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Abstra
t
In the �rst 
hapter, by introdu
tion of output augmentation and input redu
tion I extendadditive models for sto
hasti
 data envelopment analysis (SDEA), whi
h were developedby Li (1998) to handle the noise in the data. Applying the linearization pro
edure by Li(1998) the linearized versions of models are derived. In the empiri
al part of this 
hapter,the e�
ien
y s
ores of West Java ri
e farms are 
omputed. The 
omputed s
ores are
ompared to the sto
hasti
 frontier approa
h s
ores by Druska and Horra
e (2004) andweak ranking 
onsisten
y with results of sto
hasti
 frontier method is observed.The obje
tives of the se
ond 
hapter are to evaluate te
hni
al and s
ale e�
ien
y ofri
e farms in West Java and to identify determinants a�e
ting farms' e�
ien
y. Further,the farm size�produ
tivity relation is investigated. Data Envelopment Analysis is usedfor estimation of te
hni
al e�
ien
y s
ores. Additionally, Tobit regression is used toexplain the variation in the e�
ien
y s
ores by farm�spe
i�
 fa
tors. I 
on
lude that thefarm size is one of the most important fa
tors of farm te
hni
al e�
ien
y and that highland fragmentation was the main sour
e of farm ine�
ien
y during the �nal period ofintensi�
ation era, known as Green Revolution.In the last, 
hapter I examine ma
roe
onomi
 stability and the properties of business
y
les in the model with an announ
ed 
hange of the monetary regime type. Further, Isolve for the optimal monetary poli
ies over the transition towards the pegged ex
hangerate with respe
t to alternative loss fun
tion spe
i�
ation for the monetary authorityand to transition length. The subje
t of my study is the Cze
h Republi
. The resultsof 
alibrated experiment show that monetary poli
y should be more 
on
erned aboutdemand type sho
ks when announ
ing a swit
h towards the ex
hange rate peg.
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Introdu
tion

This work 
olle
ts three appli
ations of mathemati
al methods that 
overs operationsresear
h, development and monetary e
onomi
s.The �rst 
hapter is fo
used on the theoreti
al development of the models used in theoperations resear
h. Results of data envelopment analysis sensitively respond to sto
has-ti
 noise in the data. Therefore, I propose an in
lusion of the sto
hasti
 fa
tor in theoriented model for the non-parametri
 method of the produ
tion frontier estimation, knowas the Data Envelopment Analysis. Further, the results obtained the with the sto
hasti
version of oriented models are 
ompared to results of sto
hasti
 frontier method.The se
ond 
hapter presents the results of the e�
ien
y analysis of the ri
e farmsin the West Java. Using the 
ombination of non-parametri
 and parametri
 methods,I identify the size of the farming plot as an important fa
tor of the ri
e farming. Thisanalysis shows that the merging of the plots may be bene�
ial for in
rease of the output.In the third 
hapter, I propose a theoreti
al framework for modeling of the announ
edswit
h of the monetary regime. In this 
hapter, the analyze the syn
hronization of thebusiness 
y
les over the transition period. Also, an optimal poli
ies for the various lengthsand spe
i�
ations of monetary authority loss fun
tion are 
omputed.
1
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Chapter 1Oriented sto
hasti
 data envelopment models

Data envelopment analysis (DEA) involves an non�parametri
 prin
iple for extra
tinginformation about observations of a population of produ
tion mixes, so 
alled de
isionmaking units (DMUs), that are des
ribed by the same quantitative 
hara
teristi
s. Theprimary obje
tive of this 
hapter is to extent the work of Huang and Li (2001) and Li(1998) on additive sto
hasti
 DEA models (SDEA) by derivation of SDEA models thatallow for proportional input redu
tion and output augmentation � oriented SDEA models.The empiri
al part of this 
hapter is motivated by Horra
e and S
hmidt's (1996) 
om-parison of methods and by Mortimer's (2002) 
on
lusion, that more 
omparative studiesfor the DEA and sto
hasti
 frontier approa
h are needed to evaluate the 
onsisten
y ofresults with respe
t to method 
hoi
e.Data envelopment analysis, developed by Charnes, Cooper, and Rhodes (1978), in-volves an alternative approa
h to sto
hasti
 frontier analysis (SFA) that was developed atthe same time by Aigner, Lovell, and S
hmidt (1977), for e�
ien
y evaluation of the de
i-sion pro
ess observations. The DEA approa
h is a nonparametri
 approa
h to produ
tionfrontier estimation and requires spe
i�
ation of the produ
tion possibility set propertiesrather than the produ
tion fun
tion form that is required when the sto
hasti
 frontierapproa
h is used. In 
ontrast to parametri
 approa
hes for information extra
tion, theobje
tive of the DEA is to identify the smallest set that satis�es produ
tion possibilityproperties.The general model of produ
tion fun
tion is de�ned as: yj = f(xj , β) + ej , where xjrepresents inputs, β unknown parameters of produ
tion fun
tion f(xj , β) and yj repre-3



sents output of the DMUj. The aggregate error term ej is 
onsidered as extent of inef-�
ien
y in the DEA approa
h. In the SFA approa
h [e.g. Aigner, Lovell, and S
hmidt(1977); Meeeusen and van den Broe
k (1977)℄ the error 
omponent ej is de
omposed intoa sto
hasti
 random 
omponent and a true te
hni
al e�
ien
y 
omponent. Therefore,together with the extreme point nature of the DEA, the noise in data may lead to biasin the DEA te
hni
al e�
ien
y measure. The dilemma of the e�
ien
y evaluation ap-proa
h depends on the trade o� between the minimal spe
i�
ation of produ
tion fun
tionform that favors the DEA approa
h and the handling of sto
hasti
 error in measuringe�
ien
y that favors the SFA approa
h. To 
ompete with the SFA in error handling, thesto
hasti
 data envelopment analysis (SDEA) approa
h was developed by 
onsidering theused levels of inputs and outputs as random variables in the DEA model spe
i�
ation.The theoreti
al part of this 
hapter extends the work on derivation of almost 100%
on�den
e SDEA models by Li (1998) and Huang and Li (2001) by spe
i�
ation of theperforman
e improvement dire
tion, so 
alled model orientation. Further, assumptionsto simplify the disturban
e stru
ture are taken and using linearization methods the lineardeterministi
 equivalents of these models are derived. This is utilized in the appli
ationse
tion where it allows for the use of the linear programming method to solve SDEAproblems. These SDEA results are 
ompared to SFA results, so the 
onsisten
y of resultsa
ross frontier estimation methods 
an be assessed.The following literature review se
tion presents details of the motivation for the SDEA.In the se
ond and third se
tion, notation and de�nitions used to 
onstru
t SDEA modelsare presented. Subsequently, the derivation of Huang and Li's (2001) additive modelsis summarized and in the �fth se
tion I introdu
e input redu
tion and output augmen-tation dire
tions for e�
ien
y measure de�nition. In the sixth and following se
tions, Iderive oriented models and their linearized forms. The ninth se
tion des
ribes numeri
almethods used to solve derived linearized versions of the oriented SDEA models. In thetenth se
tion, I evaluate the SDEA, DEA and SFA e�
ien
y s
ores 
onsisten
y assessingthe results of the Indonesian ri
e farms e�
ien
y evaluation, as in Horra
e and S
hmidt(1996). The 
omparison of methods reveals in
onsisten
y between e�
ien
y rankings a
-quired by the SFA approa
h and SDEA approa
h. All �gures and tables that I referen
eto, are in
luded in the appendix. 4



1.1 Literature reviewAs Charnes et al. (1994) explain in their introdu
tion, the story of data envelopmentanalysis began with Edwardo Rhodes's dissertation, whi
h was the basis for the laterpublished paper by Charnes, Cooper, and Rhodes (1978). In his dissertation, Rhodes usedthe produ
tion e�
ien
y 
on
ept by Farrell (1957) to analyze the edu
ational programfor disadvantaged students in the USA. Rhodes 
ompared the performan
e of studentsfrom s
hools parti
ipating and not parti
ipating in the program. Students' performan
ewas re
orded in terms of inputs and outputs, e.g. �in
reased self�esteem� (measured bypsy
hologi
al tests) as one of the outputs and �time spent by mother reading with 
hild�as one of the inputs. The subsequent work on e�
ien
y evaluation of multiple inputs andoutputs te
hnology led to Charnes, Cooper, and Rhodes's (1978) model (CCR model).The introdu
ed CCR model is suitable for analysis of the te
hnologi
al pro
ess underthe 
onstant returns to s
ale assumption. This fa
t is re�e
ted in the shape of theprodu
tion possibility frontier when the frontier is formed by a single half�ray and theDMU identi�ed as e�
ient is an element of the produ
tion possibility frontier set upby this half�ray. To handle the variable returns to s
ale, introdu
ed by Farrell andFieldhouse (1962) in the SFA framework, the CCR model was reformulated by Banker,Charnes, and Cooper (1984) (BCC model). Sin
e the produ
tion possibility frontier ofthe BCC model is a pie
ewise linear set, they de�ned weak e�
ien
y (a weakly e�
ientDMU has nonzero sla
ks) and e�
ien
y (an e�
ient DMU has zero sla
ks). To reviewthe DEA models Table 1.1 summarizes a generalized versions of the aforementioned DEAmodels. The generalized versions of the DEA models 
ollapse to the CCR model (
onstantreturns to s
ale) for ϕ = 0 and for ϕ = 1 it mat
hes the form of the BCC model (variablereturns to s
ale).As many appli
ations suggest, the 
apability of handling multiple inputs�outputs andthe fa
t that the spe
i�
ation of produ
tion fun
tion form is not required, make theDEA a powerful tool that is applied in various industries [e.g. in air transportation,Land, Lovell, and Thore (1993); �shing, Walden and Kirkley (2000); banking, �ev£ovi£,Hali
ká, and Brunovský (2001); health 
are, Byrnes and Valdmanis (1989) where 123US hospitals were 
overed; and in Halme and Korhonen (1998) dental 
are units wereassessed℄ for te
hni
al e�
ien
y evaluation. The expanding number of papers using theDEA approa
h helped to identify the limitations that an analyst should keep in mindwhen 
hoosing whether or not to use the approa
h.5



It is worth noting that the DEA approa
h performs very well when estimating the�relative� e�
ien
y but it is not su
h a powerful te
hnique when estimating �absolute�e�
ien
y. In other words, the DEA reveals how well the 
onsidered DMU is doing
ompared to the DMU's peers but not 
ompared to a �theoreti
al maximum�. Figure1.1 illustrates this situation as the di�eren
e between the true produ
tion frontier andthe estimated produ
tion frontier. This di�eren
e results from the analyst's limitation inknowledge of the true produ
tion fun
tion.A more remarkable limitation originates from the extreme point nature of the DEAapproa
h whi
h makes 
omputed te
hni
al e�
ien
y measure sensitive to 
hanges indata. Therefore, noise (even symmetri
al noise with zero mean) su
h as measurementerror 
an 
ause signi�
ant problems. The literature on re
ent developments for noisein
orporation in the DEA identi�es three approa
hes: mixture of the DEA and SFAapproa
hes, bootstrapping, and taking inputs and outputs as random variables.Gsta
h (1998) proposes using the DEA te
hnique to estimate a pseudo�produ
tionfrontier (non�parametri
 produ
tion possibility set estimation) to sele
t the e�
ientDMUs that identify the produ
tion possibility frontier. After this sele
tion, he applies amaximum likelihood�te
hnique to estimate the s
alar value in produ
tion frontier form,by whi
h this pseudo�frontier must be shifted downward to get the true produ
tion fron-tier (frontier lo
ation estimation), using the DEA�estimated e�
ien
ies. Simar (2003)des
ribed the iterative bootstrapping method for improving the performan
e of the de-terministi
 DEA frontier estimation. However, this bootstrapping approa
h is suitableonly for 
ases where noise to signal ratio is low.In this 
hapter, I fo
us on the approa
hes were the noise is introdu
ed by 
onsideringDMUs as realizations of random variables. These theoreti
al attempts are based on Land,Lovell, and Thore's (1993) paper, where the authors use improved models to examine thee�
ien
y of the same s
hooling program for disabled s
holars as in Charnes, Cooper,and Rhodes (1978). Land, Lovell, and Thore (1993) o�er the prospe
t of sto
hasti
 dataenvelopment analysis and 
onstru
ted their own model (LLT model). The LLT model isderived as a 
han
e 
onstrained version of the BCC output oriented model in envelopmentform. Further, they transform these 
han
e 
onstrained problems to their deterministi
non�linear equivalents, whi
h allow them to determine the e�
ient DMUs.Olesen and Petersen (1995) present a di�erent approa
h to in
orporating the sto
has-ti
 
omponent into the DEA and their model (OP model) originates from the multiplierformulation of the BCC model. They assume that the ine�
ien
y term of the 
onsid-6



ered DMU 
an be de
omposed into true ine�
ien
y and disturban
e term as in the SFAapproa
h. Further, Olesen (2002) 
ompares the approa
hes of the models by Olesen andPetersen (1995) and Land, Lovell, and Thore (1993) and identi�es weaknesses of bothmodel types. The LLT model is 
riti
ized be
ause it does not a

ount for all the 
orre-lations that 
an o

ur in disturban
es. Olesen (2002) 
riti
izes the OP model be
ause itignores 
orrelations between DMUs. A related weakness is the omission of the fa
t that a
onvex 
ombination of two DMUs 
an have a lower varian
e than the DMUs 
onsideredsolely. A straightforward remedy for the OP model is to take the union of 
on�den
eregions for any linear 
ombination of the sto
hasti
 ve
tors themselves rather than usinga pie
ewise linear envelopment of the 
on�den
e regions. Olesen (2002) implements thisidea and derives the 
ombined 
han
e 
onstrained model.The approa
h that will be extended in this 
hapter, originates from work by Huang andLi (2001), where inputs and outputs are introdu
ed as random variables and the relationof sto
hasti
 e�
ien
y dominan
e is de�ned. Huang and Li (2001) de�ne the e�
ien
ydominan
e of a DMU via joint probabilisti
 
