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Abstract

In the first chapter, by introduction of output augmentation and input reduction I extend
additive models for stochastic data envelopment analysis (SDEA), which were developed
by Li (1998) to handle the noise in the data. Applying the linearization procedure by Li
(1998) the linearized versions of models are derived. In the empirical part of this chapter,
the efficiency scores of West Java rice farms are computed. The computed scores are
compared to the stochastic frontier approach scores by Druska and Horrace (2004) and
weak ranking consistency with results of stochastic frontier method is observed.

The objectives of the second chapter are to evaluate technical and scale efficiency of
rice farms in West Java and to identify determinants affecting farms’ efficiency. Further,
the farm size—productivity relation is investigated. Data Envelopment Analysis is used
for estimation of technical efficiency scores. Additionally, Tobit regression is used to
explain the variation in the efficiency scores by farm—specific factors. I conclude that the
farm size is one of the most important factors of farm technical efficiency and that high
land fragmentation was the main source of farm inefficiency during the final period of
intensification era, known as Green Revolution.

In the last, chapter I examine macroeconomic stability and the properties of business
cycles in the model with an announced change of the monetary regime type. Further, I
solve for the optimal monetary policies over the transition towards the pegged exchange
rate with respect to alternative loss function specification for the monetary authority
and to transition length. The subject of my study is the Czech Republic. The results
of calibrated experiment show that monetary policy should be more concerned about
demand type shocks when announcing a switch towards the exchange rate peg.
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Introduction

This work collects three applications of mathematical methods that covers operations
research, development and monetary economics.

The first chapter is focused on the theoretical development of the models used in the
operations research. Results of data envelopment analysis sensitively respond to stochas-
tic noise in the data. Therefore, I propose an inclusion of the stochastic factor in the
oriented model for the non-parametric method of the production frontier estimation, know
as the Data Envelopment Analysis. Further, the results obtained the with the stochastic
version of oriented models are compared to results of stochastic frontier method.

The second chapter presents the results of the efficiency analysis of the rice farms
in the West Java. Using the combination of non-parametric and parametric methods,
I identify the size of the farming plot as an important factor of the rice farming. This
analysis shows that the merging of the plots may be beneficial for increase of the output.

In the third chapter, I propose a theoretical framework for modeling of the announced
switch of the monetary regime. In this chapter, the analyze the synchronization of the
business cycles over the transition period. Also, an optimal policies for the various lengths

and specifications of monetary authority loss function are computed.






Chapter 1
Oriented stochastic data envelopment models

Data envelopment analysis (DEA) involves an non parametric principle for extracting
information about observations of a population of production mixes, so called decision
making units (DMUs), that are described by the same quantitative characteristics. The
primary objective of this chapter is to extent the work of Huang and Li (2001) and Li
(1998) on additive stochastic DEA models (SDEA) by derivation of SDEA models that
allow for proportional input reduction and output augmentation oriented SDEA models.
The empirical part of this chapter is motivated by Horrace and Schmidt’s (1996) com-
parison of methods and by Mortimer’s (2002) conclusion, that more comparative studies
for the DEA and stochastic frontier approach are needed to evaluate the consistency of
results with respect to method choice.

Data envelopment analysis, developed by Charnes, Cooper, and Rhodes (1978), in-
volves an alternative approach to stochastic frontier analysis (SFA) that was developed at
the same time by Aigner, Lovell, and Schmidt (1977), for efficiency evaluation of the deci-
sion process observations. The DEA approach is a nonparametric approach to production
frontier estimation and requires specification of the production possibility set properties
rather than the production function form that is required when the stochastic frontier
approach is used. In contrast to parametric approaches for information extraction, the
objective of the DEA is to identify the smallest set that satisfies production possibility
properties.

The general model of production function is defined as: y; = f(z;, 3) + €;, where z;

represents inputs, § unknown parameters of production function f(x;, 3) and y; repre-
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sents output of the DMU,. The aggregate error term e; is considered as extent of inef-
ficiency in the DEA approach. In the SFA approach |e.g. Aigner, Lovell, and Schmidt
(1977); Meeeusen and van den Broeck (1977)| the error component e; is decomposed into
a stochastic random component and a true technical efficiency component. Therefore,
together with the extreme point nature of the DEA, the noise in data may lead to bias
in the DEA technical efficiency measure. The dilemma of the efficiency evaluation ap-
proach depends on the trade off between the minimal specification of production function
form that favors the DEA approach and the handling of stochastic error in measuring
efficiency that favors the SFA approach. To compete with the SFA in error handling, the
stochastic data envelopment analysis (SDEA) approach was developed by considering the

used levels of inputs and outputs as random variables in the DEA model specification.

The theoretical part of this chapter extends the work on derivation of almost 100%
confidence SDEA models by Li (1998) and Huang and Li (2001) by specification of the
performance improvement direction, so called model orientation. Further, assumptions
to simplify the disturbance structure are taken and using linearization methods the linear
deterministic equivalents of these models are derived. This is utilized in the application
section where it allows for the use of the linear programming method to solve SDEA
problems. These SDEA results are compared to SFA results, so the consistency of results

across frontier estimation methods can be assessed.

The following literature review section presents details of the motivation for the SDEA.
In the second and third section, notation and definitions used to construct SDEA models
are presented. Subsequently, the derivation of Huang and Li’s (2001) additive models
is summarized and in the fifth section I introduce input reduction and output augmen-
tation directions for efficiency measure definition. In the sixth and following sections, I
derive oriented models and their linearized forms. The ninth section describes numerical
methods used to solve derived linearized versions of the oriented SDEA models. In the
tenth section, I evaluate the SDEA, DEA and SFA efficiency scores consistency assessing
the results of the Indonesian rice farms efficiency evaluation, as in Horrace and Schmidt
(1996). The comparison of methods reveals inconsistency between efficiency rankings ac-
quired by the SFA approach and SDEA approach. All figures and tables that I reference

to, are included in the appendix.



1.1 Literature review

As Charnes et al. (1994) explain in their introduction, the story of data envelopment
analysis began with Edwardo Rhodes’s dissertation, which was the basis for the later
published paper by Charnes, Cooper, and Rhodes (1978). In his dissertation, Rhodes used
the production efficiency concept by Farrell (1957) to analyze the educational program
for disadvantaged students in the USA. Rhodes compared the performance of students
from schools participating and not participating in the program. Students’ performance
was recorded in terms of inputs and outputs, e.g. “increased self-esteem” (measured by
psychological tests) as one of the outputs and “time spent by mother reading with child”
as one of the inputs. The subsequent work on efficiency evaluation of multiple inputs and

outputs technology led to Charnes, Cooper, and Rhodes’s (1978) model (CCR model).

The introduced CCR model is suitable for analysis of the technological process under
the constant returns to scale assumption. This fact is reflected in the shape of the
production possibility frontier when the frontier is formed by a single half-ray and the
DMU identified as efficient is an element of the production possibility frontier set up
by this half ray. To handle the variable returns to scale, introduced by Farrell and
Fieldhouse (1962) in the SFA framework, the CCR model was reformulated by Banker,
Charnes, and Cooper (1984) (BCC model). Since the production possibility frontier of
the BCC model is a piecewise linear set, they defined weak efficiency (a weakly efficient
DMU has nonzero slacks) and efficiency (an efficient DMU has zero slacks). To review
the DEA models Table 1.1 summarizes a generalized versions of the aforementioned DEA
models. The generalized versions of the DEA models collapse to the CCR model (constant
returns to scale) for ¢ = 0 and for ¢ = 1 it matches the form of the BCC model (variable

returns to scale).

As many applications suggest, the capability of handling multiple inputs—outputs and
the fact that the specification of production function form is not required, make the
DEA a powerful tool that is applied in various industries |e.g. in air transportation,
Land, Lovell, and Thore (1993); fishing, Walden and Kirkley (2000); banking, Sevcovi¢,
Halickd, and Brunovsky (2001); health care, Byrnes and Valdmanis (1989) where 123
US hospitals were covered; and in Halme and Korhonen (1998) dental care units were
assessed| for technical efficiency evaluation. The expanding number of papers using the
DEA approach helped to identify the limitations that an analyst should keep in mind

when choosing whether or not to use the approach.
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It is worth noting that the DEA approach performs very well when estimating the
“relative” efficiency but it is not such a powerful technique when estimating “absolute”
efficiency. In other words, the DEA reveals how well the considered DMU is doing
compared to the DMU'’s peers but not compared to a “theoretical maximum”. Figure
1.1 illustrates this situation as the difference between the true production frontier and
the estimated production frontier. This difference results from the analyst’s limitation in
knowledge of the true production function.

A more remarkable limitation originates from the extreme point nature of the DEA
approach which makes computed technical efficiency measure sensitive to changes in
data. Therefore, noise (even symmetrical noise with zero mean) such as measurement
error can cause significant problems. The literature on recent developments for noise
incorporation in the DEA identifies three approaches: mixture of the DEA and SFA
approaches, bootstrapping, and taking inputs and outputs as random variables.

Gstach (1998) proposes using the DEA technique to estimate a pseudo production
frontier (non—parametric production possibility set estimation) to select the efficient
DMUs that identify the production possibility frontier. After this selection, he applies a
maximum likelihood—technique to estimate the scalar value in production frontier form,
by which this pseudo frontier must be shifted downward to get the true production fron-
tier (frontier location estimation), using the DEA-estimated efficiencies. Simar (2003)
described the iterative bootstrapping method for improving the performance of the de-
terministic DEA frontier estimation. However, this bootstrapping approach is suitable
only for cases where noise to signal ratio is low.

In this chapter, I focus on the approaches were the noise is introduced by considering
DMUs as realizations of random variables. These theoretical attempts are based on Land,
Lovell, and Thore’s (1993) paper, where the authors use improved models to examine the
efficiency of the same schooling program for disabled scholars as in Charnes, Cooper,
and Rhodes (1978). Land, Lovell, and Thore (1993) offer the prospect of stochastic data
envelopment analysis and constructed their own model (LLT model). The LLT model is
derived as a chance constrained version of the BCC output oriented model in envelopment
form. Further, they transform these chance constrained problems to their deterministic
non linear equivalents, which allow them to determine the efficient DMUs.

Olesen and Petersen (1995) present a different approach to incorporating the stochas-
tic component into the DEA and their model (OP model) originates from the multiplier

formulation of the BCC model. They assume that the inefficiency term of the consid-



ered DMU can be decomposed into true inefficiency and disturbance term as in the SFA
approach. Further, Olesen (2002) compares the approaches of the models by Olesen and
Petersen (1995) and Land, Lovell, and Thore (1993) and identifies weaknesses of both
model types. The LLT model is criticized because it does not account for all the corre-
lations that can occur in disturbances. Olesen (2002) criticizes the OP model because it
ignores correlations between DMUs. A related weakness is the omission of the fact that a
convex combination of two DMUs can have a lower variance than the DMUs considered
solely. A straightforward remedy for the OP model is to take the union of confidence
regions for any linear combination of the stochastic vectors themselves rather than using
a piecewise linear envelopment of the confidence regions. Olesen (2002) implements this
idea and derives the combined chance constrained model.

The approach that will be extended in this chapter, originates from work by Huang and
Li (2001), where inputs and outputs are introduced as random variables and the relation
of stochastic efficiency dominance is defined. Huang and Li (2001) define the efficiency
dominance of a DMU via joint probabilistic comparisons of inputs and outputs with
other DMUs which are evaluated by solving a chance constrained programming problem.
By utilizing the theory of chance constrained programming, deterministic equivalents
are obtained for both situations of multivariate symmetric random disturbances and a
single random factor in production relationships. Under the assumption of the single
random factor, Huang and Li (2001) obtain linear deterministic equivalent to stochastic
programming problems via linear programming theory. In this chapter, I propose the
oriented form of the additive SDEA models derived by Huang and Li (2001). Further,
by use of Huang and Li’s (2001) linearization approach I linearize the proposed oriented
SDEA models.

In the empirical part of this chapter, I compare the results of the different methods to
productivity evaluation as in Horrace and Schmidt (1996). This comparison is motivated
by Mortimer’s (2002) comparative study of recent literature that summarizes the results
from SFA and DEA studies to identify the amount of correlation between scores in SFA
and DEA comparative studies. Mortimer (2002) calls for more studies that will compare
efficiency scores correlation across production efficiency approaches because the present
comparative studies show either strong [e.g. Ferro Luzzi et al. (2003)] or very weak
le.g. Lan and Lin (2002), Wadud and White (2000a)| correlation of obtained efficiency
rankings.

The major problems associated with solving the DEA models are the analysis of a



large set of DMUs and interpretation of the optimal solutions with zero elements. The
analysis of a large data set leads to large size optimization problems that can be costly to
solve. The solutions that contain many zero elements can make the results of the analysis
questionable because the elements of optimal solutions are interpreted as shadow prices
of inputs and outputs. Gonzales-Lima, Tapia, and Thrall (1996) present the primal-
dual interior points computational methods as the methods that significantly improve
the reliability of the solution in comparison to simplex methods. The interior—points
methods maximize the product of the positive components in the optimal solutions, so
they identify optimal solution with the minimal number of zero components. Due to
this property of the optimal solution it is easier to interpret the DEA models results.

Therefore, as part of my theoretical work the interior point method solver is constructed.

1.2 Notation

In this section, the notation used to construct the oriented stochastic DEA models is
introduced. Additional notation will be introduced in the following section to describe
the considered error structure. In contrast to the deterministic approach to envelop-
ment analysis, where DMUs are observations of decision realization, the DMUs in the
stochastic approach are characterized by random variables and the technology realiza-
tions are observations of these random variables. The notation in this chapter coincides
with the notation usually found in data envelopment analysis literature [e.g. Charnes
et al. (1994),Cooper et al. (1998), and Huang and Li (2001)].! The task is to analyze
the set of DMU;, where 1 < j < n. Each of the DMUs is described by a random vector
T, T; = (T1j,. .., Tm;)" of m input amounts (random variables) that are used to produce
s outputs in amounts described by random vector g, §; = (41, - - -,7s;)’ . These vectors
are aggregated to matrices of random vectors of inputs and outputs, so the following

matrix notation will be used:

'Tn this chapter, the random variables are denoted by ~and means of these variables are denoted by
an upper bar.



matrix of inputs random vectors X = (&1,...,%n)
it row of “input” matrix X &= (T, Tin), i=1,...,m
m X n matrix of expected inputs X = (21,...,7,)
i'" row of expected “input” matrix X ;7 = (ZTy,...,Tin), i =1,...,m
matrix of outputs random vectors Y = (G-, 0n)
" row of “output” matrix Y v = U1y s Urm)y r=1,...,8
s x n matrix of expected outputs Y =41, 0n)
r'" row of expected “output” matrix Y 5= (1, Yrn), T =1,...,5.

1.3 Stochastic efficiency dominance

In this section, the efficiency dominance relation and derivation of additive almost 100%
chance constrained models by Huang and Li (2001) is reviewed. These theorems and
definitions form the basis for derivation of the oriented SDEA derived in the following

sections.

Definition 1. General stochastic production possibility set 7 C R'** is defined as:

T = {(Z,y) | outputs § can be produced using inputs 7}.?

This definition of the stochastic production possibility set relates to random vectors
that characterize DMUs and it means that all DMUs are required to be an element of
the stochastic production possibility set but not all observations of DMUs are required
to be in the stochastic production possibility set. As mentioned in the literature review,
the function form is not known, therefore the estimate of the production possibility set
is identified by the properties that the production possibility set should fulfill.

Almost 100% confidence production possibility set T' constructed from the set of
DMU;, j =1,...,n should fulfill the following properties:

Property 1. Convexity: If (z;,9;) € T, j=1,...,nand A € R}, = (X\, Y\ eT.

Property 2. Inefficiency property: If (z,y) € T and = > z, then (z,7) € T.
If (z,9) € T and y < g then (z,y) € T.

Property 3. Minimum extrapolation: 7' is the intersection of all sets satisfying convexity
and inefficiency property and subject to each of the observed random vectors (Z;,7;) €

T,7=1,...,n.

2Here, R, means set of positive real numbers and 1 is column vector of ones.



From the first two properties follows that less output can be produced with the same
amount of inputs. This reflects the situation when some portion of inputs is wasted in
the production process. The parametric production possibility set T,; T, = {(2,7) |
P> X\ < YN o1T)\) = ¢, A > 0}, where ¢ € {0, 1}, satisfies all aforementioned
properties. Ty is the stochastic generalization of the production possibility set under
the assumption of the constant returns to scale production function as used by Charnes,
Cooper, and Rhodes (1978) in the derivation of the CCR model. Similarly, the stochastic
generalization of the production possibility set 7} will be used to derive models with
variable returns to scale as in a case of the BCC model by Banker, Charnes, and Cooper
(1984).

The concept of efficiency in the DEA (based on the following relative efficiency defi-

nition) is used to define the o stochastic efficiency dominance.

Definition 2. Relative Efficiency: A DMU is to be identified as efficient on the basis
of available evidence if and only if the performances of other DMUs does not show that
some of its inputs or outputs can be improved without worsening some of its other inputs

or outputs.

The efficient point of the production possibility set is identified if there is no other
production point that produces more output without consuming more input, or consumes
less input without producing less output. This leads to the following efficiency domination

definition of the production possibility set element:

Definition 3. Efficiency dominance relation: The point (z,y) is not dominated in the
sense of efficiency if 7 (z*,%*) in the production possibility set such that 2* < x or y* >y

with at least one strict inequality for input or output components.

This definition demonstrates the efficiency concept of the DEA and is used to derive
the deterministic models with no possibility of a violation of the production possibility set
properties or efficiency dominance. In the deterministic environment, the non dominated
DMUs are elements of the production possibility set frontier. Figure 1.1 illustrates this
situation where the set of DMUs is divided into efficient (DMU1, DMU2 and DMU3) and
inefficient DMUs (DMU4 and DMUS5). The efficient DMUs — points that dominate in
efficiency the other elements of the production possibility set are used to identify the
production possibility frontier.

In the stochastic framework, where efficiency dominance can be violated due to ran-

dom errors, the efficiency dominance violations are allowed with the probability a, 0 <
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a < 1. In chance constrained programming methodology the term 1 — « is interpreted as
the modeler’s confidence level and « is interpreted as the modeler’s risk (the extent of con-
ditions violations). In the almost 100% confidence approach, the production possibility
constraints are almost certainly not violated and the efficiency dominance can be violated
with probability a. For the case of the almost 100% confidence chance constrained ap-
proach, Li (1998) and Huang and Li (2001) define the a stochastically efficiency of point

as:

Definition 4. a stochastic efficiency of point in set T,: (z*,3*) € T, is called a stochastically
efficient point associated with T, < if the analyst is confident that (z*,7*) is efficient
with probability 1 — a in the set T;,.

Definition 4 means that point (Z*,3*), considered as « stochastically efficient may
be dominated (in the sense of efficiency dominance) by any other point in 7, with a
probability less or equal to o. For the DMU; associated with this point this definition is
used to evaluate the a-stochastic efficiency of DMU;.

This definition and the aforementioned properties of the set T, straightforwardly
imply that for the efficient DMU; and for any \; € R% such that ¢(17);) = ¢, A > 0
the expression Prob(f()\j < zj, ?Aj > g;) < o holds with at least one strict inequality in
input—output constraints.

To illustrate the DEA and almost 100% confidence SDEA approach, Figure 1.1 illus-
trates the relation of the deterministic frontier to the possible true production possibility
frontier. The solid piecewise linear line is the possible true production possibility frontier
and the dashed line is the DEA estimate of this production possibility frontier. In Figure
1.2 the expected values of DMUs (same values as the observations in Figure 1.1) are pic-
tured and the set of o efficiency dominant elements is presented as a grey shaded area.
A comparison of Figures 1.1 and 1.2 shows that for the almost 100% confidence SDEA
approach, the deterministic production possibility set frontier is a subset of the stochas-
tic possibility set frontier. Due to this fact more DMUs can be identified as efficiency

dominant in the stochastic framework than in the deterministic.

1.3.1 Stochastic model

In this subsection, the derivation of the almost 100% confidence chance constrained prob-
lem is reviewed. The reviewed stochastic model for assessing efficiency of DMUj is the

equivalent to the additive DEA model and serves as the basis for the further theoretical
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development of SDEA models. In the following subsection, specific assumptions about
the error structure in the data are made and the stochastic model is transformed into its

deterministic equivalent.

Now, from the set properties for the virtual peers (XA, Y'\) that are used for evaluation

of efficiency of DMU, follows that
{(XA<#;,YA>¢}) ¢ {17(X)A—2,) +17 (5, — Y \) <0} (1.1)
and using the probability properties the following inequality is derived:?
Prob(X\ < &;, YA > ;) < Prob(1T (XX — &;) + 17(5;, — Y \) < 0).
Therefore, for A € R” such that p(17X) = ¢ and A > 0 the condition
Prob(1T(XA — ;) +17(j, —Y)) < 0) < «

is a necessary condition for the DMU; to be a stochastically efficient. Using the necessary
condition for a—stochastic efficiency of the DMUj, the following almost 100% confidence
chance constrained problem (in matrix notation) for the technical efficiency evaluation of
the DMU;, j=1,...,n is constructed (Cooper et al. (1998), Li (1998) and Huang and
Li (2001))

rriejxx Prob(1T(X\; — ;) + 17(; — Y \;) < 0) — a (1.2)
s.t. Prob(;z\; < T;5) > 1 —¢, i=1,...,m;
Prob(,g\; > §r;) > 1 —¢, r=1,...,s;
p(17N) = ¢,
Aj >0,

where € is a non Archimedean infinitesimal quantity.* The optimal solution of problem

1.2 is related to the stochastic efficiency of the DMU; by following two theorems which

3The inequality type change is due to the additional restriction that {X\ < zj, YA> 7;} holds with
at least one strict inequality. The accuracy of this simplification is closely discussed in Ruszczynski and
Shapiro (2003).

“This means that e is a very small positive number such that Y. ;¢ < 1 no matter how large
is n. According to the chapter “Computational Aspects of DEA” in Charnes et al. (1994), ¢ <
n 1/(30i%, @ij) is selected in the calculations of these models.

3

.....
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are direct corollaries of Theorem 3 by Cooper et al. (1998):°

Theorem 1. Let the DMU; be a—stochastically efficient. The optimal value of the objec-
tive function in the chance constrained programming problem 1.2 is less than or equal to

ZEro.

Theorem 2. If the optimal value objective functional of problem 1.2 is greater than zero,

then DMU; is not a—stochastically efficient.

Theorem 2 implies that if the maximum value of the chance functional
Prob(1T(X)\; — ;) +17(j; — Y);) < 0) exceeds a, then the considered DMU; is not
« stochastically efficient. The value of the chance functional of the additive SDEA model
represented by problem 1.2 can be used as the simplest efficiency measure when inter-
preted as the sum of input excess and output slack. In the section on derivation of
the oriented SDEA models, I introduce measures based on possible proportional input

reduction or output augmentation.

1.3.2 Error structure

In this subsection, the error structure that allows the transformation of the model from
a chance constrained problem to a linear deterministic equivalent is introduced and the
linearization approach by Cooper et al. (1998) is summarized. The following structure
of m inputs and s outputs of the DMUj, for j = 1,...,n with noise driven by normally

distributed shocks is considered

Ty =Ty +aG;  i=1,...,m; (1.3)
Yij = Gij + bij& r=1,...,s;

where it is assumed E((;) = E(&;) = 0, j = 1,...,n and the following variance

covariance structure of errors for all DMUs is assumed:°

Var((y) =Var(&;) =02 1<i<m; 1<r<s; 1<j<n

€

®See Theorem 3 and its proof in Cooper et al. (1998).

For linearization procedure the standard normal distribution N(0,1) can be assumed. The scaling of
the measurement units is used when numerical problems with tiny diagonals of the input—output variance
matrices occurs, therefore the more general assumption of N(0,02) is used. This simplifying assumption
also reduces the number of parameters to be estimated for efficiency evaluation to 2n(m + s). Without
simplifying assumption [n?(m + s)? + 3n(m + s)]/2 parameters are needed to be estimated.

13



Cov(Gij, Cr)
COU(&]’, sz)
Cov(&,j,¢) =0 1<r<s1<i<m;,1<jl<n.

0 1<4,k<m;1<5,1<m

0 1<rk<s1<jl<n;

Under this error structure follows that inputs and outputs are normally distributed with
E(&;) = &4, E(Ur;) = Ur; and variance Var(z;;) = (a;0.)?, Var(gy;) = (byjo0)?.

When assessing the production processes it is also reasonable to consider the case of
log normally distributed variables. In the case of log normality of inputs and outputs
with disturbances driven by normal random variables, the following structure of inputs
and outputs can be considered:

T = exp(Tij + aijGy)  i=1,...,m; (1.4)
gjf.;?g = exp(yij + bij&rj), T=1,...,s.
The log normal input output structure can be transformed to normal input output struc-
ture by taking logs, therefore in the following text I assume only the input—output struc-
ture with normally distributed input and output variables.

