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Abstract

We show that for any separable reflexive Banach space X and a large class of Ba-
nach spaces E, including those with a subsymmetric shrinking basis but also all spaces
Lp for 1 ≤ p ≤ ∞, every bounded linear map B(E) → B(X) which is approximately
multiplicative is necessarily close in the operator norm to some bounded homomor-
phism B(E) → B(X). That is, the pair (B(E),B(X)) has the AMNM property in the
sense of Johnson (J. London Math. Soc. 1988). Previously this was only known for
E = X = ℓp with 1 < p <∞; even for those cases, we improve on the previous meth-
ods and obtain better constants in various estimates. A crucial role in our approach
is played by a new result, motivated by cohomological techniques, which establishes
AMNM properties relative to an amenable subalgebra; this generalizes a theorem of
Johnson (op cit.).
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1 Introduction

1.1 Background context, and the statement of our main theorem

The AMNM property referred to in the abstract was formulated by B. E. Johnson in
[Jo88], and fits into the broader theme of “Ulam stability” for normed representations of
groups or algebras: see [BOT13, Cho13, Ko21, MV19] for more recent work in a similar
direction. The main purpose of the present paper is to extend our knowledge of the AMNM
property to a class of Banach algebras where relatively little has been done, namely the
algebras consisting of all bounded operators on E, for various Banach spaces E. (The more
restricted setting of stability for surjective homomorphisms has recently been considered
by the second author with Tarcsay; see [HT21].)

To state Johnson’s original definition, and our own results, we need to set up some
notation. For a Banach space X and r ≥ 0, ballr(X) denotes {x ∈ X : ‖x‖ ≤ r}. Given
Banach spaces E and F , and n ∈ N, we write Ln(E,F ) for the space of bounded n-
multilinear maps E × · · · × E → F . If n = 1, then we shall usually modify this notation
slightly and write L(E,F ). One exception to this notational convention is that when
n = 1 and E = F , we will denote the Banach algebra of all bounded linear operators
E → E by B(E), to emphasise that this space is being equipped with extra algebraic
structure. (We use the notation Ln(E,F ) for the space of bounded, n-linear maps in
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place of Bn(E,F ) to avoid confusion later in the paper; Bn usually stands for the space of
continuous n-coboundaries in the context of Hochschild cohomology.)

For Banach algebras A and B we write Mult(A,B) for the set of bounded algebra
homomorphisms A → B (the zero map is allowed). Then, given ψ ∈ L(A,B), we have a
“global” measure of how far ψ is from being a homomorphism; namely, we can consider
the distance of ψ from the set L(A,B) with respect to the operator norm. Explicitly,

dist(ψ) := inf{‖ψ − φ‖ : φ ∈ Mult(A,B)}.

(Note that since Mult(A,B) is closed, dist(ψ) = 0 if and only if ψ ∈ Mult(A,B).) On the
other hand, since a linear map ψ : A → B is a homomorphism if and only if it satisfies
the identity ψ(a1a2) = ψ(a1)ψ(a2) for each a1 and a2 in the closed unit ball of A, we may
consider the following “local” measure of how far ψ is from being a homomorphism.

Definition 1.1. Given a linear map ψ : A → B, the multiplicative defect of ψ is

def(ψ) := sup{‖ψ(a1a2) − ψ(a1)ψ(a2)‖ : a1, a2 ∈ ball1(A)} ∈ [0,∞].

If ψ ∈ L(A,B) and we have some a priori upper bound on ‖ψ‖ (say ‖ψ‖ ≤ 1000), it
is easily checked that dist(ψ) being small implies def(ψ) is small. That is: starting with
a multiplicative and bounded linear map, adding a linear perturbation with small norm
yields a bounded linear map that has small multiplicative defect. Ulam stability is then
the phenomenon that, under certain conditions on our algebras A and B, we can go the
other way. The following definition is due to B. E. Johnson, see [Jo88, Definition 1.2].

Definition 1.2. (AMNM pair) Let A and B be Banach algebras. The pair (A,B) is said
to have the AMNM property, or be an AMNM pair, if the following holds:

For any ε > 0 and L > 0 there exists δ > 0 such that for all φ ∈ ballL L(A,B)
with def(φ) < δ, we have dist(φ) < ε.

Johnson investigated a diverse range of AMNM pairs (A,B), in addition to providing
some explicit examples of A and B which do not form an AMNM pair. However, when
it came to Banach algebras of the form B(E), only one infinite-dimensional example was
considered in [Jo88]. Namely, Johnson showed (see [Jo88, Proposition 6.3]) that the pair
(B(ℓ2),B(ℓ2)) has the AMNM property, which is striking since one is not making any
assumptions about w∗-w∗continuity.

Johnson’s result was extended from ℓ2 to ℓp, for 1 < p < ∞, in the PhD thesis of
Howey [How00, Theorem 5.2.1]; his proof is essentially identical to Johnson’s. In both
cases, the argument has a somewhat “monolithic” feel, and freely uses special features of
ℓp, so that it is not obvious how one might adapt the proof to more general Banach spaces.

Our main theorem extends the Johnson–Howey results to a much wider range of Banach
spaces, including the classical spaces Lp for p ∈ (1,∞), but also many of their comple-
mented subspaces such as ℓp(ℓ2) or Rosenthal’s Xp-spaces, and also any reflexive space
with a subsymmetric basis. At the same time, we obtain results for pairs (B(E),B(X))
where E 6∼= X and E need not be reflexive. To state our theorem, it will be convenient to
make the following definition.

Definition 1.3. Let E be a Banach space. A clone system for E is a bounded family
(Pi)i∈I of idempotents in B(E), such that the operator PiPj has finite rank for all i 6= j,
and supi∈I d(E,Ran(Pi)) <∞ where d denotes the Banach–Mazur distance.
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Theorem 1.4. Let X be any separable, reflexive Banach space. Let E be a Banach space
such that both of the following conditions hold:

(i) K(E), the algebra of compact operators on E, is amenable as a Banach algebra;

(ii) E has an uncountable clone system.

Then the pair (B(E),B(X)) has the AMNM property.

Although the hypotheses of Theorem 1.4 are rather technical, we will show in the next
section that they hold for several classical examples of interest.

1.2 Examples covered by our main theorem

Corollary 1.5. Let E be a Banach space with a subsymmetric shrinking basis. Then
(B(E),B(X)) is an AMNM pair for every reflexive and separable X.

Note that in this corollary, the hypothesis on E is satisfied by ℓp for all p ∈ (1,∞)
and c0 (see [AK, Section 9.2]), and also for several natural families of Orlicz sequence
spaces (see [LT, Propositions 4.a.4 and 3.a.3]) and for Lorentz sequence spaces (see [LT,
Propositions 4.e.3 and 1.c.12]).

Proof of Corollary 1.5. By [GJW94, Theorem 4.2] and [GJW94, Theorem 4.5], K(E) is
amenable. The construction of an uncountable clone system for E is a straightforward
consequence of the definition of “subsymmetric” and the existence of uncountable almost
disjoint families of subsets of N; given such a family D ⊂ P(N) and a subsymmetric basis
(un)n≥1 for E, for each S ∈ D define PS to be the projection

∑
n≥1 λnun 7→∑

n∈S λnun.
For details, see e.g. the proof of [HT21, Proposition 3.5(1)] (although this technique was
already well known to specialists in Banach space theory).

The construction of an uncountable clone system in Corollary 1.5 only used the fact
that E possessed a subsymmetric basis; the shrinking condition was needed to invoke
results from [GJW94] on amenability of K(E). On the other hand, it is well known that
K(ℓ1) is amenable: this is a special case of [GJW94, Theorem 4.7]. We may therefore run
the same argument as before to obtain an extra example.

Corollary 1.6. (B(ℓ1),B(X)) is an AMNM pair for every reflexive and separable X.

The spaces Lp ≡ Lp[0, 1] do not have a subsymmetric basis unless p = 2; see e.g. [Si,
Theorem 21.2, Chapter II, p. 568]. Thus, the next corollary shows that Corollary 1.5 is
far from describing the full extent of the spaces covered by Theorem 1.4.

Corollary 1.7. Let p ∈ [1,∞]. Then (B(Lp),B(X)) is an AMNM pair for every reflexive
and separable X.

Proof. By [GJW94, Theorem 4.7] K(Lp) is amenable. For 1 ≤ p < ∞, an uncountable
clone system for Lp is given by the construction in [HT21, Proposition 3.5]. While that
construction does not work for p = ∞, we recall that by a celebrated application of
Pe lczyński’s decomposition method L∞

∼= ℓ∞ as Banach spaces. Then it is simple to
construct an uncountable clone system for ℓ∞ using an uncountable family of almost
disjoint subsets of N, as in previous proofs.
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For our final corollary, we rely on recent work of Johnson–Phillips–Schechtman [JPS21+],
which we learned of after the initial work was done on this paper. For details we refer to
[Ro70] and [JPS21+].

Corollary 1.8. Let p ∈ (1, 2) ∪ (2,∞). Then (B(E),B(X)) is an AMNM pair for every
reflexive and separable X, whenever E is any of the following Banach spaces:

(i) ℓp ⊕ ℓ2;

(ii) ℓp(ℓ2) ≡ ℓp(N; ℓ2);

(iii)

n︷ ︸︸ ︷
Xp ⊗p · · · ⊗p Xp for some n ∈ N, where Xp denotes Rosenthal’s Xp-space and ⊗p

denotes the tensor product for closed subspaces of Lp.

Proof. All of the listed choices for E are complemented subspaces of Lp, and hence are
Lp-spaces in the sense of Lindenstrauss–Pe lczyński by [LP69, Theorem III]. Thus K(E) is
amenable by [GJW94, Theorem 6.4], so it only remains to show that E has an uncountable
clone system.

In [JPS21+, Definitions 1.2 and 2.1] the notion of an unconditional finite dimensional
Schauder decomposition (UFDD) with a so-called property (♯) is introduced. We do not
give the precise definition here, but it should be clear from the arguments below. It follows
from Propositions 2.4 and 2.5 and the the paragraph after Definition 2.1 in [JPS21+] that
all of the listed choices for E have a UFDD with (♯) with some constant K > 0, in the
sense of [JPS21+, Definition 2.1].

We now show that whenever E is a Banach space with a UFDD that has property (♯)
with some constant K > 0, then E has an uncountable clone system. Take a UFDD (En)
with property (♯) with some constant K > 0. By taking an uncountable almost disjoint
family D on N, we obtain that ES := span(En : n ∈ S) is K-isomorphic to E for each
S ∈ D. Hence supS∈D d(E,ES) ≤ K. As outlined on page 2 in [JPS21+], for every B ⊆ N

there is an idempotent PB ∈ B(E) such that Ran(PB) = span(En : n ∈ B). Moreover,
there is a C > 0 (called the suppression constant in [JPS21+]) such that supB⊆N ‖PB‖ ≤ C.
So PS ∈ B(E) is an idempotent with Ran(PS) = ES and ‖PS‖ ≤ C for each S ∈ D. Also,
Ran(PSPS′) = span(En : n ∈ S∩S′) is finite-dimensional, whenever S, S′ ∈ D are distinct.
Thus E has an uncountable clone system, as required.