omparisons of inputs and outputs withother DMUs whi
h are evaluated by solving a 
han
e 
onstrained programming problem.By utilizing the theory of 
han
e 
onstrained programming, deterministi
 equivalentsare obtained for both situations of multivariate symmetri
 random disturban
es and asingle random fa
tor in produ
tion relationships. Under the assumption of the singlerandom fa
tor, Huang and Li (2001) obtain linear deterministi
 equivalent to sto
hasti
programming problems via linear programming theory. In this 
hapter, I propose theoriented form of the additive SDEA models derived by Huang and Li (2001). Further,by use of Huang and Li's (2001) linearization approa
h I linearize the proposed orientedSDEA models.In the empiri
al part of this 
hapter, I 
ompare the results of the di�erent methods toprodu
tivity evaluation as in Horra
e and S
hmidt (1996). This 
omparison is motivatedby Mortimer's (2002) 
omparative study of re
ent literature that summarizes the resultsfrom SFA and DEA studies to identify the amount of 
orrelation between s
ores in SFAand DEA 
omparative studies. Mortimer (2002) 
alls for more studies that will 
omparee�
ien
y s
ores 
orrelation a
ross produ
tion e�
ien
y approa
hes be
ause the present
omparative studies show either strong [e.g. Ferro�Luzzi et al. (2003)℄ or very weak[e.g. Lan and Lin (2002), Wadud and White (2000a)℄ 
orrelation of obtained e�
ien
yrankings.The major problems asso
iated with solving the DEA models are the analysis of a7



large set of DMUs and interpretation of the optimal solutions with zero elements. Theanalysis of a large data set leads to large size optimization problems that 
an be 
ostly tosolve. The solutions that 
ontain many zero elements 
an make the results of the analysisquestionable be
ause the elements of optimal solutions are interpreted as shadow pri
esof inputs and outputs. Gonzales-Lima, Tapia, and Thrall (1996) present the primal�dual interior�points 
omputational methods as the methods that signi�
antly improvethe reliability of the solution in 
omparison to simplex methods. The interior�pointsmethods maximize the produ
t of the positive 
omponents in the optimal solutions, sothey identify optimal solution with the minimal number of zero 
omponents. Due tothis property of the optimal solution it is easier to interpret the DEA models results.Therefore, as part of my theoreti
al work the interior point method solver is 
onstru
ted.
1.2 NotationIn this se
tion, the notation used to 
onstru
t the oriented sto
hasti
 DEA models isintrodu
ed. Additional notation will be introdu
ed in the following se
tion to des
ribethe 
onsidered error stru
ture. In 
ontrast to the deterministi
 approa
h to envelop-ment analysis, where DMUs are observations of de
ision realization, the DMUs in thesto
hasti
 approa
h are 
hara
terized by random variables and the te
hnology realiza-tions are observations of these random variables. The notation in this 
hapter 
oin
ideswith the notation usually found in data envelopment analysis literature [e.g. Charneset al. (1994),Cooper et al. (1998), and Huang and Li (2001)℄.1 The task is to analyzethe set of DMUj , where 1 ≤ j ≤ n. Ea
h of the DMUs is des
ribed by a random ve
tor
x̃j , x̃j = (x̃1j , . . . , x̃mj)

T of m input amounts (random variables) that are used to produ
e
s outputs in amounts des
ribed by random ve
tor ỹj, ỹj = (ỹ1j, . . . , ỹsj)

T . These ve
torsare aggregated to matri
es of random ve
tors of inputs and outputs, so the followingmatrix notation will be used:1In this 
hapter, the random variables are denoted by˜and means of these variables are denoted byan upper bar. 8



matrix of inputs random ve
tors X̃ = (x̃1, . . . , x̃n)

ith row of �input� matrix X̃ ix̃ = (x̃i1, . . . , x̃in), i = 1, . . . , m

m× n matrix of expe
ted inputs X̄ = (x̄1, . . . , x̄n)

ith row of expe
ted �input� matrix X̄ ix̄ = (x̄i1, . . . , x̄in), i = 1, . . . , mmatrix of outputs random ve
tors Ỹ = (ỹ1, . . . , ỹn)

rth row of �output� matrix Ỹ rx̃ = (ỹr1, . . . , ỹrn), r = 1, . . . , s

s× n matrix of expe
ted outputs Ȳ = (ȳ1, . . . , ȳn)

rth row of expe
ted �output� matrix Ȳ rȳ = (ȳr1, . . . , ȳrn), r = 1, . . . , s.1.3 Sto
hasti
 e�
ien
y dominan
eIn this se
tion, the e�
ien
y dominan
e relation and derivation of additive almost 100%
han
e 
onstrained models by Huang and Li (2001) is reviewed. These theorems andde�nitions form the basis for derivation of the oriented SDEA derived in the followingse
tions.De�nition 1. General sto
hasti
 produ
tion possibility set T ⊂ Rm+s
+ is de�ned as:

T = {(x̃, ỹ) | outputs ỹ 
an be produ
ed using inputs x̃}.2This de�nition of the sto
hasti
 produ
tion possibility set relates to random ve
torsthat 
hara
terize DMUs and it means that all DMUs are required to be an element ofthe sto
hasti
 produ
tion possibility set but not all observations of DMUs are requiredto be in the sto
hasti
 produ
tion possibility set. As mentioned in the literature review,the fun
tion form is not known, therefore the estimate of the produ
tion possibility setis identi�ed by the properties that the produ
tion possibility set should ful�ll.Almost 100% 
on�den
e produ
tion possibility set T 
onstru
ted from the set ofDMUj, j = 1, . . . , n should ful�ll the following properties:Property 1. Convexity: If (x̃j , ỹj) ∈ T, j = 1, . . . , n and λ ∈ Rn
+, ⇒ (X̃λ, Ỹ λ) ∈ T.Property 2. Ine�
ien
y property: If (x̄, ȳ) ∈ T and x ≥ x̄, then (x, ȳ) ∈ T.If (x̄, ȳ) ∈ T and y ≤ ȳ then (x̄, y) ∈ T.Property 3. Minimum extrapolation: T is the interse
tion of all sets satisfying 
onvexityand ine�
ien
y property and subje
t to ea
h of the observed random ve
tors (x̃j , ỹj) ∈

T, j = 1, . . . , n.2Here, R+ means set of positive real numbers and 1 is 
olumn ve
tor of ones.9



From the �rst two properties follows that less output 
an be produ
ed with the sameamount of inputs. This re�e
ts the situation when some portion of inputs is wasted inthe produ
tion pro
ess. The parametri
 produ
tion possibility set Tϕ; Tϕ = {(x̃, ỹ) |

x̃ ≥ X̃λ, ỹ ≤ Ỹ λ, ϕ(1Tλ) = ϕ, λ ≥ 0}, where ϕ ∈ {0, 1}, satis�es all aforementionedproperties. T0 is the sto
hasti
 generalization of the produ
tion possibility set underthe assumption of the 
onstant returns to s
ale produ
tion fun
tion as used by Charnes,Cooper, and Rhodes (1978) in the derivation of the CCR model. Similarly, the sto
hasti
generalization of the produ
tion possibility set T1 will be used to derive models withvariable returns to s
ale as in a 
ase of the BCC model by Banker, Charnes, and Cooper(1984).The 
on
ept of e�
ien
y in the DEA (based on the following relative e�
ien
y de�-nition) is used to de�ne the α�sto
hasti
 e�
ien
y dominan
e.De�nition 2. Relative E�
ien
y: A DMU is to be identi�ed as e�
ient on the basisof available eviden
e if and only if the performan
es of other DMUs does not show thatsome of its inputs or outputs 
an be improved without worsening some of its other inputsor outputs.The e�
ient point of the produ
tion possibility set is identi�ed if there is no otherprodu
tion point that produ
es more output without 
onsuming more input, or 
onsumesless input without produ
ing less output. This leads to the following e�
ien
y dominationde�nition of the produ
tion possibility set element:De�nition 3. E�
ien
y dominan
e relation: The point (x, y) is not dominated in thesense of e�
ien
y if ∄ (x∗, y∗) in the produ
tion possibility set su
h that x∗ ≤ x or y∗ ≥ ywith at least one stri
t inequality for input or output 
omponents.This de�nition demonstrates the e�
ien
y 
on
ept of the DEA and is used to derivethe deterministi
 models with no possibility of a violation of the produ
tion possibility setproperties or e�
ien
y dominan
e. In the deterministi
 environment, the non�dominatedDMUs are elements of the produ
tion possibility set frontier. Figure 1.1 illustrates thissituation where the set of DMUs is divided into e�
ient (DMU1, DMU2 and DMU3) andine�
ient DMUs (DMU4 and DMU5). The e�
ient DMUs � points that dominate ine�
ien
y the other elements of the produ
tion possibility set � are used to identify theprodu
tion possibility frontier.In the sto
hasti
 framework, where e�
ien
y dominan
e 
an be violated due to ran-dom errors, the e�
ien
y dominan
e violations are allowed with the probability α, 0 ≤10



α ≤ 1. In 
han
e 
onstrained programming methodology the term 1−α is interpreted asthe modeler's 
on�den
e level and α is interpreted as the modeler's risk (the extent of 
on-ditions violations). In the almost 100% 
on�den
e approa
h, the produ
tion possibility
onstraints are almost 
ertainly not violated and the e�
ien
y dominan
e 
an be violatedwith probability α. For the 
ase of the almost 100% 
on�den
e 
han
e 
onstrained ap-proa
h, Li (1998) and Huang and Li (2001) de�ne the α�sto
hasti
ally e�
ien
y of pointas:De�nition 4. α�sto
hasti
 e�
ien
y of point in set Tϕ: (x̃∗, ỹ∗) ∈ Tϕ is 
alled α�sto
hasti
allye�
ient point asso
iated with Tϕ ⇔ if the analyst is 
on�dent that (x̃∗, ỹ∗) is e�
ientwith probability 1 − α in the set Tϕ.De�nition 4 means that point (x̃∗, ỹ∗), 
onsidered as α�sto
hasti
ally e�
ient maybe dominated (in the sense of e�
ien
y dominan
e) by any other point in Tϕ with aprobability less or equal to α. For the DMUj asso
iated with this point this de�nition isused to evaluate the α�sto
hasti
 e�
ien
y of DMUj .This de�nition and the aforementioned properties of the set Tϕ straightforwardlyimply that for the e�
ient DMUj and for any λj ∈ Rn
+ su
h that ϕ(1Tλj) = ϕ, λ ≥ 0the expression Prob(X̃λj ≤ x̃j , Ỹ λj ≥ ỹj) ≤ α holds with at least one stri
t inequality ininput�output 
onstraints.To illustrate the DEA and almost 100% 
on�den
e SDEA approa
h, Figure 1.1 illus-trates the relation of the deterministi
 frontier to the possible true produ
tion possibilityfrontier. The solid pie
ewise linear line is the possible true produ
tion possibility frontierand the dashed line is the DEA estimate of this produ
tion possibility frontier. In Figure1.2 the expe
ted values of DMUs (same values as the observations in Figure 1.1) are pi
-tured and the set of α�e�
ien
y dominant elements is presented as a grey shaded area.A 
omparison of Figures 1.1 and 1.2 shows that for the almost 100% 
on�den
e SDEAapproa
h, the deterministi
 produ
tion possibility set frontier is a subset of the sto
has-ti
 possibility set frontier. Due to this fa
t more DMUs 
an be identi�ed as e�
ien
ydominant in the sto
hasti
 framework than in the deterministi
.1.3.1 Sto
hasti
 modelIn this subse
tion, the derivation of the almost 100% 
on�den
e 
han
e 
onstrained prob-lem is reviewed. The reviewed sto
hasti
 model for assessing e�
ien
y of DMUj is theequivalent to the additive DEA model and serves as the basis for the further theoreti
al11



development of SDEA models. In the following subse
tion, spe
i�
 assumptions aboutthe error stru
ture in the data are made and the sto
hasti
 model is transformed into itsdeterministi
 equivalent.Now, from the set properties for the virtual peers (X̃λ, Ỹ λ) that are used for evaluationof e�
ien
y of DMUj follows that
{X̃λ ≤ x̃j , Ỹ λ ≥ ỹj} ⊂ {1T (X̃λ− x̃j) + 1T (ỹj − Ỹ λ) < 0} (1.1)and using the probability properties the following inequality is derived:3

Prob(X̃λ ≤ x̃j , Ỹ λ ≥ ỹj) ≤ Prob(1T (X̃λ− x̃j) + 1T (ỹj − Ỹ λ) < 0).Therefore, for λ ∈ Rn
+ su
h that ϕ(1Tλ) = ϕ and λ ≥ 0 the 
ondition
Prob(1T (X̃λ− x̃j) + 1T (ỹj − Ỹ λ) < 0) ≤ αis a ne
essary 
ondition for the DMUj to be α�sto
hasti
ally e�
ient. Using the ne
essary
ondition for α�sto
hasti
 e�
ien
y of the DMUj, the following almost 100% 
on�den
e
han
e 
onstrained problem (in matrix notation) for the te
hni
al e�
ien
y evaluation ofthe DMUj , j = 1, . . . , n is 
onstru
ted (Cooper et al. (1998), Li (1998) and Huang andLi (2001))

max
λj

Prob(1T (X̃λj − x̃j) + 1T (ỹj − Ỹ λj) < 0) − α (1.2)
s.t. P rob(ix̃λj < x̃ij) ≥ 1 − ǫ, i = 1, . . . , m;

Prob(rỹλj > ỹrj) ≥ 1 − ǫ, r = 1, . . . , s;

ϕ(1Tλj) = ϕ,

λj ≥ 0,where ǫ is a non�Ar
himedean in�nitesimal quantity.4 The optimal solution of problem1.2 is related to the sto
hasti
 e�
ien
y of the DMUj by following two theorems whi
h3The inequality type 
hange is due to the additional restri
tion that {X̃λ ≤ x̃j , Ỹ λ ≥ ỹj} holds withat least one stri
t inequality. The a

ura
y of this simpli�
ation is 
losely dis
ussed in Rusz
zynski andShapiro (2003).4This means that ǫ is a very small positive number su
h that ∑n

i=1 ǫ < 1 no matter how largeis n. A

ording to the 
hapter �Computational Aspe
ts of DEA� in Charnes et al. (1994), ǫ <
minj=1,...,n 1/(