Additionally, when assuming ¢ = &;; = & = G = G, for 1 <r <57 1 <7 <my
1 < 4,1 < n then the assumed error structure collapses to a single factor symmetric error
structure where ¢ follows normal distribution with E(¢) = 0, Var(e) = 2. To simplify

this notation, the vectors

a; = (alj,...,amj)T, bj:(blj,...,bsj)T, jzl,,n7

Z-a:(ail,...,am), rb:(brla“'abrn)a izl,...,m,rzl,...,s;

are introduced and these vectors are aggregated to construct the following matrices
of input and output variations A,x, = (a1,...,a,), Bsxn = (b1,...,b,). Using the
properties of normal distribution it is derived that ;2\; — Z;; is distributed according
to N(;zA; — Tyj; (;aN; — a;j)?0?) and (,9A\; — ¥r;) is normally distributed according to
N(GyA; — Yrj; (brj — +bAj)?c2). Applying the inverse cumulative distribution function
®~1(a), the constraints and objective function in the almost 100% confidence chance
constrained problem 1.2 can be rewritten as in Cooper et al. (1998) or Huang and Li

(2001) and the following deterministic equivalent of problem 1.2 is derived:

min  17(X)\; — 7;) + 17(g; — Y )+ | 17(AN; — a) + 17 (b; — B);) | 0.9} () (1.5)

+
)\j ER’T s
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s.t. i!i’)\j < Tij+ | ,a)\j — Qyj | O'ECI)_l(E), 1=1,...,m,
g?‘j < rg)\j+ | bm’ — ,«b)\j ‘ O'E(I)_l(E), r = 1, e, S,
90(171)‘]) =¥,

A >0,

Applying the linearization procedure, new variables q1,, ga,, h1;, ho; and the cumulative
term (D>, (q1r+2r) + Y iy (h1i+ ho;)) introduced into the objective function allows for
the decomposition of the absolute value terms and to linearize the constraints in problem
1.5.7 Moreover, this modification does not affect the optimal solutions of problem 1.5

and this problem is equivalent to the following problem with linear constraints:

min  17(X)\; —z;) + 17 (g, — Y \) + (1.6)
AjThor P
+ | 17(AN; — a;) +17(b; — BXj) [ 0.8 () + €D (e + ) + > (has + ha))
r=1 i=1
s.t. ii’)\j < If’ij + (hlz + hgi)a'gq)_l(E),

Z‘CL)\j—CLij:hh‘—hgi, izl,...,m,
grj S T’g)\j + ((Jlr + QZT)UEq)_l(E)a
brj_rbAjIQIT_q2r7 T:L”’usu
p(1TA) = o,
)\jZO,qerO,hkiZO, ]{7:1,2

In the following step, the absolute value from the objective function is removed. The
inverse of cumulative distribution function ®(«) takes a positive or negative values; to

account for this factor let’s define § such that

-1 if a <0.5;
0= 0 if a=0.5;
1 if a>0.5.

The absolute value term in the objective function is the sum of the absolute value terms
in the constraints of problem 1.6; therefore, the decomposition that was used in these
constraints is just substituted in the objective function. Thus as in used literature [e.g.

Li (1998) and Huang and Li (2001)], the absolute value terms are eliminated from the

"For simplicity of notation, in the following text the index j is omitted in the terms qi,, g2, R1s, ho;
that are used to replace the absolute value term.
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objective function and the following problem with a linear objective function is obtained:

min  17(X\; —7;) +17(g; — Y \;) + (1.7)
)\j Qrer Pk
+O(1T(AN; — a;) + 17 (b — BA;))o@ (@) + €D (qur + q20) + D (hai + hay))
r=1 i=1
s.t. ii’)\j < i’ij + (hlz + h2i>0’€®_1(6>’
ia)\j—aij:hli—h%, izl,...,m,
grj S ry)\j + <q1r + q2r)06(1)_1(€)7
brj_rb)\j:q1r_q27’a 7’:1,...,8,
p(17N;) =
)\jZO,qerO,hkiZO, ]{321,2

Problem 1.7 is known as the envelopment formulation of the DEA model, because the
optimal solution identifies the projected point on to the envelopment surface for DMU;.
Using Li’s (1998) definition of the dual problem, the dual problem 1.8 to primal problem

1.7 is restated as:

max p' g — vz —n'b —wla; — oy (1.8)

Vw15

st ply — vz —nThy —wla —p; <0, 1= ,

G
—0. 07 —n> -0 (P e) + &)1 + do. P ()1,
0.2 He)w —w > -0 (D7Y(e) + €)1 — do. D7 (a)1,
—0. 07w+ w> -0 (P (e) + €)1+ Jo. P ()1,
p=1
v>1

n,w, 1; unconstrained.

For the DMU; represented by point (Z;, ), the following stochastic hyperplane Prob(c’z;+
d'g; + f; <0) =1 — e is the supporting hyperplane for T, at (Z;,9;) if and only if

iy +d" g+ fi+ @)oo | Ta; +dTb; |[=0 (1.9)

and for V (7,9) € T, : "2 +d"§+ f; + ® ' (e)o. | c"a; +d"b; |> 0. (1.10)

16



The dual problem 1.8 is known as the multiplier problem because the optimal solutions
(,u;f, V;,ﬁ;,w;,’l/};), for j = 1,...,n, set up the supporting hyperplanes that are used to
construction the production possibility frontier. If there is an unique optimal solution

(13, v, m;, w5, 15) to problem 1.8 that satisfies
i (b = br) + v (a5 — ar) = @7 (oe(| 157 b; — v ay | = | 5 ow — v ) > 0,

for k = 1,...,n, then the optimal solution (u},v},n},wj,¢5) identifies the following
stochastic hyperplane Prob(,u;ngjj — V;Tij + /7 < 0) =1 — ¢, where

fr=—n"b; —wiTa; — ot + @ e)oe | u3"b; — vi"a; |. This almost 100% confidence
hyperplane is the supporting hyperplane to 7T, at the DMU;. Further, in the section on
returns to scale, the sign of f; is related to the returns to scale type and these relations

are summarized in Table 1.2. In a case without a unique optimal solution to problem 1.8,

the supporting hyperplane for T, at (Z;, ;) is not uniquely identified.

1.4 Efficiency measure

In this section, by introducing the input reducing and output augmenting direction for
projection into the data envelopment I derive the extension to the reviewed additive mod-
els. As explained in the previous section, the optimal solution to the envelopment problem
1.7 for the DMUj identifies the point (Z;, ;) = (XA, Y A%) and the optimal solution of
the multipliers problem 1.8 identifies the supporting hyperplane assigned to the DMU;.
Therefore, the simplest inefficiency measure can be defined by the distance measure of
a discrepancy between the projected and expected point as: [(Z;,9;) — (Z;,9;)|. This
discrepancy measure expresses the difference between the efficient frontier represented by
the projected point (Z;, ;) and the present position of the DMU;. Starting from (z;, y;),
various projection paths on the corresponding part of the envelopment surface can be
followed as is illustrated by Figure 1.3. Figure 1.3 illustrates directions of inputs reduc-
tion and augmentation in outputs. I will use these two directions to derive the input and
output oriented efficiency measures that are used to state the oriented SDEA models.
First, for inputs of the DMU; let’s denote ¢;; € R, e;; = Z;; —;ZA;, 1 = 1,...,m and
define the column vector of inputs excess e; € R7, e; = (ey;, ..., en;)". If the following
inequality Prob(;z\; < Z;;) > 1 — € holds there must exist e;; > 0, ¢ € {1,...,m} such
that Prob(e;; < ;; — ;&\;) = 1 — €. Therefore, for inputs of the DMU;,, by following
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the path —e; the inputs can be decreased and the projected point is moved towards the
production possibility frontier. This projection direction is given in Figure 1.3 as the
input reduction direction and the point DMUS5i is the input oriented projection of the
DMU#5.

Similarly, the DEA output oriented model is derived using the column vector of output
slacks s; € RS, s; = (155, 855) %5 Srj = 7N — Yrjy 7 = 1,...,s. For r € {1,..., s} such
that Prob(,g\; > §,;) > 1 — € exists s,; > 0 for which the following equality holds:
Prob(,g\; — §r; > s;;) = 1 — €. The path s; projects the DMU; on to the production
possibility frontier in an outputs augmenting direction and the projected point is shown
in Figure 1.3 as the DMUbo.

Next, to determine the maximal scale effects in inputs reduction or outputs augmen-

tation, the projection paths s;, e; are decomposed to a proportional increase (decrease) of

output (input) and residual as follows: s; = p;y;+07, e; = v,;Z;+ 07, where a proportional

increase of outputs p; and proportional decrease of inputs v; for j = 1,...,n are defined
as
. 'grj - 'grj
Pj= My=1..s —— > Oa
Yrj
. Tjj — Ty
Vi = M=y, —— 2> 0,
T4

and 67 > 0,60 >0, j=1,...,n8

Next as in Ali and Seiford (1993), the new variables for the output oriented model are
defined as ¢; = 1+ p; and for the input oriented model 6; = 1 —+y;. From the construction
of the scaling parameters, the 6; satisfies 0 < 6; < 1 and for ¢; in the output problem we
have ¢; > 1. The maximal output scale effect is identified by optimal value ¢7 and the
maximal input reduction is identified by the optimal value of 6.

For the identification of possible proportional scaling of inputs or outputs and effi-
ciency evaluation of the DMU;, two stage models are constructed. In the first model
stage, the maximal ¢; or minimal 6; is found to identify the maximal equi proportional
effect. In the second stage of modelling, the identified scale effect is utilized to evaluate
the efficiency of the DMU; with optimally reduced levels of inputs (augmented levels of
outputs, in case of the output oriented model). These two stage models are summarized

in Table 1.3. The optimal solution to the first stage for the DMU; is denoted as éj and

8Note that at least one component of each § is zero because of the projection on to the production
possibility frontier.
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in the case of the output oriented model qBj. The second stage of almost 100% confidence
problem is constructed by replacing Z; (in output oriented model: y;) with éji'j (respec-
tively for input model with: nggjj) in constraints and objective function of problem 1.2 as
presented in Table 1.3.

When the two stage models are used, the inefficiency of the DMU; can be evaluated by
use of values of (%]—1 or éj. The major drawback of use of QASJ_I and éj as inefficiency measures
of the DMU]j is that these measures do not uniquely identify efficient points. This shortage
is present because for ng =1 (éj = 1) the DMU; is the boundary point of T, but the
positive non—proportional slacks can be present. The elements of production possibility
set with ng =1 (éj = 1) and positive non proportional slacks are usually referred to as
weakly efficient points. Due to the aforementioned shortage, the identification of efficiency
of the DMUj has to be done in two stages. Therefore, the DMUj is identified as efficient
if the proportional scaling parameter equality ngSj =1 (é] = 1) holds and the second stage
model identify the DMU; as o stochastically efficient. The additional condition on slacks
is referred to as the sum of slacks and for a-—stochastic efficiency it is required that it

holds with probability 1 — a.

1.5 Oriented SDEA models

In both stages the objective function optimization is subject to the same constraints,
the only difference being the objective function, therefore the two stage oriented SDEA
models can be merged into a one stage model. To merge these stages in one optimiza-
tion problem, the non-Archimedean € is used as a weight for the second stage objective
function. The choice of non Archimedean e as the weight guarantees that proportional

movement towards the frontier pre empts the additive slacks optimization.

Output oriented model The one stage model for evaluation of efficiency of the
DMU;j is derived from the two stages optimization model presented in Table 1.3 and can

be stated as:

max ¢; + e(Prob(1T(X)\; — &) + 17 (¢;5; — Y \;) < 0) — a) (1.11)
s.t. Prob(;z\; < T;5) > 1 —¢, i=1,...,m;
Prob(,gA; > ¢;7r;) > 1 — €, r=1,...,s;
p(1TN)) = 3
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A > 0.

After the same linearization procedure that was applied to problem 1.2 and reviewed

in the fourth section of this chapter, the following linear model is derived:

max  ¢; — e[1T(XN\; — ;) + 17 (¢;5; — Y \j) + (1.12)
Aj Gk Pk, ®)
+H6(1T(AN = a5) + 17 (d5b; — BA)od ()] + €Y (qir +2r) + Y (hni + hay)
r=1 i=1
s.t. ii’)\j < Lf’ij + (hlz + hgi)a'gq)_l(E),
ia)\j—aij:hli—hgi, izl,...,m,
GiUri < +GN; + (qur + qor) 0P (€),
¢jbrj_rb>\j:q1r_q2r7 T:L”’usu
p(1TN) = o,
AjZO,qerO,hkiZO, ]{7:1,2

Input oriented model Similarly, as for the output oriented model, the almost
100% confidence chance constrained input oriented model for efficiency evaluation of the
DMU; is derived as:

E\I]ng]l 0, — e(Prob(1T(X\; — 0,&;) + 17(§; — Y ;) < 0) — a) (1.13)
s.t. Prob(;T\; < 0;%;;) > 1 —, i=1,...,m
Prob(,gA; > §.5) > 1 —¢, r=1,...,s;
P(1TX) = ¢;
A; > 0.

Finally, the linearized form of the almost 100% confidence chance constrained input

oriented model is stated as:

_omin o+ 1" (XN — 0;2;) + 17 (g; — Y \)) + (1.14)
G Qkr ki U5
+I(17 (AN = 0505) + 17 (b; — BA;))o. @ ()] + E(Z(Qh’ + qor) + Z(hli + ha;))

r=1 1=1
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st. N < 0;z5 + (hyy + h2i)aaq>_1(€)’

Z-a)\j —Gjaij = hh‘—hgi, 1= 1,...,m,
'gj)\j S T’g + (qlr + q2r)gaq)_1(€)a
brj_rb)\j:q1r_q2ru 7’:1,...,8,
p(1T) = ¢,

AjZO,qkTZO,hMZO, ]{321,2

Furthermore, the optimal solution (A}, q;, d5;, hi;, h3,, %) of output oriented prob-

h3;, 07) of input oriented

problem (1.14)) is used to evaluate the technical efficiency of the DMU,. The DMU; is

lem (1.12) (alternatively the optimal solution (A}, qj;, q3;, hi;,

a stochastic efficient, when the following two conditions are satisfied:
L ¢5=1(0; =1);
2. 17(XXN — ;) + 17 (05, — Y X3) + 1T (AN — a;) + 17(¢5b; — BA) |0 () > 0
(lT()_()\; —05r;) + 17(y; — )7)\;) + |1T(A)\j» — 0%a;) + 17(b; — B)\;)|a€®_1(a) > 0).
As mentioned in the section on efficiency measure introduction, a class of weakly
efficient DMUs can be defined. The analyzed DMUj is identified as weakly efficient when

the optimal solution of the associated problem satisfies ¢; =1 or 07 = 1.

1.6 Chance constrained DEA model

As in the section on almost 100% chance constrained models, I also assume the same
disturbance structure for chance constrained efficiency models and the following chance

constrained version of the DEA model can be derived:

ng_n 17(XN; —z;) +17(g; — Y \)) (1.15)
st.  Prob(;a\; <Zy)>1—a, i=1,...,m;
Prob(,y\; > Grj) > 1—a, r=1,...,s;
p(1TN) = ¢
Aj > 0;

To relate Problem (1.15) to the definition of chance constrained efficiency domination

introduced in definition (4), I state the following theorem:

Theorem 3. Let DMU; be an a-stochastically constrained efficient. Then for all \; such
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that

Prob(;a\; <zf)>1—a, i=1,....,m;
Prob(,yA\; 2 i) 2 1—a, r=1,...,s;
QO(]_T)\]) =@, )\j S Rﬁ, )\j >0, (116)

we have 17 (XX\; — z;) + 17(g; — Y \;) = 0.

Proof: Suppose there exists A7 such that it fulfills constraints (1.16) and
17(XXr — 7;) + 17 (5; — YX%) > 0. Then there exists s or s; € Ry, s, s; > 0 such
that Prob(,§\; — §r; > ;) > 1 —a or Prob(Z;; — ;t\; > s;) > 1 — a. According to
definition (4) the DMU; is dominated by the point (5()\;, }7)\;) and this contradicts the

assumption in the theorem that DMU; is a chance constrained efficient. O

Applying the same orientation procedure as for the almost 100% chance constrained
problems the two stage problems are derived. As for problem (1.2) the dual problem to
problem (1.15) can be derived and the optimal solutions are used to identify the sup-
porting hyperplanes to analyzed DMUs and to set up the production possibility frontier

estimate.

The same linearization procedure as was used to linearize problem (1.2) and described
in the previous section is applied after the two stage problem is merged in one one—stage
optimization problem. The following oriented and linearized chance constrained models

are derived:

Output oriented model

| max - ¢; — e(IT(XN; — ;) + 17 (50 — Y A)) +
3 >Qkr Pk Pj

_E(Z(QM + q2r) + Z(hu + hai))

r=1 =1

(1.17)
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s.t. ii’)\j < Tij + (hlz + hgi)O'ECI)_l(Oé), 1=1,...,m,

i0Aj — @i = ha; — ha, t=1,...,m,

Ui < 05,5+ (i + qor )0 P Ha), r=1,...,5,

Gjbrj — +bA; = qir — @or, r=1,...,s,

p(1TX) = ¢,

Aj > 0,qrr >0,k >0, k=12,
i=1,...,m,
r=1,...,s

Input oriented model

min  0; + (1T (XN — 0,7;) + 17 (g, — Y \))) +

AjsQrershiis0;

+€(Z(Q1r + qor) + Z(hu + hai))
r=1 =1
(1.18)
s.t. i!i’)\j < 9j9?,~j + (hlz + hgi)O'aq)_l(Oé), 1 =1, ,m,
Z‘CL)\]' —Hjaij :hli—hgi, 1= 1,...,m,
gj)\j Srﬂ+(Q1r+Q2r)an)_l(a)> r=1...s,
b.; — .b\; = q1. — qor, r=1,...,s,
P =k (1.19)
p(17)) = @,
)\]207(]]67“20)}”%203 k:172a
1=1,...,m,
r=1,...,s

Similarly, as in the previous section these models can be compared to DEA mod-
els summarized in Table 1.1 and as for Problems (1.14) and (1.12), the optimal solu-
tion ()‘;7 quu Cﬁju q;jv hL‘v h;jv (b;) of problem (117)7 ((A;v quv q§j7 th? h;jv ‘9;) for problem
(1.18)) can be used to evaluate the efficiency of DMUj; as in the previous section.

The DMU; is chance constrained efficient if the following two conditions are satisfied:

1. ¢t =1 (07 =1);

2. All expected values of slacks and excess are zero: 17(XXf — 7;) = 0 and 17 (¢%7; —
YA;) =0 (lT(X')\; — 057;) =0 and 17(y; — Y)x;f) =0).
To simplify the evaluation of efficiency score the following two efficiency measures

for stochastic models which are stochastic equivalents for measures introduced by Tone
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(1993), are proposed:

1T(X N — 07, 174,
Input oriented: x; = (9’? + ( J j J)> Yj

! 17z, 17Y Ay
17 (p*g, — Y \* 17%,
Output oriented: T]-_l = (gbj — (%?1/;@ ])> lT)?;\*’
j i

The proposed efficiency measures 7 and x have the following properties:
1.0<7,x; <1
2. x; =1, 7, =1 & DMUj is chance constrained efficient
3. 7; and x; are units invariant measures
4. 7; and x; are monotonic increasing in inputs and outputs
5. 7; and x; are decreasing in the relative values of the slacks
6. 7, = ¢}, x; = 0; < the expected values of all slacks are zero.

These measures make it easier to evaluate the efficiency score of DMU; because they
take into account the values of maximal proportional increase and the slacks (residuals)

values.

1.7 Introducing returns to scale

As mentioned in the second section, the CCR model was designed to analyze the technol-
ogy with property of constant returns to scale. Later, the BCC model and its variations
were developed by Banker, Charnes, and Cooper (1984) to analyze the production func-
tion with variable returns to scale. Here, I follow this concept to introduce the variable
returns to scale into the stochastic framework. The following definition uses the expected

values to define types of returns to scale:

Definition 5. Returns to scale. Let the DMU; be stochastically efficient and the point
Zs = ((14+6)xj, (1 +9)y,) is a point in J—neighborhood of (z;,y;) :

e The Non Decreasing returns to scale are present < 3 6* > 0 such that Z;5 € T, for
0" >6>0and Zs&§ T, for —6* < <0
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e The Constant returns to scale are present < 3 0* > 0 such that Zs; € T,, for | ¢ |<
5*

e The Non-Increasing returns to scale are present < 3 §* > 0 such that Zs;& T, for
0*>6>0and Z5 € T, for —4* <6 <0.

The differences in types of returns to scale are reflected by different shapes of the pro-
duction possibility set frontier that is set up by the intersection of supporting hyperplanes
identified by optimal solutions of multiplier formulation of the DEA models. In the case
of constant returns to scale (the CCR model by Charnes, Cooper, and Rhodes (1978))
the envelopment surface consists of a single half line that passes through the origin as
shown in Figure 1.4. In the case of variable returns to scale, the production frontier is a
piecewise linear set. Therefore, Figure 1.4 also shows the production possibility frontier
of the model with the variable returns to scale that is referred to as the BCC model
(Banker, Charnes, and Cooper (1984)) and in Figure 1.5 the BCC frontier is related to
the frontier under the assumption of increasing returns to scale. These frontiers of pro-
duction possibility set under various types of returns to scale are parameterized via the

selection of ¢ and constraint type associated with the ¢ as follows:

0 Constant returns to scale (CCR model)
(p =
1 Variable returns to scale (BCC model).

Since the « stochastically efficient point (z;, 7;) satisfies condition 1.9, for the point

Zs = ((1+6)x;, (1 +0)y;) can be derived

A1+8)i;+d"(1+0)g+ fi+ 1+ 8P e)o. | cTa; +db; | =
=1+ 0z +d"g; + fj + @)oo | Taj +db; |) - 0f; = —3f; (1.20)

and the point Zs; € T,, if and only if —df; > 0. Using definition 5, the relations between
the type of the returns to scale and the sign of f; is revealed and these relations are

summarized in Table 1.2 together with choice of constrain on intensity variable vector \;.

1.8 Summary of SDEA models

In the previous sections, the oriented SDEA models were derived and these models are

summarize in Table 1.4. It should be stressed that even the models using the same
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efficiency dominance definition but with different orientation choice result in different
efficiency scores. Therefore, the choice of the efficiency dominance type, returns to scale
and projection path to the envelopment surface (the set of dominating points in the
production possibility set) are crucial for the efficiency analysis and the choice should
reflect the aims of analyzis.

The returns to scale choice affects the shape of the production possibility set envel-
opment. The restrictions on returns to scale are related to four types of the envelopment
surface shape through the geometry of the production possibility set and these restric-
tions are interpreted as the restriction on intensity variable X in the envelopment problem
or a restriction on supporting hyperplanes in the multiplier problem.

The evaluation of the efficiency score is based on distance measurement between the
point that represents DMU and the associated point on the envelopment surface. This
distance measure used in additive models is the most simple efficiency measure. A more
sophisticated efficiency measure is created using the measure of maximal proportional
inputs reduction (output augmentation) while keeping the levels of outputs (inputs) fixed.
This proportional input (output) scaling approach is interpreted as the selection of a
projection path towards the envelopment surface and results in the creation of oriented
SDEA models.

The use of Non—Archimedean infinitesimal € is closely related to the unit invariance
property of the objective function values of the derived models because the result of
multiplication by € is not unit dependent. The use of unit invariant models also delivers
the possibility of units of measurement change to avoid numerical problems [e.g., tiny
diagonal matrices| when the SDEA models are solved.

Table 1.4 compares the derived SDEA with the most popular DEA models that appear
in the present studies on efficiency evaluation. The additional SDEA models can be
derived as extensions of models covered in this chapter using the extensions procedures

for the DEA models.

1.9 Method for SDEA model solving

To solve the linear optimization problems associated with the derived SDEA models the
variant of the interior point method (IPM) is used because it is less computationally
costly than the simplex methods when large sized problems are solved. For the purpose

of the IPM employment the linearized problems 1.12 and 1.14 can be easily transformed
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to the standard linear programming form:*

; . : T ) T
Primal: min,c' x Dual: maxy , b'y

(1.21)
st. Ax=b,x>0 st. ATy +z=c,z>0.

Using the complementarity constraint z7x = 0 (equivalent to duality gap condition

c’x—bTy = 0) together with the feasibility constraints the following optimality condition

for problem 1.21 is stated as

Ax—-b
ATy +z—c = 0o |, (1.22)

ZTX

where z,x > 0. To solve problem 1.22, I use Mehrotra’s predictor corrector algorithm
that belongs to the class of the central path following IPM algorithms.!® This primal-dual
algorithm uses the combination of Newton’s direction (duality gap reduction direction)
and centering direction to solve the sequence of problems that comes from problem 1.22,
where the complementarity constraint is modified to x} z; = u; and sequence {py} con-
verges to 0 for & — oco. So, the IPM algorithm generates an infinite sequence of points
that converges to an optimal solution and the iteration process stops when the iterations
are sufficiently close to the optimal solution or the limit for the number of iterations is
reached. The advantage of the primal dual version of the interior point method is that

the primal and dual problem 1.21 are solved simultaneously.