We hope that this selection of examples, while not exhaustive, shows that one can go
far beyond the cases E = X = ℓp (1 < p < ∞) studied by Johnson and Howey. Even
for those special cases, our proof of Theorem 1.4 makes several technical improvements
over their approach: we provide an argument with clearer structure, and we obtain better
constants, which in principle could be made explicit.

Remark 1.9. One can show that the Tsirelson space T (as constructed by Figiel and
Johnson [FJ74]) has an uncountable clone system. This may be folklore, but we include
a proof in an appendix for sake of completeness (see Proposition A.1). On the other
hand, Blanco and Grønbæk proved that K(T ) is not amenable, see [BG09, Corollary 5.8],
and so Theorem 1.4 cannot be applied to B(T ). It is an open problem whether the pair
(B(T ),B(T )) has the AMNM property, and we believe this would be an interesting case
to study further.
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1.3 Comments on the proof of our main theorem, and other results of

interest

Theorem 1.4 will follow by combining several other technical results. In this section we
wish to highlight two of them, which correspond to the two conditions in the theorem.
Proofs will be given in later sections.

The following definition will be used repeatedly throughout our arguments.

Definition 1.10 (Self-modular maps with respect to a subalgebra). Let A and B be
Banach algebras and let D be a closed subalgebra of A. We denote by SHomD(A,B) the
set of all bounded linear maps θ : A → B which satisfy

θ(ar) = θ(a)θ(r) and θ(ra) = θ(r)θ(a) for all a ∈ A and all r ∈ D.

Our main technical innovation is the following theorem, which provides a significant
generalization of the main result in [Jo88].

Theorem 1.11 (ANMM with respect to an amenable subalgebra). Let A be a Banach
algebra with a closed amenable subalgebra D0, and let B be a unital dual Banach algebra
with an isometric predual. Fix some L ≥ 1. Then there exists a constant C ′ ≥ 1 (possibly
depending on L and D0) such that the following holds: whenever ψ ∈ L(A,B) satisfies
‖ψ‖ ≤ L and C ′ def(ψ) ≤ 1, there exists θ ∈ SHomD0(A,B) with ‖θ − ψ‖ ≤ C ′ def(ψ).

The case where A itself is amenable is [Jo88, Theorem 3.1], but in order to obtain our
generalization, it does not suffice to bootstrap from the earlier result. Instead we rework
the arguments in Johnson’s proof, introducing a version of the multiplicative defect relative
to a closed subalgebra, and putting certain calculations from that proof in the framework
of “approximate cobounding” for a modified version of the Hochschild cochain complex.
This will be treated in Sections 4 and 5.

We note that in the setting of Ulam stability for bounded representations of discrete
groups on Hilbert space, a result analogous to Theorem 1.11 was given in [BOT13, Theo-
rem 3.2]; the proof makes use of features particular to groups and to operators on Hilbert
space.

Our other main ingredient in the proof of Theorem 1.4 is the following proposition,
whose proof will be given in Section 3.2. It can be viewed as a “perturbed” version of
[HT21, Proposition 3.8] (see also [BP69, Corollary 6.16]), and it generalizes an argument
of Johnson (from the proof of [Jo88, Proposition 6.3]) in the case X = E = ℓ2. Moreover,
we obtain better constants than those obtained by just repeating the steps in [Jo88]; see
Remark 3.5 for further details.

Proposition 1.12. Let E be a Banach space with an uncountable clone system. There
exists a constant cE ∈ (0, 1] such that the following holds: whenever X is a separable
Banach space, and ψ : B(E)/K(E) → B(X) is bounded linear with def(ψ) ≤ cE, we have
‖ψ‖ ≤ 3

2 def(ψ).

The key point here is that the constant cE does not depend on the chosen ψ, and so
def(ψ) could be much smaller than cE.

Note that in the conclusion of Proposition 1.12, we obtain the constant 3/2 rather than
some constant depending on the Banach algebras B(E) and B(X). Obtaining a universal
constant (such as 3/2) is not essential to the proof of Theorem 1.4 but it makes some of
the epsilon-delta chasing significantly simpler.
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2 Definitions and preliminary results

2.1 Basic properties of the multiplicative defect

First we have a general lemma. (A similar estimate is given without proof in [Jo88,
Proposition 1.1].)

Lemma 2.1. Let A and B be Banach algebras and let ψ ∈ L(A,B). Suppose that θ ∈ L(A,B)
satisfies ‖θ − ψ‖ ≤ 1. Then

def(θ) ≤ def(ψ) + 2‖θ − ψ‖(1 + ‖ψ‖).

Proof. Writing θ = ψ + γ, for each a and b in A we have

θ(ab) − θ(a)θ(b) = ψ(ab) + γ(ab) − ψ(a)ψ(b) − ψ(a)γ(b) − γ(a)ψ(b) − γ(a)γ(b).

Hence def(θ) ≤ def(ψ) + ‖γ‖ + 2‖γ‖‖ψ‖ + ‖γ‖2. Since we are assuming ‖γ‖ ≤ 1, the
desired inequality follows.

In the rest of this section we collect some general results concerning approximately
multiplicative maps between Banach algebras, which do not seem to be spelled out in
[Jo88]. These may be useful for future work on the AMNM property for other kinds of
Banach algebras. It will be convenient to use the following terminology: given η ∈ [0,∞),
we say that a linear map ψ : A → B is η-multiplicative if def(ψ) ≤ η; equivalently, if

‖ψ(ab) − ψ(a)ψ(b)‖ ≤ η‖a‖‖b‖ for all a, b ∈ A.

The point is that often we are not concerned with the precise value of the multiplicative
defect, but merely with whether it is controlled by some (small) constant or parameter.

Lemma 2.2. Let A and B be Banach algebras and let η ≥ 0. Let ψ : A → B be linear and
η-multiplicative.

(i) Suppose ab = b with ‖ψ(a)‖ ≤ 1/3. Then ‖ψ(b)‖ ≤ 3
2η‖a‖‖b‖.

(ii) Suppose bc = b with ‖ψ(c)‖ ≤ 1/3. Then ‖ψ(b)‖ ≤ 3
2η‖b‖‖c‖.

Proof. We prove (i); the proof for (ii) is identical with left and right swapped.
Since ab = b, ‖ψ(b) − ψ(a)ψ(b)‖ ≤ η‖a‖‖b‖. Hence

‖ψ(b)‖ ≤ η‖a‖‖b‖ + ‖ψ(a)ψ(b)‖ ≤ η‖a‖‖b‖ +
1

3
‖ψ(b)‖.

Rearranging we obtain the desired upper bound on ‖ψ(b)‖.

The following corollary is immediate.

Corollary 2.3. Let A and B be Banach algebras with A unital. Let ψ : A → B be linear
and η-multiplicative. If ‖ψ(1A)‖ ≤ 1/3 then ψ is bounded with ‖ψ‖ ≤ 3η/2.

Remark 2.4. As observed in Section 1 of [Jo88], for a general linear T : A → B one can
have def(T ) small while T has large norm, even when A = C. But examination of Example
1.5 in that paper shows that T (1A) is large in that example. Corollary 2.3 shows that this
is the only obstruction.
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The next result will be applied to show that if p is an idempotent in a unital Banach
algebra A and p is Murray–von Neumann equivalent to 1A, then ψ(p) being small implies
ψ(1A) is small, provided that def(ψ) is small. Normally, in perturbing exact algebraic
arguments, one has to impose an a priori upper bound on norms: informally, large times
zero equals zero, but large times small might not be small. It is therefore somewhat
surprising that in our result, we do not need to impose such a bound on ‖ψ‖.

Proposition 2.5. Let A and B be Banach algebras. Let u, v ∈ A be such that uv and
vu are idempotents. Let ψ : A → B be linear and η-multiplicative, for some η satisfying
0 ≤ η‖u‖3‖v‖3 ≤ 2/9. If ‖ψ(uv)‖ ≤ 1/3 then ‖ψ(vu)‖ ≤ 1/3.

Proof. If vu = 0 then ψ(vu) = 0 so there is nothing to prove. Hence we assume vu 6= 0;
since vu is an idempotent 1 ≤ ‖vu‖ ≤ ‖v‖‖u‖.

Since uv is an idempotent, uvu = uv · uvu and vuv = vuv · uv. Applying Lemma 2.2
gives

‖ψ(uvu)‖ ≤ 3

2
η‖uv‖‖uvu‖ and ‖ψ(vuv)‖ ≤ 3

2
η‖vuv‖‖uv‖

and so

‖ψ(uvu)ψ(vuv)‖ ≤
(

3

2
η

)2

‖u‖5‖v‖5 ≤
(

3

2
η

)2

‖u‖6‖v‖6 ≤
(

3

2

)2(2

9

)2

=
1

9
.

But since vu is an idempotent, vuv · uvu = vu. Hence

‖ψ(vu) − ψ(vuv)ψ(uvu)‖ ≤ η‖vuv‖‖uvu‖ ≤ η‖u‖3‖v‖3 ≤ 2

9

and so ‖ψ(vu)‖ ≤ 2
9 + ‖ψ(vuv)ψ(uvu)‖ ≤ 1

3 .

Remark 2.6. The choice of 1
3 is somewhat arbitrary, and the reader may wonder why

we did not attempt to prove sharper inequalities. In fact, it follows automatically from
Corollary 2.11 below that if ψ(uv) is “moderately small” then ψ(vu) will be “very small”.
However, this refinement is not needed for the proofs of our main results.

2.2 Dual Banach algebras

There are various equivalent formulations in the literature of the notion of a dual Banach
algebra. We follow the definition in [Da07, Section 1], although our terminology is slightly
different and is influenced by [DPW09, Section 2].

Definition 2.7. Let B be a Banach algebra and let V be a Banach space. We say that B is
a dual Banach algebra with isometric predual V, if there is an isometric isomorphism
of Banach spaces j : B → V∗ such that multiplication B × B → B is separately σ(B,V)-
continuous.

Strictly speaking, in this definition, the choice of isometric isomorphism j : B → V∗

should be part of the data. However, in most examples that occur in practice, it is clear
from context which map j is being used. Moreover, as discussed in [DPW09, Section 2]:

• the “dual Banach algebra structure” induced on B only depends on the image of the
isometry j∗κ : V → B∗, where κ is the canonical embedding of V in its bidual;

• the condition that multiplication in B be separately σ(B,V)-continuous is equivalent
to requiring j∗κ(V) to be a sub-B-bimodule of B∗.
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This latter condition is often easier to check in practice.
If the choice of isometric predual for B is not important, or is clear from context,

then we will usually just refer to the w∗-topology on B without mentioning the particular
predual.