∑m

i=1 xij) is sele
ted in the 
al
ulations of these models.12



are dire
t 
orollaries of Theorem 3 by Cooper et al. (1998):5Theorem 1. Let the DMUj be α�sto
hasti
ally e�
ient. The optimal value of the obje
-tive fun
tion in the 
han
e 
onstrained programming problem 1.2 is less than or equal tozero.Theorem 2. If the optimal value obje
tive fun
tional of problem 1.2 is greater than zero,then DMUj is not α�sto
hasti
ally e�
ient.Theorem 2 implies that if the maximum value of the 
han
e fun
tional
Prob(1T (X̃λj − x̃j) + 1T (ỹj − Ỹ λj) < 0) ex
eeds α, then the 
onsidered DMUj is not
α�sto
hasti
ally e�
ient. The value of the 
han
e fun
tional of the additive SDEA modelrepresented by problem 1.2 
an be used as the simplest e�
ien
y measure when inter-preted as the sum of input ex
ess and output sla
k. In the se
tion on derivation ofthe oriented SDEA models, I introdu
e measures based on possible proportional inputredu
tion or output augmentation.1.3.2 Error stru
tureIn this subse
tion, the error stru
ture that allows the transformation of the model froma 
han
e 
onstrained problem to a linear deterministi
 equivalent is introdu
ed and thelinearization approa
h by Cooper et al. (1998) is summarized. The following stru
tureof m inputs and s outputs of the DMUj, for j = 1, . . . , n with noise driven by normallydistributed sho
ks is 
onsidered

x̃ij = x̄ij + aijζij i = 1, . . . , m; (1.3)
ỹij = ȳij + bijξrj, r = 1, . . . , s;where it is assumed E(ζij) = E(ξrj) = 0, j = 1, . . . , n and the following varian
e�
ovarian
e stru
ture of errors for all DMUs is assumed:6

V ar(ζij) = V ar(ξrj) = σ2
ε 1 ≤ i ≤ m; 1 ≤ r ≤ s; 1 ≤ j ≤ n;5See Theorem 3 and its proof in Cooper et al. (1998).6For linearization pro
edure the standard normal distribution N(0, 1) 
an be assumed. The s
aling ofthe measurement units is used when numeri
al problems with tiny diagonals of the input�output varian
ematri
es o

urs, therefore the more general assumption of N(0, σ2

ε) is used. This simplifying assumptionalso redu
es the number of parameters to be estimated for e�
ien
y evaluation to 2n(m + s). Withoutsimplifying assumption [n2(m + s)2 + 3n(m + s)]/2 parameters are needed to be estimated.13



Cov(ζij, ζkl) = 0 1 ≤ i, k ≤ m; 1 ≤ j, l ≤ n;

Cov(ξrj, ξkl) = 0 1 ≤ r, k ≤ s; 1 ≤ j, l ≤ n;

Cov(ξrj, ζil) = 0 1 ≤ r ≤ s; 1 ≤ i ≤ m; , 1 ≤ j, l ≤ n.Under this error stru
ture follows that inputs and outputs are normally distributed with
E(x̃ij) = x̄ij , E(ỹrj) = ȳrj and varian
e V ar(x̃ij) = (aijσε)

2, V ar(ỹrj) = (brjσε)
2.When assessing the produ
tion pro
esses it is also reasonable to 
onsider the 
ase oflog�normally distributed variables. In the 
ase of log�normality of inputs and outputswith disturban
es driven by normal random variables, the following stru
ture of inputsand outputs 
an be 
onsidered:

x̃logij = exp(x̄ij + aijζij) i = 1, . . . , m; (1.4)
ỹlogij = exp(ȳij + bijξrj), r = 1, . . . , s.The log�normal input�output stru
ture 
an be transformed to normal input�output stru
-ture by taking logs, therefore in the following text I assume only the input�output stru
-ture with normally distributed input and output variables.Additionally, when assuming ε = ξij = ξkl = ζrj = ζil, for 1 ≤ r ≤ s; 1 ≤ i ≤ m;

1 ≤ j, l ≤ n then the assumed error stru
ture 
ollapses to a single fa
tor symmetri
 errorstru
ture where ε follows normal distribution with E(ε) = 0, V ar(ε) = σ2
ε . To simplifythis notation, the ve
tors

aj = (a1j , . . . , amj)
T , bj = (b1j , . . . , bsj)

T , j = 1, . . . , n;

ia = (ai1, . . . , ain), rb = (br1, . . . , brn), i = 1, . . . , m, r = 1, . . . , s;are introdu
ed and these ve
tors are aggregated to 
onstru
t the following matri
esof input and output variations Am×n = (a1, . . . , an), Bs×n = (b1, . . . , bn). Using theproperties of normal distribution it is derived that ix̃λj − x̃ij is distributed a

ordingto N(ix̄λj − x̄ij ; (iaλj − aij)
2σ2

ε) and (rỹλj − ỹrj) is normally distributed a

ording to
N(rȳλj − ȳrj; (brj − rbλj)

2σ2
ε). Applying the inverse 
umulative distribution fun
tion

Φ−1(α), the 
onstraints and obje
tive fun
tion in the almost 100% 
on�den
e 
han
e
onstrained problem 1.2 
an be rewritten as in Cooper et al. (1998) or Huang and Li(2001) and the following deterministi
 equivalent of problem 1.2 is derived:
min

λj∈R
m+s
+

1T (X̄λj − x̄j) + 1T (ȳj − Ȳ λj)+ | 1T (Aλj − aj) + 1T (bj − Bλj) | σεΦ
−1(α) (1.5)14



s.t. ix̄λj ≤ x̄ij+ | iaλj − aij | σεΦ
−1(ǫ), i = 1, . . . , m,

ȳrj ≤ rȳλj+ | brj − rbλj | σεΦ
−1(ǫ), r = 1, . . . , s,

ϕ(1Tλj) = ϕ,

λj ≥ 0.Applying the linearization pro
edure, new variables q1r, q2r, h1i, h2i and the 
umulativeterm ǫ(
∑s

r=1(q1r+q2r)+
∑m

i=1(h1i+h2i)) introdu
ed into the obje
tive fun
tion allows forthe de
omposition of the absolute value terms and to linearize the 
onstraints in problem1.5.7 Moreover, this modi�
ation does not a�e
t the optimal solutions of problem 1.5and this problem is equivalent to the following problem with linear 
onstraints:
min

λj ,qkr,hki

1T (X̄λj − x̄j) + 1T (ȳj − Ȳ λj) + (1.6)
+ | 1T (Aλj − aj) + 1T (bj −Bλj) | σεΦ

−1(α) + ǫ(

s∑

r=1

(q1r + q2r) +

m∑

i=1

(h1i + h2i))

s.t. ix̄λj ≤ x̄ij + (h1i + h2i)σεΦ
−1(ǫ),

iaλj − aij = h1i − h2i, i = 1, . . . , m,

ȳrj ≤ rȳλj + (q1r + q2r)σεΦ
−1(ǫ),

brj − rbλj = q1r − q2r, r = 1, . . . , s,

ϕ(1Tλj) = ϕ,

λj ≥ 0, qkr ≥ 0, hki ≥ 0, k = 1, 2.In the following step, the absolute value from the obje
tive fun
tion is removed. Theinverse of 
umulative distribution fun
tion Φ(α) takes a positive or negative values; toa

ount for this fa
tor let's de�ne δ su
h that
δ =






−1 if α < 0.5;

0 if α = 0.5;

1 if α > 0.5.The absolute value term in the obje
tive fun
tion is the sum of the absolute value termsin the 
onstraints of problem 1.6; therefore, the de
omposition that was used in these
onstraints is just substituted in the obje
tive fun
tion. Thus as in used literature [e.g.Li (1998) and Huang and Li (2001)℄, the absolute value terms are eliminated from the7For simpli
ity of notation, in the following text the index j is omitted in the terms q1r, q2r, h1i, h2ithat are used to repla
e the absolute value term. 15



obje
tive fun
tion and the following problem with a linear obje
tive fun
tion is obtained:
min

λj ,qkr,hki

1T (X̄λj − x̄j) + 1T (ȳj − Ȳ λj) + (1.7)
+δ(1T (Aλj − aj) + 1T (bj − Bλj))σεΦ

−1(α) + ǫ(

s∑

r=1

(q1r + q2r) +

m∑

i=1

(h1i + h2i))

s.t. ix̄λj ≤ x̄ij + (h1i + h2i)σεΦ
−1(ǫ),

iaλj − aij = h1i − h2i, i = 1, . . . , m,

ȳrj ≤ rȳλj + (q1r + q2r)σεΦ
−1(ǫ),

brj − rbλj = q1r − q2r, r = 1, . . . , s,

ϕ(1Tλj) = ϕ,

λj ≥ 0, qkr ≥ 0, hki ≥ 0, k = 1, 2.Problem 1.7 is known as the envelopment formulation of the DEA model, be
ause theoptimal solution identi�es the proje
ted point on to the envelopment surfa
e for DMUj .Using Li's (1998) de�nition of the dual problem, the dual problem 1.8 to primal problem1.7 is restated as:
max

µ,ν,η,ω,ψj

µT ȳj − νT x̄j − ηT bj − ωTaj − ϕψj (1.8)
s.t. µT ȳl − νT x̄l − ηT bl − ωTal − ϕψj ≤ 0, l = 1, . . . , n;

−σεΦ
−1(ε)µ+ η ≥ −σε(Φ

−1(ε) + ε)1 − δσεΦ
−1(α)1,

−σεΦ
−1(ε)µ− η ≥ −σε(Φ

−1(ε) + ε)1 + δσεΦ
−1(α)1,

−σεΦ
−1(ε)ν − ω ≥ −σε(Φ

−1(ε) + ε)1 − δσεΦ
−1(α)1,

−σεΦ
−1(ε)ν + ω ≥ −σε(Φ

−1(ε) + ε)1 + δσεΦ
−1(α)1,

µ ≥ 1

ν ≥ 1,

η, ω, ψj un
onstrained.For the DMUj represented by point (x̃j , ỹj), the following sto
hasti
 hyperplane Prob(cT x̃j+
dT ỹj + fj ≤ 0) = 1 − ǫ is the supporting hyperplane for Tϕ at (x̃j , ỹj) if and only if

cT x̃j + dT ỹj + fj + Φ−1(ǫ)σε | c
Taj + dT bj |= 0 (1.9)and for ∀ (x̃, ỹ) ∈ Tϕ : cT x̃+ dT ỹ + fj + Φ−1(ǫ)σε | c

Taj + dT bj |≥ 0. (1.10)16



The dual problem 1.8 is known as the multiplier problem be
ause the optimal solutions
(µ∗

j , ν
∗

j , η
∗

j , ω
∗

j , ψ
∗

j ), for j = 1, . . . , n, set up the supporting hyperplanes that are used to
onstru
tion the produ
tion possibility frontier. If there is an unique optimal solution
(µ∗

j , ν
∗

j , η
∗

j , ω
∗

j , ψ
∗

j ) to problem 1.8 that satis�es
µ∗

j
T (bj − bk) + ν∗j

T (aj − ak) − Φ−1(ǫ)σε(| µ
∗

j
T bj − ν∗j

Taj | − | µ∗

j
T bk − ν∗j

T bk |) ≥ 0,for k = 1, . . . , n, then the optimal solution (µ∗

j , ν
∗

j , η
∗

j , ω
∗

j , ψ
∗

j ) identi�es the followingsto
hasti
 hyperplane Prob(µ∗

j
T ỹj − ν∗j

T x̃j + f ∗

j ≤ 0) = 1 − ǫ, where
f ∗

j = −η∗j
T bj − ω∗

j
Taj − ϕψ∗

j + Φ−1(ǫ)σε | µ
∗

j
T bj − ν∗j

Taj |. This almost 100% 
on�den
ehyperplane is the supporting hyperplane to Tϕ at the DMUj . Further, in the se
tion onreturns to s
ale, the sign of fj is related to the returns to s
ale type and these relationsare summarized in Table 1.2. In a 
ase without a unique optimal solution to problem 1.8,the supporting hyperplane for Tϕ at (x̃j , ỹj) is not uniquely identi�ed.1.4 E�
ien
y measureIn this se
tion, by introdu
ing the input redu
ing and output augmenting dire
tion forproje
tion into the data envelopment I derive the extension to the reviewed additive mod-els. As explained in the previous se
tion, the optimal solution to the envelopment problem1.7 for the DMUj identi�es the point (x̂j , ŷj) = (X̄λ∗j , Ȳ λ
∗

j) and the optimal solution ofthe multipliers problem 1.8 identi�es the supporting hyperplane assigned to the DMUj .Therefore, the simplest ine�
ien
y measure 
an be de�ned by the distan
e measure ofa dis
repan
y between the proje
ted and expe
ted point as: |(x̂j, ŷj) − (x̄j , ȳj)|. Thisdis
repan
y measure expresses the di�eren
e between the e�
ient frontier represented bythe proje
ted point (x̂j , ŷj) and the present position of the DMUj . Starting from (x̄j , ȳj),various proje
tion paths on the 
orresponding part of the envelopment surfa
e 
an befollowed as is illustrated by Figure 1.3. Figure 1.3 illustrates dire
tions of inputs redu
-tion and augmentation in outputs. I will use these two dire
tions to derive the input andoutput oriented e�
ien
y measures that are used to state the oriented SDEA models.First, for inputs of the DMUj let's denote eij ∈ R+, eij = x̄ij − ix̄λj, i = 1, . . . , m andde�ne the 
olumn ve
tor of inputs ex
ess ej ∈ Rm
+ , ej = (e1j , . . . , emj)

T . If the followinginequality Prob(ix̃λj < x̃ij) > 1 − ǫ holds there must exist eij > 0, i ∈ {1, . . . , m} su
hthat Prob(eij ≤ x̃ij − ix̃λj) = 1 − ǫ. Therefore, for inputs of the DMUj , by following17



the path −ej the inputs 
an be de
reased and the proje
ted point is moved towards theprodu
tion possibility frontier. This proje
tion dire
tion is given in Figure 1.3 as theinput redu
tion dire
tion and the point DMU5i is the input oriented proje
tion of theDMU#5.Similarly, the DEA output oriented model is derived using the 
olumn ve
tor of outputsla
ks sj ∈ Rs
+, sj = (s1j, . . . , ssj)

T , srj = rȳλj − ȳrj, r = 1, . . . , s. For r ∈ {1, . . . , s} su
hthat Prob(rỹλj > ỹrj) > 1 − ǫ exists srj > 0 for whi
h the following equality holds:
Prob(rỹλj − ỹrj ≥ srj) = 1 − ǫ. The path sj proje
ts the DMUj on to the produ
tionpossibility frontier in an outputs augmenting dire
tion and the proje
ted point is shownin Figure 1.3 as the DMU5o.Next, to determine the maximal s
ale e�e
ts in inputs redu
tion or outputs augmen-tation, the proje
tion paths sj, ej are de
omposed to a proportional in
rease (de
rease) ofoutput (input) and residual as follows: sj = ρj ȳj+δ

j
s , ej = γjx̄j+δ

j
e, where a proportionalin
rease of outputs ρj and proportional de
rease of inputs γj for j = 1, . . . , n are de�nedas