Further, the IPM solutions satisfy the strong complementarity slackness condition
(SCSC). The SCSC solution is the solution with the maximal product of the positive com-
ponents of the optimal solution and therefore it is the optimal solutions with a minimal
number of zero components. The SCSC property of optimal solutions helps to eliminate
interpretation problems when the optimal solution to the DEA model are rendered as the

shadow prices of inputs and outputs.!'!

9In the case of linearized stochastic problems, vectors x, ¢, z € R 3(m+s)+1.
vectors y, b € R2+9)+1 and matrix A € REnts)+1)x(n+3(m+s)+1)

10The solver for the stated oriented SDEA models is constructed using the procedures package known
as PCx linear solver obtained from Optimization Technology Center at Argonne National Laboratory
and Northwestern University.

HFor more details on the use of interior point methods solutions of the DEA related problems see
Brazdik (2001).
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1.10 Indonesian rice farms efficiency

To demonstrate the use of the oriented SDEA models, the results from the proposed SDEA
models are compared to the DEA and SFA results. This comparison is motivated by
Horrace and Schmidt’s (1996) work, where parametric methods for efficiency estimation
are compared using data on Indonesian rice farms. To compare with results presented in
Druska and Horrace’s (2004) methodological work on spatial effects in the SFA framework,
I use the same data set to compute the SDEA and DEA scores.

Indonesia is the biggest rice importer in Asia at the same time almost 70% of the
country’s 213 million people are farmers, hence the identification of the linkages between
different factors and rice yield in the West Java area is the subject of many studies on
farming efficiency [e.g. Wadud (2002) and Daryanto, Battese, and Fleming (2002a)|. For
research purposes, the Indonesian Ministry of Agriculture surveyed rice farms over six
growing periods (3 wet and 3 dry periods) in six villages in the area of the Cimanuk River
basin in West Java. The data set from this survey is filtered for outliers that reported
yields over the maximum hectare yields reached in laboratory conditions. After this
correction, the panel used for analysis is balanced and describes the production mixes of
160 rice farms with average yield of 3265.20 kg/ha that resemble the observed average

yields in this area.

For the purpose of comparison with the SFA results, I use the same inputs and outputs
to specify the inputs—output production mixes of the surveyed rice farms as were used in
the SFA study by Druska and Horrace (2004). The considered inputs include total area
of rice cultivation in hectares (Size), seed in kilograms (Seed), urea in kilograms (Urea),
phosphate in kilograms (Phosphate) and total labor (Labor). As the measure of output
the total output of rough rice in kilograms (Gross yield) is used and the summary statistics
for the used inputs and output are presented in Table 1.5. All of the production factors
exhibit very high variation and presence of noise that influence efficiency evaluation is
expected. The presence of noise provides rationale for use of the SDEA approach.

To calculate the DEA efficiency scores, the output oriented DEA model presented
in Table 1.1 is used. The a-stochastic efficiency of farms is evaluated by use of the
linearized output oriented SDEA model described by problem 1.12. Moreover, I also
compute the time average DEA efficiency scores and the DEA scores calculated using
the mean values of farms’ production mixes. The average DEA score for a rice farm is

calculated by averaging the farm’s efficiency scores when the data set is considered as a
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sample of 960 individual observations. The DEA mean score is calculated using a sample
with 160 observations, where each farm is characterized by mean values of its production
mix characteristics.

For all data envelopment models, I consider the cases of normal (denoted by sub-
script N or Norm) and log normal (denoted by subscript LN or LogN) distribution of
the farms’ inputs and outputs. Under the assumption of log normal distribution, inputs
and output are transformed by taking logs, therefore the efficiency scores are no more
scale of operations invariant. The DEA and SDEA efficiency scores are calculated un-
der assumption of constant returns to scale (choice ¢ = 0 and denoted by CCR) and
variable returns to scale (¢ =1, BCC). The efficiency scores estimated by almost 100%
chance constrained SDEA models are reported for a = 0.05 as a level of modeler’s risk
because calculations shows that for higher levels the SDEA method suffers from a loss of
discriminatory power and too many DMUs are evaluated as efficient.

The descriptive statistics of the computed DEA, SDEA and SFA efficiency scores
are summarized in Table 1.6 and compared to Druska and Horrace’s (2004) SFA scores
FE and FEsp that are estimated by the fixed effect method and fixed effect method
with correction for spatially corrected errors, respectively. Table 1.6 reports higher mean
values of efficiency scores for data envelopment approaches than for SFA scores. These
SDEA and DEA results suggest that Indonesian rice farms are operating closer to the
production frontier than in the SFA studies. Wadud (2002) observes a similar pattern
for Bangladesh rice farms efficiency scores and he reports 0.80 as the mean score for the
SFA and 0.86 and 0.91 for the CCR and BCC data envelopment models, respectively.
From this comparison, I deduce that on average the considered Indonesian rice farms
were operating at lower efficiency levels than rice farms in Bangladesh. As Table 1.6
reports, scores calculated by data envelopment approaches show a variance twice as high
as scores calculated by the SFA. This is contrary to results by Wadud (2002), Ferro-Luzzi
et al. (2003) and Jaforullah and Premachandra (2003) that report comparable variance
for SFA and DEA efficiency scores.

Further, to highlight differences in efficiency scores among the used approaches, Table
1.7 compares efficiency scores for group of chosen DMUs. These DMUs were chosen ac-
cording to the SFA efficiency scores estimates by Druska and Horrace (2004) to represent
farms with the highest, median and the lowest technical efficiency scores. Due to the dif-
ferences in nature of the compared methods differences in efficiency scores estimates are

expected. However, the differences in efficiency rankings presented in Table 1.8 indicate
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inconsistency of efficiency evaluation across the assessed methods.

The nature of the SFA approach allows only one DMU to achieve a score of 1 while
the data envelopment approaches assign efficiency score 1 to all DMUs on the production
possibility frontier. Therefore, the peak at 1 with height proportional to the numbers of
DMUs identified as efficient occurs in distribution of efficiency scores calculated by use
of the data envelopment approaches. Keeping this fact in mind, the shapes of efficiency
score distributions displayed in Figure 1.6, Figure 1.7 and Figure 1.8 can be compared.
Examination of these figures reveals that the shape of the SFA efficiency score distribution
function is matched at best by the distribution function estimate for the DEA average
efficiency score under assumption of linearly distributed production characteristics for
constant (CCRnorm) and variable (BCCnorm) returns to scale specification.

Due to the aforementioned differences in nature of efficiency scores, the results’ con-
sistency among the used approaches should be assessed through correlation of efficiency
rankings rather than an efficiency scores. For ranking correlation evaluation, Spearman’s
(1904) correlation coefficient is used because its important feature is lower sensitivity to
extreme values when compared to the standard correlation coefficient. Further, by eval-
uating the significance of calculated rankings correlations the hypothesis that considered
rankings are not correlated is tested. Table 1.9 presents correlation coefficients for rank-
ings generated using DEA on mean values, oriented SDEA and SFA efficiency scores. In
Table 1.10, correlation coefficients for DEA on mean values, the oriented SDEA, and SFA
efficiency rankings are summarized.

When the rankings correlation coefficients presented in Table 1.9 and Table 1.10 are
assessed, I conclude that higher level of rankings consistency is observed between SFA
efficiency rankings and data envelope analysis rankings than between SFA and SDEA
rankings. The highest DEA mean ranking correlation coefficients values are 0.72 and
0.55 and the values 0.85, 0.82 for average DEA scores are substantially higher than the
highest values 0.25,0.24 of the SFA SDEA correlation coefficients. The presented SFA
and DEA rankings correlation results correspond to findings in recent studies on the SFA
and DEA ranking consistency. Wadud (2002) reports the highest correlation coefficients
values ranging from 0.61 to 0.83, Jaforullah and Premachandra (2003) report 0.74 and
Ferro Luzzi et al. (2003) report significant correlation coefficients between SFA and DEA
ranking in range from 0.594 to 0.677.

The purpose of this section was to improve the stochastic non parametric approach

for efficiency evaluation by introducing frontier projection direction. Therefore, the im-
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provement in consistency of the SFA and SDEA results is expected. Contrary to this
expectation, more consistency (in terms of significance of correlation coefficients and
their absolute values) is found between the SFA and DEA (SFA-average DEA in range
0.11, 0.85, SFA DEA mean in -0.22, 0.72) rankings than between the SFA SDEA rank-
ings (from -0.08 to 0.25). The observed low consistency of SFA-SDEA rankings may
be a consequence of the high variance of the rice production characteristics that affects
the accuracy of efficiency dominating set approximation. This conclusion originates from
comparison of the DEA on mean values and SDEA efficiency rankings, where rankings
correlations are insignificant or low and simultaneously the SDEA approach is derived
from DEA on mean values approach by including correction for variance in data. There-
fore, high values of the ranking correlation between SDEA and DEA-mean rankings are
expected to be achieved when considered DMUs are characterized by random variables

with low variances.

1.11 Conclusion

In the theoretical part of this chapter, I reviewed the technique used to derive linear
deterministic equivalents to Huang and Li’s (2001) SDEA models and this technique was
used to develop the oriented stochastic DEA models and to describe their properties.
Using the techniques of stochastic problems linearization the proposed oriented SDEA
models were linearized, so the solver based on the interior point method for linear prob-
lems can be used to solve linear programming problems associated with the models. The
created solver for problems associated with the SDEA and DEA models implements the
primal-dual interior point method algorithm.

The empirical part of this chapter was motivated by Horrace and Schmidt’s (1996)
comparison of SFA methods. This part presents results of the technical efficiency evalu-
ation of Indonesian rice farms by SDEA and DEA models. Further, efficiency rankings
were constructed and compared with the SFA rankings constructed by Druska and Hor-
race (2004). While I was able to reject the hypothesis that the DEA, SDEA and SFA
rankings are independent in the majority of the considered cases the consistency of re-
sults from the SFA and oriented SDEA models is questionable due to the low values of
ranking correlation coefficients. Assessing the results of the DEA on the mean values ap-
proach, I conclude that in this data set the low rankings consistency originate from high

variance present in the data. In spite of the low consistency of the SFA-SDEA approach
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the findings on the SFA DEA rankings correlation are consistent with the recent studies
on the SFA and DEA comparisons, e.g. Wadud and White (2000a) and Jaforullah and

Premachandra (2003) that report considerable consistency of efficiency rankings.
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Output oriented model
maxy, g, ¢; + (XN — ;) + 1 (dy; — Y'\)))
s.t. TN < 5, 1=1,...,m;
Ty>\] > ¢Jyrj7 r= 17 ) 55
T .
P(17X;) = ;
Aj >0
Input oriented model
miny, g, 0; — (1 (X N — 0;25) + 17 (y; — Y'))))
s.t. Z’[L’)\j < ejllfij 1=1,...,m;
PYNj > Y r=1,...,s;
Ty —
p(174)) = ¢;
Aj >0

Table 1.1: Generalized versions of input and output oriented DEA models
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Model (Orientation) Returns to scale Constraint Hyperplane(s)
CCR model
(Input, Output) Constant None, ¢ =0 Passes trough origin
BCC model
(Input, Output) Variable 17X\ =1 Not constrained
SDEA models
(Input) Non-Decreasing 17X\ >1 =0
(Input) Non-Increasing 17\ <1 7 <0
(Input) Constant None fi=0
(Output) Non Decreasing 17X > 1 fr <0
(Output) Non Increasing 17X <1 fr=0
(Output) Constant None fi=0

Output oriented model

Table 1.2: Returns to scale

First stage

Second stage

maX)\j,d)j ¢j

s.t. PTOb(i:ﬁ/\j < i’ij) >1—c¢

maxy, Prob(1T(X\; — #;) + 1T((5j?§j —Y\)) -«

PTOb(r?j)\j > (bgrj) > 1—c¢

e(1TX)) = ¢
Aj >0

Input oriented model

s.t. PT‘Ob(ii’)\j < :iij) >1—c¢

PTOb(rg)\j > éjgjrj) >1—c¢
p(1TN) = ¢
A >0

1=1,...

,my;r=1,...,s.

First stage

Second stage

miny; g, 0;

s.t. PTOb(i:ﬁ/\j < Gj:iij) >1—c¢

maxy Prob(1T(X\; — 0,;;) +17(; — Y \;)) — a

PTOb(r?j)\j > grj) >1—c€

e(1TX)) = ¢
Aj >0

s.t. PTOb(i:ﬁ/\j < éj:iij) >1—c¢

PTOb(r?j)\j >grj) > 1—c¢
p(1TAj) = ¢
Aj >0

t=1,....m;r=1,...,s.

Table 1.3: Two stages of oriented almost 100% confidence chance constrained models
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Model Returns Envelopment Range Units Involves
(Orientation) to Scale Type Invariant Non Archimedean
Additive Variable  Piecewise linear objective value< 0 No No
Constant Piecewise linear No No
Almost 100% confidence Constant  St. Hyperplane objective value< o.®~1(¢) No Yes
additive model; Problem (1.7)  Variable —St. Hyperplanes | 17(AX; —a;) + 1T(b; — B);) | No Yes
BCC model (input) Variable  Piecewise linear 0<6<1 Yes Yes
BCC model (output) Variable  Piecewise linear 1<¢ Yes Yes
CCR model (input) Constant  Piecewise linear 0<6<1 Yes Yes
CCR model (output) Constant  Piecewise linear 1<¢ Yes Yes
Almost 100% confidence
oriented models, Variable St. Hyperplanes 0<0<1,1<9¢ Yes Yes
Problems (1.14),(1.12) Constant  St. Hyperplane 0<6<1,1<¢ Yes Yes

(input, output)

Table 1.4: Comparison of models



Data summary statistics

Variable ‘ Obs. Mean Std. Dev. Minimum Maximum
Size 960 0.4398 0.5607 0.0140 5.3220
Seed 960 18.4708 46.6819 1.0000 1250.0000
Urea 960 96.5250 130.3932 1.0000 1250.0000
Phosphate 960 33.8072 48.3489 0.0000 700.0000
Labor 960 394.2240 496.0169 17.0000 4774.0000
Gross yield 960 1413.9340 1966.0950 42.0000 20960.0000
Table 1.5: Indonesian rice farm summary statistics

Efficiency scores summary statistics

Model ‘ Obs Mean Std. Dev. Minimum Maximum
DEA

BCCnorm 960 0.5672 0.2044 0.1912 1

CCRNorm 960 0.5256 0.1943 0.1775 1

BCCrogn 960 0.8987 0.0565 0.6484 1

CCRLogN 960 0.7561 0.0817 0.5143 1
DEA-mean

BCCNorm 160 0.7641 0.1723 0.3698 1

CCRNorm 160 0.6721 0.1616 0.3436 1

BCCrogn 160 0.9360 0.0427 0.7730 1

CCRLogN 160 0.7918 0.1026 0.5867 1
SDEA

BCCNorm 160 0.7343 0.2614 0.1500 1

CCRNorm 160 0.6594 0.2569 0.0791 1

BCCrogn 160 0.8714 0.1867 0.1519 1

CCRLogN 160 0.7260 0.2331 0.1456 1
SFA

FE 160 0.5613 0.0992 0.3655 1

FEspatial 160 0.5435 0.1023 0.3274 1

Table 1.6: Efficiency scores summary statistics
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Efficiency scores

Score Farm SFA SDEA DEA average efficiency score DEA-mean
FE FEsp, CCRN BCCyn CCRLN BCCLn CCRN BCCn CCRLN BCCrn CCRN BCCyn CCRLN BCCrn
High 164 1.0000 1.0000 0.6660 0.7109 0.6442 0.6808 0.8635 0.8613 0.7782 0.9690 1.0000 1.0000 0.7362 1.0000
118 0.9323 0.9269 0.6875 1.0000 1.0000 1.0000 0.8699 0.8754 0.7926 0.9778 1.0000 1.0000 0.7853 1.0000
152 0.8993 0.8152 0.4109 0.6398 0.2872 0.2940 0.7922 0.8269 0.8595 0.9707 1.0000 1.0000 1.0000 1.0000
153 0.7717 0.7487 0.7604 0.7899 0.9128 1.0000 0.6589 0.6710 0.7734 0.9347 0.8717 0.8768 0.7528 0.9459
Medium 40 0.5535 0.5824 0.9622 1.0000 1.0000 1.0000 0.5969 0.6298 0.7348 0.9118 0.8476 0.8590 0.6776 0.9787
101 0.5518 0.5282 0.5967 0.6117 0.8212 1.0000 0.5117 0.5252 0.6864 0.9028 0.6680 0.7005 0.6893 0.9311
80 0.5518 0.5166 0.2974 0.3012 0.5673 0.7255 0.5528 0.6064 0.7741 0.8842 0.5723 0.6305 0.8240 0.9205
149 0.5495 0.5173 1.0000 1.0000 1.0000 1.0000 0.4588 0.5494 0.8046 0.8789 0.5981 1.0000 0.8589 0.8544
Low 86 0.3980 0.3907 1.0000 1.0000 0.5822 1.0000 0.3351 0.3527 0.7280 0.8381 0.3859 0.4478 0.7608 0.8452
143 0.3837 0.3596 0.4127 0.4960 1.0000 1.0000 0.3150 0.3539 0.7438 0.8202 0.4933 0.5247 0.7591 0.8722
117 0.3790 0.3713 1.0000 1.0000 1.0000 1.0000 0.3944 0.4998 0.6907 0.8109 0.5387 0.8970 0.8572 0.8800
45 0.3655 0.3274 0.4770 0.6235 0.5744 0.7485 0.3814 0.5945 0.8252 0.8474 0.4896 1.0000 0.8862 1.0000
Note: Farm identification number is from original sample.
Table 1.7: Comparison of technical efficiency scores
Efficiency rankings
Score Farm SFA SDEA DEA average efficiency score DEA-mean
FE FEsp CCRN BCCnN CCRLN BCCLn CCRy BCCn CCRLN BCCLN CCRN BCCn CCRLN BCCLN
High 164 1 1 71 84 96 138 2 3 54 3 1 1 111 1
118 2 2 67 1 1 1 1 2 39 1 1 1 81 1
152 3 3 131 96 155 157 3 4 3 2 1 1 1 1
153 4 7 56 74 54 1 19 27 60 17 23 48 97 61
Medium 40 79 48 42 1 1 1 41 44 109 51 25 51 140 34
101 80 82 88 103 61 1 82 100 144 70 76 96 134 81
80 81 91 148 148 120 123 56 54 59 115 111 116 56 102
149 82 89 1 1 1 1 117 82 33 125 103 1 44 157
Low 86 157 154 1 1 114 1 158 159 114 156 157 157 91 158
143 158 158 130 126 1 1 160 158 96 159 142 149 93 152
117 159 157 1 1 1 1 145 115 142 160 125 45 46 147
45 160 160 115 99 116 121 148 60 18 153 144 1 28 1

Note: Farm identification number is from original sample.

Table 1.8: Comparison of technical efficiency rankings
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Efficiency rankings correlations

SDEA DEA average efficiency score SFA
CCRN BCCnN CCRLN BCCLn CCRy BCCnN CCRLN BCCLn FE FEsp
SDEA
CCRN 1.00
BCCnN 0.85%** 1.00
CCRLN 0.49%** 0.43%** 1.00
BCCprn 0.39 0.46 0.62%%* 1.00
DEA av.
CCRN 0.28%** 0.28%** -0.04 0.00 1.00
BCCnN 0.28*** 0.32%** -0.03 0.02 0.85%** 1.00
CCRLN 0.08* 0.05* 0.08* -0.04 0.30%** 0.51%** 1.00
BCCLn 0.23%** 0.27*** -0.08** -0.01 0.84%** 0.80%** 0.23%** 1.00
SFA
FE 0.25%** 0.24%** -0.02 -0.02 0.82%** 0.71%** 0.29%** 0.85%** 1.00
FEgsp 0.21%** 0.23%** -0.08*** -0.07** 0.79%** 0.62%** 0.11%** 0.82%** 0.89%** 1.00
Note: *** ** and * coefficient significance at 1%,5% and 10% level.
Table 1.9: Spearman ranking correlation coefficients and significance levels
Efficiency rankings correlations
SDEA DEA-mean SFA
CCRN BCCnN CCRN BCCLn CCRy BCCyN CCRLN BCCLn FE FEsp
SDEA
CCRy 1.00
BCCly 0.85%** 1.00
CCRLN 0.49%** 0.43%** 1.00
BCCpLy 0.39 0.46 0.62%** 1.00
DEA mean
CCRyN 0.44*** 0.41%** 0.11%** 0.05* 1.00
BCCyN 0.46*** 0.50*** 0.15%** 0.11%** 0.64%** 1.00
CCRLN 0.03 -0.02 0.14%** -0.02 -0.02 0.30%** 1.00
BCCLn 0.29%** 0.31%** 0.01 0.06* 0.56%** 0.76%** 0.24%** 1.00
SFA
FE 0.25%** 0.24%** -0.02 -0.02 0.72%** 0.55%** 0.04 0.54%** 1.00
FEsp 0.21%*** 0.23 -0.08*** -0.07** 0.71%** 0.44%** -0.22%** 0.417%** 0.89*** 1.00

Note: *** ** and * coefficient significance at 1%,5% and 10% level.

Table 1.10: Spearman ranking correlation coefficients and significance levels



Chapter 2
Factors affecting efficiency of West Java rice

farms

The main objective of this chapter is to investigate the inverse relationship between farm
size and efficiency that has became almost a “stylized fact” in the literature on agricul-
tural development. The recent literature focused on agricultural economics in developing
countries |e.g., Binswanger, Deininger, and Feder (1995, Barrett (1996, Towsend, Kirsten,
and Vink (1998, Helfand and Levine (2004)] indicate that the size productivity relation
is more complex and caution must be used when advocating policies for agricultural de-
velopment. This analysis supports the hypothesis that the size-productivity relation is
not straightforward negative and for small farms (less than 5 hectares) there exists a
threshold size over which efficiency growth is observed with increasing farm size.
Recently, the Data Envelopment Analysis (DEA) studies |Dhungana, Nuthall, and
Nartea (2004, Sang and Hyunok (2004, Krasachat (2004, Umetsu, Lekprichkui, and
Chakravorty (2003); and Wadud and White (2000b)|, with focus on the evaluation of rice
farms’ efficiency, are motivated by the importance of rice production in the economies
of Asian countries. I focus on Indonesian rice production in the West Java area. West
Java province is the home of intensification programs and agricultural development insti-
tutions in Indonesia and the interest in this area is stressed by the fact that farmers from
Java island produced over 60% of Indonesia’s total rice output at the time of the survey.
Therefore, the aim of this chapter is to evaluate the technical efficiency of rice farms. To
do this, the DEA approach is employed for evaluation of technical and scale efficiency of

farms.
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The analysis of technical and scale efficiency is followed by the analysis of farm char-
acteristics and efficiency score relations. To evaluate these relations, a panel data version
of the Tobit model is used. The evaluation of the effect of the farm specific factors on
the efficiency scores is focused on the farm size productivity relation. Also, the effect of
the later stage of the Indonesian government intensification program, known as BIMAS,
on technical efficiency impact is investigated.

Further, analysis presented in this chapter illustrates how to test hypotheses related to
the DEA performance measures using the data set used in the previous chapter and that
was the focus of recent studies [Horrace and Schmidt (1996, Druska and Horrace (2004)]
on methodological issues related to production frontier estimation. Horrace and Schmidt
(1996) compare various stochastic frontier methods (SF) with regard to constructed con-
fidence intervals for performance score estimates and they prefer to use the SF methods
for testing hypotheses related to performance scores because the DEA does not provide
confidence intervals for performance measures. However, Simar and Wilson (2000) show
how a simple underlying model of data generating process defines a statistical model,
allowing determination of the statistical properties of the nonparametric estimators in
the multi output and multi input case.

This chapter is organized as follows. The next section reviews the history of inten-
sification program aims and rice production technology during the “Green Revolution”
period. The third section gives a review of DEA methodology used to evaluate farm’s effi-
ciency scores and Tobit estimation technique used to estimate the effects of characteristics
on the efficiency score. The fourth section presents results from calculation of technical
efficiency measures and estimation of its determinants. The last section summarizes the

results and their relations to intensification policies.

2.1 Rice farming in Indonesia

The following review is focused on the main objectives of the BIMAS intensification
program. Also, in this section factors related to technical inefficiency of rice farming are
discussed. In the data subsection, a description of analyzed data is given.

While in the 1960’s agriculture contributed 51% to Indonesian GDP and according to
Pearson et al. (1991), despite output growth of agricultural productivity the contribution
to GDP decreased to 31% by the end of the 1970’s and further to 25% by the end the
1980’s. Even though this decline of contribution to GDP, the importance of rice for
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the economy is stressed by the fact that it contributes 50% of Indonesian agriculture
production because rice is a staple food. Also, in rice growing areas it is a major source
of income for the farmers. Therefore, a critical part of the economy stabilization process
are stable and low rice prices that became goals of agriculture intensification programs.