Example 2.8. The following Banach algebras are dual Banach algebras with an isometric
predual.

– M(G) where G is a locally compact group, with the isometric predual being C0(G);

– any von Neumann algebra N, with the isometric predual being the space of normal
linear functionals on N;

– B(X) for any reflexive Banach space X, with the isometric predual being the pro-
jective tensor product X∗ ⊗̂X.

Remark 2.9. It was shown by Daws [Da07, Theorem 3.5 and Corollary 3.8] that the
last of these examples is in some sense a universal one: given any dual Banach algebra
B with an isometric predual, there exists a reflexive Banach space X and an isometric,
w∗-w∗-continuous algebra homomorphism B → B(X).

2.3 A sharper dichotomy result

This section is not required for the proof of our main result, but it is included since the
proofs are elementary and since it may be useful in future work. The following lemma is
inspired by similar observations/calculations in [Cho13, Section 3.1], but we are able to
give a simpler proof.

Lemma 2.10. Let x ∈ [0,∞) and suppose that x ≤ x2 + c for some c ∈ [0, 2/9]. Then

min(x, 1 − x) ≤ 3c

2
≤ 1

3
.

Proof. By comparing the graphs of the functions f(u) = u and g(u) = u2 + c for u ≥ 0,
which cross in exactly two points, we see that x ∈ [0, u1]∪ [u2,∞), where 0 ≤ u1 < u2 ≤ 1
are the solutions of u = u2 + c. Explicitly

u1 =
1

2
(1 −

√
1 − 4c) , u2 =

1

2
(1 +

√
1 − 4c) = 1 − u1 .

It therefore suffices to prove that u1 ≤ 3c/2. This is equivalent to proving that 1 −
3c ≤

√
1 − 4c, which (since both sides are non-negative) is equivalent to proving that

(1−3c)2 ≤ 1−4c. Since 0 ≤ c ≤ 2/9, we have 9c2 ≤ 2c, and therefore 1−6c+9c2 ≤ 1−4c
as required.

Corollary 2.11 (A norm dichotomy). Let A, B be Banach algebras and let p be an
idempotent in A. Let δ satisfy 0 ≤ δ‖p‖2 ≤ 2

9 , and suppose ψ ∈ L(A,B) is δ-multiplicative.

Then either ‖ψ(p)‖ ≤ 3
2‖p‖

2δ ≤ 1
3 , or ‖ψ(p)‖ ≥ 1 − 3

2‖p‖
2δ ≥ 2

3 .

The point of this result is that we do not need a priori control on ‖ψ‖ to choose how
small δ must be; nor do we need any holomorphic functional calculus for the codomain B.

Proof. Since p2 = p, we have ‖ψ(p)‖ ≤ ‖ψ(p) − ψ(p)2‖+‖ψ(p)‖2 ≤ δ‖p‖2 +‖ψ(p)‖2. Now
applying Lemma 2.10 completes the proof.
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3 Towards a proof of the main theorem

3.1 Self-modular maps relative to an ideal

Throughout this section, B is a dual Banach algebra with an isometric predual (Defini-
tion 2.7). We denote w∗-limits in B by limσ.

Proposition 3.1 (Decomposition relative to an ideal). Let B be a dual Banach algebra
with an isometric predual. Let A be a Banach algebra and J be a closed ideal in A with
a b.a.i. Then each θ ∈ SHomJ(A,B) can be written as θ = φ + θs, where φ : A → B is a
bounded homomorphism, θs|J = 0, and def(θs) = def(θ).

Proof. Let B0 denote the w∗-closure of θ(J) inside B. Since J is an ideal and multiplication
in B is separately w∗-w∗-continuous, the self-modular property of θ implies that

θ(a)B0 ⊆ B0 and B0θ(a) ⊆ B0 for all a ∈ A. (3.1)

If a1, a2 ∈ A and x ∈ J, then repeated use of the self-modularity property yields

θ(x)θ(a1a2) = θ(xa1a2) = θ(xa1)θ(a2) = θ(x)θ(a1)θ(a2); (3.2)

hence, by taking w∗-limits in (3.2), we have

bθ(a1a2) = bθ(a1)θ(a2) for all a1, a2 ∈ A and all b ∈ B0. (3.3)

Now let (ei) be a b.a.i. in J. Passing to a subnet, we may assume that θ(ei) w∗-converges
in B to some p ∈ B0. Then for any x ∈ J,

θ(x) = lim
i
θ(eix) = lim

i
θ(ei)θ(x)

= limσ
i θ(ei)θ(x) = (limσ

i θ(ei)) θ(x) = pθ(x),
(3.4)

and similarly θ(x) = θ(x)p. Hence, by another application of w∗-w∗-continuity,

pb = b = bp for all b ∈ B0. (3.5)

(In particular, p is idempotent, although we do not use this explicitly in what follows.)
For each a ∈ A, (3.1) implies that θ(a)p ∈ B0 and pθ(a) ∈ B0. Hence by (3.5)

pθ(a)p = θ(a)p and pθ(a) = pθ(a)p for all a ∈ A. (3.6)

Now define φ by putting φ(a) := pθ(a). Combining (3.3) and (3.6), for all a1, a2 ∈ A

we have
φ(a1a2) = pθ(a1)θ(a2) = pθ(a1)pθ(a2) = φ(a1)φ(a2), (3.7)

and thus φ is multiplicative.
Put θs(a) := θ(a) − pθ(a). Clearly φ+ θs = θ, and (3.4) implies that θs(x) = 0 for all

x ∈ J .
Finally: note that by (3.6), θs(a1)p = 0. Hence, for all a1, a2 ∈ A,

θs(a1)θs(a2) = θs(a1)θ(a2) = θ(a1)θ(a2) − pθ(a1)θ(a2)

= θ(a1)θ(a2) − pθ(a1a2),
(3.8)

where the last equality follows from (3.3). Therefore

θs(a1a2) − θs(a1)θs(a2) = θ(a1a2) − θ(a1)θ(a2), (3.9)

and we conclude that def(θs) = def(θ).

Remark 3.2. If the b.a.i. in J has norm ≤ M , then the functions φ and θs in this result
can be taken to satisfy ‖φ‖ ≤ M‖θ‖ and ‖θs‖ ≤ (1 + M)‖θ‖. However, we will not need
these bounds in the applications of Proposition 3.1.
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3.2 The proof of Proposition 1.12

In this section we prove Proposition 1.12. For convenience, we repeat the statement:

Let E be a Banach space with an uncountable clone system. There exists a
constant cE ∈ (0, 1] such that the following holds: whenever X is a separable
Banach space, and ψ : B(E)/K(E) → B(X) is bounded linear with def(ψ) ≤
cE, we have ‖ψ‖ ≤ 3

2 def(ψ).

We start by shifting perspective slightly in the definition of a clone system. It is well
known (see e.g. [La03, Lemma 1.4] for a proof) that an idempotent P ∈ B(E) satisfies
Ran(P ) ∼= E if and only if P is Murray–von Neumann equivalent to IE. We state a
quantitative version in the following lemma, whose proof is left to the reader.

Lemma 3.3. Let E be a Banach space and let P ∈ B(E) be an idempotent.

(i) If Ran(P ) ∼= E, then for every ε > 0 there exist U, V ∈ B(E) such that P = UV ,
IE = V U and ‖U‖‖V ‖ ≤ (d(E,Ran(P )) + ε)‖P‖.

(ii) If U, V ∈ B(E) are such that IE = V U and UV = P , then Ran(U) = Ran(P ) and
V |Ran(P ) is an isomorphism from Ran(P ) onto E. Hence, d(E,Ran(P )) ≤ ‖U‖‖V ‖
(and clearly ‖P‖ ≤ ‖U‖‖V ‖).

We recall that idempotents p, q in a ring are said to be orthogonal if pq = 0 = qp.

Lemma 3.4. Let Q be a Banach algebra containing an uncountable family Ω of pairwise
orthogonal idempotents, and suppose supp∈Ω ‖p‖ ≤ L for some L ≥ 1. Let X be a separable
Banach space, and suppose ψ ∈ L(Q,B(X)) is η-multiplicative for some η > 0. Then
‖ψ(p)‖ ≤ 2ηL2 for uncountably many p ∈ Ω.

Proof. For ε > 0 let Ωε = {p ∈ Ω: ‖ψ(p)‖ > ε}. It suffices to show that Ω2ηL2 is countable;
therefore, since Ω2ηL2 =

⋃∞
n=1 Ω2ηL2+1/n, it suffices to show that Ωc is countable for every

c > 2ηL2.
Fix c > 2ηL2. We may assume that Ωc is infinite (otherwise there is nothing to prove);

in particular, this implies ‖ψ‖ > 0. For each p ∈ Ωc pick a unit vector xp ∈ X such that
‖ψ(p)xp‖ ≥ c, and let yp = ψ(p)xp.

If r ∈ Ωc and r 6= p, then

‖ψ(p)yr‖ = ‖ψ(p)ψ(r)xr‖ ≤ ‖ψ(p)ψ(r)‖ = ‖ψ(p)ψ(r) − ψ(pr)‖ ≤ ηL2 ;

on the other hand, since ‖ψ(p) − ψ(p)ψ(p)‖ ≤ ηL2,

‖ψ(p)yp‖ = ‖ψ(p)ψ(p)xp‖ ≥ ‖ψ(p)xp‖ − ηL2 ≥ c− ηL2 .

Combining these inequalities yields ‖ψ(p)yp − ψ(p)yr‖ ≥ c− 2ηL2. Hence

‖yp − yr‖ ≥ c− 2ηL2

‖ψ(p)‖ ≥ c− 2ηL2

‖ψ‖L > 0 for all p, r ∈ Ωc with p 6= r.

Since X is separable this is only possible if Ωc is countable.
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Proof of Proposition 1.12. Let Ω be an uncountable clone system for E. By Lemma 3.3(i),
there is a constant C ≥ 1 such that each P ∈ Ω can be factorized as P = UV , for some V
and U in B(E) satisfying ‖U‖‖V ‖ ≤ C and V U = IE. We will show that the conclusion
of Proposition 1.12 holds with cE := 6−1C−3.

Let ψ : B(E)/K(E) → B(X) be bounded linear. For convenience, let η := def(ψ), and
suppose that η ≤ 6−1C−3. Writing q for the quotient homomorphism B(E) → B(E)/K(E),
note that q(Ω) is an uncountable family of orthogonal idempotents in B(E)/K(E) with
‖q(P )‖ ≤ ‖P‖ ≤ C for every P ∈ Ω. By Lemma 3.4 with Q = B(E)/K(E), there exists
some P ∈ Ω such that

‖ψq(P )‖ ≤ 2ηC2 ≤ 2ηC3 ≤ 1

3
.