ρj = minr=1,...,s
ŷrj − ȳrj
ȳrj

≥ 0,

γj = mini=1,...,m
x̄ij − x̂ij
x̄ij

≥ 0,and δje ≥ 0, δjs ≥ 0, j = 1, . . . , n.8Next as in Ali and Seiford (1993), the new variables for the output oriented model arede�ned as φj = 1+ρj and for the input oriented model θj = 1−γj. From the 
onstru
tionof the s
aling parameters, the θj satis�es 0 < θj ≤ 1 and for φj in the output problem wehave φj ≥ 1. The maximal output s
ale e�e
t is identi�ed by optimal value φ∗

j and themaximal input redu
tion is identi�ed by the optimal value of θ∗j .For the identi�
ation of possible proportional s
aling of inputs or outputs and e�-
ien
y evaluation of the DMUj , two stage models are 
onstru
ted. In the �rst modelstage, the maximal φj or minimal θj is found to identify the maximal equi�proportionale�e
t. In the se
ond stage of modelling, the identi�ed s
ale e�e
t is utilized to evaluatethe e�
ien
y of the DMUj with optimally redu
ed levels of inputs (augmented levels ofoutputs, in 
ase of the output oriented model). These two stage models are summarizedin Table 1.3. The optimal solution to the �rst stage for the DMUj is denoted as θ̂j and8Note that at least one 
omponent of ea
h δ is zero be
ause of the proje
tion on to the produ
tionpossibility frontier. 18



in the 
ase of the output oriented model φ̂j. The se
ond stage of almost 100% 
on�den
eproblem is 
onstru
ted by repla
ing x̄j (in output oriented model: ȳj) with θ̂j x̄j (respe
-tively for input model with: φ̂j ȳj) in 
onstraints and obje
tive fun
tion of problem 1.2 aspresented in Table 1.3.When the two stage models are used, the ine�
ien
y of the DMUj 
an be evaluated byuse of values of φ̂−1
j or θ̂j . The major drawba
k of use of φ̂−1

j and θ̂j as ine�
ien
y measuresof the DMUj is that these measures do not uniquely identify e�
ient points. This shortageis present be
ause for φ̂j = 1 (θ̂j = 1) the DMUj is the boundary point of Tϕ but thepositive non�proportional sla
ks 
an be present. The elements of produ
tion possibilityset with φ̂j = 1 (θ̂j = 1) and positive non�proportional sla
ks are usually referred to asweakly e�
ient points. Due to the aforementioned shortage, the identi�
ation of e�
ien
yof the DMUj has to be done in two stages. Therefore, the DMUj is identi�ed as e�
ientif the proportional s
aling parameter equality φ̂j = 1 (θ̂j = 1) holds and the se
ond stagemodel identify the DMUj as α�sto
hasti
ally e�
ient. The additional 
ondition on sla
ksis referred to as the sum of sla
ks and for α�sto
hasti
 e�
ien
y it is required that itholds with probability 1 − α.1.5 Oriented SDEA modelsIn both stages the obje
tive fun
tion optimization is subje
t to the same 
onstraints,the only di�eren
e being the obje
tive fun
tion, therefore the two stage oriented SDEAmodels 
an be merged into a one�stage model. To merge these stages in one optimiza-tion problem, the non�Ar
himedean ǫ is used as a weight for the se
ond stage obje
tivefun
tion. The 
hoi
e of non�Ar
himedean ǫ as the weight guarantees that proportionalmovement towards the frontier pre�empts the additive sla
ks optimization.Output oriented model The one stage model for evaluation of e�
ien
y of theDMUj is derived from the two stages optimization model presented in Table 1.3 and 
anbe stated as:
max
λj ,φj

φj + ǫ(Prob(1T (X̃λj − x̃j) + 1T (φj ỹj − Ỹ λj) < 0) − α) (1.11)
s.t. P rob(ix̃λj < x̃ij) ≥ 1 − ǫ, i = 1, . . . , m;

Prob(rỹλj > φj ỹrj) ≥ 1 − ǫ, r = 1, . . . , s;

ϕ(1Tλj) = ϕ;19



λj ≥ 0.After the same linearization pro
edure that was applied to problem 1.2 and reviewedin the fourth se
tion of this 
hapter, the following linear model is derived:
max

λj ,qkr,hki,φj

φj − ǫ[1T (X̄λj − x̄j) + 1T (φj ȳj − Ȳ λj) + (1.12)
+δ(1T (Aλj − aj) + 1T (φjbj −Bλj))σεΦ

−1(α)] + ǫ(

s∑

r=1

(q1r + q2r) +

m∑

i=1

(h1i + h2i))

s.t. ix̄λj ≤ x̄ij + (h1i + h2i)σεΦ
−1(ǫ),

iaλj − aij = h1i − h2i, i = 1, . . . , m,

φj ȳrj ≤ rȳλj + (q1r + q2r)σεΦ
−1(ǫ),

φjbrj − rbλj = q1r − q2r, r = 1, . . . , s,

ϕ(1Tλj) = ϕ,

λj ≥ 0, qkr ≥ 0, hki ≥ 0, k = 1, 2.

Input oriented model Similarly, as for the output oriented model, the almost100% 
on�den
e 
han
e 
onstrained input oriented model for e�
ien
y evaluation of theDMUj is derived as:
min
λj ,θj

θj − ǫ(Prob(1T (X̃λj − θj x̃j) + 1T (ỹj − Ỹ λj) < 0) − α) (1.13)
s.t. P rob(ix̃λj < θj x̃ij) ≥ 1 − ǫ, i = 1, . . . , m;

Prob(rỹλj > ỹrj) ≥ 1 − ǫ, r = 1, . . . , s;

ϕ(1Tλj) = ϕ;

λj ≥ 0.Finally, the linearized form of the almost 100% 
on�den
e 
han
e 
onstrained inputoriented model is stated as:
min

λj ,qkr,hki,θj

θj + ǫ[1T (X̄λj − θj x̄j) + 1T (ȳj − Ȳ λj) + (1.14)
+δ(1T (Aλj − θjaj) + 1T (bj − Bλj))σεΦ

−1(α)] + ǫ(
s∑

r=1

(q1r + q2r) +
m∑

i=1

(h1i + h2i))20



s.t. ix̄λj ≤ θj x̄ij + (h1i + h2i)σεΦ
−1(ǫ),

iaλj − θjaij = h1i − h2i, i = 1, . . . , m,

ȳjλj ≤ rȳ + (q1r + q2r)σεΦ
−1(ǫ),

brj − rbλj = q1r − q2r, r = 1, . . . , s,

ϕ(1Tλj) = ϕ,

λj ≥ 0, qkr ≥ 0, hki ≥ 0, k = 1, 2.Furthermore, the optimal solution (λ∗j ,q
∗

1j ,q
∗

2j,h
∗

1j ,h
∗

2j , φ
∗

j) of output oriented prob-lem (1.12) (alternatively the optimal solution (λ∗j ,q
∗

1j,q
∗

2j ,h
∗

1j ,h
∗

2j, θ
∗

j ) of input orientedproblem (1.14)) is used to evaluate the te
hni
al e�
ien
y of the DMUj . The DMUj is
α�sto
hasti
 e�
ient, when the following two 
onditions are satis�ed:1. φ∗

j = 1 (θ∗j = 1);2. 1T (X̄λ∗j − x̄j) + 1T (φ∗

j ȳj − Ȳ λ∗j ) + |1T (Aλ∗j − aj) + 1T (φ∗

jbj − Bλ∗j)|σεΦ
−1(α) ≥ 0

(1T (X̄λ∗j − θ∗j x̄j) + 1T (ȳj − Ȳ λ∗j ) + |1T (Aλ∗j − θ∗jaj) + 1T (bj − Bλ∗j)|σεΦ
−1(α) ≥ 0).As mentioned in the se
tion on e�
ien
y measure introdu
tion, a 
lass of weaklye�
ient DMUs 
an be de�ned. The analyzed DMUj is identi�ed as weakly e�
ient whenthe optimal solution of the asso
iated problem satis�es φ∗

j = 1 or θ∗j = 1.1.6 Chan
e 
onstrained DEA modelAs in the se
tion on almost 100% 
han
e 
onstrained models, I also assume the samedisturban
e stru
ture for 
han
e 
onstrained e�
ien
y models and the following 
han
e
onstrained version of the DEA model 
an be derived:
min
λj

1T (X̄λj − x̄j) + 1T (ȳj − Ȳ λj) (1.15)
s.t. P rob(ix̃λj < x̃ij) ≥ 1 − α, i = 1, . . . , m;

Prob(rỹλj > ỹrj) ≥ 1 − α, r = 1, . . . , s;

ϕ(1Tλj) = ϕ

λj ≥ 0;To relate Problem (1.15) to the de�nition of 
han
e 
onstrained e�
ien
y dominationintrodu
ed in de�nition (4), I state the following theorem:Theorem 3. Let DMUj be an α-sto
hasti
ally 
onstrained e�
ient. Then for all λj su
h21



that
Prob(ix̃λj ≤ x̃∗i ) ≥ 1 − α, i = 1, . . . , m;

Prob(rỹλj ≥ ỹ∗j ) ≥ 1 − α, r = 1, . . . , s;

ϕ(1Tλj) = ϕ, λj ∈ Rn
+, λj ≥ 0, (1.16)we have 1T (X̄λj − x̄j) + 1T (ȳj − Ȳ λj) = 0.

Proof: Suppose there exists λ∗j su
h that it ful�lls 
onstraints (1.16) and
1T (X̄λ∗j − x̄j) + 1T (ȳj − Ȳ λ∗j) > 0. Then there exists s+

r or s−i ∈ R+, s
+
r , s

−

i > 0 su
hthat Prob(rỹλ∗j − ỹrj ≥ s+
r ) ≥ 1 − α or Prob(x̃ij − ix̃λ

∗

j ≥ s−i ) ≥ 1 − α. A

ording tode�nition (4) the DMUj is dominated by the point (X̃λ∗j , Ỹ λ
∗

j) and this 
ontradi
ts theassumption in the theorem that DMUj is α�
han
e 
onstrained e�
ient.Applying the same orientation pro
edure as for the almost 100% 
han
e 
onstrainedproblems the two stage problems are derived. As for problem (1.2) the dual problem toproblem (1.15) 
an be derived and the optimal solutions are used to identify the sup-porting hyperplanes to analyzed DMUs and to set up the produ
tion possibility frontierestimate.The same linearization pro
edure as was used to linearize problem (1.2) and des
ribedin the previous se
tion is applied after the two stage problem is merged in one one�stageoptimization problem. The following oriented and linearized 
han
e 
onstrained modelsare derived:
Output oriented model

max
λj ,qkr,hki,φj

φj − ǫ(1T (X̄λj − x̄j) + 1T (φj ȳj − Ȳ λj) +

−ǫ(

s∑

r=1

(q1r + q2r) +

m∑

i=1

(h1i + h2i)) (1.17)22



s.t. ix̄λj ≤ x̄ij + (h1i + h2i)σεΦ
−1(α), i = 1, . . . , m,

iaλj − aij = h1i − h2i, i = 1, . . . , m,

ȳjλj ≤ φjrȳ + (q1r + q2r)σεΦ
−1(α), r = 1, . . . , s,

φjbrj − rbλj = q1r − q2r, r = 1, . . . , s,

ϕ(1Tλj) = ϕ,

λj ≥ 0, qkr ≥ 0, hki ≥ 0, k = 1, 2,

i = 1, . . . , m,

r = 1, . . . , s.Input oriented model
min

λj ,qkr,hki,θj

θj + ǫ(1T (X̄λj − θj x̄j) + 1T (ȳj − Ȳ λj)) +

+ǫ(

s∑

r=1

(q1r + q2r) +

m∑

i=1

(h1i + h2i)) (1.18)
s.t. ix̄λj ≤ θj x̄ij + (h1i + h2i)σεΦ

−1(α), i = 1, . . . , m,

iaλj − θjaij = h1i − h2i, i = 1, . . . , m,

ȳjλj ≤ rȳ + (q1r + q2r)σεΦ
−1(α), r = 1, . . . , s,

brj − rbλj = q1r − q2r, r = 1, . . . , s,

ϕ(1Tλj) = ϕ,

λj ≥ 0, qkr ≥ 0, hki ≥ 0, k = 1, 2,

i = 1, . . . , m,

r = 1, . . . , s.