To stabilize rice prices and increase output of domestic rice producers, the Indonesian
government heavily supported the rice farming sector by subsidizing inputs for agri-
cultural production and consumer prices of rice were held below world market prices
[Erwidodo, Sudaryanto, and Bahri 1999|. Pearson et al. (1991) illustrate this situation
by the fact that in the 1970s, the Indonesian rice price averaged 30 % below the world
market price. Due to the costs of subsidization and the importance of rice for food sup-
ply as well as threat of famine, the Indonesian government claimed self—sufficiency as a
national objective.

To meet this long term objective, the Indonesian government has been allocating a
sizable amount of its budget to the agricultural sector since the beginning of the 1970s.
These funds were used to introduce various intensification programs (e.g., BIMAS, IN-
MAS and IPM) within the last thirty years. The effects of these programs were following
typical patterns for the introduction of new technology. The early and late stages showed
small productivity growth while the most rapid growth is observed in the middle period.
This is due to low implementation of new methods in the early stages and then due to the
fact that the productivity limits of the new technology were reached in the later period
(e.g., Umetsu, Lekprichkui, and Chakravorty 2003).

Indonesia used to import 25% of all rice traded in the world market in the 1960s and
early 1970s, but exported small amounts in the late 1980s. This change, known as the
“Green Revolution” is a result of adopting new rice production techniques, modern rice
varieties and organizational changes that were introduced as a result of intensification
programs. According to Lokollo’s (2002) report, in the mid 1980s Indonesia changed
its position from a net rice importer to being self sufficient. Despite this production
growth and increase of rice production, the population growth pressure reverted the self—
sufficiency trend and in the late 1980s Indonesian production was again not sufficient to
meet domestic demand for rice and Indonesia returned to a net importer position.

The first efforts of the Indonesian government to improve rice production technology
are dated to the 1950s. These efforts included development of irrigation systems, estab-
lishment of “paddy centers” and soil conservation. The growth of rice production until

the late 1960s was driven through enlargement of rice production areas by conversion
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from sugar growing land while the rice yield stagnated at 2 tons per hectare.

Often by use of force, the new high—yielding rice varieties (HY'V), fertilizers and pes-
ticides were introduced into the production process in the beginning of intensification
programs. Also, credit programs for farmers forced them to purchase input packages,
and they had to take the prescribed package of seeds, fertilizers and pesticides. Inputs
for rice production were distributed through the village administration. The village ad-
ministration forced (by cutting down crop of those who were not growing rice with the
assistance of the army) farmers to plant rice instead of growing more profitable crops.
Moreover, this administration often decided to spray large areas with pesticides by use
of planes.

As Lokollo (2002) or Daryanto, Battese, and Fleming (2002b) review, more farmer
friendly intensification programs were introduced later, e.g., BIMAS (seeds and fertilizer,
technical know—how, credit and guaranteed markets) and INMAS (extension of BIMAS,
subsidized fertilizes and pesticides). In the late 1970s, extensions of the BIMAS program
in form of the INSUS |[in irrigated areas|, and OPSUS |inputs for farms for free accord-
ing local resource endowment| programs for groups of farmers were introduced. These
programs focused on the management of farms and planning. To promote coordination
of farmers and to capture economies of scale, another extension of the BIMAS program
was introduced in the form of the SUPRA INSUS program in the late 1980s.

In the 1990s Indonesia suffered from a deep political, economic and financial crisis.
As Erwidodo, Sudaryanto, and Bahri (1999) review, the Indonesian government was also
forced to reform its agricultural policies. This led to agricultural liberalization because
the regulatory body (National Logistic Agency, BULOG) was seen as the main source
of agricultural distortions. Liberalization included elimination of the state monopoly on
agricultural imports, introduction of international and provincial tariffs and the reduction
of trade restrictions on a number of agricultural products. Since 1998, the fertilizer
distribution monopoly was eliminated and fertilizers are traded at market prices. Further
reforms include promotion of adequate incentives to rice farmers, changes in the role of
government in marketing and food distribution and further reduction of non tariff barriers
for agricultural markets.

Recently, the main objective has not been to attain zero a import position of rice but
to adequately feed the population and reduce poverty. This goal should be achieved by
reducing distortions to the farming inputs market that result from heavy subsidization of

fertilizer and pesticide. These reforms should be followed by an increase in competition
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in the agricultural sector, which should promote more efficient use of production factors.
Erwidodo, Sudaryanto, and Bahri (1999) conclude that despite the unclear results of
the introduced agricultural reforms in the near—term, there remains a potential source of
future economic growth.

As it follows from the above intensification program review, the BIMAS program
[Bimbingan Masai or “mass guidance” intensification program| was the most important
ingredient of the rice development policy in the 1970s and its influence on productivity
increase declined in the 1980s after most farmers adopted HY Vs and were capable of
funding the production inputs from rice farming profits. According to Pearson et al.
(1991), in 1969 yield on sawah in Java was on average 2.6 tons of rice per hectare, and
until 1987 these yields had increased to about 5 tons per hectare.

The most significant factor of this increase in rice productivity in the period in 1970s
and 1980s was the spread of high—yield rice varieties. By the mid-1980s, 85% of rice
farmers used high yield variety seeds, compared with 50% in 1975. This was a result of
the promotion of HY'Vs together with subsidized fertilizers, pesticides, and credit through
the “mass guidance” intensification program. During 1970s, Indonesian farmers increased
their consumption of pesticides sevenfold and their consumption of fertilizers fourfold,
even though Indonesian farmers used only 20 25% of the amounts used by farmers in
Japan, Taiwan or South Korea; see Table 6.6 in Barker, Herdt, and Rose (1985). The
later introduced extensions of the BIMAS program continued to offer technical assistance
to farmers unfamiliar with the new cultivation techniques.

The general belief of farmers involved in the BIMAS program was that more agro-
chemical inputs (fertilizers and pesticides) will lead to even higher yields. (Gallagher)
explains that the massive use of subsidized pesticides (farmers paid only 10 to 20 % of
the world price of pesticides) led to outbreaks in rice production when more than one mil-
lion of hectares were infested by pests, e.g., insects like brown planthopper. The applied
pesticides damaged the rice ecosystems so much that beneficial predators and parasites
were destroyed; therefore, migrating pests survived without any mortality and destroyed
crops. To help reduce pesticide use, in 1989 the subsidy on pesticides was eliminated.
(Gallagher) concludes that since 1989 no outbreaks have occurred and farmers were able
to increase yields without increased pesticide use.

The aforementioned problem of heavy pesticide use is only one from a range of socio—
economic and demographic factors that determine efficiency of rice farms. Literature

on technical efficiency of rice farms [Wadud and White 2000b; Daryanto, Battese, and
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Fleming 2002b| lists factors like credit availability, farm size, weather, topography and
poor soils as the principal production constraints. Technical factors include irrigation
(often not functional in the dry season when the irrigation system is in short supply of
water), plot size and land degradation. Especially during the wet season, the quality
of roads and communication facilities are constraining the movement of inputs to the
paddies that results in crop losses. Also non physical factors like experience, age, years
of schooling, ownership structure and information availability are considered as relevant,
e.g., Parikh, Ali, and Shah (1995); Dhungana, Nuthall, and Nartea (2004); Timmer
(1971); and Dhungana, Nuthall, and Nartea (2004).

2.1.1 Data description

The data used in this chapter were previously used by Druska and Horrace (2004) and
Horrace and Schmidt (1996) in their studies on theoretical developments of methods for
stochastic frontier analysis (SFA) and in the previous chapter.

The used panel data come from an individual rice farm survey by the Indonesian
Ministry of Agriculture that begun in 1977. These farms were selected from six villages
[Wargabinangun, Lanjan, Gunungwangi, Malausma, Sukaambit, Ciwangi| in Cinamuk
River Basin area in West Java, and farms were surveyed over six growing periods (three
wet and three dry periods). These villages are a sample of heterogenous environment
with various altitudes (sea level, central area of West Java and highland) and the villages
infrastructure (both in low and highlands, where not all villages are accessible by all
weather local roads).

The sample used for analysis covers 160 farms after I removed outliers (performance
outliers and errors in data) according to yield per hectare criterion and comparison of net
and gross yield of farms. After this correction, the used data still contains farms with a
wide range of characteristics.

Table 2.1 summarizes of descriptive statistics of used inputs and outputs. Land is
considered as the most important input, and it is represented as the size of rice farms
in hectares. Approximately 90% of farms in the sample are smaller than 2 hectares.
As reported by Fredierick and Worden (1992) and Pakpahan (1992), the 1973 and 1983
agricultural census showed that about 44% percent of all farm households were either
landless or operated holdings too small (0.5 hectare) to meet more than subsistence

requirements. The census shows that average farm size in Java was 0.66 hectare, while in
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other parts of the archipelago and outer islands the farms were larger and the average size
ranged from about 1.33 to 2.71 hectares. At the same time, the average size of rice farms
in Thailand was 2.9 hectares and 8.7 hectares in the USA. Ray (1998) summarizes that
the low value of per capita land holdings is transformed into the fact that a significant
fraction of farms are owner—operated. The other contractual arrangement of land renting
in Asia that occurs frequently is sharecropping under which tenants cede to the landlord
a prescribed fraction of his crop. Ray (1998) reports that 60 % of tenanted land in
Indonesia is tenanted under the sharecropping arrangement. In the analyzed sample, one
third of farmers operate at least a part of their land under share tenancy.

Based on previous research on rice farms in Asia [e.g., Erwidodo 1990, Umetsu,
Lekprichkui, and Chakravorty 2003 and Krasachat 2004|, I use quantity of seeds, urea,
triple superphosphate (TSP) and labor to quantify the rest of the inputs that character-
ize production technology. I abstract from the role of mechanization or use of animals
as production inputs because from Barker, Herdt, and Rose’s (1985) review of mecha-
nization studies follows that almost no change occurred in cropping intensity after the
introduction of tractors for land preparation. Moreover, they report a field experiment
which compared alternative land preparation techniques and failed to show any difference
in wetland rice yields.

In the sample, the employment of HY Vs is still very low but tends to increase over the
observed periods. Close to one third of farmers used HY Vs in the first observed season,
and the use of HYVs is increased to 50% in the last period. According to statistics
presented by Lokollo (2002) this reflects the overall process of HYV employment, when
in 1974 33% of farmers employed modern rice varieties and employment was increased
to 77% of farmers by 1989. The use of the HY' Vs is one of the rice production growth
drivers, when HY Vs yielded on average approximately 1.4 times more rice than traditional
varieties in the 1970s in Asia.

Total quantity of urea and phosphate are used to measure the amount of fertilizers
applied by farmer because the use of fertilizer make a substantial contribution to the rice
yield increase. But as Barker, Herdt, and Rose’s (1985) estimations of yield response
to amount of fertilizer show, this contribution decreases with an increase in the level of
applied fertilizer.

Labor includes both family and hired labor in rice production and is measured by
man hours. Labor is used to repair dikes; raise, pull and transplant seedlings; harvest and

thresh. The rice production in Indonesia is characteristic by its very high labor intensity
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and very low level of mechanization; when in this area there was only 1 tractor available
per 200 hectares. Therefore, land preparation in wetland cultivation area on Java remains
largely unmechanized during the considered period and Pearson et al.’s (1991) estimate
based on calculations from survey data place tractor use on about 7% of total cultivated
area in 1987. Barker, Herdt, and Rose (1985) reports that in the 1970s innovative farmers
on Java used 200 250 days of labor to cultivate 1 hectare of rice. On average, Indonesian
farmers in the analyzed sample used 173 man—days per hectare, but this is still three
times more than reported for Thailand and Burma (Table 3.5 in Barker, Herdt, and Rose
1985) and approximately two times more than Umetsu, Lekprichkui, and Chakravorty
(2003) report for the Philippines. Due to the low employment of mechanization, the

considered production mix does not include tractor or animal work.

In this chapter, two definitions of a farm’s outputs are used to assess the robustness
of the results with respect to production mix specification. In the model, referred to
as one output, a farm’s output is described only by the gross observed rice production
in kilograms. Due to high labor intensity of rice harvesting farmers, usually hire share-
croppers to harvest rice. The harvesting cost is paid in terms of rough rice harvested.
Therefore, the gross rice production can be decomposed into net yield and rice used to
cover the harvest costs measured in kilograms of rice and the this model is referred to as

a two—output model.

In the second stage of analysis, the effect of the type of rice variety together with
land status (owner, sharecropper) and type of the BIMAS program participation [non-
BIMAS farmer, mixed, BIMAS farmer| is examined. In the analyzed sample, farmers
tend to drop out from the program. In the first period 66% of farmers are not taking
part in the program while in the last period 87% are not. Further, T also investigate
the influence of the price (in Rupiah per kilogram) of seeds, urea and phosphate on the
technical efficiency scores because due to low prices farmers tend to overuse cheap inputs.
Overuse of inputs may lead to a decrease in productivity rather than to an increase as
in the case of pesticide use. In this analysis, the use of chemical protection of plants is

measured by pesticide costs (in thousands of Rupiah).!

'In the late 1970s, 1000 Indonesian Rupiah had a value of approximately 2 USD.
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2.2 Methodology

In this chapter, a two stage procedure is employed to evaluate the effects of rice farm
characteristics on the efficiency of production mixes used by farms. In the first stage,
the performance of the decision making unit (DMU, farm) is calculated by the non

parametric approach based on Farrell’s (1957) measures of efficiency by Farrell (1957)
and Farrell and Fieldhouse (1962). This approach to measurement of technical efficiency

is one of the most popular approaches in recent performance analysis studies.

In Farrell’s (1957) concept, the overall efficiency (OE) is a multiplicative combination
of technical (TE) and allocative efficiency (AE), so that OE-TE*AE. Allocative efficiency
measures the extent to which an analyzed DMU produces its outputs in a proportion that
minimizes costs of production, assuming that the unit is already fully technically efficient.
Technical efficiency measures the extent to which inputs are converted to outputs relative
to the best practice and does not depend on prices of inputs and outputs as does Hanoch
and Rothschild’s (1972) non—parametric concept for testing hypotheses about production

relations.

In Farrell’s (1957) concept, the farmer’s decision process may fail in two different
ways. Economic theories usually consider the case when the marginal product of some or
all factors are not equal to their marginal costs, then the allocative decision is inefficient.
The second case considers the failure to produce the maximum possible output from a
given mix of inputs and this means that the technical decision is inefficient. In this work,
technical efficiency serves as a proxy for overall efficiency because in environment where
input and output prices are heavily distorted by various subsidization, schemes allocative

efficiency does not work as a good measure of efficiency.

In the first stage of the analysis, the technical efficiency of individual farms is evaluated
by the data envelopment approach (DEA). Since the production frontier in the DEA
approach is deterministic, the resulting efficiencies contain noise from data. Therefore,
in the second stage of this analysis, the features of the operating environment (farm
characteristics) are used to explain the computed technical efficiency scores by estimating
an efficiency model. As it follows from the DEA efficiency score definition, the DEA score
falls between the 0 and 1, making the dependent variable (efficiency score from the first
stage of analysis) a limited dependent variable. Therefore, the Tobit model is suggested
le.g., Cooper 1999; Grigorian and Manole 2002| as an appropriate model in the second

stage of analysis when considering the effects of farm’s characteristics on the a farm’s
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efficiency score.

2.3 Efficiency measurement

The DEA approach introduced in a seminal paper by Charnes, Cooper, and Rhodes
(1978) uses linear programming to pursue Farrell’s (1957) concept of technical efficiency
to evaluate performance. Charnes, Cooper, and Rhodes’s (1978) approach deals with
multiple inputs and multiple output technology by computing the maximal performance
score for each decision making unit relative to all other units in the sample. For each
unit, the unit’s performance score is calculated by comparing its production mix with an
efficient unit (located on the technology frontier) or with convex combination of different
efficient units (weighted mix of other decision making units).

The common feature of estimation techniques based on Farrell’s (1957) efficiency
definition is that the information is extracted from extreme observations in the sense
of technical efficiency, to form the best practice production frontier. This makes DEA
scores sensitive to errors in data. However, the main advantage of the DEA approach is
that it does not require the assumption of a functional form for the specification of the
input output relation.

Technical efficiency is considered in terms of the optimal combination of inputs to
achieve a given level of output (an input—orientation) or the optimal output that can be
produced given a set of inputs (an output orientation). This analysis is focused on input
oriented models, where DMU’s ability to consume the minimum input given the level of
outputs that should be attained is considered. The input orientation is more appropriate
in this case because the output level is given by the target of rice production that should
attain the self sufficient level (zero imports). The decision on the orientation of DEA
models is also supported by considering the degree of farmer’s control over variables in
DMU'’s production mix (rice farm). Rice farmers have more control over their inputs than
their outputs. Therefore, as in other agricultural productivity studies |e.g., Wadud and
White (2000b, Davidova and Latruffe (2003); and Krasachat (2004)], the input oriented
DEA model is used.

When using the DEA approach, the set of n homogenous farms described by an input

T

vector x; = (21j,...,%m;)" € RY of m inputs are employed to produce s outputs in

amounts described by vector y; = (yj,...,ys)" € Ri? Therefore, data on production

2Here, R, means the set of positive real numbers and 1 is a column vector of ones.
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process observations consist of n pairs of input output vectors (z;,y;) € R and by
aggregating these vectors, the following matrix notation is used to describe inputs X,,«,, =
(x1,...,7,) and outputs by matrix Ysu, = (Y1, -, Yn).

The DEA methodology approach developed by Charnes, Cooper, and Rhodes (1978)
and reviewed by Seiford and Thrall (1990) and by Charnes et al. (1994) show that Farrell’s
(1957) input-oriented efficiency measure for the DMU; is found as an optimal solution

to the following linear programming problem (model):

/\jvrerjlvig}#j s 21)
s.t. X\ +e; = 0;x,
yi — YA +s;=0,
p(1TX)) = ¢,
Aj,€5,8; >0,

where \; € R"; 0; € Ry; e; € RT; s; € R and ¢ is 0 for the model (CCR model) with
constant returns to scale introduced by Charnes, Cooper, and Rhodes (1978) and 1 for
the model (BCC model) with variable returns to scale by Banker, Charnes, and Cooper
(1984). For the DMU; the optimal value 9; measures the maximal equi—proportional
input reduction without altering the level of outputs. The vector A} of intensity variables
indicates participation of each considered farm in the construction of the virtual reference
farm that the DMU; is compared with.

Problem 2.1 is solved n times to generate the optimal values of the objective function
and the elements of intensity variables vector A for each farm.? In the DEA literature [e.g.,
Charnes et al. 1994; Banker, Charnes, and Cooper 1984|, the efficiency of the DMU; is
evaluated using the optimal solution (A}, 07, €}, s}) of Problem 2.1 under the assumption
of the selected returns to scale (RTS) type according to the following theorem:

Theorem 4. Efficient DMU; : The DMU; is DEA efficient if both of the following
conditions are satisfied: 1) 0: = 1; and 2) all values of slacks are zero: lTe;f =0 and

lTs; = 0. Otherwise the DMU; is inefficient.

If the DMUj is identified as inefficient according to Theorem 4, optimal values of

non—proportional slacks €}, s7 and the optimal value 9; identify the sources and levels of

3For more information on solving DEA models, see chapter “Computational aspects of DEA approach”
in Charnes et al. (1994).
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present inefficiency and the following input oriented efficiency measure by Tone (1993)

that accounts for the presence of proportional and non—proportional slacks:

1Tex 17y,
= |- g 2.2
Y ( I 1ij> 1Y\ (22

Properties of Tone’s (1993) efficiency measure guarantee that this efficiency measure

uniquely identifies the efficient DMU; when x; = 1. Further, the properties of x; (mono-
tonically increasing in values of inputs and outputs; decreasing in the relative values of
the slacks; and units’ invariancy) provide rationale for the use of this efficiency measure
to create efficiency ranking for the analyzed DMUs.

Solving the CCR version of the problem 2.1 (¢ = 0), the total technical efficiency
measure QS;(CCR) is obtained by comparing of small scale units with large scale units
and vice versa without considering the economies of scale. This may be inappropriate
for all of the farms in the sample; therefore, the BCC model (¢ = 1 in problem 2.1)
that allows for variations in the RTS is considered. The BCC model formulation allows
one to calculate the pure technical efficiency ¢3(BCC) and decompose the technical
efficiency score into pure technical efficiency and scale efficiency (SE). Evaluation of the
scale efficiency measure of the DMUj assumes calculation of ¢5(BCC) and ¢5(CCR) and
the scale efficiency measure is calculated as in the summary of SE calculation methods
by Léthgren and Tambour (1996):

SE; = M (2.3)

9;(BOC)
The value of the SE measure is interpreted in the following way: if SE; = 1 then the
DMU; is considered as a scale efficient unit and this unit shows constant returns to scale
property (CRS); if SE; < 1 then the production mix of the DMU; is not scale efficient.

Scale inefficiencies arise because of the presence of either decreasing (DRS) or increas-
ing (IRS) returns to scale. As largely outlined in the DEA literature [e.g. Fére and
Grosskopf 1994; Zhu and Shen 1995; and Lothgren and Tambour 1996, returns to scale
characterize locally the production frontier so that they can be solely computed with
respect to originally efficient DMUs or projections (equi-proportional inputs reduction)
of inefficient DMUs belonging to the production possibility set.

Following the Lothgren and Tambour’s (1996) review of identification of the RTS type

procedures, the method of the sum of the intensity variables is employed. This method
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originates from Banker, Charnes, and Cooper’s (1984) analysis of the CCR model by
Charnes, Cooper, and Rhodes (1978). The ability to determine the RTS type of the
DMU by Banker, Charnes, and Cooper’s (1984) method was later questioned by Fire
and Grosskopf (1994) and an improved method of sum of the intensity variables is given,

as in Zhu and Shen (1995), by the following theorem:

Theorem 5. Sum of intensity variables method: For the specific DMU;, let us define
SE; = %. We have SE; = 1 iff the DMU; ezhibits CRS; otherwise if SE; < 1, then
YA < 1 iff the DMU; exhibits IRS; Y N5 > 1 iff the DMU; exhibits DRS.

An important part of the DEA is the analysis of efficiency score sensitivity with respect
to model specifications. In this chapter, the comparison of the stochastic frontier method
with the DEA and the stochastic DEA approach presented in the previous chapter is
utilized. For analysis of efficiency determinants, the additive formulation of production
function is used because this formulation (piecewise linear envelopment surface) is more
consistent (in terms of rank correlation) with stochastic frontier analysis than the model
with multiplicative formulation (piecewise Cobb—Douglas envelopment surface) as shown
in the previous chapter. Further, the robustness of calculated efficiency rankings is an-
alyzed with respect to model specification by use of two different output specifications.
The consistency of efficiency ranking is evaluated by using a rank correlation coefficient by
Spearman (1904) and the hypothesis of rank independence is tested. Spearman’s (1904)
rank correlation coefficient is used because its important feature is lower sensitivity to

extreme values when compared with the standard correlation coefficient.*

2.4 Tobit model

The goal of the second stage is to explore relationships between the technical efficiency
measure and other relevant variables such as size, rice variety used, BIMAS participation
or intensity of factor employment. Some of the considered factors are neither inputs or
outputs of the production process, but rather circumstances faced by decision makers,
e.g., wet growing period, prices of inputs or location of paddy.

The used two stage procedure originates from Timmer’s (1971) idea for the expla-

nation of aggregated (at state level) technical efficiency of individual farmers. Kumar

4For implementation details of Spearman’s (1904) rank correlation coefficient, see Stata Corporation
(2003).
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and Russell (2002) used this procedure to regress the change in efficiency against the
output per worker to show that output per worker is positively related with the change
in the technology index constructed by using the DEA. Further, Cooper (1999) argues
that the second stage regression is useful for checking the consistency of the DEA results
and identification of explanatory variables. Moreover, as Fried, Schmidt, and Yaisawarng
(1999) summarize, an advantage of the two-stage approach is that the influence of the
external variables on the production process can be tested in terms of both sign and
significance. However, they point out that the disadvantage is that the second stage re-
gression ignores the information contained in the slacks and surpluses and this may bias
the parameter estimates and give misleading conclusions regarding the impact of each
external variable on efficiency. Therefore, they proposed a four stage process to correct
the measure of technical efficiency for the presence of slacks. Fried et al. (2002) present
an improved version of Fried, Schmidt, and Yaisawarng’s (1999) technique for incorpo-
rating environmental effects and statistical noise into a producer performance evaluation
based on data envelopment analysis (DEA) where the slacks are decomposed to a part
attributable to environmental effects, a part attributable to managerial inefficiency and

to a part attributable to statistical noise.

Let us assume that the efficiency of farms could be presented, in a simplified setting
suggested by many studies |e.g., Parikh, Ali, and Shah 1995; Hallam and Machado 1996;
Llewelyn and Williams 1996; Shafiq and Rehman 2000; and Grigorian and Manole 2002]
by the following function:

Xjt = E(Ejt, Pir, Xy, €j),

where ;; is the measure of farm j efficiency in period ¢, Fj; is a vector of farm j specific
variables, Pj; is a vector of economic factors, X; is a vector of period ¢ external factors that
are likely to affect the efficiency of farm j; [3; is a vector of parameters to be estimated

and ¢; is the part attributable to statistical noise.