(In fact there exist uncountably many, but we only need one!) Consider ψq : B(E) →
B(X), which satisfies def(ψq) = def(ψ) = η. We have

η‖U‖3‖V ‖3 ≤ ηC3 ≤ 1

6
<

2

9
.

Hence, applying Proposition 2.5 to the map ψq : B(E) → B(X), we deduce that ‖ψq(IE)‖ ≤
1/3. Since q(IE) is the identity element of B(E)/K(E), it follows from Corollary 2.3 that
‖ψ‖ ≤ 3η/2 as required.

Remark 3.5. Comparing our proof of Proposition 1.12 with Johnson’s arguments in
[Jo88]: he uses the fact that in any Banach algebra an element x for which ‖x2 − x‖
is “small” is “close in norm” to a genuine idempotent. The proof of this result relies on
holomorphic functional calculus, and hence has implicit constants depending on the given
algebra. Our approach bypasses this issue.

The proof works just as well if B(E) is replaced by an arbitrary unital Banach algebra A

and K(E) by an arbitrary closed ideal JEA. However, we do not know of natural examples
that satisfy the hypotheses of Proposition 1.12 which are not of the form A = B(E) and
J being some closed operator ideal, so it seems more appropriate to restrict ourselves to
this setting.

3.3 Deducing the main theorem from other results

We now show how Theorem 1.4 will follow from combining Theorem 1.11, Proposition 3.1
and Proposition 1.12. For convenience let us restate the theorem:

Let X be any separable, reflexive Banach space. Let E be a Banach space such
that both of the following conditions hold:

(i) K(E), the algebra of compact operators on E, is amenable as a Banach
algebra;

(ii) E has an uncountable clone system.

Then the pair (B(E),B(X)) has the AMNM property.

Proof of Theorem 1.4, assuming Theorem 1.11. B(X) is a dual Banach algebra with an
isometric predual, since X is reflexive. Hence we may apply Theorem 1.11 with A = B(E),
D0 = K(E) and B = B(X). Fix some L ≥ 1, and let C ′ ≥ 1 satisfy the conclusion of
Theorem 1.11 (recall that C ′ may depend on the constant L and also on the Banach
space E).
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Given ε > 0, we fix some δ > 0 to be determined later. Let ψ : B(E) → B(X)
satisfy ‖ψ‖ ≤ L and def(ψ) ≤ δ. It suffices to prove that there exists some bounded
homomorphism φ : B(E) → B(X) with ‖φ− ψ‖ ≤ ε.

By Theorem 1.11, provided that C ′δ ≤ 1, there exists θ ∈ SHomK(E)(B(E),B(X))
such that ‖θ − ψ‖ ≤ C ′δ. Note that by Lemma 2.1,

def(θ) ≤ def(ψ) + 2(1 + ‖ψ‖)‖θ − ψ‖ ≤ δ + 2(1 + L)C ′δ ≤ 5LC ′δ.

By Proposition 3.1, applied with A = B(E), J = K(E) and B = B(X), there exist

• a bounded homomorphism φ : B(E) → B(X),

• a bounded linear map θs : B(E) → B(X) which vanishes on K(E) and satisfies

def(θs) = def(θ) ≤ 5LC ′δ

such that θ = φ+ θs. Writing q for the quotient homomorphism B(E) → B(E)/K(E), we
may factorize θs as θ̃sq where ‖θ̃s‖ = ‖θs‖.

Let cE be the constant provided by Proposition 1.12 (recall that this depends only
on the chosen clone system for E). By applying that proposition to θ̃s: provided that

5LC ′δ ≤ cE , we have ‖θ̃s‖ ≤ 15LC ′δ/2. Hence

‖φ− ψ‖ ≤ ‖θ − ψ‖ + ‖θs‖ ≤ C ′δ +
15

2
LC ′δ < 9LC ′δ.

Therefore, if we originally chose our δ to satisfy 0 < 5LC ′δ ≤ cE and 9LC ′δ ≤ ε, we have
‖φ− ψ‖ ≤ ε as required.

At this point, the only piece missing from our proof of Theorem 1.4 is the proof of our
main technical novelty, Theorem 1.11. This will take up the rest of the paper.

4 Towards a proof of Theorem 1.11

The process of proving Theorem 1.11 is quite long, and it may be helpful for the reader
to know that the key implications are given by the following chain:

Theorem 1.11 ⇐= Theorem 4.2 ⇐= Proposition 4.3 ⇐= Section 5.3.

4.1 The projective tensor product and approximate diagonals

It turns out that we need to make quantitative (rather than merely qualitative) use
of amenability. Thus, we shall briefly review the basic properties of the projective tensor
norm for Banach spaces and the associated completed tensor product; a good source for
background material is the monograph [Ry]. In what follows Bil(E,F ;G) denotes the
space of bounded, bilinear maps E × F → G for Banach spaces E,F and G.

Rather than defining the projective tensor norm directly, we use the following charac-
terization in terms of a universal property (see also [Ry, Theorem 2.9]).

Given Banach spaces E and F , there exists a Banach space E ⊗̂F and a norm 1
map ιE,F ∈ Bil(E,F ;E ⊗̂ F ), such that for each Banach space X and each
β ∈ Bil(E,F ;X) there is a unique Tβ ∈ L(E ⊗̂ F,X) such that β = Tβ ◦ ιE,F .
Moreover, ‖Tβ‖L(E⊗̂F,X) = ‖β‖Bil(E,F ;X).
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As is standard, for x ∈ E and y ∈ F we write x⊗ y for ιE,F (x, y). It follows from the
previous remarks that for each T ∈ L(E ⊗̂ F,X),

‖T‖L(E⊗̂F,X) = ‖T ◦ ιE,F‖Bil(E,F ;X) = sup{‖T (x⊗ y)‖ : x ∈ ball1(E), y ∈ ball1(F )} .
(4.1)

That is: to determine the norm of T ∈ L(E ⊗̂ F,X), it suffices to check how T acts on
elementary tensors arising from the unit balls of E and F .

The theory of amenability for Banach algebras is now a vast topic (see e.g. [Ru] for
a comprehensive modern study). We shall only need the following fragment. Let A be a
Banach algebra. A bounded net (∆α)α∈I in A ⊗̂ A is called a bounded approximate

diagonal for A if

limα(a · ∆α − ∆α · a) = 0, and limα aπA(∆α) = a for all a ∈ A, (4.2)

where the limits are taken in the norm topology, and πA : A⊗̂A → A is the unique bounded
linear map satisfying πA(a ⊗ b) = ab for all a, b ∈ A. We refer to supα ‖∆α‖ as the norm
of the bounded approximate diagonal.

A Banach algebra A is amenable if there is a bounded approximate diagonal for A,
and the amenability constant of A is the infimum of norms of all possible bounded
approximate diagonals. It follows from compactness arguments in the bidual, together
with Goldstine’s lemma and a convexity argument, that we can always find a bounded
approximate diagonal for A whose norm achieves this infimum.

4.2 Reduction to a unital version

Let us revisit the definition of the multiplicative defect. Given Banach algebras A and B

and a linear map φ : A → B, we define φ∨ : A× A → B by

φ∨(a, b) := φ(ab) − φ(a)φ(b) for all a, b ∈ A. (4.3)

Our earlier definition merely says that

def(φ) = sup{‖φ(a1a2) − φ(a1)φ(a2)‖ : a1, a2 ∈ ball1(A)} = ‖φ∨‖Bil(A,A;B) (4.4)

Now let D ⊆ A be a closed subalgebra. We will need to define quantities analogous to
def(φ) where the “multiplicative property” is only tested on pairs in D× A or A× D. To
be precise:

defD×A(φ) = ‖φ∨‖Bil(D,A;B)

= sup{‖φ(a1a2) − φ(a1)φ(a2)‖ : a1 ∈ ball1(D), a2 ∈ ball1(A)}
(4.5)

with defA×D(φ) defined similarly. The function defD×A : L(A,B) → [0,∞) is continuous.
The next lemma is a sharper version of Lemma 2.1.

Lemma 4.1. Let A, B be Banach algebras and let φ, γ ∈ L(A,B). Then for all a1, a2 ∈ A,

(φ+ γ)∨(a1, a2) = φ∨(a1, a2) − φ(a1)γ(a2) + γ(a1a2) − γ(a1)φ(a2) − γ(a1)γ(a2) . (4.6)

In particular, for any closed subalgebra D ⊆ A,

defD×A(φ+ γ) ≤ defD×A(φ) + (2‖φ‖ + 1)‖γ‖ + ‖γ‖2 , (4.7)

defA×D(φ+ γ) ≤ defA×D(φ) + (2‖φ‖ + 1)‖γ‖ + ‖γ‖2 . (4.8)
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Proof. The first identity is a direct calculation, and we omit the details. The subsequent
inequalities follow easily from the first identity and the definitions of defD×A anddef A× D.

The following theorem, which extends [Jo88, Theorem 3.1], is the heart of Theo-
rem 1.11. Note that unlike the earlier theorem, we impose the condition that the subal-
gebra is unital and restrict attention to unit-preserving maps, even though in the original
application to Theorem 1.4 it was important to allow non-unital examples.

Theorem 4.2 (AMNM with respect to a unital amenable subalgebra). Let A be a Banach
algebra, let D be a closed subalgebra of A which is unital and amenable with amenability
constant ≤ K, and let B be a unital dual Banach algebra with an isometric predual. Fix
L ≥ 1 and δ > 0 satisfying K2L2δ ≤ 1/8.

Let φ ∈ L(A,B) satisfy ‖φ‖ ≤ L, φ(1D) = 1B, defA×D(φ) ≤ δ, and defD×A(φ) ≤ δ.
Then there exists ψ ∈ SHomD(A,B) with ψ(1D) = 1B and ‖φ− ψ‖ ≤ 12K2L3δ.

Recall the statement of Theorem 1.11:

Let A be a Banach algebra with a closed amenable subalgebra D0, and let B be a
unital dual Banach algebra with an isometric predual. Fix some L ≥ 1. Then
there exists a constant C ′ ≥ 1 (possibly depending on L and D0) such that the
following holds: whenever ψ ∈ L(A,B) satisfies ‖ψ‖ ≤ L and C ′ def(ψ) ≤ 1,
there exists θ ∈ SHomD0(A,B) with ‖θ − ψ‖ ≤ C ′ def(ψ).

Deducing Theorem 1.11 from Theorem 4.2. We start by considering an arbitrary ψ ∈
L(A,B). Let A♯ = C1 ⊕1 A denote the forced unitization of A (here ⊕1 denotes the
ℓ1-sum of two Banach spaces). Then there is a natural extension of ψ to ψ♯ : A♯ → B,
given by

ψ♯(λ, a) = λ1B + ψ(a) for all λ ∈ C, a ∈ A.