(1.19)
Similarly, as in the previous se
tion these models 
an be 
ompared to DEA mod-els summarized in Table 1.1 and as for Problems (1.14) and (1.12), the optimal solu-tion (λ∗j , q

∗

11,q
∗

1j,q
∗

2j ,h
∗

1j ,h
∗

2j, φ
∗

j) of problem (1.17), ((λ∗j ,q∗

1j,q
∗

2j ,h
∗

1j ,h
∗

2j , θ
∗

j ) for problem(1.18)) 
an be used to evaluate the e�
ien
y of DMUj as in the previous se
tion.The DMUj is 
han
e 
onstrained e�
ient if the following two 
onditions are satis�ed:1. φ∗

j = 1 (θ∗j = 1);2. All expe
ted values of sla
ks and ex
ess are zero: 1T (X̄λ∗j − x̄j) = 0 and 1T (φ∗

j ȳj −

Ȳ λ∗j) = 0 (1T (X̄λ∗j − θ∗j x̄j) = 0 and 1T (ȳj − Ȳ λ∗j) = 0).To simplify the evaluation of e�
ien
y s
ore the following two e�
ien
y measuresfor sto
hasti
 models whi
h are sto
hasti
 equivalents for measures introdu
ed by Tone23



(1993), are proposed:Input oriented: χj =

(

θ∗j +
1T (X̄λ∗j − θ∗j x̄j)

1T x̄j

)
1T ȳj

1T Ȳ λ∗j
,Output oriented: τ−1

j =

(

φ∗

j −
1T (φ∗

j ȳj − Ȳ λ∗j)

1T ȳj

)
1T x̄j

1T X̄λ∗j
.The proposed e�
ien
y measures τ and χ have the following properties:1. 0 ≤ τj , χj ≤ 12. χj = 1, τj = 1 ⇔ DMUj is 
han
e 
onstrained e�
ient3. τj and χj are units invariant measures4. τj and χj are monotoni
 in
reasing in inputs and outputs5. τj and χj are de
reasing in the relative values of the sla
ks6. τj = φ∗

j , χj = θ∗j ⇔ the expe
ted values of all sla
ks are zero.These measures make it easier to evaluate the e�
ien
y s
ore of DMUj be
ause theytake into a

ount the values of maximal proportional in
rease and the sla
ks (residuals)values.1.7 Introdu
ing returns to s
aleAs mentioned in the se
ond se
tion, the CCR model was designed to analyze the te
hnol-ogy with property of 
onstant returns to s
ale. Later, the BCC model and its variationswere developed by Banker, Charnes, and Cooper (1984) to analyze the produ
tion fun
-tion with variable returns to s
ale. Here, I follow this 
on
ept to introdu
e the variablereturns to s
ale into the sto
hasti
 framework. The following de�nition uses the expe
tedvalues to de�ne types of returns to s
ale:De�nition 5. Returns to s
ale. Let the DMUj be sto
hasti
ally e�
ient and the point
Zδ = ((1 + δ)x̄j, (1 + δ)ȳj) is a point in δ�neighborhood of (x̄j , ȳj) :

• The Non�De
reasing returns to s
ale are present ⇔ ∃ δ∗ > 0 su
h that Zδ ∈ Tϕ for
δ∗ > δ ≥ 0 and Zδ∈\ Tϕ for − δ∗ < δ < 024



• The Constant returns to s
ale are present ⇔ ∃ δ∗ > 0 su
h that Zδ ∈ Tϕ for | δ |<

δ∗

• The Non�In
reasing returns to s
ale are present ⇔ ∃ δ∗ > 0 su
h that Zδ∈\ Tϕ for
δ∗ > δ ≥ 0 and Zδ ∈ Tϕ for − δ∗ < δ < 0.The di�eren
es in types of returns to s
ale are re�e
ted by di�erent shapes of the pro-du
tion possibility set frontier that is set up by the interse
tion of supporting hyperplanesidenti�ed by optimal solutions of multiplier formulation of the DEA models. In the 
aseof 
onstant returns to s
ale (the CCR model by Charnes, Cooper, and Rhodes (1978))the envelopment surfa
e 
onsists of a single half line that passes through the origin asshown in Figure 1.4. In the 
ase of variable returns to s
ale, the produ
tion frontier is apie
ewise linear set. Therefore, Figure 1.4 also shows the produ
tion possibility frontierof the model with the variable returns to s
ale that is referred to as the BCC model(Banker, Charnes, and Cooper (1984)) and in Figure 1.5 the BCC frontier is related tothe frontier under the assumption of in
reasing returns to s
ale. These frontiers of pro-du
tion possibility set under various types of returns to s
ale are parameterized via thesele
tion of ϕ and 
onstraint type asso
iated with the ϕ as follows:

ϕ =

{
0 Constant returns to s
ale (CCR model)
1 Variable returns to s
ale (BCC model).Sin
e the α�sto
hasti
ally e�
ient point (x̃j , ỹj) satis�es 
ondition 1.9, for the point

Zδ = ((1 + δ)x̄j, (1 + δ)ȳj) 
an be derived
cT (1 + δ)x̃j + dT (1 + δ)ỹj + fj + (1 + δ)Φ−1(ǫ)σε | c

Taj + dT bj | =

= (1 + δ)(cT x̃j + dT ỹj + fj + Φ−1(ǫ)σε | c
Taj + dT bj |) − δfj = −δfj (1.20)and the point Zδ ∈ Tϕ if and only if −δfj ≥ 0. Using de�nition 5, the relations betweenthe type of the returns to s
ale and the sign of fj is revealed and these relations aresummarized in Table 1.2 together with 
hoi
e of 
onstrain on intensity variable ve
tor λj .1.8 Summary of SDEA modelsIn the previous se
tions, the oriented SDEA models were derived and these models aresummarize in Table 1.4. It should be stressed that even the models using the same25



e�
ien
y dominan
e de�nition but with di�erent orientation 
hoi
e result in di�erente�
ien
y s
ores. Therefore, the 
hoi
e of the e�
ien
y dominan
e type, returns to s
aleand proje
tion path to the envelopment surfa
e (the set of dominating points in theprodu
tion possibility set) are 
ru
ial for the e�
ien
y analysis and the 
hoi
e shouldre�e
t the aims of analyzis.The returns to s
ale 
hoi
e a�e
ts the shape of the produ
tion possibility set envel-opment. The restri
tions on returns to s
ale are related to four types of the envelopmentsurfa
e shape through the geometry of the produ
tion possibility set and these restri
-tions are interpreted as the restri
tion on intensity variable λ in the envelopment problemor a restri
tion on supporting hyperplanes in the multiplier problem.The evaluation of the e�
ien
y s
ore is based on distan
e measurement between thepoint that represents DMU and the asso
iated point on the envelopment surfa
e. Thisdistan
e measure used in additive models is the most simple e�
ien
y measure. A moresophisti
ated e�
ien
y measure is 
reated using the measure of maximal proportionalinputs redu
tion (output augmentation) while keeping the levels of outputs (inputs) �xed.This proportional input (output) s
aling approa
h is interpreted as the sele
tion of aproje
tion path towards the envelopment surfa
e and results in the 
reation of orientedSDEA models.The use of Non�Ar
himedean in�nitesimal ǫ is 
losely related to the unit invarian
eproperty of the obje
tive fun
tion values of the derived models be
ause the result ofmultipli
ation by ǫ is not unit dependent. The use of unit invariant models also deliversthe possibility of units of measurement 
hange to avoid numeri
al problems [e.g., tinydiagonal matri
es℄ when the SDEA models are solved.Table 1.4 
ompares the derived SDEA with the most popular DEA models that appearin the present studies on e�
ien
y evaluation. The additional SDEA models 
an bederived as extensions of models 
overed in this 
hapter using the extensions pro
eduresfor the DEA models.1.9 Method for SDEA model solvingTo solve the linear optimization problems asso
iated with the derived SDEA models thevariant of the interior point method (IPM) is used be
ause it is less 
omputationally
ostly than the simplex methods when large sized problems are solved. For the purposeof the IPM employment the linearized problems 1.12 and 1.14 
an be easily transformed26



to the standard linear programming form:9Primal: minx cT x Dual: maxy,z bTys.t. Ax = b,x ≥ 0 s.t. ATy + z = c, z ≥ 0.
(1.21)Using the 
omplementarity 
onstraint zTx = 0 (equivalent to duality gap 
ondition

cTx−bTy = 0) together with the feasibility 
onstraints the following optimality 
onditionfor problem 1.21 is stated as




Ax− b

ATy + z − c

zTx



 =





0

0

0



 , (1.22)where z,x ≥ 0. To solve problem 1.22, I use Mehrotra's predi
tor�
orre
tor algorithmthat belongs to the 
lass of the 
entral path following IPM algorithms.10 This primal�dualalgorithm uses the 
ombination of Newton's dire
tion (duality gap redu
tion dire
tion)and 
entering dire
tion to solve the sequen
e of problems that 
omes from problem 1.22,where the 
omplementarity 
onstraint is modi�ed to xTk zk = µk and sequen
e {µk} 
on-verges to 0 for k → ∞. So, the IPM algorithm generates an in�nite sequen
e of pointsthat 
onverges to an optimal solution and the iteration pro
ess stops when the iterationsare su�
iently 
lose to the optimal solution or the limit for the number of iterations isrea
hed. The advantage of the primal�dual version of the interior point method is thatthe primal and dual problem 1.21 are solved simultaneously.Further, the IPM solutions satisfy the strong 
omplementarity sla
kness 
ondition(SCSC). The SCSC solution is the solution with the maximal produ
t of the positive 
om-ponents of the optimal solution and therefore it is the optimal solutions with a minimalnumber of zero 
omponents. The SCSC property of optimal solutions helps to eliminateinterpretation problems when the optimal solution to the DEA model are rendered as theshadow pri
es of inputs and outputs.119In the 
ase of linearized sto
hasti
 problems, ve
tors x, c, z ∈ Rn+3(m+s)+1;ve
tors y, b ∈ R2(m+s)+1 and matrix A ∈ R(2(m+s)+1)×(n+3(m+s)+1).10The solver for the stated oriented SDEA models is 
onstru
ted using the pro
edures pa
kage knownas PCx linear solver obtained from Optimization Te
hnology Center at Argonne National Laboratoryand Northwestern University.11For more details on the use of interior point methods solutions of the DEA related problems seeBrázdik (2001). 27



1.10 Indonesian ri
e farms e�
ien
yTo demonstrate the use of the oriented SDEA models, the results from the proposed SDEAmodels are 
ompared to the DEA and SFA results. This 
omparison is motivated byHorra
e and S
hmidt's (1996) work, where parametri
 methods for e�
ien
y estimationare 
ompared using data on Indonesian ri
e farms. To 
ompare with results presented inDruska and Horra
e's (2004) methodologi
al work on spatial e�e
ts in the SFA framework,I use the same data set to 
ompute the SDEA and DEA s
ores.Indonesia is the biggest ri
e importer in Asia at the same time almost 70% of the
ountry's 213 million people are farmers, hen
e the identi�
ation of the linkages betweendi�erent fa
tors and ri
e yield in the West Java area is the subje
t of many studies onfarming e�
ien
y [e.g. Wadud (2002) and Daryanto, Battese, and Fleming (2002a)℄. Forresear
h purposes, the Indonesian Ministry of Agri
ulture surveyed ri
e farms over sixgrowing periods (3 wet and 3 dry periods) in six villages in the area of the Cimanuk Riverbasin in West Java. The data set from this survey is �ltered for outliers that reportedyields over the maximum he
tare yields rea
hed in laboratory 
onditions. After this
orre
tion, the panel used for analysis is balan
ed and des
ribes the produ
tion mixes of160 ri
e farms with average yield of 3265.20 kg/ha that resemble the observed averageyields in this area.For the purpose of 
omparison with the SFA results, I use the same inputs and outputsto spe
ify the inputs�output produ
tion mixes of the surveyed ri
e farms as were used inthe SFA study by Druska and Horra
e (2004). The 
onsidered inputs in
lude total areaof ri
e 
ultivation in he
tares (Size), seed in kilograms (Seed), urea in kilograms (Urea),phosphate in kilograms (Phosphate) and total labor (Labor). As the measure of outputthe total output of rough ri
e in kilograms (Gross yield) is used and the summary statisti
sfor the used inputs and output are presented in Table 1.5. All of the produ
tion fa
torsexhibit very high variation and presen
e of noise that in�uen
e e�
ien
y evaluation isexpe
ted. The presen
e of noise provides rationale for use of the SDEA approa
h.To 
al
ulate the DEA e�
ien
y s
ores, the output oriented DEA model presentedin Table 1.1 is used. The α�sto
hasti
 e�
ien
y of farms is evaluated by use of thelinearized output oriented SDEA model des
ribed by problem 1.12. Moreover, I also
ompute the time average DEA e�
ien
y s
ores and the DEA s
ores 
al
ulated usingthe mean values of farms' produ
tion mixes. The average DEA s
ore for a ri
e farm is
al
ulated by averaging the farm's e�
ien
y s
ores when the data set is 
onsidered as a28



sample of 960 individual observations. The DEA�mean s
ore is 
al
ulated using a samplewith 160 observations, where ea
h farm is 
hara
terized by mean values of its produ
tionmix 
hara
teristi
s.For all data envelopment models, I 
onsider the 
ases of normal (denoted by sub-s
ript N or Norm) and log�normal (denoted by subs
ript LN or LogN) distribution ofthe farms' inputs and outputs. Under the assumption of log�normal distribution, inputsand output are transformed by taking logs, therefore the e�
ien
y s
ores are no mores
ale of operations invariant. The DEA and SDEA e�
ien
y s
ores are 
al
ulated un-der assumption of 
onstant returns to s
ale (
hoi
e ϕ = 0 and denoted by CCR) andvariable returns to s
ale (ϕ = 1, BCC). The e�
ien
y s
ores estimated by almost 100%
han
e 
onstrained SDEA models are reported for α = 0.05 as a level of modeler's riskbe
ause 
al
ulations shows that for higher levels the SDEA method su�ers from a loss ofdis
riminatory power and too many DMUs are evaluated as e�
ient.The des
riptive statisti
s of the 
omputed DEA, SDEA and SFA e�
ien
y s
oresare summarized in Table 1.6 and 
ompared to Druska and Horra
e's (2004) SFA s
ores
FE and FEsp that are estimated by the �xed e�e
t method and �xed e�e
t methodwith 
orre
tion for spatially 
orre
ted errors, respe
tively. Table 1.6 reports higher meanvalues of e�
ien
y s
ores for data envelopment approa
hes than for SFA s
ores. TheseSDEA and DEA results suggest that Indonesian ri
e farms are operating 
loser to theprodu
tion frontier than in the SFA studies. Wadud (2002) observes a similar patternfor Bangladesh ri
e farms e�
ien
y s
ores and he reports 0.80 as the mean s
ore for theSFA and 0.86 and 0.91 for the CCR and BCC data envelopment models, respe
tively.From this 
omparison, I dedu
e that on average the 
onsidered Indonesian ri
e farmswere operating at lower e�
ien
y levels than ri
e farms in Bangladesh. As Table 1.6reports, s
ores 
al
ulated by data envelopment approa
hes show a varian
e twi
e as highas s
ores 
al
ulated by the SFA. This is 
ontrary to results by Wadud (2002), Ferro�Luzziet al. (2003) and Jaforullah and Prema
handra (2003) that report 
omparable varian
efor SFA and DEA e�
ien
y s
ores.Further, to highlight di�eren
es in e�
ien
y s
ores among the used approa
hes, Table1.7 
ompares e�
ien
y s
ores for group of 
hosen DMUs. These DMUs were 
hosen a
-
ording to the SFA e�
ien
y s
ores estimates by Druska and Horra
e (2004) to representfarms with the highest, median and the lowest te
hni
al e�
ien
y s
ores. Due to the dif-feren
es in nature of the 
ompared methods di�eren
es in e�
ien
y s
ores estimates areexpe
ted. However, the di�eren
es in e�
ien
y rankings presented in Table 1.8 indi
ate29