The DEA approach provides efficiency measure x;; with distribution bounded between
1 and 0. Alternatively, the efficiency scores are censored at 0.9 when assuming that there
is not too much difference between fully efficient farms and over 90% efficient farms. In
this case the ordinary least squares method can not be applied because the expected errors
will not equal zero, and so standard regression will provide a biased estimate. Therefore,

the limited dependent variable approach is preferred and the Tobit model is applied.

Following Kmenta (1990) and Wooldridge (2002), the model can be written in follow-
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ing way:
Xji = dTF+3TP+~TX + Ejt, (2.4)

where X7, is a latent variable that refers to the technical efficiency of rice farms and x are
explanatory variables. However, due to nature of the efficiency measure, the following is

observed:

Xt = 0 if Xt S 0 (25)
Xjt = X;t if 0< Xt <1

To estimate the effects of farm characteristics on the technical efficiency score, the
Tobit and random effect Tobit models are used. The random effect Tobit model cap-
tures individual-specific effects, assuming no correlation between the individual-specific
effects and explanatory variables. The random effect Tobit model for efficiency scores is

considered in the following form:
Xji = F+B"P+y"X +v+e

assuming that y;; is censored at 0 and 1 (0.9 respectively). In here random effects, v;, are
iid N(0,02) and €j; are iid N(0,0?) independently of v;. Assessed models are estimated

using the maximum likelihood estimation procedures implemented in STATA.

Here, the fixed—effect Tobit model is not used to model the efficiency score, as there
does not exist a sufficient statistic that allows the fixed effect to be conditioned out of
the likelihood. Unconditional fixed—effect Tobit models may be fitted by using the Tobit
model with an individual indicator. However, these estimates are biased. According
to Greene (2004), the variance estimator (crucial parameter for inference and analysis
purposes) in the Tobit model is affected specially in samples with a small number of time

periods observed, as in the case of this analysis.

However, it is possible to control for correlation with unobserved heterogeneity because
Wooldridge (2002) suggests that in this case one should utilize an assumption presented
by Mundlak (1978). Mundlak (1978) assumed that unobserved heterogeneity can be

modelled as a function of the means of included regressors. So, the following relation
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is assumed: v; = dTFj + 5T13] + WTX'J- + 0;. Here, ¢; is assumed to be a part of a
farm’s unobserved heterogeneity such that it is uncorrelated with regressors F, P, X and
F’j, Pj, )_(j, where F’j, Pj, )_(j, are vectors of farm j means for individual regressors over the
observed growing periods. After, the additional set of mean regressors is included, the

efficiency equation can be estimated by the random—effect Tobit approach.

2.5 Technical efficiency

As mentioned in previous sections, the technical efficiency and pure technical efficiency
scores are evaluated by use of the input—oriented DEA models via solving Problem 2.1 for
two different output specifications under the assumption of a period specific production
frontier. The model with the output specified by gross rice production is referred to
as the one output model and the model with harvest cost and net rice used to specify
production output is referred to as the two—outputs model. Further, for the two—outputs
specification, efficiency scores were calculated under the assumption of the time invariant
production frontier (pooled sample, referred to as the pooled DEA).

The DEA estimates of technical efficiency are summarized in Table 2.2. The differ-
ences in efficiency score (x) and technical efficiency score (#) result from the presence of
positive non—proportional slacks (e, s). From comparison of x and 6 values, it can be
observed that these non proportional slacks are less important than equi proportional
reduction of inputs (6).

From comparison of the reported technical efficiency scores with Krasachat’s (2004)
results for Thai rice farms, it can be concluded that West Javan and Thai rice farms
are operating approximately at the same level of relative efficiency. Krasachat (2004)
reports an average technical efficiency score of 0.74 for Thai farms while in the analyzed
sample of West Javan, farms the technical efficiency ranges from 0.60 to 0.77 (under
the assumption of the time varying production possibility frontier). Also, the technical
efficiency scores of West Javan rice farms are lower than technical efficiency scores of rice
farm in Bangladesh reported by Wadud and White (2000b), where the average technical
efficiency ranges from 0.86 to 0.91 and standard deviation ranges from 0.10 to 0.12.

With awareness of the fact that Llewelyn and Williams (1996) used an output oriented
measure, these results can be liken to results presented in Llewelyn and Williams’s (1996)
study on multi product food crop producing farms (58.1% of their production can be at-

tributed to rice) in East Java during the 1994 growing season. Llewelyn and Williams
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(1996) reports farms’ technical efficiency in the range from 0.95 to 0.98 with standard
deviation ranging from 0.019 to 0.043. Also, the histograms of computed technical effi-
ciency scores plotted in Figure 2.1 and 2.2 illustrate the observed high degree of diversity
in farms’ performance. In both figures, the typical pattern of the DEA efficiency measures
characterized by a peak at one is observed. From a comparison of standard deviation
values, it follows that productivity performance of West Java rice farms was much more
heterogenous than in other countries at that time and in East Java in early 1990s. There-
fore, it is appropriate to conjecture that the low average technical efficiency performance
of West Java farms is caused by high heterogeneity of rice farming practices in Indonesia
in the late 1970s.

Assessing the scale efficiency results reported in Table 2.2, one can conclude that
scale inefficiency is not the major source of Indonesian rice farm inefficiency. The average
scale efficiency value of 0.90 is comparable to scale efficiency scores of farms in Thailand
[0.96 reported by Krasachat (2004)| and Bangladesh [0.91 reported by Wadud and White
(2000b)|. The international comparison of the RTS identification is presented Table 2.3.
These results shows that most of the farms in West Java and Bangladesh operate in the
production possibility region with decreasing returns to scale property. While in the case
of Thailand and East Java, most of the farms are operating in either the constant or
increasing returns to scale region of their production possibility set.

From these results it follows that increases in inputs intensity leads to less than a
proportional increases in the outputs because farmers were not using the proper mix of
inputs that could generate constant or increasing returns to scale of operations. Technical
efficiency results suggest that at the time of the survey, it was more beneficial to drive
the efficiency improvements through the employment of “best practise” technology than
trying to exploit the scale of operations. Because the size of operations considered by
government programs, further analysis examines the size of the operations—productivity
relation in detail in the following section.

The consistency of DEA results with respect to specification of the input—output re-
lation is evaluated by comparing efficiency rankings. To compare SFA and DEA results,
the DEA rank is constructed using the average efficiency score computed over the con-
sidered growing periods. Table 2.4 reports rank correlation coefficients for models with
a time varying production frontier that ranges from 0.73 to 0.97. Also, high values of
ranking correlation coefficients (0.65 0.93) under the assumption of a common frontier

for all periods reported in Table 2.5 support the hypothesis of robust input—output spec-
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ifications. The box plots in Figure 2.3 show development of technical and pure technical
efficiency over the observed growing periods. These box plots show that there no signifi-
cant technological change over the observed periods. This result is also supported by an
analysis of the Malmquist productivity index of technological change, where the index of
geometric average technology change is 0.978 and the average index of efficiency change
is 1.007 (the unity value of index means no change). Further, the DEA rankings are
compared with the SFA rankings estimated by Druska and Horrace (2004). According to
the literature on parametric and non parametric methods comparison, e.g., Wadud and
White (2000b), a high level of DEA-SFA ranking consistency is observed. Because in
each case the majority of the farms are scale inefficient and operating in the decreasing
returns to scale region, the following analysis is focused on the efficiency scores obtained

from two output models under variable returns to scale.

2.6 Factors associated with efficiency

Using the efficiency scores from the model with a time varying production frontier and
assessing characteristics of inefficient and efficient farms summarized in Table 2.6, it
seems that larger farm size, lower usage of fertilizers and higher pesticides costs tend to
be associated with the technical efficiency of farms. To provide a closer look on shifts in
distribution of efficiency, box plots in Figure 2.4 illustrate the relation of mean values of
efficiency score (under CRS and VRS assumption) according to categories of ownership,
variety type and BIMAS participation. Even partial application of high yielding varieties
shifts farms towards higher efficiency. Mixing types of land status is reflected in a shift
towards less efficiency. This may reflect frictions originating from heterogenous ownership
structures of the land. An striking distributional shift occurs when participation in
an intensification program with efficiency is considered. The downward shift may be
attributed to the fact that farmers were receiving the same package of inputs that were
not efficient production mixes for all of them due to the heterogeneity of conditions.
Also, participating farmers due to easy availability of inputs [e.g., pesticides| may tend
to overuse these inputs.

For a more detailed analysis of factors related to technical efficiency, a Tobit model
is used. To do this the efficiency is tracked over time under a time variant and invariant
production possibility frontier. In the case of the time varying frontier, the efficiency

of farm may not be directly compared with the efficiency of another farm in different
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time (including itself) because the farm is in each period compared to different “best
practice” farms. However, this analysis is beneficial for assessing the relative performance
improvements. When a pooled production frontier is used, the efficiency of a farm may
be directly compared and tracked over time because the production possibility frontier is
constructed by use of the same best performers in all periods. Using this approach, the
downward efficiency shift is observed in the case when all DMUs in some period faced
an unfavorable production condition, e.g., the third and fourth period in Figure 2.3. To
control for these unfavorable conditions, time dummies (t3, t4) are introduced.

In the recent literature on agricultural development |Pearson et al. (1991, Towsend,
Kirsten, and Vink (1998, Llewelyn and Williams (1996, Davidova and Latruffe (2003); and
Helfand and Levine (2004)|, the most common variables used to asses the factors associ-
ated with farms’ efficiency cover characteristics like farm size, age of farmers, schooling of
the farmers and employment level of machinery. The Tobit regression defined by equation
2.4 is estimated for all combinations of frontier types and corrections of efficiency scores
(censoring bound).

The factors analyzed can be divided into three groups: farm specific variables (in-
tensity of inputs — labor, fertilizers, seeds and farm size; organizational structure — land
status, BIMAS participation, rice variety used), economic factors (prices of some inputs)
and environmental factors (wet—dry period, village). Due to the assumption of homo-
geneity of inputs in all six villages (particulary land quality, sea level), village dummies
are include into the models to control for differences across villages.

Table 2.8 reports the results of the Tobit and random—effect Tobit estimations and
Table 2.9 reports the results of the random effect estimation when Mundlak’s (1978)
correction is applied. In all estimated models, only significant the effect of geographical
location is found for Ciwangi village. This reflects the fact that Ciwangi village is located
in the center part of West Java island with an average altitude of 375 meters, while the
rest of the villages are located along the oast (10 15 meters above sea level) or in the
central area of island (600-1000 meters above sea level). The difference between the DEA
approach and the stochastic frontier analysis is illustrated by low significance of location
effect when DEA is used, while Druska and Horrace (2004) report that SFA scores show
significant spatial effect.

All the coefficients related to the intensity of input use per hectare have the expected
sign, and high consumption of input per unit of size may indicate wastage of the con-

sidered input. Sizes of the effects indicate possible substitutability between labor and
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biochemical inputs (fertilizers and seeds) when searching for efficiency improvements as
mentioned by Barker, Herdt, and Rose (1985) in the chapter on trends in labor use. They
also mention that experiments on proper timing and placement of fertilizer suggest that
fertilizer inputs can be reduced as much as one third without lowering yields.

As it follows from the estimation results, the effect of the wet season is not clear
because several opposing effects occur. It would be natural to expect that a significant
positive effect of the wet season is due to water demanding nature of rice. The conjecture
is that the positive effect of wet weather is ruled out by the facts that most of the areas
lack a reliable transportation system (paved roads) during the wet season and farmers
are not capable of delivering proper care to paddies. Also, flooding and lodging can affect
yields when severe weather occurs, as mentioned by Pearson et al. (1991).

The prevailing positive but not significant effect of a shift towards land tenancy can
be explained by Timmer’s (1971) reasoning that ownership status might be associated
with the extra effort and motivation of tenant farmers who are attempting to save enough
capital to buy their own land. However, Pearson et al. (1991) mention that sharecropping
contracts were often arranged so that the benefits of higher returns to land go to owners
rather than tenants and this discouraged tenants from increasing their productivity. Also,
Umetsu, Lekprichkui, and Chakravorty (2003) and Helfand and Levine (2004) identify a
similar negative relationship between landlord share and efficiency; therefore, to assess
the effect of land ownership in West Java rice farming, more details on contract arrange-
ment are needed. From the view of principal agent theories, the trade off between the
insurance and incentive aspects in contracts is the most crucial information. And the
simple principal agent models illustrate how sharecropping arises when landlords are un-
sure about the true ability and can not observe the productivity of their tenants, as in
Ray (1998).

Further, the estimation result suggest that a significant positive performance gain
comes from employing modern high yielding varieties. This result is also supported by
the observed rapid and widespread replacement of traditional seed varieties with short-
duration HYVs during the period 1969 1980. The use of HYVs has transformed the
nature of wetland rice agriculture in Indonesia from one of low yields, nonuse of purchased
inputs, and single annual rice crops to one of high yields, high levels of purchased inputs,
and multiple rice crops. So, self-sufficiency was attained in the beginning of the 1980s.

As mentioned in the review, the BIMAS program was an important ingredient of

rice development policy in the beginning of the 1970s, while its importance declined by
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the 1980s after most farmers adopted HYVs and were capable of funding inputs from
rice profits. The negative effect of BIMAS participation it not so surprising because the
intensification programs provided farmers with a technology package that included input
recommendations; subsidized credit, fertilizer and pesticides in prescribed composition.’
Also, this result supports the hypothesis that in the later period of the intensification
program the positive effects from introducing HY Vs reached their limits. Further, because
choice of ownership type, HYV employment and program participation is suspected for
possible endogeneity, Table 2.7 reports the results of exogeneity test statistics by Smith
and Blundell (1986). In all cases, we accepted exogeneity of explanatory variables.

Assessing the positive coefficients of seed and urea price, it can be concluded that an
increase in these factor prices has a significant impact on increasing efficiency, which can
support the thesis that the goal of technology improvement is to reduce costly inputs. The
negative effect of fertilizer price on farm efficiency (attaining the given yield level) is the
result of low fertilizer use. Barker, Herdt, and Rose (1985) document decreasing returns
to scale in yield with respect to fertilizer use. Together with the fact that farmers in
Indonesia were applying very low levels of fertilizers compared to industrialized countries’
farmers |Japan, South Korea|, this indicates that the negative effect of reduced fertilizer
use prevails over any positive effect originating from more efficient use of fertilizers.

The opposite effect is observed in the case of pesticides costs (thousands of rupiah
per hectare) because pesticides are used to prevent losses while the initial application of
fertilizers always increases crop yield. Also as mentioned in the section on rice farming,
low prices of pesticides lead to overuse, which has negative effects on the yield due to
environment degradation. Generalizations about the technical efficiency response to the
use of pesticide treatment are difficult to make because of the high number of interacting
factors |weather, type of pests, variety resistance].

Farm size in Indonesia has been assessed since the 1960s (Basic Agrarian Law), since
this law was imposed, the average farm size has tended to increase. Farm size is an
important production factor because it affects the way of farming. Farm size in Java
was much smaller (on average 0.439 hectare in the analyzed sample) than on the outer
islands. Pakpahan (1992) reports, using the Agricultural census that the average size of
land holding was 1.77 ha in 1973 and 1.78 ha in 1983. This difference provides rationale

for the limits imposed by Basic Agrarian Law, which sets the minimum and maximum

For more details on this intensification package contents, see e.g., Pearson et al. (1991, Barker, Herdt,
and Rose (1985); and Lokollo (2002).
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size of 2 and 20 ha, respectively.

Because of the focus on the relation of farm size to efficiency, the quadratic term was
added, as in Wadud and White (2000b), to capture non-linearities that were usually not
explored in works that identified a negative relationship between farm size and produc-
tivity. The negative effect of size on productivity is consistent with the fact that land is
considered as an input, and with empirical findings for Asian countries summarized by
Ray (1998). Assessing the positive sign for the quadratic term (Size?), it can be concluded
that there exists a threshold size and farms larger than this threshold show a positive
relationship between farm size and productivity. These thresholds are calculated using
calculus and for a time varying frontier range 1.26 1.44 ha, 1.71 1.88 ha when Mund-
lak’s correction is used, and the average threshold size is 1.60 ha. For the time invariant
frontier, the average threshold size is 1.67 ha, while thresholds range from 1.45 to 1.62
ha and 1.68-1.94 ha for estimations with Mundlak’s correction. The computed threshold
sizes are very similar to the size of rice farms in other parts of Indonesia (outer islands)
or East Asia and this result can be used to advocate the intensification programs and
legal restrictions with aims to increase the size of rice farms.

Further, these results coincide with Wadud and White’s (2000b) findings that, on
average, farmers with lower land fragmentation (greater plot size) more likely have the
opportunity to apply new technologies such as tractors or irrigation, resulting in the
higher efficiency of their farms. Also, Pearson et al. (1991) and Ray (1998) note that
especially the small size of plots and the impracticality of using tractors in hilly areas,
are the main constraints on mechanization of land preparation. Under the objective of
increasing farm size even pooling of smaller farms may be beneficial because with an
increase in farm size, employment of mechanization will allow an increased production of
rice and small landowners would lend their plots to larger landowners because the returns
from land renting will increase. However, constraints on greater tractor use (especially,
on the outer islands) are probably more varied due to topographic limitations and greater
difficulty in obtaining and servicing tractors.

Analyzing the time evolution of efficiency scores summarized in Table 2.8, the sign of
the estimated coefficient indicates that the relative technical efficiency was only slightly
increasing during the end of the 1970s beginning of the 1980s. When the time evolution of
efficiency scores under time varying frontier is considered this observation indicates that
adoption of efficient techniques is not the major factor for increase in farms’s efficiency

and it supports the view that the increase in rice production was driven by expansion of
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the cultivated area. Assessing these results, it is observed that there exist periods where
the significant decrease in efficiency is observed which suggests that positive productivity
effects of the green revolution were not fully realized for some years after initial increase
in productivity. These results are consistent with other studies of technological change in
less developed countries that indicated declining agricultural productivity. For example,
Fulginiti and Perrin (1997) confirmed findings that on average, agricultural productivity
have declined in these countries, especially during 1961-1973, but also during 1974-1985.
His findings reveal that the declining productivity during 1974 1985 period character-
ized even those countries such as Pakistan and the Philippines, where green-revolution
varieties of wheat and rice became widely adopted since the 1960s.

Finally, the estimations results reveal consistently significant positive relationship
between the share of family labor and efficiency measure in all estimated models. As
found by Dhungana, Nuthall, and Nartea (2004) this tend to negate the belief that
farmers in developing countries are operating inefficiently due to excessive use of family
labor. As it was mentioned in the data description section, the timing for delivering
the proper care to rice plants matters. Therefore, the positive relation between share of
family labor and efficiency may be explained as the result of seasonal labor scarcity when
the farmers with larger families are able to deliver their family labor at the time when
the demand for labor culminates.

Ray (1998) argues that in the world with unemployment that for somebody who hires
labor the opportunity costs of additional unit of labor are still at market wage rate, while
for family labor the opportunity costs are lower because of possibility of unemployment.
He argues that this lead to higher employment of family labor by farmers with small size
plot. Therefore, the observed positive relation of share of family labor to efficiency is not
surprising and due to the substitutability of inputs the small size farmers deliver more
care to the plants are able to increase the efficiency of other production factors without

increasing the intensity of use of these factors.

2.7 Conclusion

In this chapter, I analyze performance of West Java rice farms during the late periods
lend of 1970’s — beginning of 1980’s| of intensification program known as BIMAS. The
applied non parametric approach is more suitable to analyze production processes in

developing countries where the availability of data is limited and production technologies
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are less understood. The analysis of technical efficiency scores reveals that farmers could
benefit from adoption of the best practice methods of production because the results
indicate a wide differences in efficiency across farms. On average, the analyzed farms
were relatively inefficient with potential for reducing their inputs from 23 to 42 % to
grow the same amount of rice. Decomposing the technical efficiency into pure technical
efficiency and scale efficiency it can be concluded that the majority of farms operate at
or close to full scale efficiency. So, farmers that are operating technically inefficiently are
doing so because of employment of technically inefficient production mixes rather than
the size of their operations. Further, up to 77% of scale inefficient farms shows decreasing
returns to scale.

The second stage analysis of the factors associated with observed technical efficiency
score indicates what aspects of the considered rice farms could be targeted in order to
improve farm efficiency. The employment of modern varieties had a positive and signif-
icant effect on the rice farms performance but the time pattern of productivity suggest
that during the considered period the yield potential of introduced modern varieties was
exhausted.

The surprising result is that the participation in intensification program did not pro-
vided significantly positive effects on employment of the best practice farming technolo-
gies. Similarly as in Daryanto, Battese, and Fleming (2002b), the predominance of nega-
tive relationships between technical efficiency and participation in intensification program
suggest that the program has often failed to increase the technical efficiency of rice farms
in West Java. The main assumption of the intensification program (BIMAS) approach
was that small scale farmer productivity could be raised if they had better access to
certain inputs and used them according to a set of prescribed instructions but the fac-
tors which affects the decision on factors intensities differs significantly among farmers.
To be successful, future intensification programs should recognize these differences and
be personalized to accommodate them. For personalization the detailed data on farmer
characteristics (education, age and family size of farmers); infrastructure of villages (ir-
rigation, types of roads); and mechanization used (water pumps, tractors or buffalos)
should be analyzed for effects on technical efficiency.

The main result of the size efficiency relation analysis suggests that it is misleading
to generalize the inverse relationship between farm size and productivity as it is noted
in recent agricultural studies, e.g. Towsend, Kirsten, and Vink (1998) and Helfand and

Levine (2004). The non-linearity in this relation is identified and it allows for calculation
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of threshold size over which the size efficiency relation turns to be positive. The calculated
threshold size coincides with average sizes of rice farms on the other Indonesian islands
and in other Asian countries. Assessing this fact, the increase in farms size (pooling
plots) looks beneficial for further increase in production of rice. Also, when the plot sizes
will be increased the production of rice can be mechanized and this can induce further
growth of rice production. When farm size increase is considered, policy makers should
be aware of decreasing returns to scale because for the majority of the West Java farms
the increase in farms size without change in the relative input levels will lead to the
decrease in the technical efficiency. Therefore, the assessment of yields increase to attain
self sufficiency in rice production should distinguish between enlarging farm size, and the
efforts to increase technical efficiency of the small size farms.

A suggestion that can be drawn from the presented analysis is that the future inten-
sification programs have to take into account the capacity of farmers for applying the
available technology more efficiently. Therefore, the policies aimed to spread the effi-
cient technology should improve the access to personalized intensification programs, or
by increasing the educational levels of farmers, as many studies on farming performance
suggest, e.g. Llewelyn and Williams (1996), Dawson and Lingard (1991) and Dhungana,
Nuthall, and Nartea (2004).

2.A Figures and Tables

Variables H Farms Periods Mean  Std. Dev.  Min Max
Inputs

Land (hectares) 160 6 0.439 0.560  0.014 5.322
Seed (kg) 160 6 18.470 46.681  1.000  1250.000
Urea (kg) 160 6 96.525 130.393  1.000  1250.000
Phosphate (kg) 160 6 33.807 48.348  0.000 700.000
Labor (hours) 160 6 394.224 496.016 17.000  4774.000
Outputs

Gross yield (kg) 160 6 1414.205  1966.252 42.000 20960.000
Net Yield (kg) 160 6 1248.825  1675.924 42.000 17610.000
Harvest costs (kg) 160 6 165.380 302.433  0.000  3350.000

Table 2.1: Input Output summary
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Model H Obs. Mean Std.Dev. Min Max
One-output x-CCR 960 0.6016 0.2158 0.1869 1
0-CCR 960 0.6750 0.1956 0.2553 1
x BCC 960 0.6777 0.2149 0.2056 1
0 BCC 960 0.7457 0.1922 0.3227 1
Scale efficiency 960 0.9074 0.1190 0.4029 1
Two—outputs
x-CCR 960 0.6199 0.2221 0.1612 1
0 CCR 960 0.7069 0.1942 0.2795 1
x BCC 960 0.7016 0.2216 0.2065 1
0-BCC 960 0.7757 0.1884 0.3294 1
Scale efficiency 960 0.9126 0.1123 0.4493 1
Two—outputs — pooled frontier
x CCR 960 0.5155 0.2024 0.1647 1
0 CCR 960 0.5866 0.1948 0.2116 1
x BCC 960 0.5913 0.2012 0.2309 1
0-BCC 960 0.6533 0.1988 0.2591 1
Scale efficiency 960 0.9003 0.1183 0.3618 1

Table 2.2: Efficiency scores (x) and technical efficiency () summary statistics

Model DRS CRS IRS
One—output 66% 12% 22%
Two—outputs 62% 16% 22%
Two outputs pooled frontier 7% 5% 18%
Thailand* 19% 32% 49%
Bangladesh** 63% 16% 21%
* From Krasachat (2004), ** From Wadud and White (2000b)
Table 2.3: Returns to scale summary
Rankings One output Two outputs SFA
CCR BCC CCR BCC
One output
CCR 1.0000
BCC 0.7377 1.0000
Two outputs
CCR 0.9714 0.7318 1.0000
BCC 0.7520 0.9726 0.7632 1.0000
SFA 0.8521 0.6080 0.8248 0.6114 1.0000

Note: In all cases the hypothesis of rank independence was rejected at the 1% significance level.