It is easily checked that ‖ψ♯‖ = ‖ψ‖ (one direction is trivial since A ⊂ A♯, and the other
follows by our choice of norm on A♯). Moreover, a direct calculation shows that

ψ♯((λ1, a1)(λ2, a2)) − ψ♯(λ1, a1)ψ
♯(λ2, a2) = ψ(a1a2) − ψ(a1)ψ(a2); (4.9)

and hence def(ψ♯) = def(ψ). (Once again, one direction is trivial since A ⊂ A♯; the
non-trivial direction follows from the identity (4.9).)

Let D = D0
♯, which coincides with the closed subalgebra C1 ⊕1 D0 of A♯, where 1 is

the adjoined unit. It is well known that the unitization of any amenable Banach algebra
is itself amenable; let K be the amenability constant of D, which automatically satisfies
K ≥ 1.

Given L ≥ 1, put C ′ := 12K2L3. Suppose ψ ∈ ballL L(A,B) satisfies def(ψ) = δ,
for some δ ∈ [0, 1/C ′]. By our previous remarks, the extended map ψ♯ : A♯ → B also
has multiplicative defect δ and norm ≤ L, and by construction it satisfies ψ♯(1) = 1B .
Applying Theorem 4.2 to the triple (D,A♯,B) (note that 8K2L2δ ≤ 12K2L3δ ≤ 1), we
deduce that there exists φ ∈ SHomD(A♯,B) with φ(1) = 1B and ‖φ− ψ♯‖ ≤ C ′δ. Taking
θ = φ|A ∈ SHomD0(A,B), we see that the conclusions of Theorem 1.11 are satisfied.

4.3 Obtaining the unital version, using an improving operator

Guided by the case D = A that is treated in [Jo88], we shall prove Theorem 4.2 by an
iterative argument. Notably, the proof works by repeated application of a nonlinear
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operator F : L(A,B) → L(A,B) with certain “improving” properties. The operator F
is designed in such a way that for each φ satisfying the assumptions of Theorem 4.2,
the sequence of iterates (Fn(φ))n∈N is a fast Cauchy sequence in L(A,B) and satisfies
defD×A(Fn(φ)) → 0. The map φ∞ := limn→∞ Fn(φ) then satisfies defD×A(φ∞) = 0; and
‖φ− φ∞‖ can be bounded above in terms of defD×A(φ), using the geometric decay from
the fast Cauchy property. To get the final map ψ, one performs a “left–right switch” and
exploits some ad hoc features of the operator F .

Before constructing the operator F , we isolate those of its properties which are needed
for the argument in the previous paragraph.

Proposition 4.3 (A nonlinear improving operator). Let A be a Banach algebra, let B be
a unital dual Banach algebra with an isometric predual, and let D be a closed subalgebra of
A which is unital and amenable with amenability constant ≤ K. Then there is a function
F : L(A,B) → L(A,B) with the following properties: for each φ ∈ L(A,B) satisfying
φ(1D) = 1B, we have

(i) F (φ)(1D) = 1B;

(ii) ‖F (φ) − φ‖ ≤ K‖φ‖ defD×A(φ);

(iii) defD×A(F (φ)) ≤ 3K2‖φ‖2 defD×D(φ) defD×A(φ).

Moreover,

(iv) if defA×D(φ) = 0, then defA×D(F (φ)) = 0.

Proof of Theorem 4.2, given Proposition 4.3. We fix K, L and δ as in the statement of the
theorem. Let φ ∈ L(A,B) with φ(1D) = 1B, ‖φ‖ ≤ L, defA×D(φ) ≤ δ, and defD×A(φ) ≤ δ.

The first step is to prove that (Fn(φ))n≥0 is a Cauchy sequence in L(A,B). In fact, we
prove a more precise technical statement, as follows.

Claim.
‖Fn(φ) − Fn−1(φ)‖ ≤ KLδ2−(n−1) and defD×A(Fn(φ)) ≤ 3δ2−2n−1, for each n ≥ 1.

The claim is proved by strong induction on n. For the base case (n = 1): applying
Proposition 4.3 to φ, we obtain ‖F (φ) − φ‖ ≤ K‖φ‖ defD×A(φ) ≤ KLδ and

defD×A(F (φ)) ≤ 3K2‖φ‖2 defD×D(φ) defD×A(φ)

≤ 3K2‖φ‖2 defD×A(φ)2

≤ 3K2L2δ2

≤ 3δ/8

as required. Now suppose the claim holds for all 1 ≤ j ≤ n for some n ∈ N. Then

‖Fn(φ)‖ ≤ ‖φ‖ +
n∑

j=1

‖F j(φ) − F j−1(φ)‖

≤ L+KLδ

n∑

j=1

2−(j−1) ≤ L+ 2KLδ ≤ 5L/4, (4.10)

using the fact that Kδ ≤ KLδ ≤ 1/8. Combining (4.10) with the second part of the
inductive hypothesis yields

‖Fn(φ)‖ defD×A(Fn(φ)) ≤ (5L/4) · 3δ2−2n−1

≤ Lδ2−2n+1 ≤ Lδ2−n (since n ≥ 1). (4.11)
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Applying Proposition 4.3 (ii) to Fn(φ) and using (4.11) yields

‖Fn+1(φ) − Fn(φ)‖ ≤ K‖Fn(φ)‖ defD×A(Fn(φ)) ≤ KLδ2−n ,

and applying Proposition 4.3 (iii) to Fn(φ) yields

defD×A(Fn+1(φ)) ≤ 3K2‖Fn(φ)‖2 defD×D(Fn(φ)) defD×A(Fn(φ))

≤ 3 (K‖Fn(φ)‖defD×A(Fn(φ)))2

≤ 3(KLδ2−n)2 (using (4.11))

= 3K2L2δ · δ2−2n

≤ 3δ2−2n−3 (since K2L2δ ≤ 1/8).

This completes the inductive step, and hence proves the claim.
It follows from the claim that the sequence (Fn(φ))n≥0 is Cauchy in L(A,B). Let φ∞ =

limn→∞ Fn(φ) ∈ L(A,B). Since Fn(φ)(1D) = 1B for all n ∈ N and limn defD×A(Fn(φ)) =
0, we have φ∞(1D) = 1B and defD×A(φ∞) = 0 by continuity. Also, ‖φ− φ∞‖ ≤ 2KLδ.
This implies

‖φ∞‖ ≤ ‖φ‖ + ‖φ− φ∞‖ ≤ L+ 2KLδ ≤ L(1 + 2K2L2δ) ≤ 5L/4 ,

and, by the estimate given at the end of Lemma 4.1,

defA×D(φ∞) ≤ defA×D(φ) + (2‖φ‖ + 1)‖φ∞ − φ‖ + ‖φ∞ − φ‖2

≤ δ + (2L + 1)2KLδ + (2KLδ)2

≤ δ(1 + 6KL2 + 4K2L2δ) ≤ δ(3/2 + 6KL2) ≤ 8KL2δ.

To obtain the final map ψ, let Aop and Bop be the Banach algebras whose underlying
Banach spaces are the same as A and B respectively, but which have the opposite algebra
structures, so that a1 ·(Aop) a2 := a2a1, etc. Note that Dop is a closed subalgebra of Aop.

Moreover, Dop is unital and amenable with constant ≤ K: for if σ : D ⊗̂D → D ⊗̂D is the
flip map defined by c1 ⊗ c2 7→ c2 ⊗ c1, then σ maps bounded approximate diagonals for D

to bounded approximate diagonals for Dop.
Let φ′ ∈ L(Aop,Bop) be the same function as φ∞ ∈ L(A,B) (we introduce new notation

to emphasise that we are now working with different algebras as domain and codomain,
which affects the definition of def). Then the following properties hold:

φ′(1Dop) = φ∞(1D) = 1B = 1Bop ; defAop×Dop(φ′) = defD×A(φ∞) = 0 .

Applying Proposition 4.3 to the triple (Aop,Bop,Dop), there is a function F ′ : L(Aop,Bop) →
L(Aop,Bop) such that

1. F ′(φ′)(1Dop) = 1Bop ;

2. ‖F ′(φ′) − φ′‖ ≤ K‖φ′‖defDop×Aop(φ′) = K‖φ∞‖defA×D(φ∞);

3. defDop×Aop(F ′(φ′)) ≤ 3K2‖φ′‖defDop×Dop(φ′) defDop×Aop(φ′);

4. defAop×Dop(F ′(φ′)) = 0.
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Now observe that defDop×Dop(φ′) ≤ defAop×Dop(φ′) = 0. Hence we may improve the property
3 above to: defDop×Aop(F ′(φ′)) = 0.

We define ψ ∈ L(A,B) to have the same underlying function as F ′(φ′). Then ψ(1D) =
F ′(φ′)(1Dop) = 1Bop = 1B, and

‖ψ − φ‖ ≤ ‖F ′(φ′) − φ′‖ + ‖φ∞ − φ‖
≤ K(5L/4)8KL2δ + 2KLδ ≤ 12K2L3δ .

Finally, ψ ∈ SHomD(A,B) since defD×A(ψ) = defAop×Dop(F ′(φ′)) = 0 and defA×D(ψ) =
defDop×Aop(F ′(φ′))) = 0.

4.4 Explanation for the improving operator

We have not given any definition of the operator F , let alone explained why amenability
of D would allow us to find or construct F . In fact the definition of F is quite simple
and explicit — see Equation (5.10) below — but attempting to prove directly that F
has the required “improving properties” is far less straightforward. Subtle cancellations
are required, and one has to pay attention to technical issues arising when carrying out
repeated w∗-averaging.

These issues are already present in the proof of [Jo88, Theorem 3.1], where an operator
analogous to ours is constructed in the special case D = A. Although Johnson chooses in
his proof to verify the necessary properties directly, he follows this with a brief sketch of
how the construction of the operator and the proof that it has the required properties are
motivated by a “vanishing H2 argument” that is standard in the Hochschild cohomology
theory of (amenable) Banach algebras.

In our setting, the algebra A is no longer amenable, but the unital subalgebra D is, and
the corresponding notion in cohomology theory is that of normalizing a 2-cocycle with

respect to an amenable subalgebra. It is this approach which guides our construction
of the desired “improving operator” F . Rather than adapting the calculations in the proof
of [Jo88, Theorem 3.1] in an ad hoc way to the setting of an amenable subalgebra D ⊆ A,
it seems both more comprehensible and more robust to set up a general framework. This
is our goal in the final section of the paper; the desired “improving operator” F will then
emerge naturally as a special case of the general machinery.