in
onsisten
y of e�
ien
y evaluation a
ross the assessed methods.The nature of the SFA approa
h allows only one DMU to a
hieve a s
ore of 1 whilethe data envelopment approa
hes assign e�
ien
y s
ore 1 to all DMUs on the produ
tionpossibility frontier. Therefore, the peak at 1 with height proportional to the numbers ofDMUs identi�ed as e�
ient o

urs in distribution of e�
ien
y s
ores 
al
ulated by useof the data envelopment approa
hes. Keeping this fa
t in mind, the shapes of e�
ien
ys
ore distributions displayed in Figure 1.6, Figure 1.7 and Figure 1.8 
an be 
ompared.Examination of these �gures reveals that the shape of the SFA e�
ien
y s
ore distributionfun
tion is mat
hed at best by the distribution fun
tion estimate for the DEA averagee�
ien
y s
ore under assumption of linearly distributed produ
tion 
hara
teristi
s for
onstant (CCRnorm) and variable (BCCnorm) returns to s
ale spe
i�
ation.Due to the aforementioned di�eren
es in nature of e�
ien
y s
ores, the results' 
on-sisten
y among the used approa
hes should be assessed through 
orrelation of e�
ien
yrankings rather than an e�
ien
y s
ores. For ranking 
orrelation evaluation, Spearman's(1904) 
orrelation 
oe�
ient is used be
ause its important feature is lower sensitivity toextreme values when 
ompared to the standard 
orrelation 
oe�
ient. Further, by eval-uating the signi�
an
e of 
al
ulated rankings 
orrelations the hypothesis that 
onsideredrankings are not 
orrelated is tested. Table 1.9 presents 
orrelation 
oe�
ients for rank-ings generated using DEA on mean values, oriented SDEA and SFA e�
ien
y s
ores. InTable 1.10, 
orrelation 
oe�
ients for DEA on mean values, the oriented SDEA, and SFAe�
ien
y rankings are summarized.When the rankings 
orrelation 
oe�
ients presented in Table 1.9 and Table 1.10 areassessed, I 
on
lude that higher level of rankings 
onsisten
y is observed between SFAe�
ien
y rankings and data envelope analysis rankings than between SFA and SDEArankings. The highest DEA�mean ranking 
orrelation 
oe�
ients values are 0.72 and0.55 and the values 0.85, 0.82 for average DEA s
ores are substantially higher than thehighest values 0.25, 0.24 of the SFA�SDEA 
orrelation 
oe�
ients. The presented SFAand DEA rankings 
orrelation results 
orrespond to �ndings in re
ent studies on the SFAand DEA ranking 
onsisten
y. Wadud (2002) reports the highest 
orrelation 
oe�
ientsvalues ranging from 0.61 to 0.83, Jaforullah and Prema
handra (2003) report 0.74 andFerro�Luzzi et al. (2003) report signi�
ant 
orrelation 
oe�
ients between SFA and DEAranking in range from 0.594 to 0.677.The purpose of this se
tion was to improve the sto
hasti
 non�parametri
 approa
hfor e�
ien
y evaluation by introdu
ing frontier proje
tion dire
tion. Therefore, the im-30



provement in 
onsisten
y of the SFA and SDEA results is expe
ted. Contrary to thisexpe
tation, more 
onsisten
y (in terms of signi�
an
e of 
orrelation 
oe�
ients andtheir absolute values) is found between the SFA and DEA (SFA�average DEA in range0.11, 0.85, SFA�DEA mean in -0.22, 0.72) rankings than between the SFA�SDEA rank-ings (from -0.08 to 0.25). The observed low 
onsisten
y of SFA�SDEA rankings maybe a 
onsequen
e of the high varian
e of the ri
e produ
tion 
hara
teristi
s that a�e
tsthe a

ura
y of e�
ien
y dominating set approximation. This 
on
lusion originates from
omparison of the DEA on mean values and SDEA e�
ien
y rankings, where rankings
orrelations are insigni�
ant or low and simultaneously the SDEA approa
h is derivedfrom DEA on mean values approa
h by in
luding 
orre
tion for varian
e in data. There-fore, high values of the ranking 
orrelation between SDEA and DEA�mean rankings areexpe
ted to be a
hieved when 
onsidered DMUs are 
hara
terized by random variableswith low varian
es.1.11 Con
lusionIn the theoreti
al part of this 
hapter, I reviewed the te
hnique used to derive lineardeterministi
 equivalents to Huang and Li's (2001) SDEA models and this te
hnique wasused to develop the oriented sto
hasti
 DEA models and to des
ribe their properties.Using the te
hniques of sto
hasti
 problems linearization the proposed oriented SDEAmodels were linearized, so the solver based on the interior point method for linear prob-lems 
an be used to solve linear programming problems asso
iated with the models. The
reated solver for problems asso
iated with the SDEA and DEA models implements theprimal�dual interior point method algorithm.The empiri
al part of this 
hapter was motivated by Horra
e and S
hmidt's (1996)
omparison of SFA methods. This part presents results of the te
hni
al e�
ien
y evalu-ation of Indonesian ri
e farms by SDEA and DEA models. Further, e�
ien
y rankingswere 
onstru
ted and 
ompared with the SFA rankings 
onstru
ted by Druska and Hor-ra
e (2004). While I was able to reje
t the hypothesis that the DEA, SDEA and SFArankings are independent in the majority of the 
onsidered 
ases the 
onsisten
y of re-sults from the SFA and oriented SDEA models is questionable due to the low values ofranking 
orrelation 
oe�
ients. Assessing the results of the DEA on the mean values ap-proa
h, I 
on
lude that in this data set the low rankings 
onsisten
y originate from highvarian
e present in the data. In spite of the low 
onsisten
y of the SFA�SDEA approa
h31



the �ndings on the SFA�DEA rankings 
orrelation are 
onsistent with the re
ent studieson the SFA and DEA 
omparisons, e.g. Wadud and White (2000a) and Jaforullah andPrema
handra (2003) that report 
onsiderable 
onsisten
y of e�
ien
y rankings.1.A Figures and Tables
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Output oriented model

maxλj ,φj
φj + ǫ(1T (Xλj − xj) + 1T (φjyj − Y λj))

s.t. ixλj < xij , i = 1, . . . , m;

ryλj > φjyrj, r = 1, . . . , s;
ϕ(1Tλj) = ϕ;
λj ≥ 0Input oriented model

minλj ,θj
θj − ǫ(1T (Xλj − θjxj) + 1T (yj − Y λj))

s.t. ixλj < θjxij i = 1, . . . , m;

ryλj > yrj r = 1, . . . , s;
ϕ(1Tλj) = ϕ;
λj ≥ 0Table 1.1: Generalized versions of input and output oriented DEA models
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Model (Orientation) Returns to s
ale Constraint Hyperplane(s)CCR model(Input, Output) Constant None, ϕ = 0 Passes trough originBCC model(Input, Output) Variable 1Tλj = 1 Not 
onstrainedSDEA models(Input) Non�De
reasing 1Tλj ≥ 1 f ∗

j ≥ 0(Input) Non�In
reasing 1Tλj ≤ 1 f ∗

j ≤ 0(Input) Constant None f ∗

j = 0(Output) Non�De
reasing 1Tλj ≥ 1 f ∗

j ≤ 0(Output) Non�In
reasing 1Tλj ≤ 1 f ∗

j ≥ 0(Output) Constant None f ∗

j = 0Table 1.2: Returns to s
ale
Output oriented modelFirst stage Se
ond stage
maxλj ,φj

φj maxλj
Prob(1T (X̃λj − x̃j) + 1T (φ̂j ỹj − Ỹ λj)) − αs.t. Prob(ix̃λj < x̃ij) ≥ 1 − ǫ s.t. Prob(ix̃λj < x̃ij) ≥ 1 − ǫ

Prob(rỹλj > φỹrj) ≥ 1 − ǫ Prob(rỹλj > φ̂j ỹrj) ≥ 1 − ǫ
ϕ(1Tλj) = ϕ ϕ(1Tλj) = ϕ
λj ≥ 0 λj ≥ 0

i = 1, . . . ,m; r = 1, . . . , s.Input oriented modelFirst stage Se
ond stage
minλj ,θj

θj maxλj
Prob(1T (X̃λj − θ̂jx̃j) + 1T (ỹj − Ỹ λj)) − αs.t. Prob(ix̃λj < θjx̃ij) ≥ 1 − ǫ s.t. Prob(ix̃λj < θ̂jx̃ij) ≥ 1 − ǫ

Prob(rỹλj > ỹrj) ≥ 1 − ǫ Prob(rỹλj > ỹrj) ≥ 1 − ǫ
ϕ(1Tλj) = ϕ ϕ(1Tλj) = ϕ
λj ≥ 0 λj ≥ 0

i = 1, . . . ,m; r = 1, . . . , s.Table 1.3: Two stages of oriented almost 100% 
on�den
e 
han
e 
onstrained models
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Model Returns Envelopment Range Units Involves(Orientation) to S
ale Type Invariant Non�Ar
himedeanAdditive Variable Pie
ewise linear obje
tive value≤ 0 No NoConstant Pie
ewise linear No NoAlmost 100% 
on�den
e Constant St. Hyperplane obje
tive value≤ σεΦ
−1(ǫ) No Yesadditive model; Problem (1.7) Variable St. Hyperplanes | 1T (Aλj − aj) + 1T (bj − Bλj) | No YesBCC model (input) Variable Pie
ewise linear 0 < θ ≤ 1 Yes YesBCC model (output) Variable Pie
ewise linear 1 ≤ φ Yes YesCCR model (input) Constant Pie
ewise linear 0 < θ ≤ 1 Yes YesCCR model (output) Constant Pie
ewise linear 1 ≤ φ Yes YesAlmost 100% 
on�den
eoriented models, Variable St. Hyperplanes 0 < θ ≤ 1, 1 ≤ φ Yes YesProblems (1.14),(1.12) Constant St. Hyperplane 0 < θ ≤ 1, 1 ≤ φ Yes Yes(input, output) Table 1.4: Comparison of models
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Data summary statisti
sVariable Obs. Mean Std. Dev. Minimum MaximumSize 960 0.4398 0.5607 0.0140 5.3220Seed 960 18.4708 46.6819 1.0000 1250.0000Urea 960 96.5250 130.3932 1.0000 1250.0000Phosphate 960 33.8072 48.3489 0.0000 700.0000Labor 960 394.2240 496.0169 17.0000 4774.0000Gross yield 960 1413.9340 1966.0950 42.0000 20960.0000Table 1.5: Indonesian ri
e farm summary statisti
s
E�
ien
y s
ores summary statisti
sModel Obs Mean Std. Dev. Minimum MaximumDEA
BCCNorm 960 0.5672 0.2044 0.1912 1
CCRNorm 960 0.5256 0.1943 0.1775 1
BCCLogN 960 0.8987 0.0565 0.6484 1
CCRLogN 960 0.7561 0.0817 0.5143 1DEA�mean
BCCNorm 160 0.7641 0.1723 0.3698 1
CCRNorm 160 0.6721 0.1616 0.3436 1
BCCLogN 160 0.9360 0.0427 0.7730 1
CCRLogN 160 0.7918 0.1026 0.5867 1SDEA
BCCNorm 160 0.7343 0.2614 0.1500 1
CCRNorm 160 0.6594 0.2569 0.0791 1
BCCLogN 160 0.8714 0.1867 0.1519 1
CCRLogN 160 0.7260 0.2331 0.1456 1SFA
FE 160 0.5613 0.0992 0.3655 1
FEspatial 160 0.5435 0.1023 0.3274 1Table 1.6: E�
ien
y s
ores summary statisti
s
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E�
ien
y s
oresS
ore Farm SFA SDEA DEA average e�
ien
y s
ore DEA�mean
FE FEsp CCRN BCCN CCRLN BCCLN CCRN BCCN CCRLN BCCLN CCRN BCCN CCRLN BCCLNHigh 164 1.0000 1.0000 0.6660 0.7109 0.6442 0.6808 0.8635 0.8613 0.7782 0.9690 1.0000 1.0000 0.7362 1.0000118 0.9323 0.9269 0.6875 1.0000 1.0000 1.0000 0.8699 0.8754 0.7926 0.9778 1.0000 1.0000 0.7853 1.0000152 0.8993 0.8152 0.4109 0.6398 0.2872 0.2940 0.7922 0.8269 0.8595 0.9707 1.0000 1.0000 1.0000 1.0000153 0.7717 0.7487 0.7604 0.7899 0.9128 1.0000 0.6589 0.6710 0.7734 0.9347 0.8717 0.8768 0.7528 0.9459Medium 40 0.5535 0.5824 0.9622 1.0000 1.0000 1.0000 0.5969 0.6298 0.7348 0.9118 0.8476 0.8590 0.6776 0.9787101 0.5518 0.5282 0.5967 0.6117 0.8212 1.0000 0.5117 0.5252 0.6864 0.9028 0.6680 0.7005 0.6893 0.931180 0.5518 0.5166 0.2974 0.3012 0.5673 0.7255 0.5528 0.6064 0.7741 0.8842 0.5723 0.6305 0.8240 0.9205149 0.5495 0.5173 1.0000 1.0000 1.0000 1.0000 0.4588 0.5494 0.8046 0.8789 0.5981 1.0000 0.8589 0.8544Low 86 0.3980 0.3907 1.0000 1.0000 0.5822 1.0000 0.3351 0.3527 0.7280 0.8381 0.3859 0.4478 0.7608 0.8452143 0.3837 0.3596 0.4127 0.4960 1.0000 1.0000 0.3150 0.3539 0.7438 0.8202 0.4933 0.5247 0.7591 0.8722117 0.3790 0.3713 1.0000 1.0000 1.0000 1.0000 0.3944 0.4998 0.6907 0.8109 0.5387 0.8970 0.8572 0.880045 0.3655 0.3274 0.4770 0.6235 0.5744 0.7485 0.3814 0.5945 0.8252 0.8474 0.4896 1.0000 0.8862 1.0000Note: Farm identi�
ation number is from original sample.Table 1.7: Comparison of te
hni
al e�
ien
y s
oresE�
ien
y rankingsS
ore Farm SFA SDEA DEA average e�
ien
y s
ore DEA�mean

FE FEsp CCRN BCCN CCRLN BCCLN CCRN BCCN CCRLN BCCLN CCRN BCCN CCRLN BCCLNHigh 164 1 1 71 84 96 138 2 3 54 3 1 1 111 1118 2 2 67 1 1 1 1 2 39 1 1 1 81 1152 3 3 131 96 155 157 3 4 3 2 1 1 1 1153 4 7 56 74 54 1 19 27 60 17 23 48 97 61Medium 40 79 48 42 1 1 1 41 44 109 51 25 51 140 34101 80 82 88 103 61 1 82 100 144 70 76 96 134 8180 81 91 148 148 120 123 56 54 59 115 111 116 56 102149 82 89 1 1 1 1 117 82 33 125 103 1 44 157Low 86 157 154 1 1 114 1 158 159 114 156 157 157 91 158143 158 158 130 126 1 1 160 158 96 159 142 149 93 152117 159 157 1 1 1 1 145 115 142 160 125 45 46 14745 160 160 115 99 116 121 148 60 18 153 144 1 28 1Note: Farm identi�
ation number is from original sample.Table 1.8: Comparison of te
hni
al e�
ien
y rankings
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E�
ien
y rankings 
orrelationsSDEA DEA average e�
ien
y s
ore SFA
CCRN BCCN CCRLN BCCLN CCRN BCCN CCRLN BCCLN FE FEspSDEA

CCRN 1.00

BCCN 0.85∗∗∗ 1.00

CCRLN 0.49∗∗∗ 0.43∗∗∗ 1.00

BCCLN 0.39 0.46 0.62∗∗∗ 1.00DEA av.