Table 2.4: Spearman rank correlation coefficients

68



Rankings Two—outputs Two—outputs — pooled SFA
CCR BCC CCR BCC
Two outputs
CCR 1.0000
BCC 0.7377  1.0000
Two—outputs — pooled frontier
CCR 0.9342 0.6195 1.0000
BCC 0.7736  0.9235 0.7300  1.0000
SFA 0.8521 0.6080 0.8248 0.6114 1.0000
Note: In all cases the hypothesis of rank independence was rejected at the 1% significance level.
Table 2.5: Spearman rank correlation coefficients

Inefficient production mixes
Variable Obs Mean Std. Dev. Min Max
Size 711 0.3977 0.4029 0.0360 3.6430
Land status 711 1.3713 0.6097 1 3
Variety 711 1.5218 0.8503 1 3
BIMAS 711 1.3417 0.6301 1 3
Seed per ha 711 43.5229 38.9072 13.0841 857.1429
Urea per ha 711 237.8890 107.3938 6.9930 712.2507
Phosphate per ha 711 98.1660 70.1368 0.0000 418.9944
Labor per ha 711 1060.4180 463.1572 314.0625 3414.6340
Family labor ratio 711 0.5122 0.2701 0.0006 1.0000
Yield per ha 711 3048.3050 1064.2220 630.6667 6305.7320
Pesticides costs 711 459.2194 1755.3570 0.0000 24000

Efficient production mixes
Variable Obs Mean Std. Dev. Min Max
Size 249 0.5599 0.8551 0.0140 5.3220
Land status 249 1.3574 0.6874 1 3
Variety 249 1.8313 0.9649 1 3
BIMAS 249 1.2610 0.5536 1 3
Seed per ha 249 43.6059 33.9238 4 350.1401
Urea per ha 249 206.9264 131.4522 0.8748 682.7586
Phosphate per ha 249 70.0780 76.5883 0.0000 375.9398
Labor per ha 249 990.7551 516.3687 108.0000 2966.6670
Family labor ratio 249 0.5854 0.3193 0.0002 1.0000
Yield per ha 249 3884.5560 1467.2710 400.0000 7910.3450
Pesticides costs 249 1017.4500 5113.0330 0.0000 62600

Table 2.6: Efficient vs. inefficient production mixes
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Model variable H Test stat. P-value exogeneity

Probit variety 0.1765 0.6744 accepted
land status 1.0751 0.2998 accepted
BIMAS 1.0573 0.3038 accepted
Tobit variety 1.4556 0.2279 accepted
land status 0.8322 0.3619 accepted
BIMAS 2.4549 0.1175 accepted

Table 2.7: Smith-Blundell test of exogeneity for time invariant frontier
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Tobit Panel data Tobit Tobit pooled Panel data Tobit pooled
Variable H corrected original corrected original corrected original corrected original
Land status 0.01485 0.00921 0.0206 0.01608 0.01244 0.01196 0.01412 0.01365
[0.01241] [0.01422] [0.01339] [0.01534] [0.00928] [0.01015] [0.00997] [0.01088]
Variety type 0.04907*** 0.05383%** 0.04961*** 0.05385%** 0.04119%** 0.04396*** 0.04133%** 0.04390***
[0.01376] [0.01586] [0.01357] [0.01563] [0.01044] [0.01141] [0.01030] [0.01128]
BIMAS -0.03128** -0.03658** -0.02545* -0.03085* -0.02738*** -0.03247*** -0.02453** -0.02984**
[0.01353] [0.01558] [0.01432] [0.01647] [0.01032] [0.01130] [0.01088] [0.01190]
Wet period -0.0214 -0.01345 -0.02154 -0.01315 0.00692 0.00714 0.00619 0.00627
[0.02026] [0.02334] [0.01907] [0.02201] [0.01541] [0.01685] [0.01458] [0.01600]
Size -0.19627*** -0.20257*** -0.18978*** -0.19922%** -0.14774*** -0.14682%** -0.14945%** -0.15032%**
[0.04573] [0.05246] [0.04893] [0.05600] [0.03248] [0.03497] [0.03421] [0.03682]
Size? 0.07438%** 0.08065*** 0.06603%** 0.07244%** 0.04858%** 0.05063%** 0.04611%*** 0.04854***
[0.01449] [0.01650] [0.01506] [0.01710] [0.00931] [0.00986] [0.00947] [0.01005]
Fam. lab/Tot. lab. 0.14400%** 0.17678%** 0.14518%** 0.18010*** 0.08898*** 0.09789%** 0.08333%** 0.09287***
[0.03278] [0.03769] [0.03505] [0.04028] [0.02466] [0.02694] [0.02630] [0.02868]
Seed per ha. -0.0003 -0.0003 -0.00037* -0.00038%* -0.00033** -0.00035** -0.00036** -0.00038**
[0.00020] [0.00023] [0.00019] [0.00022] [0.00015] [0.00017] [0.00015] [0.00016]
Urea per ha. -0.00024*** -0.00027*** -0.00031*** -0.00034*** -0.00027*** -0.00029*** -0.00031*** -0.00033***
[0.00008] [0.00009] [0.00008] [0.00009] [0.00006] [0.00006] [0.00006] [0.00007]
Phosphate per ha. -0.00037*** -0.00045*** -0.00027** -0.00034** -0.00023** -0.00025** -0.00019* -0.00021*
[0.00013] [0.00015] [0.00013] [0.00015] [0.00010] [0.00011] [0.00010] [0.00011]
Labor per ha. -0.00009*** -0.00009*** -0.00009*** -0.00009*** -0.00009*** -0.00009*** -0.00009*** -0.00009***
[0.00002] [0.00002] [0.00002] [0.00002] [0.00001] [0.00001] [0.00001] [0.00001]
Phosphate price -0.01215%** -0.01411%** -0.01216%** -0.01429%** -0.01151%** -0.01251%** -0.01151%** -0.01262%**
[0.00316] [0.00366] [0.00312] [0.00361] [0.00244] [0.00268] [0.00241] [0.00264]
Seed price -0.00004 -0.00009 0.00005 0.00001 -0.00009 -0.00015 -0.00005 -0.00011
[0.00020] [0.00023] [0.00020] [0.00023] [0.00015] [0.00017] [0.00015] [0.00017]
Urea price 0.00740** 0.00844** 0.00800** 0.00933** 0.00565** 0.00607** 0.00616** 0.00672%**
[0.00329] [0.00380] [0.00324] [0.00375] [0.00254] [0.00278] [0.00250] [0.00275]
Pesticide cost 0.00520%** 0.00588*** 0.00462** 0.00524** 0.00510%** 0.00588*** 0.00511%** 0.00595%**
[0.00195] [0.00225] [0.00189] [0.00218] [0.00149] [0.00163] [0.00144] [0.00158]
v2dum 0.00671 -0.00911 0.00724 -0.00703 0.01767 0.02275 0.01808 0.02348
[0.03278] [0.03765] [0.04147] [0.04743] [0.02450] [0.02671] [0.03059] [0.03299]
v3dum -0.01483 -0.03266 -0.02021 -0.03891 -0.02377 -0.03058 -0.02591 -0.03337
[0.03751] [0.04322] [0.04399] [0.05047] [0.02835] [0.03093] [0.03284] [0.03555]
vddum -0.0203 -0.04288 -0.03115 -0.05552 -0.00408 -0.00677 -0.00915 -0.01296
[0.04141] [0.04773] [0.04786] [0.05496] [0.03134] [0.03426] [0.03580] [0.03885]
v5dum 0.03985 0.02376 0.02921 0.01116 0.02182 0.01874 0.01631 0.01209
[0.03825] [0.04397] [0.04621] [0.05290] [0.02873] [0.03140] [0.03425] [0.03709]
v6dum 0.09297** 0.08592* 0.08536* 0.07728 0.08166*** 0.08298%* 0.07666** 0.07729%*
[0.04097] [0.04713] [0.04709] [0.05398] [0.03088] [0.03373] [0.03512] [0.03809]
t 0.00114 0.00411 -0.00216 0.00027 0.02031%** 0.02349%** 0.01823** 0.02128%**
[0.01001] [0.01152] [0.00982] [0.01131] [0.00758] [0.00828] [0.00745] [0.00817]
t3 -0.01239 -0.01968 -0.00383 -0.00962 -0.18757*** -0.20436*** -0.17964*** -0.19600***
[0.03612] [0.04160] [0.03493] [0.04029] [0.02722] [0.02977] [0.02643] [0.02900]
t4 -0.14961%** -0.16709%*** -0.13720%** -0.15251%** -0.22122%** -0.23597*** -0.21271%** -0.22723%**
[0.03514] [0.04045] [0.03399] [0.03916] [0.02660] [0.02911] [0.02582] [0.02834]
Constant 1.22415%** 1.33253%** 1.17699*** 1.27925%** 1.17662%** 1.23888%** 1.14502%** 1.20686***
[0.14783] [0.17047] [0.14764] [0.17023] [0.11183] [0.12237] [0.11178] [0.12248]
se 0.21706%** 0.25190%** 0.16970*** 0.18640%***
[0.00632] [0.00717] [0.00424] [0.00461]
2% 0.08417*** 0.09557*** 0.06078*** 0.06418%**
[0.01039] [0.01200] [0.00770] [0.00853]
oe 0.20036*** 0.23325%** 0.15829%** 0.17480***
[0.00627] [0.00716] [0.00431] [0.00472]
Observations 960 960 960 960 960 960 960 960
Llikelihood -175.25 -268.49 -159.26 -253.49 179.73 110.7 193.92 123.01
Censored 277 249 277 249 108 93 108 93

Standard errors in brackets, significant at 10%;

EE]

significant at 5%;

EEE]

significant at 1%

Table 2.8: Tobit regression results



@)

Time varying frontier

Time varying frontier

Pooled frontier

Pooled frontier

Variable corrected original corrected original corrected original corrected original
Land status 0.04597*** 0.04689** 0.03881%** 0.03915** 0.02254%* 0.02289 0.02066 0.02115
[0.01702] [0.01953] [0.01683] [0.01936] [0.01315] [0.01446] [0.01276] [0.01404]
Variety type 0.04703%** 0.04946%** 0.04806*** 0.05100%** 0.03323%** 0.03482%** 0.04052%** 0.04246%**
[0.01470] [0.01689] [0.01453] [0.01673] [0.01142] [0.01253] [0.01108] [0.01217]
BIMAS -0.00766 -0.01349 -0.0145 -0.02067 -0.01526 -0.0207 -0.01895 -0.02427*
[0.01736] [0.01997] [0.01713] [0.01976] [0.01359] [0.01492] [0.01317] [0.01448]
‘Wet period 0.0144 0.0255 -0.01837 -0.00848 -0.01803 -0.02103 0.00713 0.00757
[0.01559] [0.01793] [0.01946] [0.02246] [0.01209] [0.01329] [0.01492] [0.01640]
Size -0.20886%** -0.23580%** -0.22449*** -0.25330%** -0.11080** -0.11658** -0.17450%** -0.18404***
[0.06116] [0.07004] [0.06143] [0.07049] [0.04362] [0.04729] [0.04341] [0.04704]
Size? 0.05663%** 0.06495%** 0.05921%** 0.06792%** 0.03213%** 0.03477*** 0.04506%** 0.04845%**
[0.01755] [0.01996] [0.01748] [0.01992] [0.01104] [0.01183] [0.01103] [0.01179]
Fam. lab/Tot. lab. 0.17658%** 0.22079%** 0.15409%** 0.19654%** 0.08730** 0.09937*** 0.07259** 0.08430**
[0.04452] [0.05119] [0.04408] [0.05078] [0.03442] [0.03779] [0.03345] [0.03676]
Seed per ha. -0.00048** -0.00050** -0.00049** -0.00052** -0.00043*** -0.00047*** -0.00040%** -0.00044%***
[0.00021] [0.00024] [0.00020] [0.00023] [0.00016] [0.00017] [0.00015] [0.00017]
Urea per ha. -0.00044%*** -0.00050%** -0.00043*** -0.00049%** -0.00040%** -0.00043*** -0.00039%** -0.00042%**
[0.00009] [0.00010] [0.00009] [0.00010] [0.00007] [0.00008] [0.00007] [0.00007]
Phosphate per ha. -0.00005 -0.00009 -0.00013 -0.00018 0.00002 0.00002 -0.00012 -0.00014
[0.00014] [0.00017] [0.00014] [0.00017] [0.00011] [0.00012] [0.00011] [0.00012]
Labor per ha. -0.00010%*** -0.00011%** -0.00010%*** -0.00010%*** -0.00009*** -0.00009*** -0.00009*** -0.00009***
[0.00002] [0.00002] [0.00002] [0.00002] [0.00002] [0.00002] [0.00001] [0.00002]
Phosphate price -0.01074*** -0.01282%** -0.01156%** -0.01380*** -0.00651** -0.00740%*** -0.01137*** -0.01264***
[0.00331] [0.00382] [0.00338] [0.00391] [0.00259] [0.00285] [0.00260] [0.00286]
Seed price 0.00027 0.00028 0.00019 0.00018 0.00055%** 0.00054*** 0.00002 -0.00002
[0.00019] [0.00022] [0.00021] [0.00024] [0.00015] [0.00016] [0.00016] [0.00018]
Urea price 0.01076*** 0.01271%** 0.00848%** 0.01016** 0.01165%** 0.01282%** 0.00686** 0.00768%**
[0.00345] [0.00398] [0.00349] [0.00404] [0.00271] [0.00298] [0.00269] [0.00296]
Pesticide cost 0.00330%* 0.00367 0.00382%* 0.00422%* 0.00499%** 0.00589%** 0.00500%** 0.00590%**
[0.00199] [0.00229] [0.00196] [0.00226] [0.00156] [0.00171] [0.00151] [0.00166]
v2dum 0.00136 -0.01532 0.00093 -0.01589 0.01519 0.01919 0.01511 0.01914
[0.04203] [0.04791] [0.04183] [0.04772] [0.03169] [0.03414] [0.03165] [0.03409]
v3dum 0.0047 -0.01164 0.00358 -0.01306 -0.01603 -0.01968 -0.01737 -0.021
[0.07319] [0.08362] [0.07285] [0.08327] [0.05558] [0.05996] [0.05553] [0.05989]
vddum 0.03286 0.01413 0.03156 0.0127 0.03132 0.0355 0.02932 0.03374
[0.08311] [0.09499] [0.08271] [0.09458] [0.06313] [0.06814] [0.06307] [0.06807]
vidum 0.09582 0.08559 0.09468 0.08431 0.06364 0.06822 0.06183 0.0667
[0.06754] [0.07710] [0.06721] [0.07676] [0.05113] [0.05518] [0.05107] [0.05511]
v6dum 0.12386 0.11088 0.12236 0.10908 0.11422%* 0.11969* 0.11206* 0.11781%*
[0.08574] [0.09794] [0.08534] [0.09753] [0.06509] [0.07026] [0.06503] [0.07018]
t -0.01798*** -0.01811** -0.00653 -0.00487 -0.02852%** -0.02932%** 0.01545* 0.01803**
[0.00687] [0.00790] [0.01045] [0.01205] [0.00534] [0.00587] [0.00797] [0.00876]
t3 0.0108 0.00686 -0.16787*** -0.18292%**
[0.03661] [0.04224] [0.02783] [0.03060]
t4 -0.11784%** -0.12990%*** -0.19980%*** -0.21278%**
[0.03558] [0.04098] [0.02713] [0.02983]
Constant 1.48242%** 1.62337*** 1.47043%** 1.61236%** 1.57939*** 1.67962%** 1.47045%** 1.56163***
[0.44797] [0.51156] [0.44623] [0.50980] [0.33885] [0.36559] [0.33872] [0.36542]
Ty 0.07355%** 0.08316%** 0.07436%** 0.08397*** 0.05421%** 0.05679%** 0.05682%** 0.05969%**
[0.01029] [0.01186] [0.01007] [0.01163] [0.00802] [0.00894] [0.00761] [0.00845]
Te 0.20252%** 0.23515%** 0.19922%** 0.23182%** 0.16358%** 0.18039*** 0.15787*** 0.17433%**
[0.00630] [0.00717] [0.00620] [0.00707] [0.00444] [0.00486] [0.00429] [0.00470]
Observations 960 960 960 960 960 960 960 960
Number of farms 160 160 160 160 160 160 160 160
Llikelihood -155.8 -247.8 -144.87 -238.27 173.55 104.43 201.01 130.46
Censored 277 249 108 93 277 249 108 93

Standard errors in brackets, significant at 10%; ** significant at 5%; *** significant at 1%

Table 2.9: Tobit regression results

: Mundlak’s correction



Chapter 3
Announced regime switch: Optimal policy for

transition period

It is not rare for monetary authority to consider a switch in the focus of their monetary
policy. One of the most interesting cases is a switch to a regime of managed, pegged
exchange rate or even fixed exchange rate. The motivation for switch may stem from
international treaties or beliefs of central bankers about the benefits of a new monetary
policy regime. New members of the European Union have agreed on joining the European
monetary union (EMU) in the accession treaty. The ERM II accession process asks them
to maintain stability of the exchange rate over the evaluation period. This periods usually
ends with the adoption of the common currency, e.g. Malta, Slovenia and Slovakia as the
most recent cases.

Countries like Bulgaria and Estonia voluntarily decided to set-up a currency board
even before entering the evaluation period. The decision to manage or to peg the ex-
change rate is based on their belief that a currency board is advantageous for small open
economies. Also, there exist countries that find their own monetary policy difficult to
sustain, e.g., Sweden and Finland in the early 1990’s. Countries like these opt for man-
aging their exchange rate in order to achieve macroeconomic stability during currency
distress. Regardless, the motivation for the policy switch, the newly adopted policy rule
in the aforementioned cases, is usually a sort of nominal exchange rate peg.

Many recent works in monetary economics that focus on the choice of monetary policy
study the properties of alternative monetary policy rules by analyzing macroeconomic

stability [Collard and Dellas (2002)|; using the loss function of the monetary authority
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[Santacreu (2005)[; or the welfare function of households [Gali and Monacelli (2005)] to
identify the optimal policy. These studies consider models with a given monetary policy
rule and there is no change of rule possible. Therefore, these analyses can be considered
as static in form of rule. The static comparison does not determine if it is worth to switch
to another policy rule, while it omits the loss occurring over the transition.

The aforementioned points motivate me to focus on the analysis of small open economy
behavior over the transition period towards the exchange rate peg. An important issue
is how announcing the adoption of the exchange rate peg affects the properties of the
business cycles of the small open economy.

I address these issues using the standard stochastic general equilibrium model of the
small open economy, e.g., Justiniano and Preston (2004), Gali and Monacelli (2005) and
Cuche-Curti, Dellas, and Natal (2008). To simplify my analysis, I decided to use the
model by Justiniano and Preston (2004), where all goods are tradable. However, this
model uses a Calvo type rigidities as the more complex models do. To provide a specific
example, I identify the large economy as the Euro area and the small open economy as
the Czech Republic. While the Czech Republic is a representative country that aims to
adopt the common currency, it also copes with the limitations of its own independent
monetary policy.

For a better description of the Czech Republic monetary policy, 1 close the model
by monetary policy of forecasted inflation targeting. Also, structural parameters of the
model are estimated for the Czech Republic.

The novelty presented in this chapter is the approach to modeling the transition period
when the change in the monetary regime type is announced. As Farmer, Waggoner, and
Zha (2007) summarize, recent works rely on Markov switching processes to account for
changes of policy rule. Generally, the solution is computed by as a average of separate
models weighted by the probability matrix of the process. Instead of the Markov switching
process, I extend the standard model with a binary indicator of the regime that identifies
the operative monetary policy. Moreover, in my simulations the change in the regime
indicator is credibly announced in advance. Therefore, a model with this indicator offers
an alternative approach that more closely models the commitment to the regime change
than models based on Markov process.

For my analysis of the macroeconomic stability over the transition, I assume that the
monetary authority follows an optimal policy with respect to the loss function for the

monetary authority as in Laxton and Pesenti (2003) and Santacreu (2005). As Cuche-
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Curti, Dellas, and Natal (2008) and Dellas and Tavlas (2003) summarize, there is no
straightforward recommendation for the type of the optimal policy. The optimal policy
choice depends on many factors like the presence and origin of rigidities and structural
shocks. Therefore, I solve for the optimal policy that takes a simple form where monetary

authority reacts to deviations output gap, inflation and change in nominal exchange rate.

Moreover, as Cuche-Curti, Dellas, and Natal (2008) point out, the simple form of
the optimal policy avoids questioning information capabilities of the monetary authority.
To identify the simple optimal monetary policy for the transition period for various
preferences on inflation, output and policy stability, the utility has one degree of freedom

as in Santacreu (2005).

The goal of monetary policy for the transition is still to support macroeconomic sta-
bility. However, it is also important to know how these policies change the characteristics
of the business cycles. To analyze these changes, I compute and analyze the correlations

of business cycles as described by inflation, output and interest rate.

The rest of the chapter is organized as follows. Section 3.1 presents the model of rule
switch. In section 3.2, the parameters estimation is presented. Basic characteristics and
properties of the model are presented in section 3.3. Section 3.4 presents the macroeco-
nomic stability results obtained and section 3.6 concludes. All figures can be found in

the appendix sections.

3.1 Model

The basics of the model are taken from Justiniano and Preston (2004). The used model
consists of a small open economy (domestic) and the rest of the world (foreign). The
domestic economy is characterized by the existence of habit formation and indexation of
prices to inflation. The fundamental model is based on the work of GGali and Monacelli
(2002) and Monacelli (2005), where micro-foundations for the small open economy model
are summarized and incomplete pass-through is discussed. The following sections provide
commented derivations of the structural equations of Justiniano and Preston’s (2004)
model. Further, the modification of monetary policy and approach to modeling the

transition period is described in the separate subsection.
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3.1.1 Households

The considered small open economy is populated by a representative household that

maximizes its lifetime utility function

e’} Ct _ Ht)l—a Nt1+<p
E ten | — 3.1
t;ﬂ € 1—¢o 1_'_()0 ) ( )

where 3, 0 < 3 < 1, is the utility discount factor; o and ¢ are the inverse of elasticities
of the inter-temporal substitution and labor supply, respectively; N, is total labor effort;
9t = pggi—1 + €] is a preference shock, and ef ~ N(0,07); C; is the consumption of a
composite good; H; = hC}_; is the external habit taken as exogenous by household as
presented by Fuhrer (2000). The parameter h indexes the importance of habit formation.

The household consumes a Dixit-Stiglitz composite of the home and foreign good:

n—1 n

C, = [(1—a)1(CH)" +an(CE)" ", (3.2)

where « is the share of the imported good in domestic consumption and n > 0 is the

intra-temporal elasticity of substitution between the domestic and foreign good.

Given the specification of the household’s preferences, the minimization of expendi-
tures for the given level of consumption C; implies, as in Walsh (2003), the following

aggregate domestic consumer price index (CPI):
Po= (1= a) (P 4 a(PF) ) (3.3)

where PH and P! are prices of the domestic and foreign Dixit-Stiglitz composite good

used to produce the final composite good C;.

In aggregate, the household maximizes lifetime utility according to the following bud-

get constraint:
PCi+ Qiit1Di1 < Dy + W N, + T3, (3.4)

where W, is the nominal wage; D, is the nominal pay-off received in the period t + 1
acquired from the portfolio held at the end of the period ¢, and Q41 is the value of the
discount factor of this portfolio; T; are transfers that include taxes/subsidies and profits

collected from domestic firms and importers.
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Given the Dixit-Stiglitz aggregation, households optimally (cost minimization) allo-
cate their aggregate expenditures for the foreign and domestic good according to the

following demand functions:

ct = (1-a) (PtH)_"ot

P
PF -n
cf = L) . 3.5
r-a(h) @ (3.5)
The first order necessary conditions imply the domestic Euler equation in the following
form:

P
)\tEt[Qt,t—f—l] = ﬁEt[)\tHP ]> (3-6)

t+1

where ); is the Lagrange multiplier associated with a budget constraint. This equation

is used in the following section to link the domestic and foreign economy.

3.1.2 International arrangements

The real exchange rate is defined as the ratio of foreign prices in domestic currency to the
domestic prices ¢; = ét%t:, where é; is the nominal exchange rate (in terms of the domestic
currency per unit of foreign currency); P is the foreign consumer price index and P; is
the domestic consumer price index given by equation (3.3). An increase in é; coincides
with an depreciation of the domestic currency.! Further, I assume that P} = PI™* (P~
is the price of the foreign good in a foreign currency), the law of one price gap is given by
U = ét%, as in Monacelli (2005). The law of one price gap represents a wedge between
the foreign price of a foreign good P/™* and price of the foreign good when sold on the
domestic market P! by importers [see Lubik (2005) for details|. The law of one price
(LOP) holds when W] = 1; for ¥ > 1, importers realize losses due to increasing costs
of imported goods; when U < 1, importers enjoy profits.