5 Constructing the nonlinear improving operator

5.1 An approximate cochain complex

Throughout this subsection, we fix Banach algebras A,B and φ ∈ L(A,B); we shall think
of φ as defining an “approximate action” of A on B. As mentioned earlier, we are guided by
a standard construction in the Hochschild cohomology theory of Banach algebras, which
arises when normalizing cochains with respect to an amenable unital subalgebra. However,
we require the actual techniques in the proofs and not just the results, and therefore we
shall build the required machinery from scratch.

Remark 5.1. After the original work was done for this section, it was brought to our
attention that [Ka82] also adopts a similar setup with an approximate cochain complex;
however, this is only done in the setting of (bounded) group cohomology for discrete
groups. Moreover, [Ka82] does not explore the “relative” setting where one only has
amenability for a subgroup rather than for the whole group.
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Definition 5.2. For each n ∈ N, define the bounded linear map ∂nφ : Ln(A,B) →
Ln+1(A,B) by

∂
n
φ ψ(a1, . . . , an+1) =





φ(a1)ψ(a2, . . . , an+1)

+
n∑

j=1

(−1)jψ(a1, . . . , ajaj+1, . . . , an+1)

+(−1)n+1ψ(a1, . . . , an)φ(an+1).

In fact, to prove Proposition 4.3, we only need this definition for n ∈ {1, 2}. We include
the definitions for general n, to put the following arguments in their proper context.

Remark 5.3. We make some remarks to provide context; they are not necessary for the
proof of Proposition 4.3.

(i) If φ is multiplicative, then (a, b) 7→ φ(a)b and (b, a) 7→ bφ(a) give B the structure of
an A-bimodule φBφ, and the operator ∂nφ is just the usual Hochschild coboundary
operator for φBφ-valued cochains. If φ is not multiplicative, then we might have

∂
n+1
φ ◦ ∂nφ 6= 0, but a direct calculation shows that ‖∂n+1

φ ◦ ∂nφ‖ ≤ 4 def(φ).

(ii) Recall that we have a nonlinear function ( )∨ : L(A,B) → L2(A,B); ψ 7→ ψ∨ (where
ψ∨ is defined as in Equation (4.3)), which satisfies def(ψ) = ‖ψ∨‖. If γ ∈ L(A,B),
Equation (4.6) may be rewritten as

(φ+ γ)∨(a1, a2) = φ∨ − ∂
1
φ(γ)(a1, a2) − γ(a1, a2) for all a1, a2 ∈ A,

and it follows that the derivative of the function ( )∨ at φ is just − ∂1φ. (This
observation is taken from remarks in [Jo88, Section 3].)

(iii) For now, we do not assume either A or B is unital; but when it comes to our analogue
of “normalization of cocycles”, some kind of unitality assumption is needed to obtain
maps with the right properties.

Since ∂2φ can be applied to arbitrary elements of L2(A,B), we may apply it to the
particular bilinear map φ∨.

Lemma 5.4 (A 2-cocycle for ∂φ). ∂2φ(φ∨) = 0.

The proof is a straightforward calculation, which we omit.

Definition 5.5 (Notation for restricting in first variable). Let E and V be Banach spaces,
and let F be a closed subspace of E. Let n ≥ 2. Given ψ ∈ Ln(E,V ) we may regard it as
an element of L(E,Ln−1(E,V )), which is defined by

x1 7→ ((x2, . . . , xn) 7→ ψ(x1, . . . , xn)) .

Restricting this function to F yields a bounded linear map F → Ln−1(E,V ), which we de-
note by LresF (ψ) ∈ L(F,Ln−1(E,V )). The function LresF : Ln(E,V ) → L(F,Ln−1(E,V ))
is linear and contractive.

For the rest of this subsection, we fix a closed subalgebra D ⊆ B. Note that defD×A(φ) =
‖LresD(φ∨)‖.
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Our goal is to define (linear) operators σnφ : Ln+1(A,B) → Ln(A,B) such that for each
ψ ∈ Ln(A,B), the map

LresD

(
∂
n−1
φ σn−1

φ (ψ) + σnφ ∂
n
φ(ψ) − ψ

)

has norm controlled by defD×A(ψ) (we make this precise in Proposition 5.18 below). As a
first step towards this, we set up a general construction by which elements of D ⊗̂D define
(linear) operators Ln+1(A,B) → Ln(A,B).

Definition 5.6. Let n ∈ N. Given c, d ∈ D, we define the bounded linear map [[c ; d]]nφ :

Ln+1(A,B) → Ln(A,B) by

[[c ; d]]nφ(ψ)(a1, . . . , an) = φ(c) ψ(d, a1, . . . , an) for all a1, . . . , an ∈ A. (5.1)

The function D× D → L(Ln+1(A,B),Ln(A,B)) defined by (c, d) 7→ [[c ; d]]nφ is a bounded
bilinear map, with norm ≤ ‖φ‖‖LresD‖. Therefore it extends uniquely to a bounded linear
map D ⊗̂D → L(Ln+1(A,B),Ln(A,B)), which we denote by w 7→ [[w]]nφ.

With this notation, [[c⊗ d]]nφ is the same as [[c ; d]]nφ. Note that for each ψ ∈ Ln+1(A,B)

‖[[w]]nφ(ψ)‖
Ln(A,B)

≤ ‖w‖D⊗̂D‖φ‖‖LresD(ψ)‖L(D,Ln(A,B)) for all w ∈ D ⊗̂ D. (5.2)

Remark 5.7. One could define [[w]]nφ more directly by choosing a representation of w as
an absolutely convergent sum of elementary tensors. We prefer to systematically use the
universal property of ⊗̂, which makes it clearer that [[w]]nφ depends only on w itself and not
the choice of representation. Another benefit of our approach is that it generalises cleanly
to other settings; for instance, if A and B are completely contractive Banach algebras in
the sense of operator-space theory, then there are natural “completely bounded” versions
of our results, with almost identical proofs.

Lemma 5.8 (Approximate splitting, 1st version). Let n ≥ 2. Then

∂
n−1
φ [[w]]n−1

φ (ψ)(a1, . . . , an)

+ [[w]]nφ ∂
n
φ(ψ)(a1, . . . , an)

}
=





πB(φ ⊗̂ φ)(w) · ψ(a1, . . . , an)

+φ(a1) · [[w]]n−1
φ (ψ)(a2, . . . , an)

− [[w · a1]]n−1
φ (ψ)(a2, . . . , an)

(5.3)

for all w ∈ D ⊗̂ D, a1, . . . , an ∈ A and ψ ∈ Ln(A,B).

Proof. Fix a1, . . . , an ∈ A and ψ ∈ Ln(A,B). We denote the left-hand side of (5.3) by
TL(w) and denote the right-hand side by TR(w). Then TL and TR are bounded linear
maps from D ⊗̂ D to B, so it suffices to prove that TL(c⊗ d) = TR(c⊗ d) for all c, d ∈ D.

Consider

TL(c⊗ d) = ∂
n−1
φ [[c⊗ d]]n−1

φ ψ(a1, . . . , an) + [[c⊗ d]]nφ ∂
n
φ ψ(a1, . . . , an).

Expanding these expressions, most of the terms cancel, leaving

φ(a1) · φ(c) · ψ(d, a2, . . . , an) + φ(c) · φ(d) · ψ(a1, . . . , an) − φ(c) · ψ(da1, a2, . . . , an)

= φ(a1) · [[c⊗ d]]n−1
φ ψ(a2, . . . , an) + πB(φ ⊗̂ φ)(c ⊗ d) · ψ(a1, . . . , an)

− [[c⊗ da1]]n−1
φ ψ(a2, . . . , an)

which equals TR(c⊗ d), as required.
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Remark 5.9. The restriction to n ≥ 2 is merely because we did not define L0(A,B). If we
put L0(A,B) := B, then the maps ∂0φ : B → L(A,B) and [[w]]0φ : L(A,B) → B can be defined
in such a way that Lemma 5.8 remains valid for n = 1. However, this would require extra
notation, and we do not need this case for the application to the proof of Proposition 4.3.

Lemma 5.10. Let n ≥ 2. Let w ∈ D⊗̂D and let a1 ∈ ball1(D), a2, . . . , an ∈ ball1(A). Then
for each ψ ∈ Ln(A,B),

∥∥∥φ(a1) · [[w]]n−1
φ (ψ)(a2, . . . , an) − [[a1 · w]]n−1

φ (ψ)(a2, . . . , an)
∥∥∥

≤ defD×D(φ) ‖w‖D⊗̂D ‖LresD(ψ)‖L(D,Ln−1(A,B)).
(5.4)

Proof. Fixing a1 ∈ ball1(D) and a2, . . . , an ∈ ball1(A), let

T (w) := φ(a1) · [[w]]n−1
φ (ψ)(a2, . . . , an) − [[a1 · w]]n−1

φ (ψ)(a2, . . . , an) for all w ∈ D ⊗̂ D.

Then T : D ⊗̂ D → B is a bounded linear map and it suffices to prove that ‖T‖ ≤
defD×D(φ) ‖LresD(ψ)‖L(D,Ln−1(A,B)). By (4.1) it suffices to prove that

‖T (c⊗ d)‖ ≤ defD×D(φ) ‖LresD(ψ)‖L(D,Ln−1(A,B)) for all c, d ∈ ball1(D).

This is now a straightforward calculation:

‖T (c⊗ d)‖ =
∥∥∥φ(a1) · [[c⊗ d]]n−1

φ (ψ)(a2, . . . , an) − [[a1c⊗ d]]n−1
φ (ψ)(a2, . . . , an)

∥∥∥
= ‖φ(a1)φ(c)ψ(d, a2 , . . . , an) − φ(a1c)ψ(d, a2, . . . , an)‖
≤ ‖φ(a1)φ(c) − φ(a1c)‖ ‖ψ(d, a2, . . . , an)‖
= ‖φ(a1)φ(c) − φ(a1c)‖ ‖[LresD(ψ)(d)](a2, . . . , an)‖
≤ defD×D(φ) ‖LresD(ψ)‖L(D,Ln−1(A,B)),

as required.

5.2 Defining the approximate homotopy

To construct our approximate homotopy, we have to place further restrictions on B and D.
Thus throughout this subsection:

• A is a Banach algebra, B is a unital dual Banach algebra with an isometric predual,
and φ ∈ L(A,B);

• D is a closed subalgebra of A, which is unital and amenable with constant ≤ K;

We also fix a net (∆α)α∈I which is a bounded approximate diagonal for D and has
the following properties: supα ‖∆α‖D⊗̂D ≤ K; and there exists ∆ ∈ (D ⊗̂ D)∗∗ such that

∆α
w∗

−−→ ∆. The desired operators σnφ : Ln+1(A,B) → Ln(A,B) will be constructed as
limits of the operators [[∆α]]nφ, with respect to an appropriate topology which we now
describe.