CCRN 0.28∗∗∗ 0.28∗∗∗ -0.04 0.00 1.00
BCCN 0.28∗∗∗ 0.32∗∗∗ -0.03 0.02 0.85∗∗∗ 1.00
CCRLN 0.08∗ 0.05∗ 0.08∗ -0.04 0.30∗∗∗ 0.51∗∗∗ 1.00
BCCLN 0.23∗∗∗ 0.27∗∗∗ -0.08∗∗ -0.01 0.84∗∗∗ 0.80∗∗∗ 0.23∗∗∗ 1.00SFA

FE 0.25∗∗∗ 0.24∗∗∗ -0.02 -0.02 0.82∗∗∗ 0.71∗∗∗ 0.29∗∗∗ 0.85∗∗∗ 1.00

FEsp 0.21∗∗∗ 0.23∗∗∗ -0.08∗∗∗ -0.07∗∗ 0.79∗∗∗ 0.62∗∗∗ 0.11∗∗∗ 0.82∗∗∗ 0.89∗∗∗ 1.00Note: ∗∗∗,∗∗ and ∗ 
oe�
ient signi�
an
e at 1%,5% and 10% level.Table 1.9: Spearman ranking 
orrelation 
oe�
ients and signi�
an
e levelsE�
ien
y rankings 
orrelationsSDEA DEA�mean SFA

CCRN BCCN CCRLN BCCLN CCRN BCCN CCRLN BCCLN FE FEspSDEA

CCRN 1.00

BCCN 0.85∗∗∗ 1.00

CCRLN 0.49∗∗∗ 0.43∗∗∗ 1.00
BCCLN 0.39 0.46 0.62∗∗∗ 1.00DEA mean

CCRN 0.44∗∗∗ 0.41∗∗∗ 0.11∗∗∗ 0.05∗ 1.00
BCCN 0.46∗∗∗ 0.50∗∗∗ 0.15∗∗∗ 0.11∗∗∗ 0.64∗∗∗ 1.00
CCRLN 0.03 -0.02 0.14∗∗∗ -0.02 -0.02 0.30∗∗∗ 1.00

BCCLN 0.29∗∗∗ 0.31∗∗∗ 0.01 0.06∗ 0.56∗∗∗ 0.76∗∗∗ 0.24∗∗∗ 1.00SFA

FE 0.25∗∗∗ 0.24∗∗∗ -0.02 -0.02 0.72∗∗∗ 0.55∗∗∗ 0.04 0.54∗∗∗ 1.00

FEsp 0.21∗∗∗ 0.23 -0.08∗∗∗ -0.07∗∗ 0.71∗∗∗ 0.44∗∗∗ -0.22∗∗∗ 0.41∗∗∗ 0.89∗∗∗ 1.00Note: ∗∗∗,∗∗ and ∗ 
oe�
ient signi�
an
e at 1%,5% and 10% level.Table 1.10: Spearman ranking 
orrelation 
oe�
ients and signi�
an
e levels
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Chapter 2Fa
tors a�e
ting e�
ien
y of West Java ri
efarms

The main obje
tive of this 
hapter is to investigate the inverse relationship between farmsize and e�
ien
y that has be
ame almost a �stylized fa
t� in the literature on agri
ul-tural development. The re
ent literature fo
used on agri
ultural e
onomi
s in developing
ountries [e.g., Binswanger, Deininger, and Feder (1995, Barrett (1996, Towsend, Kirsten,and Vink (1998, Helfand and Levine (2004)℄ indi
ate that the size�produ
tivity relationis more 
omplex and 
aution must be used when advo
ating poli
ies for agri
ultural de-velopment. This analysis supports the hypothesis that the size�produ
tivity relation isnot straightforward negative and for small farms (less than 5 he
tares) there exists athreshold size over whi
h e�
ien
y growth is observed with in
reasing farm size.Re
ently, the Data Envelopment Analysis (DEA) studies [Dhungana, Nuthall, andNartea (2004, Sang and Hyunok (2004, Krasa
hat (2004, Umetsu, Lekpri
hkui, andChakravorty (2003); and Wadud and White (2000b)℄, with fo
us on the evaluation of ri
efarms' e�
ien
y, are motivated by the importan
e of ri
e produ
tion in the e
onomiesof Asian 
ountries. I fo
us on Indonesian ri
e produ
tion in the West Java area. WestJava provin
e is the home of intensi�
ation programs and agri
ultural development insti-tutions in Indonesia and the interest in this area is stressed by the fa
t that farmers fromJava island produ
ed over 60% of Indonesia's total ri
e output at the time of the survey.Therefore, the aim of this 
hapter is to evaluate the te
hni
al e�
ien
y of ri
e farms. Todo this, the DEA approa
h is employed for evaluation of te
hni
al and s
ale e�
ien
y offarms. 41



The analysis of te
hni
al and s
ale e�
ien
y is followed by the analysis of farm 
har-a
teristi
s and e�
ien
y s
ore relations. To evaluate these relations, a panel data versionof the Tobit model is used. The evaluation of the e�e
t of the farm spe
i�
 fa
tors onthe e�
ien
y s
ores is fo
used on the farm size�produ
tivity relation. Also, the e�e
t ofthe later stage of the Indonesian government intensi�
ation program, known as BIMAS,on te
hni
al e�
ien
y impa
t is investigated.Further, analysis presented in this 
hapter illustrates how to test hypotheses related tothe DEA performan
e measures using the data set used in the previous 
hapter and thatwas the fo
us of re
ent studies [Horra
e and S
hmidt (1996, Druska and Horra
e (2004)℄on methodologi
al issues related to produ
tion frontier estimation. Horra
e and S
hmidt(1996) 
ompare various sto
hasti
 frontier methods (SF) with regard to 
onstru
ted 
on-�den
e intervals for performan
e s
ore estimates and they prefer to use the SF methodsfor testing hypotheses related to performan
e s
ores be
ause the DEA does not provide
on�den
e intervals for performan
e measures. However, Simar and Wilson (2000) showhow a simple underlying model of data generating pro
ess de�nes a statisti
al model,allowing determination of the statisti
al properties of the nonparametri
 estimators inthe multi�output and multi�input 
ase.This 
hapter is organized as follows. The next se
tion reviews the history of inten-si�
ation program aims and ri
e produ
tion te
hnology during the �Green Revolution�period. The third se
tion gives a review of DEA methodology used to evaluate farm's e�-
ien
y s
ores and Tobit estimation te
hnique used to estimate the e�e
ts of 
hara
teristi
son the e�
ien
y s
ore. The fourth se
tion presents results from 
al
ulation of te
hni
ale�
ien
y measures and estimation of its determinants. The last se
tion summarizes theresults and their relations to intensi�
ation poli
ies.2.1 Ri
e farming in IndonesiaThe following review is fo
used on the main obje
tives of the BIMAS intensi�
ationprogram. Also, in this se
tion fa
tors related to te
hni
al ine�
ien
y of ri
e farming aredis
ussed. In the data subse
tion, a des
ription of analyzed data is given.While in the 1960's agri
ulture 
ontributed 51% to Indonesian GDP and a

ording toPearson et al. (1991), despite output growth of agri
ultural produ
tivity the 
ontributionto GDP de
reased to 31% by the end of the 1970's and further to 25% by the end the1980's. Even though this de
line of 
ontribution to GDP, the importan
e of ri
e for42



the e
onomy is stressed by the fa
t that it 
ontributes 50% of Indonesian agri
ultureprodu
tion be
ause ri
e is a staple food. Also, in ri
e growing areas it is a major sour
eof in
ome for the farmers. Therefore, a 
riti
al part of the e
onomy stabilization pro
essare stable and low ri
e pri
es that be
ame goals of agri
ulture intensi�
ation programs.To stabilize ri
e pri
es and in
rease output of domesti
 ri
e produ
ers, the Indonesiangovernment heavily supported the ri
e farming se
tor by subsidizing inputs for agri-
ultural produ
tion and 
onsumer pri
es of ri
e were held below world market pri
es[Erwidodo, Sudaryanto, and Bahri 1999℄. Pearson et al. (1991) illustrate this situationby the fa
t that in the 1970s, the Indonesian ri
e pri
e averaged 30 % below the worldmarket pri
e. Due to the 
osts of subsidization and the importan
e of ri
e for food sup-ply as well as threat of famine, the Indonesian government 
laimed self�su�
ien
y as anational obje
tive.To meet this long term obje
tive, the Indonesian government has been allo
ating asizable amount of its budget to the agri
ultural se
tor sin
e the beginning of the 1970s.These funds were used to introdu
e various intensi�
ation programs (e.g., BIMAS, IN-MAS and IPM) within the last thirty years. The e�e
ts of these programs were followingtypi
al patterns for the introdu
tion of new te
hnology. The early and late stages showedsmall produ
tivity growth while the most rapid growth is observed in the middle period.This is due to low implementation of new methods in the early stages and then due to thefa
t that the produ
tivity limits of the new te
hnology were rea
hed in the later period(e.g., Umetsu, Lekpri
hkui, and Chakravorty 2003).Indonesia used to import 25% of all ri
e traded in the world market in the 1960s andearly 1970s, but exported small amounts in the late 1980s. This 
hange, known as the�Green Revolution� is a result of adopting new ri
e produ
tion te
hniques, modern ri
evarieties and organizational 
hanges that were introdu
ed as a result of intensi�
ationprograms. A

ording to Lokollo's (2002) report, in the mid 1980s Indonesia 
hangedits position from a net ri
e importer to being self�su�
ient. Despite this produ
tiongrowth and in
rease of ri
e produ
tion, the population growth pressure reverted the self�su�
ien
y trend and in the late 1980s Indonesian produ
tion was again not su�
ient tomeet domesti
 demand for ri
e and Indonesia returned to a net importer position.The �rst e�orts of the Indonesian government to improve ri
e produ
tion te
hnologyare dated to the 1950s. These e�orts in
luded development of irrigation systems, estab-lishment of �paddy 
enters� and soil 
onservation. The growth of ri
e produ
tion untilthe late 1960s was driven through enlargement of ri
e produ
tion areas by 
onversion43



from sugar�growing land while the ri
e yield stagnated at 2 tons per he
tare.Often by use of for
e, the new high�yielding ri
e varieties (HYV), fertilizers and pes-ti
ides were introdu
ed into the produ
tion pro
ess in the beginning of intensi�
ationprograms. Also, 
redit programs for farmers for
ed them to pur
hase input pa
kages,and they had to take the pres
ribed pa
kage of seeds, fertilizers and pesti
ides. Inputsfor ri
e produ
tion were distributed through the village administration. The village ad-ministration for
ed (by 
utting down 
rop of those who were not growing ri
e with theassistan
e of the army) farmers to plant ri
e instead of growing more pro�table 
rops.Moreover, this administration often de
ided to spray large areas with pesti
ides by useof planes.As Lokollo (2002) or Daryanto, Battese, and Fleming (2002b) review, more farmerfriendly intensi�
ation programs were introdu
ed later, e.g., BIMAS (seeds and fertilizer,te
hni
al know�how, 
redit and guaranteed markets) and INMAS (extension of BIMAS,subsidized fertilizes and pesti
ides). In the late 1970s, extensions of the BIMAS programin form of the INSUS [in irrigated areas℄, and OPSUS [inputs for farms for free a

ord-ing lo
al resour
e endowment℄ programs for groups of farmers were introdu
ed. Theseprograms fo
used on the management of farms and planning. To promote 
oordinationof farmers and to 
apture e
onomies of s
ale, another extension of the BIMAS programwas introdu
ed in the form of the SUPRA INSUS program in the late 1980s.In the 1990s Indonesia su�ered from a deep politi
al, e
onomi
 and �nan
ial 
risis.As Erwidodo, Sudaryanto, and Bahri (1999) review, the Indonesian government was alsofor
ed to reform its agri
ultural poli
ies. This led to agri
ultural liberalization be
ausethe regulatory body (National Logisti
 Agen
y, BULOG) was seen as the main sour
eof agri
ultural distortions. Liberalization in
luded elimination of the state monopoly onagri
ultural imports, introdu
tion of international and provin
ial tari�s and the redu
tionof trade restri
tions on a number of agri
ultural produ
ts. Sin
e 1998, the fertilizerdistribution monopoly was eliminated and fertilizers are traded at market pri
es. Furtherreforms in
lude promotion of adequate in
entives to ri
e farmers, 
hanges in the role ofgovernment in marketing and food distribution and further redu
tion of non�tari� barriersfor agri
ultural markets.Re
ently, the main obje
tive has not been to attain zero a import position of ri
e butto adequately feed the population and redu
e poverty. This goal should be a
hieved byredu
ing distortions to the farming inputs market that result from heavy subsidization offertilizer and pesti
ide. These reforms should be followed by an in
rease in 
ompetition44



in the agri
ultural se
tor, whi
h should promote more e�
ient use of produ
tion fa
tors.Erwidodo, Sudaryanto, and Bahri (1999) 
on
lude that despite the un
lear results ofthe introdu
ed agri
ultural reforms in the near�term, there remains a potential sour
e offuture e
onomi
 growth.As it follows from the above intensi�
ation program review, the BIMAS program[Bimbingan Masai or �mass guidan
e� intensi�
ation program℄ was the most importantingredient of the ri
e development poli
y in the 1970s and its in�uen
e on produ
tivityin
rease de
lined in the 1980s after most farmers adopted HYVs and were 
apable offunding the produ
tion inputs from ri
e farming pro�ts. A

