural photosynthetic inhibitor with several action sites in PSII.

Keywords: bioherbicide; chlorophyll a fluorescence; leaf lesion; natural product.

Received: August 28, 2019; Revised: November 27, 2019; Accepted: December 13, 2019; Prepublished online: January 17, 2020; Published: April 7, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
XIAO, W., WANG, H., LIU, W., WANG, X., GUO, Y., STRASSER, R.J., ... HU, Z. (2020). Special issue in honour of Prof. Reto J. Strasser – Action of alamethicin in photosystem II probed by the fast chlorophyll fluorescence rise kinetics and the JIP-test. Photosynthetica58(SPECIAL ISSUE), 358-368. doi: 10.32615/ps.2019.172.
Download citation

Supplementary files

Download fileXiao 2372 supplement.doc

File size: 59 kB

References

  1. Aidemark M., Andersson C.J., Rasmusson A.G., Widell S.: Regulation of callose synthase activity in situ in alamethicin-permeabilized Arabidopsis and tobacco suspension cells. - BMC Plant Biol. 9: 27, 2009. Go to original source...
  2. Aidemark M., Tjellström H., Sandelius A.S. et al.: Trichoderma viride cellulase induces resistance to the antibiotic pore-forming peptide alamethicin associated with changes in the plasma membrane lipid composition of tobacco BY-2 cells. -BMC Plant Biol. 10: 274, 2010. Go to original source...
  3. Chen S., Strasser R.J., Qiang S.: In vivo assessment of effect of phytotoxin tenuazonic acid on PSII reaction centers. - Plant Physiol. Bioch. 84: 10-21, 2014. Go to original source...
  4. Chen S., Yang J., Zhang M. et al.: Classification and characteristics of heat tolerance in Ageratina adenophora populations using fast chlorophyll a fluorescence rise O-J-I-P. - Environ. Exp. Bot. 122: 126-140, 2016. Go to original source...
  5. Chen S., Zhou F., Yin C. et al.: Application of fast chlorophyll a fluorescence kinetics to probe action target of 3-acetyl- 5-isopropyltetramic acid. - Environ. Exp. Bot. 71: 269-279, 2011. Go to original source...
  6. Dathe M., Kaduk C., Tachikawa E. et al.: Proline at position 14 of alamethicin is essential for hemolytic activity, catecholamine secretion from chromaffin cells and enhanced metabolic activity in endothelial cells. - BBA-Biomembranes 1370: 175-183, 1998. Go to original source...
  7. Dotson B.R., Soltan D., Schmidt J. et al.: The antibiotic peptaibol alamethicin from Trichoderma permeabilises Arabidopsis root apical meristem and epidermis but is antagonised by cellulase-induced resistance to alamethicin. - BMC Plant Biol. 18: 165, 2018. Go to original source...
  8. Engelberth J., Koch T., Schüler G.: Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. - Plant Physiol. 125: 369-377, 2001. Go to original source...
  9. Fehri L.F., Wróblewski H., Blanchard A.: Activities of anti-microbial peptides and synergy with enrofloxacin against Mycoplasma pulmonis. - Antimicrob. Agents Ch. 51: 468-474, 2007. Go to original source...
  10. Gao Y., Liu W., Wang X. et al.: Comparative phytotoxicity of usnic acid, salicylic acid, cinnamic acid and benzoic acid on photosynthetic apparatus of Chlamydomonas reinhardtii. - Plant Physiol. Bioch. 128: 1-12, 2018. Go to original source...
  11. Juszczuk I.M., Flexas J., Szal B. et al.: Effect of mitochondrial genome rearrangement on respiratory activity, photosynthesis, photorespiration and energy status of MSC16 cucumber (Cucumis sativus) mutant. - Physiol. Plantarum 131: 527-541, 2007. Go to original source...
  12. Krause G.H., Weis E.: Chlorophyll fluorescence and photosyn-thesis: The basics. - Annu. Rev. Plant Phys. 42: 313-349, 1991. Go to original source...
  13. Lazár D., Brokeš M., Nauš J., Dvořák L.: Mathematical modeling of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea action in plant leaves. - J. Theor. Biol. 191: 79-86, 1998. Go to original source...
  14. Leitgeb B., Szekeres A., Manczinger L. et al.: The history of alamethicin: A review of the most extensively studied peptaibol. - Chem. Biodivers. 4: 1027-1051, 2007. Go to original source...
  15. Li F., Li W., Lin Y. et al.: Expression of lima bean terpene synthases in rice enhances recruitment of a beneficial enemy of a major rice pest. - Plant Cell Environ. 41: 111-120, 2018. Go to original source...
  16. Massacci A., Nabiev S.M., Pietrosanti L. et al.: Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. - Plant Physiol. Bioch. 46: 189-195, 2008. Go to original source...
  17. Meyer C.E., Reusser F.: A polypeptide antibacterial agent isolated from Trichoderma viride. - Experientia 23: 85-86, 1967. Go to original source...
  18. Payne J.W., Jakes R., Hartley B.S.: The primary structure of alamethicin. - Biochem. J. 117: 757-766, 1970. Go to original source...
  19. Rippa S., Adenier H., Derbaly M., Béven L.: The peptaibol alamethicin induces an rRNA-cleavage-associated death in Arabidopsis thaliana. - Chem. Biodivers. 4: 1360-1373, 2007. Go to original source...
  20. Rippa S., Eid M., Formaggio F. et al.: Hypersensitive-like response to the pore-former peptaibol alamethicin in Arabidopsis thaliana. - Chembiochem. 11: 2042-2049, 2010. Go to original source...
  21. Schwarz P.A, Fahey T.J, Dawson T.E.: Seasonal air and soil temperature effects on photosynthesis in red spruce (Picea rubens) saplings. - Tree Physiol. 17: 187-194, 1997. Go to original source...
  22. Shi W., Chen X., Wang L. et al.: Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp. - J. Exp. Bot. 67: 2191-2205, 2016. Go to original source...
  23. Srivastava A., Jüttner F., Strasser R.J.: Action of the allelo-chemical, fischerellin A, on photosystem II. - BBA-Bioenergetics 1364: 326-336, 1998. Go to original source...
  24. Strasser R.J., Srivastava A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. - J. Photoch. Photobio. B 61: 32-42, 1995. Go to original source...
  25. Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. - BBA-Bioenergetics 1797: 1313-1326, 2010. Go to original source...
  26. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  27. Thippeswamy H.S., Sood S.K., Venkateswarlu R., Raj I.: Membranes of five-fold alamethicin-resistant Staphylococcus aureus, Enterococcus faecalis and Bacillus cereus show decreased interactions with alamethicin due to changes in membrane fluidity and surface charge. - Ann. Microbiol. 59: 593, 2009. Go to original source...
  28. Tomimatsu H., Tang Y.H.: Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions. - J. Plant Res. 129: 365-377, 2016. Go to original source...
  29. Tóth S.Z., Schansker G., Strasser R.J.: In intact leaves, the maximum fluorescence level (FM) is independent of the redox state of the plastoquinone pool: a DCMU-inhibition study. - BBA-Bioenergetics 1708: 275-282, 2005. Go to original source...
  30. Wang M., Xie B., Fu Y. et al.: Effects of different elevated CO2 concentrations on chlorophyll contents, gas exchange, water use efficiency, and PSII activity on C3 and C4 cereal crops in a closed artificial ecosystem. - Photosynth. Res. 126: 351-362, 2015. Go to original source...