Let E and F be Banach spaces and let n ∈ N be fixed. For the sake of readability,
elements of En will be written as x := (x1, x2, . . . , xn). For every x ∈ En and y ∈ F , we
introduce the bounded linear maps

evx : Ln(E,F ∗) → F ∗; ψ 7→ ψ(x),

εy : F ∗ → C; f 7→ f(y).
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Definition 5.11. The projective topology on Ln(E,F ∗) with respect to the family
(F ∗, σ(F ∗, F ), evx)x∈En is called the topology of point-to-w∗ convergence and will be
denoted by τ . That is, τ is the smallest topology on Ln(E,F ∗) such that evx is τ -to-
σ(F ∗, F ) continuous for each x ∈ En.

Proposition 5.12. The topology τ is a linear, locally convex, Hausdorff topology on the
vector space Ln(E,F ∗). A neighbourhood basis of zero in τ is given by

B :=

{
N⋂

i=1

ev
−1
x(i)(Ui) : N ∈ N, x(i) ∈ En, Ui ∈ N for each 1 ≤ i ≤ N

}
,

where N is a neighbourhood basis of zero in σ(F ∗, F ).

Proof. A projective topology is automatically linear, in other words, it is compatible with
the vector space operations (see e.g. Chapter 1, Section 7, Proposition 7 in [Bo]). That B is
a neighbourhood basis of zero in τ follows from Chapter 1, Section 7, the paragraph before
Corollary 1 in [Bo] or from Chapter 5, Section 5.1 in [SW]. From this it is immediate that
τ is locally convex. Indeed, N consists of convex sets and therefore B consists of convex
sets too.

It remains to show that τ is Hausdorff, which is equivalent to
⋂

V ∈B V = {0}. Let
ψ ∈ ⋂V ∈B V . Fix an arbitrary x ∈ En and y ∈ F . We define

Vr := ev−1
x

(
ε−1
y (ballr(C))

)
for all r > 0,

clearly Vr ∈ B. Hence ψ ∈ Vr, or equivalently, |〈y, ψ(x)〉| ≤ r for each r > 0. Thus
〈y, ψ(x)〉 = 0, and as x ∈ En and y ∈ F were arbitrary, we conclude ψ = 0.

Lemma 5.13. A net (ψγ)γ∈Γ in Ln(E,F ∗) converges to zero with respect to τ (in notation,
limτ

γ ψγ = 0) if and only if

limσ
γ ψγ(x) = 0 for all x ∈ En.

Proof. Assume (ψγ) is a net in Ln(E,F ∗) which converges to zero with respect to τ . Let
U ∈ N be arbitrary. Fix an x ∈ En, clearly Ω := ev−1

x (U) ∈ B. Hence there is δ ∈ Γ such
that ψγ ∈ Ω for each γ ≥ δ. Thus ψγ(x) ∈ U for each γ ≥ δ, showing limσ

γ ψγ(x) = 0.
Assume limσ

γ ψγ(x) = 0 for each x ∈ En. Let Ω ∈ B be be arbitrary. Hence there is

an N ∈ N and there are x(i) ∈ En and Ui ∈ N for each i ∈ {1, . . . , N} such that

0 ∈
N⋂

i=1

ev
−1
x(i)(Ui) = Ω.

Fix i ∈ {1, . . . , N}. By limσ
γ ψγ(x(i)) = 0, we can pick δi ∈ Γ such that ψγ(x(i)) ∈ Ui for

each γ ≥ δi. Take δ ∈ Γ such that δ ≥ δi for each i ∈ {1, . . . , N}. Fix γ ∈ Γ with γ ≥ δ,
then

ψγ ∈
N⋂

i=1

ev−1
x(i)

(Ui) = Ω.

Hence (ψγ) converges to zero with respect to τ .

Lemma 5.14. Suppose B is a dual Banach algebra with an isometric predual. Then for
every n ∈ N, the operator ∂nφ : Ln(A,B) → Ln+1(A,B) is τ -to-τ continuous.
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Proof. Let (ψi) be a τ -convergent net in Ln(A,B), with limit ψ. Let a1, . . . , an+1 ∈ A. By
Lemma 5.13, for each j = 1, . . . , n we have

ψi(a1, . . . , ajaj+1, . . . , an+1)
w∗

−−→ ψ(a1, . . . , ajaj+1, . . . , an+1).

Also, since B is a dual Banach algebra, multiplication in B is separately w∗-continuous.
Hence

limσ
i

(
φ(a1)ψi(a2, . . . , an+1)

)
= φ(a1) limσ

i ψi(a2, . . . , an+1)

= φ(a1)ψ(a2, . . . , an+1) ,

and similarly
limσ

i

(
ψi(a1, . . . , an)φ(an+1)

)
= ψ(a1, . . . , an)φ(an+1).

Thus (∂nφ ψi)(a1, . . . , an+1)
w∗

−−→ (∂nφ ψ)(a1, . . . , an+1), as required.

Lemma 5.15. Given n ∈ N and ψ ∈ Ln+1(A,B), the net ([[∆α]]nφ ψ) τ -converges in Ln(A,B).

Proof. Fix ψ ∈ Ln+1(A,B). Given a1, . . . , an ∈ A, define T ∈ L(D ⊗̂ D,B) by T (w) :=
[[w]]nφ(ψ)(a1, . . . , an). Then T : D ⊗̂ D → B is a bounded linear map with values in a dual

Banach space, and hence has a unique w∗-w∗-continuous extension T̃ : (D ⊗̂ D)∗∗ → B,
which satisfies ‖T̃‖ = ‖T‖. In particular,

[[∆α]]nφ(ψ)(a1, . . . , an) = T (∆α)
w∗

−−→ T̃ (∆). (5.5)

Denote the right-hand side of (5.5) by Ψ(a1, . . . an).
Routine calculations show that the map Ψ: An → B is n-multilinear. Using (5.5) and

the bound in (5.2), we obtain

‖Ψ(a1, . . . , an)‖ = ‖T̃ (∆)‖ ≤ lim inf
α

‖T (∆α)‖ ≤ K‖T‖

≤ K‖φ‖‖LresD(ψ)‖‖a1‖ . . . ‖an‖ .

Thus Ψ ∈ Ln(A,B), and [[∆α]]nφ(ψ)
τ−→ Ψ by (5.5) and Lemma 5.13.

Definition 5.16 (Approximate homotopy). Define σnφ : Ln+1(A,B) → Ln(A,B) by

σnφ(ψ) = limτ
α [[∆α]]nφ(ψ) for all ψ ∈ Ln(A,B). (5.6)

This is well-defined by Lemma 5.15.

The following lemma is basic, and is included just for sake of convenient reference. We
leave the proof to the reader.

Lemma 5.17. Let F be a Banach space, and let (fi) be a net in F ∗ which converges w∗ to
some f ∈ F ∗. Suppose also that there is a convergent net (ci) in [0,∞) such that ‖fi‖ ≤ ci.
Then ‖f‖ ≤ limi ci.

Proposition 5.18 (Approximate splitting, 2nd version). Suppose φ(1D) = 1B. Then for
all n ≥ 2 and all ψ ∈ Ln(A,B),

∥∥∥LresD

(
∂
n−1
φ σn−1

φ (ψ) + σnφ ∂
n
φ(ψ) − ψ

)∥∥∥
L(D,Ln−1(A,B))

≤ 2K defD×D(φ)‖LresD(ψ)‖L(D,Ln−1(A,B)) .
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Proof. To ease notational congestion, throughout this proof we let

M := ‖LresD(ψ)‖L(D,Ln−1(A,B)) .

Let a1 ∈ ball1(D) and let a2, . . . , an ∈ ball1(A); it suffices to prove that

∥∥∥∥∥
∂
n−1
φ σn−1

φ (ψ)(a1, . . . , an) + σnφ ∂
n
φ(ψ)(a1, . . . , an)

−ψ(a1, . . . , an)

∥∥∥∥∥ ≤ 2K defD×D(φ)M . (5.7)

Since ∂
n−1
φ : Ln−1(A,B) → Ln(A,B) is τ -to-τ continuous by Lemma 5.14,

∂
n−1
φ σn−1

φ (ψ) + σnφ ∂
n
φ(ψ) − ψ = limτ

α

(
∂
n−1
φ [[∆α]]n−1

φ (ψ) + [[∆α]]nφ ∂
n
φ(ψ) − ψ

)
.

Thus the left-hand side of the desired inequality (5.7) is equal to

∥∥∥∥∥limσ
α

(
∂
n−1
φ [[∆α]]n−1

φ (ψ)(a1, . . . , an) + [[∆α]]nφ ∂
n
φ(ψ)(a1, . . . , an)

−ψ(a1, . . . , an)

)∥∥∥∥∥ . (5.8)

Combining Lemma 5.8, Lemma 5.10, and the bound in (5.2) yields

∥∥∥∥∥
∂
n−1
φ [[∆α]]n−1

φ (ψ)(a1, . . . , an) + [[∆α]]nφ ∂
n
φ(ψ)(a1, . . . , an)

−πB(φ ⊗̂ φ)(∆α) · ψ(a1, . . . , an)

∥∥∥∥∥

=
∥∥∥φ(a1) · [[∆α]]n−1

φ (ψ)(a2, . . . , an) − [[∆α · a1]]n−1
φ (ψ)(a2, . . . , an)

∥∥∥

≤





∥∥∥φ(a1) · [[∆α]]n−1
φ (ψ)(a2, . . . , an) − [[a1 · ∆α]]n−1

φ (ψ)(a2, . . . , an)
∥∥∥

+
∥∥∥[[a1 · ∆α − ∆α · a1]]n−1

φ (ψ)(a2, . . . , an)
∥∥∥

≤ defD×D(φ)‖∆α‖M + ‖φ‖‖a1 · ∆α − ∆α · a1‖M.

Also, since φ(1D) = 1B, using defD×D(φ) = ‖φπD − πB(φ ⊗̂ φ)‖, we obtain

∥∥πB(φ ⊗̂ φ)(∆α) · ψ(a1, . . . , an) − ψ(a1, . . . , an)
∥∥

≤ ‖πB(φ ⊗̂ φ)(∆α) − φ(1D)‖‖ψ(a1, . . . , an)‖
≤ ‖πB(φ ⊗̂ φ)(∆α) − φ(πD(∆α))‖M + ‖φ(πD(∆α) − 1D)‖M
≤ defD×D(φ)‖∆α‖M + ‖φ‖‖πD(∆α) − 1D‖M .

Putting things together, and recalling that K ≥ supα ‖∆α‖, we have:

∥∥∥∥∥
∂
n−1
φ [[∆α]]n−1

φ (ψ)(a1, . . . , an) + [[∆α]]nφ ∂
n
φ(ψ)(a1, . . . , an)

−ψ(a1, . . . , an)

∥∥∥∥∥ ≤ 2 defD×D(φ)KM + εα ,

(5.9)
where εα := ‖φ‖‖a1 · ∆α − ∆α · a1‖M + ‖φ‖‖πD(∆α) − 1D‖M , which tends to 0 by (4.2).
Comparing (5.8) and (5.9), and appealing to Lemma 5.17, the desired inequality (5.7)
follows.
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5.3 Defining the “improving operator”

As in the previous subsection:

• A is a Banach algebra, B is a unital dual Banach algebra with an isometric predual;

• D is a closed subalgebra of A, which is unital and amenable with constant ≤ K.