The foreign economy is identical in preferences, therefore optimality conditions are
similar to the domestic optimality conditions. The foreign economy is considered to be
large and the domestic good takes only a negligible fraction of its consumption. Therefore,
the foreign composite consumption bundle can be simplified and only foreign produced

good are considered in the overall foreign consumption. Further, under the assumption

!The superscript * denotes “foreign” equivalents of domestic variables throughout this chapter.
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of complete international financial markets, arbitrage implies that the marginal utility of
consumption in a foreign economy is proportional to that in a domestic economy. Using

the domestic Euler equation (3.6), the following condition is derived:

A1 P
)\t Pt+1

* *x 5
At By
* * 5
>\t Pt+1 et

»BEt[ ]: Et[Qt,t-i—l] :ﬁEt[ ] (3-7)

Defining the gross nominal return on the portfolio as R;' = Ei[Qy+1], the risk shar-

ing condition (3.7) equation implies the following uncovered interest rate parity (UIP)

condition:

EQuan(R — RI(-))] = o, (3.8)

€t+1

The uncovered interest rate parity places a restriction on the relative movement of
the domestic and foreign interest rate and on the nominal exchange rate. However,
the interest rate parity can be distorted by a risk premium shock. Therefore, as in
Kollmann (2002), a shock that captures deviations from purchasing power parity and not
already explained endogenously through imperfect pass-through, such as a time varying
risk premium, is added into the log-linearized form of the model. Moreover, the risk
premium is constant in the steady state and equation (3.8) collapses to the standard
uncovered interest rate parity equation for the nominal exchange rate in the steady state.

Finally, the terms of trade are defined as the relative price of imports in terms of
exports:

PF

S, —.
t PtH

(3.9)

Note that changes in the terms of trade may reflect future changes in the competitiveness
of an economy. The depreciation of the exchange rate induces an increase in import prices
and deterioration of terms of trade. However, the depreciated exchange rate restores
competitiveness of the economy since demand for cheaper exports grows and import

demand from domestic consumers decreases.

3.1.3 Firms

In this economy, the nominal rigidities driving the price adjustment occurs due to monop-

olistic competition in the good market. Suppose there is a continuum of domestic firms
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indexed by 7, 0 <7 < 1. A typical firm ¢ in the home country produces a differentiated

good with constant returns to scale according to the following production function:
Yi(i) = ANy(i),

where N,(7) is labor supplied by a household to firm 7; A; is a common stationary produc-
tivity process that follows log(A;) = a; = paa; + &7, where % ~ N(0,02) is an exogenous
productivity shock common to all firms. The firm’s index can be dropped, while in the
symmetric equilibrium all choices of the firms are identical. According to the production
function, the representative firm faces real marginal costs MC; = %, where W, is the
nominal wage.

Here, the domestic inflation rate is defined as 7! = log(P/PE,). Firms producing
a domestic good are monopolistically competitive with a Calvo-style price setting using
the inflation indexation. Further, only a fraction (1 —60) of firms are allowed to set their
price P2 optimally in the considered period. The remaining fraction 67, 0 < 0¥ < 1

sets its price according to the following indexation rule:
log(P"(i)) = log(P, (i) + o/,

where 0 < ¢ < 1 is the degree of indexation. Therefore, the aggregate price index is

evolving according to the following relation:

pit s\ (1—¢) 1/(1-¢)
R O L (Ptifl (—;;)) )
t—2

where € > 1 is the elasticity of substitution between the varieties of goods produced by
domestic firms. Firm ¢, setting its price in period ¢ and following the indexation rule in

all subsequent periods T', T' > t, faces the following demand curve in period 7"
(e (PR ,
yilh‘{(z) = L H TH - (OZI}‘I + CZIEI )>
Pr Pz

where C is domestic demand and Cf* is foreign demand for the composite domestic

good. While firm ¢ is maximizing its present value by maximizing the value of the real

79



profits stream, the firm’s price-setting problem in period ¢ is to solve:

- ,new PH— ’
]Iﬂla(?g Ey Z(QH)T tQt TYy ( ) PH (Z> <PTH1) B PtHMCT]
t 2 T=t t—1

subject to the aforementioned demand curve. This implies the following first-order con-

PH \° €
PHnew T-1 o —
i (Trt) - ] 0

where M C7 are real marginal costs in the period of price decision.

dition:

ZeHTtQTyt()
T=t

Similarly, as in the domestic good production, the nominal rigidities in the foreign
good sector are resulting from staggered price setting and monopolistic competition.
Foreign good retailers import foreign goods so that the law of one price holds “at the
docks” and resell them in a monopolistically competitive market. To set their prices,
importers also use Calvo pricing with indexation to past inflation of imported good prices,

which is defined as 7" = log(P/PF,).

Again, only a fraction (1 — 6F) of importers are allowed to set their new price P/

optimally in each period. The fraction 8, 0 < " < 1 of importers just updates its price

according to the following indexation rule:

log(P (i) = log(PZ,(3)) + 0m_y,

where the same degree of indexation ¢ as for domestic producers is assumed. The foreign

good price index is evolving according the following relation:

1/(1—¢)

PF ) (1 5)
PF = |(1 0)(PEPe)1=2) 4 o7 (Pfil (7 )
t—2

Similarly, importer ¢, who is setting its price in period t, faces the following demand curve

in period T, T' > t:

w0 - (o) e

as for the domestic good, in here ¢ > 1 is a parameter describing the substitution between
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the varieties of foreign goods. Therefore, the importer’s price-setting problem in period

t i1s to maximize

E; Y (0")"'Quryf (i)

o)
T=t

Fnew PTE—l ’ ~ F
P, (4) BF —érP MCr
t—1

subject to the aforementioned demand equation (3.11). This implies the following first-

order condition:

§ (6")" ' Quryf (i) | PF™(0) ( TF_l) - érPFMCr ,
T=t Pt—l 1 — &

and the new optimal price P/ (i) is the solution to this equation. The presence of

monopolistic competition results in deviations from the law of one price in the short run,

while a complete pass-through is reached in the long-run as presented in Monacelli (2005).

3.1.4 Equilibrium

Equilibrium requires that all markets clear. The good market clearing condition in the

domestic economy is given by the following equation:
vH = CH (3.12)

Under the assumption of a large foreign economy, market clearing in the foreign econ-
omy gives Y;* = C}. Households, which are assumed to have identical initial wealth,
make identical consumption and portfolio decisions. So, the following analysis considers
a symmetric equilibrium, domestic producers, importers, and foreign firms also behave
identically. Therefore, the individual index can be dropped and the representative house-
hold, representative firm, and the single good in each sector can be used for the model
solution. In period ¢ the representative domestic producers set common prices P . Im-
porters also set a common price P, so do the foreign producers when setting P;. Finally,
as in Gali and Monacelli (2002) and Justiniano and Preston (2004), I assume that the
government off-sets distortions originating from monopolistic competition in the goods
markets by a subsidy/transfer that is financed through a lump-sum tax T; on represen-

tative household.
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3.1.5 A log-linearized model

To analyze the behavior of the underlying model, an approximation around the non-
stochastic steady state of the presented model is obtained as in Justiniano and Preston
(2004). For any variable, the lowercase letters denote the log-deviation from the steady
state of their uppercase counterparts in the frictionless equilibrium. The non-stochastic
steady state is characterized by setting all shocks to zero for all periods.

As in Justiniano and Preston (2004), I assume a zero inflation steady state, so that

p _ pPY P
Py pPH, Py

- = 1, and for the steady state of the nominal interest rate
L4 = 3.

Ty —

Linearizing the domestic good market clearing condition (3.12) together with a lin-

earized version of the demand functions (3.5) implies
(1—a)ey = y—an(2—a)s, —andl — ay;, (3.13)

where I = (e; + p;) — pf' is a log-linear approximation of the law of one price, and
sy = pI' — pH is a log-linear approximation of the terms of trade given by equation (3.9).

Time differentiating of the terms of trade definition implies
As, = nf —nf. (3.14)

Using the log-linearized equations of the law of one price gap and terms of the trade, the

following link between the terms of trade and the real exchange rate can be derived:
¢ = + (1 —a)s;. (3.15)

The log-linear approximation to the optimality conditions of domestic firms for price
setting, the law of motion for the domestic producers price, and the domestic price index

given by equation (3.10) imply the following hybrid Philips curve:

1—07
ol —orl, = HT(l — 0" 3Yme, + BE((mfL, — omh)], (3.16)
where the marginal costs is
me, = oy — (1+@)ay +as, +o(l —h) e, — hey). (3.17)
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The log-linear form of the real marginal costs mc; of the representative firm originates
from the log-linearization of the aggregate production function and the household’s opti-

mality condition for labor choice.

Similarly, the optimality condition for the pricing problem of retailers results in the

following Philips curve:

1—6F
= 0mly =~ (L= 0" B) + BE (i — o7, (3.18)

Following the arguments of Justiniano and Preston (2004) and the derivation by Gali and
Monacelli (2002), the complete markets assumption together with condition (3.7) imply

the following relation for the log-linear approximation of the Euler equation (3.6):
co—heiy = yi—hy +o A =h)[E+ (1 —a)s] +o7 1 —h)g. (3.19)

The log-linear approximation of the uncovered interest rate parity equation (3.8) gives
i — iy = FyAerq. As mentioned in the previous section, to capture the deviations from
UIP, a risk premium shock ¢, is added into equation (3.8); ¢, = pse,_1 + €5, here € ~

N(0,02%). Using the definition of the real exchange rate,
Ae; = Ag+m — 75, (3.20)
the following equation is derived:
(i — Eymga) — (i — Evmfyy) = EiAqe + €. (3.21)

The risk premium shock ¢; is zero in the steady state, so the steady state equation (3.21)
collapses to a standard uncovered interest rate parity equation. Also, note that the

positive (negative) values of Ae; reflect domestic currency depreciation (appreciation).

Finally, the approximations of the CPI equation (3.3) and the change in terms of
trade (3.14) give the following relation:

m = 7 +als;. (3.22)

Since the goods produced in the home economy represent only a small fraction of the

foreign economy consumption, I consider the large foreign economy as exogenous to the
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domestic economy. Therefore, I assume that the paths of foreign variables 7}, vy;, and ¢}

are determined by the following VAR process:

T, = WpTqt W;Ty:—l + wiiy_q +ef, (3.23)
Yy = winl o+ wiyt Wil e, (3.24)
i = whm+ W;y:—l +wiiy_y + e, (3.25)

where ¢f, ¢/, and €f; €/ ~ N(0,07), e ~ N(0,0%), and & ~ N(0,07), represent the

independent structural shocks that drive the foreign economy.

3.1.6 Model of the transition period

The description of the model is closed by describing the behavior of the domestic monetary
authority. While the Czech central bank reacts to the forecasted inflation, I deviate from
Justiniano and Preston (2004) in my analysis. As discussed by Carlstrom and Fuerst
(2000), T assume that the monetary authority acts according to expected inflation rather
than using the actual level of inflation. To keep my analysis simple, I assume that the

monetary authority is forward looking only for one period ahead.

The focus of this chapter is to analyze macroeconomic stability during the transition.
The economy begins in time ¢ = 1, when it is announced that the regime will change
in period T, T > 1. To simplify the analysis, I also assume that the monetary authority

follows the same policy rule over all periods of the transition, t < T

So, the monetary policy rule for the model of the transition period takes the following

form:

i = regimey(piii—1 + paEi[miia] + pyyr + peley + 7)) +

o] t—j
, R 1
+ (1 —regime;)p. Z (5) AFE[e;], (3.26)
j=t
where 0 < p; <1, pr > 1, p, > 0 and p. > 0 are weights describing the responses of the
domestic monetary authority; and e, i ~ N(0, 02,) is the shock capturing errors arising
from the description of the monetary policy. In here, the effective monetary regime is

selected via the regime indicator. In my experiment when the change is announced in
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the first period, the indicator is defined as follows:

» 1, ift<T;
regime; =
0, ift>T,

where T is the announced time of regime change.

By varying values of the rule parameters p,, p, and p, in rule (3.26), I am able to
model a wide range of monetary policies for the transition (t < T), e.g. inflation targeting
or exchange rate targeting. Further, the only objective of the post-transition monetary
regime t > T, is to off-set all the foreseen changes in the nominal exchange rate. This
regime is characterized by p., which measures the off-setting of the change in the nominal

exchange rate. To keep the level of exchange rate volatility reasonably low, I set p, = 2.0.

The introduction of the regime indicator transforms the problem of modeling an an-
nounced change to a problem of foreseen changes in the indicator. To model the an-
nounced changes in the indicator, I extend the state space of the model by an information
buffer of length N, where N > T'. This information buffer is capable of storing information
for N periods ahead and takes the following form:

regime; = infia
infin = nfi_12+
infia = infi_13+ v
infin-1 = mfiin+VN—1
'l.nfuN = VN, (327)
where inf;;, ¢ € 1,..., N are the new endogenous variables, and v,;, ¢ € 1,..., N are the
announcement shocks, such that v;; takes values 0 and 1 for all¢ =1,..., N and ¢ > 0.

The initial condition for the buffer is infy; =0 and 1y, =0, Vi€ 1,..., N.

In the experiment, I focus on the perfectly credible announcements. Therefore, I can
think about 1;s as random variables with zero mean and zero variance. However, by
varying the assumption about information shocks, it is possible to model the uncertainty
about keeping the commitment of the policy rule switch announced by the monetary
authority. The higher the uncertainty about keeping commitments, the higher value of

information shock variance should be used.
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The announcement of the regime change in ¢ = 1 is modeled by the realization of the

information shocks ;% € 1,..., N according to the following scheme:
1, 1+ <T;
i = (328)
0, +:>T,

and v,; = 0, Vi and in the all subsequent periods ¢, 1 < ¢t < 7. This realization of
information shocks describes a one-time announcement of a policy rule switch in period
T without any further changes of transition length.

The model of the transition period consists of equations (3.13)—(3.25), the monetary
policy rule (3.26), the information buffer given by equations (3.27), and definitions of the
AR(1) processes for technology and preference shocks.

Further, I assume that there are no shocks (for ¢t > T') to risk premium when the
regime of off-setting of the exchange rate changes is adopted. So, the risk premium shock
¢; described by equation (3.21) will become ¢, = ps€;_1. To make this change foreseen in
the model of transition, the AR(1) process for risk premium shock ¢; in equation (3.21)
will become €; = pye;_1 + regimees, ef ~ N(0,02) since t > T.

The construction of the policy indicator regime; creates non-linearities in the mon-
etary policy rule and risk premium process. Therefore, to solve and simulate the tran-
sition period model, the second order approximation is used. The model is solved by
Dynare++.2 A brief description of the computation of the transition period model is

presented in Appendix (3.A).

3.2 Estimation

To provide a specific example, in my analysis | estimate the parameters of the model using
data on the Czech Republic. In recent literature, Bayesian methods are considered an
attractive tool for estimating a model’s parameters, especially in open economy modeling.
The most recent examples include Smets and Wouters (2003), who estimate the Eurozone
model; Lubik and Schorfheide (2003) and Lubik and Schorfheide (2005), who analyze the
behavior of the monetary authority; and Ireland (2004).

Due to the short span of the Czech data sample, I prefer Bayesian methods because

2Dynare++, developed by Kamenik (2007), is a standalone C++ version of Dynare. Dynare is
the pre-processor and collection of Matlab routines introduced by Juillard (1996), Collard and Juillard
(2001b) and Collard and Juillard (2001a).

86



it allows me to incorporate information from previous studies in the form of informative
priors on parameter values. This approach is preferred because the use of priors makes
the estimation results more stable.

Model M and its associated parameters © can be estimated using the method out-
lined by An and Schorfheide (2007). In the Bayesian context, given a prior p(©) and a
sample of data Y, the posterior density of the model parameters © is evaluated, and it

is proportional to the likelihood of the data multiplied by the prior p(©):
p(OY, M) o L(OJY, M)p(O),. (3.29)

The goal of the Bayesian estimation is to estimate the posterior distribution and to
find such parameter estimates that given the model, the likelihood value L(O|Y, M) is
maximized.

The Bayesian estimation procedure consists of the following three steps. In the first
step, the model is extended for a measurement block that links model variables to data.
The extended model is solved. In the second step, the fact that the solution of the
model is in the form of a state space model is exploited. This allows me to compute
the likelihood function of the underlying model by use of the Kalman filter, the observed
data, and priors. The objective is to maximize the value of likelihood as the function of
the model parameters. The second step results in the maximum-likelihood estimates of
the model parameters. The objective of these estimation steps is to get parameter values
for this model.

In the third step, the likelihood function conditional on a parameters estimate is com-
bined with the prior distribution of parameters to obtain the posterior density function.
The Metropolis-Hastings (MH) algorithm, which is an implementation of the Monte Carlo
Markov chain (MCMC) method, is used to estimate the posterior distributions. The ob-
jective of the posterior distributions computation is to evaluate the sensitivity of the

results to my choice of priors and optimization algorithm settings.

3.2.1 Data and priors

The used data sample covers a period of an CPI inflation targeting regime from its
introduction in 1998 until the third quarter of 2007. Over this period changes in the
inflation target occurred. However, the nature of the regime was not changed thus this

does not lead to structural changes. Therefore, I can abstract from the effects of a
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decreasing inflation target. The detailed description of data and transformations used

are summarized in Appendix 3.B.1.

The domestic block of the underlying model is estimated using the de-trended data on
output growth, inflation, the nominal interest rate, terms of trade, and the real exchange
rate. The foreign block is described by the de-trended series of effective output, inflation,
and the nominal interest rate. The effective series are constructed as a sum of the trade

partners series weighted by the export shares.

Model variables are expressed in percentage deviations from a steady state. The data
series are related to model variables via a block of measurement equations. The measure-
ment block connects the model variables with the observed data using the measurement
error. The block of measurement equations and measurement errors characteristics are

summarized in Appendix 3.B.2.

The choice of parameter priors is derived from previous studies [Lubik and Schorfheide
(2003); Natalucci and Ravenna (2003); Justiniano and Preston (2004); and Musil and
Vagicek (2006)| and is guided by the following considerations. The choice of prior distri-
butions reflects the restrictions on the parameters such as non-negativity deviations or
interval constraints. Therefore, for parameters constrained to the (0, 1) interval, the beta
distribution is used. Prior distributions for standard deviations of shocks have been set to
inverse gamma. Similarly, for parameters taking positive values, the gamma distribution
is used. The standard deviation of priors also reflects my beliefs about confidence in the
priors, and I decided to use loose priors rather than tighter ones. Tables 3.3 and 3.4
provide an overview of my choice of priors. Further, I assume § = 0.99 (strict prior),

which implies an annual interest rate of about 4% in a steady state.

The model for estimation is closed by the simple monetary policy rule given as follows:

'ét = Piit—l + pwEt [ﬂ-t-i-l] + PyYt + peAet + 5?17 (330)

and the risk premium process is given by equation (3.8) is used. The estimated model
also does not include the information buffer.

For construction of the joint probabilistic distribution, I assume that the priors are
independent of each other to simplify the use of the MCMC algorithm. The Dynare
toolbox to estimate the presented model. Given the data and priors, I generated 300,000
draws for each of the 7 Markov chains using the MH algorithm. While acceptance rates

between 20% and 40% are considered as reasonable for distribution sampling, I set the
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scaling parameter for jumping distribution in MH so that the average acceptance rate is

0.35.

3.2.2 Estimation results

The estimation results are summarized in Tables 3.3 and 3.4 in appendix 3.B.3. The
analysis of the posterior distributions for each estimated parameter does not indicate the
presence of computational problems.

The openness parameter « is estimated to be 0.35, implying 0.54 for a steady state
ratio of domestic to foreign goods in the domestic consumption basket. The estimated
value is very close to openness estimates by Natalucci and Ravenna (2003) and Musil
and Vagicek (2006). These works base their estimates on imports share in consumption
rather than on imports share in gross domestic product. The openness parameter is
also in accordance with the value 0.27 of foreign-domestic good substitution n because it
indicates low willingness of households to substitute domestic for foreign goods.

The value 0.92 of inverse elasticity of inter-temporal substitution ¢ implies inter-
temporal elasticity of 1.08. This value of elasticity indicates that households are concerned
about their consumption path and they are willing to substitute today’s consumption for
the future one. The acceptance of consumption changes is consistent with a low value
of habit persistence. Also, the value of inverse elasticity of labor substitution, ¢ = 1.08,
implies non-elasticity of the labor supply. The increase in real wage by 1% implies just
0.92% increase in the labor supply. I believe that this value is consistent with the low
labor mobility that characterizes Czech labor market, especially at the beginning of the
considered period.

According to the estimation results, interest rate smoothing p; takes just a slightly
higher value (0.58) than my prior (0.50). The reaction to inflation and the output gap
deviation are taking values 1.38 and 0.47, respectively. These values of p, and p, reveal
that the monetary authority places 2.9 more weight on keeping future inflation stable
than closing the output gap. Moreover, the low value of reaction to the deviation of
the nominal exchange rate p. reflects the inflation targeting focus declared by the Czech
National Bank.

My priors for the price stickiness parameters 6's are chosen based on Lubik and
Schorfheide (2005), and they reflect the evidence on US prices. The prior value of price

indexation to inflation is set to 0.70, while studies exists where the value of indexation
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is set to unity. My estimation results show that there is a low fraction of domestic firms
(estimate of Oy takes value 0.26) that optimize their prices every quarter. This is con-
sistent with estimates using the European data presented by Smets and Wouters (2003).
Approximately the same fraction of importers optimize their prices every period so the
average contract length is approximately 4 quarters. The value of inflation indexation
0 means that the price of the good is updated by half of price level change. I find it
consistent with my estimates of the low frequency of price optimization. The estimated
value of 0.56 for inflation indexation ¢ is almost three times as high as the estimates
reported by Justiniano and Preston (2004).

[ assume a high persistency of technological, risk premium and taste shocks, so the
priors are set to 0.85. However, estimates show that the most persistent shock is the
preference shock with a value of 0.95 for p,. This indicates that impacts of the preference
shocks are not temporary but near permanent. I believe that the low persistency of
technological shock, taking value 0.83, with a large standard deviation of technological
shock, reflects the structural changes of Czech industry over the considered period.

For the foreign block, T assume the autocorrelation of foreign shocks to be 0.7 [used by
Natalucci and Ravenna (2002)], while I find the values of Justiniano and Preston (2004)
quite low. However, my estimation results show little persistency in the foreign inflation
series. The foreign monetary policy described by equation (3.25) reveals persistency close
to the prior value, thus indicating significant interest rate smoothing in the Eurozone.
Only, the foreign output series reveal persistency higher then a prior values, and the value
of 0.93 is in accordance with estimates for developed economies, like the USA.

Priors and estimates of the standard deviation of structural shocks are summarized
in Table 3.4. These results show that the preference shock &7 is most volatile. However,
this does not mean that the preference shock is the main driving force of the variables of
my interest. Using variance decomposition, I found that the preference shock generates
only 7.5% of inflation volatility, 4.5% of output growth, and 7.3% of nominal interest rate
variance. Due to the high value of openness, I determined that the risk premium shock
generates 26% of domestic CPI inflation variance. However, for the estimated coefficients,
variance decomposition shows that the foreign shocks are not the main drivers of domestic
variables volatility. The shocks to foreign inflation and interest rates are responsible for
approximately 11.3%, respectively 2.8% of domestic inflation variance.

To evaluate empirical properties of the generic model, Table 3.1 compares moments of

the time series used for estimation with moments of the variables of the estimated model.

90



Data Model
Variable Std. dev. Corr. Std. dev. Corr.
Output growth 1.05 1.00 2.28 1.00
Nominal interest rate 1.38 -0.53 0.53 -0.35
CPI inflation 3.14 -0.12 3.34 -0.06
Change in nominal ex. rate 8.37 0.17 8.12 0.11
Real ex. rate 3.48 0.17 6.87 0.01
Foreign output gap 0.81 0.02 0.74 0.03
Foreign inflation 0.66 0.21 0.81 -0.02
Foreign nom. int. rate 0.65 -0.03 0.73 -0.02

Table 3.1: Moments summary

This comparison shows that the model exhibits more volatile output and real exchange
rate series and excess interest rate smoothing. However, the estimated model matches
the properties of the foreign series.

Finally, to evaluate the amount of information included in the observed series, I
use a comparison of priors and posteriors distributions. This comparison helps to gain
insight about the extent to which the data provide information about the estimated
parameters. According to plots presented in Figure 3.1, I conclude that some of the

priors are significantly updated by information included in the data.