Then, for any given φ ∈ L(A,B), we may still form the splitting maps σnφ , as in Definition
5.16. However, rather than fixing a single φ ∈ L(A,B) and working with it throughout,
we will now allow φ to vary.

Definition 5.19. The improving operator F : L(A,B) → L(A,B) is defined by the
formula

F (φ) := φ+ σ1φ(φ∨) = φ+ limτ
α [[∆α]]1φ(φ∨). (5.10)

The desired properties of F follow from applying the machinery of Section 5.2 to the
bilinear map φ∨ ∈ L2(A,B), viewed as a “2-cocycle” with respect to the operator ∂2φ (see
Lemma 5.4). We first deal with some technical details that do not depend on amenability
of D.

Lemma 5.20. Let φ,ψ ∈ L(A,B) and let w ∈ D ⊗̂ D.

(i) If ψ(1D) = 1B, then [[w]]1φ(ψ∨)(1D) = 0.

(ii) If defA×D(ψ) = 0, then [[w]]1φ(ψ∨)(x) = 0 for all x ∈ D, and

[[w]]1φ(ψ∨)(ax) = [[w]]1φ(ψ∨)(a) · ψ(x) for all a ∈ A, x ∈ D.

Proof. For fixed φ and ψ ∈ L(A,B), the map w 7→ [[w]]1φ(ψ∨) is bounded linear from D ⊗̂D

to L(A,B). Hence, for both (i) and (ii), it suffices to prove the desired identity in the
special case w = c⊗ d, where c, d ∈ D.

(i) [[c⊗ d]]1φ(ψ∨)(1D) = φ(c)ψ∨(d, 1D) = φ(c)ψ(d1D) − φ(c)ψ(d)ψ(1D) = 0.

(ii) Let a ∈ A and x ∈ D. Then

[[c⊗ d]]1φ(ψ∨)(x) = φ(c)ψ∨(d, x) = φ(c)ψ(dx) − φ(c)ψ(d)ψ(x) = 0

and
[[c⊗ d]]1φ(ψ∨)(ax) = φ(c)ψ∨(d, ax)

= φ(c)ψ(dax) − φ(c)ψ(d)ψ(ax)

= φ(c)ψ(da)ψ(x) − φ(c)ψ(d)ψ(a)ψ(x)

= [[c⊗ d]]1φ(ψ∨)(a) · ψ(x).

Proof of Proposition 4.3. Let φ ∈ L(A,B) with φ(1D) = 1B. Let F be as in Definition 5.19.

Part (i): show that F (φ)(1D) = 1B.
By the definition of F , this is equivalent to showing that limσ

α [[∆α]]1φ(φ∨)(1D) = 0, which
in turn follows from Lemma 5.20(i).

Part (ii): show that ‖F (φ) − φ‖ ≤ K‖φ‖ defD×A(φ).
Applying the bound in (5.2) with ψ = φ∨ and w = ∆α yields

‖[[∆α]]1φ(φ∨)‖ ≤ K‖φ‖‖LresD(φ∨)‖ = K‖φ‖ defD×A(φ) .
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Taking the limit on the left-hand side gives the desired bound on ‖F (φ) − φ‖.

Part (iii): show that defD×A(F (φ)) ≤ 3K2‖φ‖2 defD×D(φ) defD×A(φ).
We put γ := F (φ)−φ = σ1φ(φ∨) in order to simplify some formulas. Rewriting the identity

(4.6) in terms of the operator ∂1φ, we have

(φ+ γ)∨ = φ∨ − ∂
1
φ(γ) − πB ◦ (γ ⊗̂ γ) ◦ ιA,A ,

where ιA,A ∈ Bil(A,A;A ⊗̂ A) is the canonical map. Hence

defD×A(F (φ)) = ‖LresD(φ+ γ)∨‖
≤ ‖LresD

(
φ∨ − ∂

1
φ(γ)

)
‖ + ‖LresD(πB ◦ (γ ⊗̂ γ) ◦ ιA,A)‖

≤ ‖LresD
(
φ∨ − ∂

1
φ(γ)

)
‖ + ‖γ|D‖L(D,B) ‖γ‖ . (5.11)

To bound the first term on the right-hand side of (5.11), we take n = 2 and ψ = φ∨ in
Proposition 5.18. This yields

‖LresD
(
∂
1
φ σ

1
φ(φ∨) + σ2φ ∂

2
φ(φ∨) − φ∨

)
‖ ≤ 2K defD×D(φ)‖LresD(φ∨)‖

= 2K defD×D(φ) defD×A(φ). (5.12)

Recall that ∂2φ(φ∨) = 0 (by Lemma 5.4) and γ = σ1φ(φ∨). Hence (5.12) may be
rewritten as

‖LresD
(
∂
1
φ(γ) − φ∨

)
‖ ≤ 2K defD×D(φ) defD×A(φ). (5.13)

The second term is easier to deal with. We already know from part (ii) of this propo-
sition that ‖γ‖ ≤ K‖φ‖ defD×A(φ). By the same argument, using (5.2), we obtain

‖γ|D‖L(D,B) ≤ K‖φ‖‖φ∨|D×D‖L2(D,B)
= K‖φ‖ defD×D(φ).

Hence
‖γ|D‖L(D,B)‖γ‖ ≤ K2‖φ‖2 defD×D(φ) defD×A(φ). (5.14)

Combining (5.11) with (5.13) and (5.14) yields

defD×A(F (φ)) ≤ (2K +K2‖φ‖2) defD×D(φ) defD×A(φ).

To finish off the proof of part (iii) it suffices to observe that K ≥ 1 (because πD : D⊗̂D → D

is contractive and (πD(∆α))α∈I is a b.a.i. for D) and ‖φ‖ ≥ 1 (since φ(1D) = 1B and both
A and B are unital).

Part (iv): show that if defA×D(φ) = 0, then defA×D(F (φ)) = 0.
Applying Lemma 5.20 (ii) with w = ∆α and ψ = φ, and then taking the limit, we have

γ(x) = limσ
α [[∆α]]1φ(φ∨)(x) = 0 for all x ∈ D

and

γ(ax)−γ(a)φ(x) = limσ
α

(
[[∆α]]1φ(φ∨)(ax)− [[∆α]]1φ(φ∨)(a) ·φ(x)

)
= 0 for all a ∈ A, x ∈ D.

Hence, whenever a ∈ A and x ∈ D, we have

F (φ)∨(a, x) = φ(ax) + γ(ax) − (φ(a) + γ(a))(φ(x) + γ(x))

= φ(ax) + γ(a)φ(x) − (φ(a) + γ(a))φ(x)

= 0

as required.
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This completes the proof of Proposition 4.3, and hence — via Theorem 4.2 — the
proof of Theorem 1.11.
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A Constructing an uncountable clone system for the Tsi-

relson space

Let T denote the Tsirelson space. In this appendix we prove the following result.

Proposition A.1. There is an uncountable clone system for T .

Proof. We use the notation and terminology of [CS] and [BKL20, Section 3]. Let (tn)
denote the unit vector basis for T . For a subset M of N, PM is the norm one basis
projection onto the closed linear span of {tm : m ∈M}, denoted by TM . We first recall a
few definitions. We say that J ⊆ N is a nonempty Schreier set if J is a finite set with
|J | ≤ min J . Let M ⊆ N. We say that J is an interval in N \M if J is of the form
J = [a, b] ∩ N for some real numbers b > a ≥ 1, such that J ∩M = ∅. Lastly, if M ⊆ N

and J is an interval in N \M , we define

σ(N, J) = sup

{∑

j∈J

sj : sj ∈ [0, 1] (j ∈ J),

∥∥∥∥
∑

j∈J

sjtj

∥∥∥∥
T

≤ 1

}
.

We rely on the following two results:

• Let J ⊆ N be a nonempty Schreier set. Then

‖x‖T ≥ 1

2

∑

j∈J

|xj| for all x = (xj) ∈ T.

This is an immediate consequence of how the Tsirelson norm is defined.

• For an infinite M ⊆ N, we have TM ∼= T if and only if there is a constant C ≥ 1 such
that σ(N, J) ≤ C for every interval J in N \M . This is a special case of a result
of Casazza–Johnson–Tzafriri [CJT84], stated in [BKL20, Corollary 3.2], and applied
here only in the particular case where N = N.

Combining these two results, we obtain the following conclusion: Suppose that M =
{m1 < m2 < · · · } ⊆ N is an infinite set with

m1 = 1 and mj+1 ≤ 2mj + 2 for all j ∈ N. (A.1)
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For every nonempty interval J in N \M , there is a unique j ∈ N such that J ⊆ [mj +
1,mj+1 − 1]. This implies that

|J | ≤ (mj+1 − 1) − (mj + 1) + 1 ≤ 2mj + 1 −mj = mj + 1 ≤ min J,

so J is a Schreier set, and therefore

∥∥∥∥
∑

j∈J

sjtj

∥∥∥∥
T

≥ 1

2

∑

j∈J

sj for all sj ∈ [0, 1], j ∈ J

by the first bullet point, so σ(N, J) ≤ 2. Hence TM ∼= T by the second bullet point. In
fact, it follows from the second part of the proof of Theorem 10 and the paragraph before
Proposition 3 in [CJT84] that TM and T are 4-isomorphic.

We can therefore establish the result by constructing an uncountable, almost disjoint
family D of sets whose elements satisfy (A.1). For then, the uncountable family of norm
one idempotents (PM )M∈D will be the desired clone system. We construct D as follows.

Given a function f ∈ {0, 1}N, define

mn(f) = 2n−1 +
n−1∑

j=1

f(j)2n−1−j for all n ∈ N.

Alternatively, we can state this definition recursively as follows:

m1(f) = 1 and mn+1(f) = 2mn(f) + f(n) for all n ∈ N. (A.2)

Set
M(f) = {mn(f) : n ∈ N} and D = {M(f) : f ∈ {0, 1}N}.

Clearly M(f) is an infinite subset of N for each f ∈ {0, 1}N. Since f(n) ∈ {0, 1}, the
recursive definition (A.2) shows that the elements of M(f) satisfy (A.1).

It remains to verify that the family D is almost disjoint. More precisely, for distinct
functions f, g ∈ {0, 1}N, we claim that |M(f) ∩M(g)| = k, where k ∈ N is the smallest
number such that f(k) 6= g(k). This however follows from an easy induction argument
and (A.2).
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