3.3 Impulse response analysis

The goal of the following comparison is to point to differences induced by adding the
possibility of a policy rule switch in the estimated model |model with the monetary
policy rule (3.26)]. Therefore, the models of the announced change of monetary policy
are calibrated with the same parameters values as the benchmark model. Figures (3.2)-
(3.8) present impulse response functions of the following four models: estimated model
(dash-doted red line); model of switch in 4 (solid magenta line); 8 (dashed blue line);
and 40 (dotted black line) periods. The results are presented as quarterly percentage
deviations from the steady state.

Figure 3.2 depicts responses to the 1% domestic technology shock to £f. As it is ex-
pected for the case of a supply shock, output increases and inflation decreases. Via the
uncovered interest rate parity relation, the decrease in the domestic inflation is accom-
panied with a currency appreciation (since the inflation and interest rate of a foreign

economy does not react to domestic shocks). The monetary authority decreases interest
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rates. Due to the currency appreciation and the fact that importers do not update their
prices immediately for lower input cost, the law-of-one-price (LOP) gap closes, eliminating
importer profits. The presence of habit formation supports hump-shaped consumption
profile because households gradually adjust their consumption profile. However, an up-
date of imported good prices, with slowing currency appreciation and real depreciation,
restrain the rise in demand for the foreign good. As inflation in the imported good sector
rises, the steady state is established.

In the case of the estimated model (dash-dotted red line), due to the absence of regime
change, much stronger appreciation is observed. The price rigidity in imported goods
sector and appreciation leads to a long period deflation of imported goods prices. Due to
low inflation, authority responds with expansive monetary policy. The main difference
in responses between the model of announced rule switch and the model of independent
monetary policy is in the extent of response to technology shocks.

Figure 3.3 presents responses to the domestic taste shock €. This shock initiates
an increase in domestic inflation and output as expected in the case of demand shock.
Because of the initial currency appreciation, which results from an expected hike in
interest rates, importers decrease the prices of their goods. The foreign goods become
cheaper and this supports increase in demand for foreign good. Due to output rigidities,
the increase in output follows with lag. In response to inflation and output increases,
the domestic monetary authority increases the interest rate. Due to the price indexation
of import prices to CPI inflation, the initial response of the LOP gap is negative and
importers enjoy profits.

For the benchmark model, the import price decrease has a larger extent than in the
case of a rule switch and this makes households increase their demand for a foreign good.
This results from the reaction of the monetary authority, which can not rely on the
expectations formed according to exchange rate stabilizing policy. Moreover, the extent
of these deviations is very small.

Figure 3.4 presents responses to the risk premium shock €;. In the case of an announced
change in monetary regime, this leads to initial depreciation and an immediate increase in
the interest rate to prevent further depreciation and a rise in inflation. For the models of
the policy switch, the monetary authority strongly increases the interest rate in order to
offset the change in the nominal exchange rate immediately. However, due to the extent
of the depreciation and the inflation indexation of import prices, a significant increase in

the price of imported goods is observed. In here, the main difference between the models
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is the extent of the initial depreciation.

In the case of a monetary policy shock €}, as shown in Figure 3.5, the shape of the
responses does not differ much between models of transition because of the low persis-
tency of the shock, and the steady state is quickly established. A positive monetary
policy shock is equivalent to a contractionary policy. Therefore, output decreases in line
with consumption as inter-temporal substitution motivates households to postpone con-
sumption. The induced appreciation results in a drop of price of imports. The estimated
change model initially reacts with much stronger appreciation, leading to a significant
drop in inflation and output, therefore expansionary policy is conducted in the following
periods. However, the steady state is established within periods.

Responses to a foreign inflation shock €] are presented in Figure 3.6. In models of
transition, an increase in the foreign inflation rate leads to an immediate appreciation
of the domestic currency (implied by UIP). An increase in price of imports supports
domestic inflation rise. The monetary authority has to react with contractionary policy,
which suppresses output. But this deviation is very small. In the estimated model initial
appreciation is very strong, so the real exchange rate together with contractionary policy
does not allow for the initial increase in output fueled by increased foreign demand.

Figure 3.7 depicts responses to the foreign positive output shock /. An increase in
foreign economic activity leads to an increase in demand for the domestic goods and
domestic inflation, so domestic output rises in response to this shock. High foreign
demand leads to increase of foreign good prices, leading to imported goods price increase
which together with domestic inflation delivers domestic currency depreciation via UIP.
Depreciation eliminates importer profits and is followed by a large increase in domestic
interest rates.

For the foreign output shock, the main differences in responses occur in the initial
period, where more extensive depreciation is observed for the estimated model in the
period following the shock realization. Therefore, the monetary authority responds with
contractionary policy.

Finally, Figure 3.8 depicts responses to the positive shock to foreign interest rate &t
The UIP implies an initial depreciation of domestic currency because of the negative
interest rate differential. Domestic currency depreciation is able to support an initial
increase in foreign demand that fuels domestic output and inflation increase. The do-
mestic monetary authority reacts with contractionary monetary policy in the following

periods. However, even through interest rate increases, the analysis of the LOP gap
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shows that importers are facings losses. This means that importers are bearing the costs

of depreciation due to the high rigidity of import prices.

3.4 Macroeconomic stability

As discussed in the previous section, impulse response functions mostly differ in the extent
of the deviations in reactions to shocks. Therefore, I focus on volatility of inflation, output
gap, and the exchange rate change.

Focus on macroeconomic stability was used as the standard approach in the early
literature on monetary policy evaluations. It simplifies the analysis because of the inde-
pendence from the welfare function specification. I believe it can still offer interesting
comparisons, as recently presented by Cuche-Curti, Dellas, and Natal (2008) and Collard
and Dellas (2002).

However, due to the volatility trade-offs between variables, a simple comparison of
volatilities does not straightforwardly identify the regime that delivers the highest level
of macroeconomic stability. As Cuche-Curti, Dellas, and Natal (2008) summarize, an
exchange rate peg can outperform a flexible exchange rate regime under assumptions of a
stable external environment and that the main source of nominal rigidity is in the goods
market. They also find that policies ignoring movements in the exchange rate can be
dominated by a simple exchange rate targeting policy. Also, Dellas and Tavlas (2003)
show that pegging of the exchange rate may be beneficial in the presence of nominal
rigidities.

Therefore, for the purpose of monetary regime comparison, I use the traditional form
of the per-period loss function [e.g., as in Laxton and Pesenti (2003) and Santacreu

(2005)]:
Ly =1Var(m)+ (1 —7)Var(y,) + %Var(Ait), (3.31)

where 7 €< 0,1 > is used to describe the preferences of monetary authority about
inflation output and monetary policy stability. To compute the loss over the transition,
[ is used as the discount factor and the overall loss is computed as a discounted sum of
per period losses.

Using the loss function, I compute optimal policies that minimize the value of the loss

by choice of the weights p;, pr, p, and p, for the monetary policy rule given by equation
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(3.26).

In this experiment, the variances from the estimated model are used as the initial
conditions for recursive computation, as described in Appendix 3.A. Further, [ compute
the optimal policy for various lengths of transition. I also repeat the minimization prob-
lem for the various specifications of preferences of the monetary authority by varying 7.
The resulting loss is shown in Figure 3.9.

It can be observed that a longer transition period leads to lower values of loss. Also, as
the monetary authority becomes more concerned about the output volatility (low values
of 7), the authority is generally achieving lower loss.

Figure 3.10 shows the parameters of the optimal policy rule for the transition period
as the function of transition length and preferences specification. The plot for the interest
rate smoothing parameter p; shows that for all transition periods, the policy rigidity is
steeply increasing as the inflation stability is gaining higher weight. The plot for the choice
of the inflation targeting parameter p, does not show much variance over the considered
transition lengths. Intuitively, as the weight on inflation in loss function specification is
getting higher (7 increases), p, is also increasing.

Further, for p, the value of output gap targeting is varying among transition lengths
and preferences specifications. Also, intuitively when output stability is extremely pre-
ferred the p, reaches the upper constraint. It seems that there is a trade-off between
the output gap and a change in nominal exchange rate targeting while as preferences
are shifted towards inflation, stability p. decreases. This can be explained by the foreign
shock absorbing nature of the exchange rate. Lower values of exchange rate targeting
provide a more flexible exchange rate, which is able to absorb the foreign inflation move-
ments. At the same time, the changes in exchange rate can affect domestic output via
the foreign demand. Therefore to avoid increase in the domestic output volatility, p, is

increasing.

3.4.1 Variance decomposition

As in Collard and Dellas (2002) and in order to better understand the forces that drive
change in the business cycle behavior, change in the origins of the variance is analyzed.
I analyze the changes in variance decomposition between the estimated model and the
model of post-transition (¢ > T'). I report the changes in variance contribution shock to

the volatility of variables in Table 3.2. These changes are computed as a difference of
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shock contribution to the total variance of the considered variable (in percents) in the
estimated model and in the model of post-transition regime. In here, a positive value

signals an increase in the contribution to volatility in the model of the post-transition

regime.
Shocks

Variable g® em g9 e’ g™ gy g
Ae; -14 -16.4 -64.3 -9.8 16.4 41.1 40.4
i -19.5 -1.5 -7.3 -59.5 11.9 52.4 23.5
mey -1.2 -18.0 45.6 -10.7 0.2 -14.7 -1.3
e -6.0 -43.9 84.1 -26.4 1.0 -6.1 -2.7
pif -2.3 -16.9 -69.1 -10.2 51.0 39.8 7.7
pil{{ -3.4 -18.6 41.2 -11.2 0.4 -7.3 -1.1

f -0.2 -18.2 -69.2 -10.8 80.7 4.7 12.9
Ui -0.1 -1.7 2.7 -1.0 0.1 0.2 -0.1

Table 3.2: Variance decomposition: Changes

The negative change in the contribution of the monetary policy shock and risk pre-
mium originates from the design of my experiment when these shocks are eliminated in
the post-transition model. The 64.3% decrease in the contribution of the taste shock &%
to the volatility of change in the exchange rate shows that the exchange rate operates
as a shock absorber in the estimated model. The taste shock €9 become the dominant
source of the domestic and CPI inflation volatility in the model of the post-transition
regime, as the increases by 41.2% and 84.1% show. So offsetting of the nominal exchange
rate changes makes the stability of inflation significantly more vulnerable to the domestic
preference shock that acts as a demand shock in the estimated model.

As the exchange rate become less volatile in the model of the post-transition regime,
foreign shocks become the major sources of macroeconomic volatility. The source of
volatility in LOP gap (¢{") shifts from domestic preference and monetary shock towards
foreign inflation shock (80.7%) and foreign interest rate (12.9%). This indicates that
profits of importers become very sensible to shocks originating in the foreign economy
in the post-transition period. This also applies for imported inflation because importers’
profits are closely connected with changes in foreign price level. The reason for this
change is that the stable exchange rate is not able to work as a shock absorber for foreign
shocks. Therefore, all foreign shocks are directly transferred to the domestic economy.

A significant shift in sources of volatility occurs for domestic interest rates as the

monetary policy focuses on the exchange rate. For the interest rate, all domestic sources
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of volatility are eliminated and volatility is almost fully driven by foreign shocks; 87.8%
shift toward foreign shocks. This originates from the increase in exchange rate stability
while the domestic economy becomes more vulnerable to foreign demand shocks. Also,
the quite high persistency of foreign output and interest rate shocks is the reason that
these shocks generate a large fraction (75%) of the domestic interest rate volatility.
There are no important shifts in sources of output gap volatility over the regimes.
Output volatility remains mainly driven by preference, technology and foreign output
shocks that act as the demand shock. As the contribution of the supply shock % to
interest rate is decreased, I can conclude that the demand shocks will be the dominant

source of volatility.

3.4.2 Business cycles correlations

In the previous sections, my examples show how macroeconomic volatility is changing
over the transition period. Also, the comparison of an estimated and a post-transition
regime provides a closer look at the changes in the sources of inflation. As the adoption of
a pegged or fixed exchange rate strengthens the links between economies, the transmission
of disturbances is also increased. According to theories of currency areas, business cycle
synchronization is a necessary condition for successful implementation and sustainability
of pegged or fixed exchange rate regimes.

This section is devoted to the analysis of changes in the synchronization of business
cycles between a small and large economy. Therefore, Figures 3.11 3.13 show the evolu-
tion of the correlations with foreign variables over the various transition period lengths; 2,
4, 8 and 12 quarters. To compute the correlations, the optimal policies for these lengths
are used. For these computations 7 = 0.75 is chosen to reflect the preference for inflation
stability as observed in the estimated rule, where the inflation targeting weight p, is 2.9
times higher than output gap weight p,.

As shown in Figure 3.11, the correlation of foreign inflation and exchange rate move-
ments is suddenly changed to a value close to zero after the regime switch because under
the post-transition rule changes in the exchange rate are significantly eliminated. This
indicates that the exchange rate loses its shock-absorbing nature. As expected, domestic
inflation is becoming more correlated with foreign inflation over the transition period
via the imported goods channel. Interestingly, at the end of the transition period this

correlation drops temporarily. A similar pattern is observed for the correlation of foreign
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inflation and domestic nominal interest rate. This indicates that the monetary author-
ity trades-offs exchange rate inflation targeting for exchange rate stability at the end of
transition. After transition is over, the increase of this correlation continues as domestic
monetary authority has to follow changes in imported goods prices while these are not

absorbed by the exchange rate movements.

As shown in Figure 3.12, a steep increase in the correlation of foreign and domestic
interest rate is observed. As the focus of a post-transition regime is a stable exchange
rate, domestic monetary policy has to eliminate the pressures for exchange rate change
originating from change in foreign interest rate that is transferred via UIP. The steep in-
crease in the foreign interest rate and changes in nominal exchange rate is also observed.
Over the transition the domestic monetary authority does allow for changes in the ex-
change rate that helps as a shock absorber for foreign shocks. Therefore, the correlation
of foreign interest rate and domestic CPI inflation is close to zero or negative. However,
the focus on stability of the exchange rate eliminates this shock absorbing feature so the
steep increase in this correlation is achieved after the regime change. Figure 3.12 shows
that the domestic monetary authority strongly reacts to changes in foreign interest rate.
Also, domestic output is getting more positively correlated with foreign interest rate,
while the UIP implies more depreciation pressures as a reaction to the foreign interest

rate increase. However, these changes in correlation are relatively small.

Further, Figure 3.13 shows a correlation with foreign output. Also, in here an increase
in domestic-foreign output synchronization is observed. These correlation changes are
small while the increase in CPI inflation-foreign output correlation signals that the price
is increased in response to higher foreign demand for domestic goods. Therefore, the
positive value of foreign output-domestic interest rate correlation over the transition is
a result of inflationary pressures that originate from changes in foreign demand. These
pressures require a response by the domestic monetary authority to suppress inflation.
Also the negative value of the exchange rate-foreign output correlation shows that the
exchange rate is helping to absorb the output shock. Figure 3.13 also shows a drop
in correlation of domestic nominal interest and exchange rates with foreign output at
the end of transition. This shows that in the last periods of transition, the domestic
monetary policy is less contractive while the changes in foreign demand are absorbed by

the exchange rate.
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3.5 Policy implications

A very important concern of the monetary authority of a small open economy is its
influence on inflation and output. Figure 3.14 shows the evolution of the correlation of
inflation, output and exchange rate changes with domestic nominal interest rates over
the transition. In these plots, the optimal policies for various lengths of the transition
are considered as in the previous section.

The inflation-interest rate correlation drops mainly in the initial and late phase of
the transition. The initial drop is originating from the announcement of the policy rule
change. At this point, households realize that in future the inflation stability will be not
the main concern of the monetary authority. The plot for inflation-interest rate correlation
shows that the monetary authority loses its control over domestic CPI inflation rapidly
in the transition. The second drop in its influence over inflation occurs in the last periods
of the transition when monetary policy is at the most contractive level for output.

Consistently with the experiment design, interest rate gets more correlated with the
changes in the exchange rate over the transition. This correlation reaches almost unity
in the post-transition regime, as the increase in the domestic interest rate is used to
eliminate the depreciation of the exchange rate.

Interestingly, the correlation of output and interest rate is initially negative, as the
increase in interest rate leads to a contraction of output. As the output-interest rate
plot in Figure 3.14 shows, monetary policy is gaining more contractionary power towards
the end of the transition. However, after the regime is changed, the increasing interest
rate losses its contractionary nature. This loss originates from the nature of the new
regime, under which the increase in interest rate is closely related to depreciation under

the post-transition regime, as the interest-exchange rate plot shows.

3.6 Conclusions

In this chapter, I analyze the effects of an announced transition towards the regime of
pegged exchange rate for the small open economy. Therefore, the model of the credible
and foreseen regime switch is needed to create. I do this by extending the standard model
of the small open economy with the binary regime indicator and information buffer that
makes the changes of indicator foreseen.

In the presented model of transition towards the pegged exchange rate, the announce-
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ment of the change is modeled as the realization of information shocks that are entering

the information buffer.

To parameterize the model, its parameters are estimated via Bayesian method using
data on the Czech Republic. The properties of the estimated model are examined via
the impulse response functions. The impulse responses are computed for the estimated
model with respect to the various lengths of the transition toward the pegged exchange

rate regime.

Further, setting up the ad-hoc loss function allows me to compute simple optimal
policies for the transition period with the respect to preferences for inflation-output sta-
bilization and length of transition. Generally, the optimal policies are able to deliver a
lower loss for long transition periods and under the strong focus on output stability. The
monetary policies delivering the lowest loss are characterized by very low interest rate

smoothing and low weight on inflation targeting.

The business cycle synchronization analysis shows that there are significant changes
in the correlations of inflation, interest rate and exchange rate changes. The correlation
of domestic variables and the interest rate shows that in the last period of transition,
the contractionary effect of the interest rate is reaching its maximum. While after the
adoption of the rule of the pegged exchange rate, increases in the interest rate becomes

a sign of expansion as the result of reaction to expected depreciation.

3.A Transition period model

The solution of the transition period model given by equations (3.13) (3.25), and equa-
tions (3.27) takes the following general form:

Ty = F('It—hghyt)’ 0<t§T

where z; is the vector of the model variables, e, = {7, e}, el e% e, ], ¥} is the vector
of foreign and domestic structural shocks, vy = {141,..., 14 5} is the vector of informa-
tion shocks, and F'(.) is the second-order polynomial. However, due to the independence
of information and structural shocks after the evaluation of information shocks (an an-
nouncement of the transition), the system will be become linear. The evaluation takes the
form given by scheme (3.28) and v;; = 0, Vi and for all subsequent periods ¢, 1 <t < T.
Therefore, the transition period model with a given length of the transition period takes
the following form:

Ty = Atl't_l + B&":t, 0 S t S T (332)
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where matrices A;, t =0, ..., N and matrix B depend on the structural parameters of the
model and the transition period length. Matrix B is time invariant while the structural
shocks are independent. However for ¢1,t, > 7', I have A;, = A;, because v, for ¢t > 1 is
a vector of zeros and after period T the information buffer is filled only with zeros.

The state-space solution conditional on evaluation of the information shocks is used to
simulate the model and compute the covariance matrices ;. To compute the covariance
matrix Y, recursively the following formula is used:

¥ = AX AT + BVar(e)BY, 0<t<T (3.33)

where ¥, is the covariance matrix from the model estimated on data, Var(e;) is time
invariant covariance matrix of structural shocks. Further, to compute the evolution of
variance after the change of regime, the following recursive formula for ¢ > T is used:

Y1 = Als AT+ BfVar(at)BfT, t>T (3.34)

where matrices AY and B/ are taken from the solution of the model with the monetary
policy rule given by equation (3.26) for regime;, = 0.

3.B Estimation

3.B.1 Data description

All data in the estimation are from the Czech National Bank database. Series are sea-
sonally adjusted with TRAMO/Seats and X12. All observed series are measured at
quarterly frequency and filtered. Series are in logs; therefore they can be interpreted as
the percentage deviations from steady state levels.

e Domestic output growth (AGDP,) is the HP de-trended annualized logarithm of
real GDP growth.

e Domestic CPI inflation deviation (PI;) is the HP de-trended annualized quarterly
growth rate of the logarithm of the consumer price index (CPI).

e Foreign good inflation (PIF}) is the HP de-trended annualized quarterly logarithm
of the growth rate of imported good price (in domestic currency) index.

e Nominal interest rate (RS;) is the HP de-trended annualized quarterly value of the
3-month PRIBOR.

e Real exchange rate (@) is the HP de-trended quarterly value of the real exchange
rate.

e Foreign output gap (GDPY) is the real GDI gap for an effective Eurozone created
by the use of the export values weights and de-trended by the Kalman filter.

e Foreign real interest rate (RS} ) is the HP de-trended annualized quarterly value
of the 3-month EURIBOR.
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e Foreign inflation (PI;) is the HP de-trended annualized quarterly growth rate in
the log of consumer price index for the effective Eurozone (export weights).

All series used for estimation cover the period from the first quarter of 1998 to the second
quarter of 2007.

3.B.2 Measurement block

For my estimation the following measurement block is used to relate model variables to

observed time series data:

AGDP, 4% (yp — Yy + %) +9PF
Pl 4% + Efl
PIF, 4x ] 4 eP1F
RS, 4 %4, + 6fs
Qe @+
PI; 4% piy +e. "
RS} = dxi; +¢&
GDP = yi+e"",
where T assume that e&PP ell ePIF 5?5,5?, elT" eBS" eGPP" are independent normally

distributed with zero mean. For estimation I assume that the standard deviations of the
measurement errors take following values 0.25, 0.5, 0.3, 2.0, 1.0, 0.1, 0.1, 0.1 (in the given
order).

3.B.3 Priors and posteriors

The following tables summarize the distribution type and parameters choice (mean, and
standard deviation) of prior distributions used to estimate the parameters of posterior
distributions (mode and standard deviation).
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Prior Posterior

Variable | Description Distr. Mean  s.d. | Mode s.d.
I} Discount factor 0.99

Q@ Degree of openness Beta 0.40 0.05 0.35 0.04
i Elasticity of F-H substitution Gamma 1.50  0.50 0.27 0.07
) Degree of inflation indexation Beta 0.70  0.10 0.56 0.13
o Inverse elasticity of substitution | Gamma 0.90 0.50 0.92 0.29
% Inverse elasticity of labor supply | Gamma 1.50  0.50 1.08 0.48
Or Calvo pricing - foreign Beta 0.50 0.10 0.22 0.04
Oy Calvo pricing - domestic Beta 0.50 0.10 0.26 0.04
h Degree of habit formation Beta 0.80 0.10 0.65 0.11
Di Interest rate smoothing Beta 0.50 0.05 0.58 0.04
P Response to inflation Gamma 1.50  0.20 1.38  0.23
Py Response to output gap Gamma 0.50 0.10 0.47  0.09
Pe Response to ex. rate change Gamma 0.10 0.05 0.04 0.02
w11 Foreign VAR Normal 0.70 0.30 0.18 0.18
W19 Foreign VAR Normal 0.00 0.20 0.10 0.04
w13 Foreign VAR Normal 0.00 0.20 -0.14 0.16
wo1 Foreign VAR Normal 0.50 0.30 -0.07  0.22
W2 Foreign VAR Normal 0.70  0.20 0.93 0.06
Wa3 Foreign VAR Normal -0.10  0.20 | -0.09 0.18
w31 Foreign VAR Normal 1.50 0.20 0.27 0.09
W39 Foreign VAR Normal 0.50 0.20 0.05 0.02
W33 Foreign VAR Normal 0.70  0.30 0.58 0.13
Pa Technology - VAR(1) Beta 0.85 0.10 0.83 0.11
Ps Ex. rate risk - VAR(1) Beta 0.85 0.10 0.59 0.20
Py Taste shock - VAR(1) Beta 0.85 0.10 0.95 0.02

Table 3.3: Results from posterior parameters (parameters)
Prior Posterior

Variable | Description Distribution  Mean  s.d. | Mode s.d.
e”r Foreign inflation Gamma™! 0.60 0.50 0.18 0.02
ey Foreign demand shock Gamma™! 0.30 0.50 0.30 0.03
gt Foreign monetary shock Gamma™! 0.30 050 ] 0.08 0.01
g Domestic technology shock | Gamma™! 0.80 0.50 0.25 0.03
em Domestic monetary shock Gamma™" 0.30 0.10 0.44 0.07
g9 Domestic preference shock | Gamma™! 1.50 0.50 3.07 0.43
o Risk premium shock Gamma™" 1.00 050 | 0.34  0.05

Table 3.4: Estimation summary: Standard deviation of structural shocks
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Figure 3.1: Priors and posterior distributions

3.C

Impulse response functions

Here, the dash-dotted red line represents an estimated model; the magenta solid line is
for regime switch in 4; the dashed blue line in 8; and the dotted black line in 40 periods.
The results are presented as quarterly percentage deviations from the steady state.
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3.D Volatility and loss evaluation

Loss function
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Figure 3.9: Loss function: Different specifications and transition lengths
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Figure 3.10: Optimal policies: Different specifications and transition lengths
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3.E  Cycles synchronization

Here, the dash-dotted red line is for a policy switch in 2 periods; the magenta solid line
is for regime switch in 4; dashed blue line in 8; the dotted black line in 12 periods. The

results are presented as quarterly percentage deviations from the steady state.
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