ording to Pearson et al.(1991), in 1969 yield on sawah in Java was on average 2.6 tons of ri
e per he
tare, anduntil 1987 these yields had in
reased to about 5 tons per he
tare.The most signi�
ant fa
tor of this in
rease in ri
e produ
tivity in the period in 1970sand 1980s was the spread of high�yield ri
e varieties. By the mid�1980s, 85% of ri
efarmers used high yield variety seeds, 
ompared with 50% in 1975. This was a result ofthe promotion of HYVs together with subsidized fertilizers, pesti
ides, and 
redit throughthe �mass guidan
e� intensi�
ation program. During 1970s, Indonesian farmers in
reasedtheir 
onsumption of pesti
ides sevenfold and their 
onsumption of fertilizers fourfold,even though Indonesian farmers used only 20�25% of the amounts used by farmers inJapan, Taiwan or South Korea; see Table 6.6 in Barker, Herdt, and Rose (1985). Thelater introdu
ed extensions of the BIMAS program 
ontinued to o�er te
hni
al assistan
eto farmers unfamiliar with the new 
ultivation te
hniques.The general belief of farmers involved in the BIMAS program was that more agro-
hemi
al inputs (fertilizers and pesti
ides) will lead to even higher yields. (Gallagher)explains that the massive use of subsidized pesti
ides (farmers paid only 10 to 20 % ofthe world pri
e of pesti
ides) led to outbreaks in ri
e produ
tion when more than one mil-lion of he
tares were infested by pests, e.g., inse
ts like brown planthopper. The appliedpesti
ides damaged the ri
e e
osystems so mu
h that bene�
ial predators and parasiteswere destroyed; therefore, migrating pests survived without any mortality and destroyed
rops. To help redu
e pesti
ide use, in 1989 the subsidy on pesti
ides was eliminated.(Gallagher) 
on
ludes that sin
e 1989 no outbreaks have o

urred and farmers were ableto in
rease yields without in
reased pesti
ide use.The aforementioned problem of heavy pesti
ide use is only one from a range of so
io�e
onomi
 and demographi
 fa
tors that determine e�
ien
y of ri
e farms. Literatureon te
hni
al e�
ien
y of ri
e farms [Wadud and White 2000b; Daryanto, Battese, and45



Fleming 2002b℄ lists fa
tors like 
redit availability, farm size, weather, topography andpoor soils as the prin
ipal produ
tion 
onstraints. Te
hni
al fa
tors in
lude irrigation(often not fun
tional in the dry season when the irrigation system is in short supply ofwater), plot size and land degradation. Espe
ially during the wet season, the qualityof roads and 
ommuni
ation fa
ilities are 
onstraining the movement of inputs to thepaddies that results in 
rop losses. Also non�physi
al fa
tors like experien
e, age, yearsof s
hooling, ownership stru
ture and information availability are 
onsidered as relevant,e.g., Parikh, Ali, and Shah (1995); Dhungana, Nuthall, and Nartea (2004); Timmer(1971); and Dhungana, Nuthall, and Nartea (2004).2.1.1 Data des
riptionThe data used in this 
hapter were previously used by Druska and Horra
e (2004) andHorra
e and S
hmidt (1996) in their studies on theoreti
al developments of methods forsto
hasti
 frontier analysis (SFA) and in the previous 
hapter.The used panel data 
ome from an individual ri
e farm survey by the IndonesianMinistry of Agri
ulture that begun in 1977. These farms were sele
ted from six villages[Wargabinangun, Lanjan, Gunungwangi, Malausma, Sukaambit, Ciwangi℄ in CinamukRiver Basin area in West Java, and farms were surveyed over six growing periods (threewet and three dry periods). These villages are a sample of heterogenous environmentwith various altitudes (sea level, 
entral area of West Java and highland) and the villagesinfrastru
ture (both in low and highlands, where not all villages are a

essible by all�weather lo
al roads).The sample used for analysis 
overs 160 farms after I removed outliers (performan
eoutliers and errors in data) a

ording to yield per he
tare 
riterion and 
omparison of netand gross yield of farms. After this 
orre
tion, the used data still 
ontains farms with awide range of 
hara
teristi
s.Table 2.1 summarizes of des
riptive statisti
s of used inputs and outputs. Land is
onsidered as the most important input, and it is represented as the size of ri
e farmsin he
tares. Approximately 90% of farms in the sample are smaller than 2 he
tares.As reported by Fredieri
k and Worden (1992) and Pakpahan (1992), the 1973 and 1983agri
ultural 
ensus showed that about 44% per
ent of all farm households were eitherlandless or operated holdings too small (0.5 he
tare) to meet more than subsisten
erequirements. The 
ensus shows that average farm size in Java was 0.66 he
tare, while in46



other parts of the ar
hipelago and outer islands the farms were larger and the average sizeranged from about 1.33 to 2.71 he
tares. At the same time, the average size of ri
e farmsin Thailand was 2.9 he
tares and 8.7 he
tares in the USA. Ray (1998) summarizes thatthe low value of per 
apita land holdings is transformed into the fa
t that a signi�
antfra
tion of farms are owner�operated. The other 
ontra
tual arrangement of land rentingin Asia that o

urs frequently is share
ropping under whi
h tenants 
ede to the landlorda pres
ribed fra
tion of his 
rop. Ray (1998) reports that 60 % of tenanted land inIndonesia is tenanted under the share
ropping arrangement. In the analyzed sample, onethird of farmers operate at least a part of their land under share tenan
y.Based on previous resear
h on ri
e farms in Asia [e.g., Erwidodo 1990, Umetsu,Lekpri
hkui, and Chakravorty 2003 and Krasa
hat 2004℄, I use quantity of seeds, urea,triple superphosphate (TSP) and labor to quantify the rest of the inputs that 
hara
ter-ize produ
tion te
hnology. I abstra
t from the role of me
hanization or use of animalsas produ
tion inputs be
ause from Barker, Herdt, and Rose's (1985) review of me
ha-nization studies follows that almost no 
hange o

urred in 
ropping intensity after theintrodu
tion of tra
tors for land preparation. Moreover, they report a �eld experimentwhi
h 
ompared alternative land preparation te
hniques and failed to show any di�eren
ein wetland ri
e yields.In the sample, the employment of HYVs is still very low but tends to in
rease over theobserved periods. Close to one third of farmers used HYVs in the �rst observed season,and the use of HYVs is in
reased to 50% in the last period. A

ording to statisti
spresented by Lokollo (2002) this re�e
ts the overall pro
ess of HYV employment, whenin 1974 33% of farmers employed modern ri
e varieties and employment was in
reasedto 77% of farmers by 1989. The use of the HYVs is one of the ri
e produ
tion growthdrivers, when HYVs yielded on average approximately 1.4 times more ri
e than traditionalvarieties in the 1970s in Asia.Total quantity of urea and phosphate are used to measure the amount of fertilizersapplied by farmer be
ause the use of fertilizer make a substantial 
ontribution to the ri
eyield in
rease. But as Barker, Herdt, and Rose's (1985) estimations of yield responseto amount of fertilizer show, this 
ontribution de
reases with an in
rease in the level ofapplied fertilizer.Labor in
ludes both family and hired labor in ri
e produ
tion and is measured byman�hours. Labor is used to repair dikes; raise, pull and transplant seedlings; harvest andthresh. The ri
e produ
tion in Indonesia is 
hara
teristi
 by its very high labor intensity47



and very low level of me
hanization; when in this area there was only 1 tra
tor availableper 200 he
tares. Therefore, land preparation in wetland 
ultivation area on Java remainslargely unme
hanized during the 
onsidered period and Pearson et al.'s (1991) estimatebased on 
al
ulations from survey data pla
e tra
tor use on about 7% of total 
ultivatedarea in 1987. Barker, Herdt, and Rose (1985) reports that in the 1970s innovative farmerson Java used 200�250 days of labor to 
ultivate 1 he
tare of ri
e. On average, Indonesianfarmers in the analyzed sample used 173 man�days per he
tare, but this is still threetimes more than reported for Thailand and Burma (Table 3.5 in Barker, Herdt, and Rose1985) and approximately two times more than Umetsu, Lekpri
hkui, and Chakravorty(2003) report for the Philippines. Due to the low employment of me
hanization, the
onsidered produ
tion mix does not in
lude tra
tor or animal work.In this 
hapter, two de�nitions of a farm's outputs are used to assess the robustnessof the results with respe
t to produ
tion mix spe
i�
ation. In the model, referred toas one�output, a farm's output is des
ribed only by the gross observed ri
e produ
tionin kilograms. Due to high labor intensity of ri
e harvesting farmers, usually hire share-
roppers to harvest ri
e. The harvesting 
ost is paid in terms of rough ri
e harvested.Therefore, the gross ri
e produ
tion 
an be de
omposed into net yield and ri
e used to
over the harvest 
osts measured in kilograms of ri
e and the this model is referred to asa two�output model.In the se
ond stage of analysis, the e�e
t of the type of ri
e variety together withland status (owner, share
ropper) and type of the BIMAS program parti
ipation [non-BIMAS farmer, mixed, BIMAS farmer℄ is examined. In the analyzed sample, farmerstend to drop out from the program. In the �rst period 66% of farmers are not takingpart in the program while in the last period 87% are not. Further, I also investigatethe in�uen
e of the pri
e (in Rupiah per kilogram) of seeds, urea and phosphate on thete
hni
al e�
ien
y s
ores be
ause due to low pri
es farmers tend to overuse 
heap inputs.Overuse of inputs may lead to a de
rease in produ
tivity rather than to an in
rease asin the 
ase of pesti
ide use. In this analysis, the use of 
hemi
al prote
tion of plants ismeasured by pesti
ide 
osts (in thousands of Rupiah).1
1In the late 1970s, 1000 Indonesian Rupiah had a value of approximately 2 USD.48



2.2 MethodologyIn this 
hapter, a two�stage pro
edure is employed to evaluate the e�e
ts of ri
e farm
hara
teristi
s on the e�
ien
y of produ
tion mixes used by farms. In the �rst stage,the performan
e of the de
ision making unit (DMU, farm) is 
al
ulated by the non�parametri
 approa
h based on Farrell's (1957) measures of e�
ien
y by Farrell (1957)and Farrell and Fieldhouse (1962). This approa
h to measurement of te
hni
al e�
ien
yis one of the most popular approa
hes in re
ent performan
e analysis studies.In Farrell's (1957) 
on
ept, the overall e�
ien
y (OE) is a multipli
ative 
ombinationof te
hni
al (TE) and allo
ative e�
ien
y (AE), so that OE=TE*AE. Allo
ative e�
ien
ymeasures the extent to whi
h an analyzed DMU produ
es its outputs in a proportion thatminimizes 
osts of produ
tion, assuming that the unit is already fully te
hni
ally e�
ient.Te
hni
al e�
ien
y measures the extent to whi
h inputs are 
onverted to outputs relativeto the best pra
ti
e and does not depend on pri
es of inputs and outputs as does Hano
hand Roths
hild's (1972) non�parametri
 
on
ept for testing hypotheses about produ
tionrelations.In Farrell's (1957) 
on
ept, the farmer's de
ision pro
ess may fail in two di�erentways. E
onomi
 theories usually 
onsider the 
ase when the marginal produ
t of some orall fa
tors are not equal to their marginal 
osts, then the allo
ative de
ision is ine�
ient.The se
ond 
ase 
onsiders the failure to produ
e the maximum possible output from agiven mix of inputs and this means that the te
hni
al de
ision is ine�
ient. In this work,te
hni
al e�
ien
y serves as a proxy for overall e�
ien
y be
ause in environment whereinput and output pri
es are heavily distorted by various subsidization, s
hemes allo
ativee�
ien
y does not work as a good measure of e�
ien
y.In the �rst stage of the analysis, the te
hni
al e�
ien
y of individual farms is evaluatedby the data envelopment approa
h (DEA). Sin
e the produ
tion frontier in the DEAapproa
h is deterministi
, the resulting e�
ien
ies 
ontain noise from data. Therefore,in the se
ond stage of this analysis, the features of the operating environment (farm
hara
teristi
s) are used to explain the 
omputed te
hni
al e�
ien
y s
ores by estimatingan e�
ien
y model. As it follows from the DEA e�
ien
y s
ore de�nition, the DEA s
orefalls between the 0 and 1, making the dependent variable (e�
ien
y s
ore from the �rststage of analysis) a limited dependent variable. Therefore, the Tobit model is suggested[e.g., Cooper 1999; Grigorian and Manole 2002℄ as an appropriate model in the se
ondstage of analysis when 
onsidering the e�e
ts of farm's 
hara
teristi
s on the a farm's49



e�
ien
y s
ore.2.3 E�
ien
y measurementThe DEA approa
h introdu
ed in a seminal paper by Charnes, Cooper, and Rhodes(1978) uses linear programming to pursue Farrell's (1957) 
on
ept of te
hni
al e�
ien
yto evaluate performan
e. Charnes, Cooper, and Rhodes's (1978) approa
h deals withmultiple inputs and multiple output te
hnology by 
omputing the maximal performan
es
ore for ea
h de
ision making unit relative to all other units in the sample. For ea
hunit, the unit's performan
e s
ore is 
al
ulated by 
omparing its produ
tion mix with ane�
ient unit (lo
ated on the te
hnology frontier) or with 
onvex 
ombination of di�erente�
ient units (weighted mix of other de
ision making units).The 
ommon feature of estimation te
hniques based on Farrell's (1957) e�
ien
yde�nition is that the information is extra
ted from extreme observations in the senseof te
hni
al e�
ien
y, to form the best pra
ti
e produ
tion frontier. This makes DEAs
ores sensitive to errors in data. However, the main advantage of the DEA approa
h isthat it does not require the assumption of a fun
tional form for the spe
i�
ation of theinput�output relation.Te
hni
al e�
ien
y is 
onsidered in terms of the optimal 
ombination of inputs toa
hieve a given level of output (an input�orientation) or the optimal output that 
an beprodu
ed given a set of inputs (an output�orientation). This analysis is fo
used on input�oriented models, where DMU's ability to 
onsume the minimum input given the level ofoutputs that should be attained is 
onsidered. The input orientation is more appropriatein this 
ase be
ause the output level is given by the target of ri
e produ
tion that shouldattain the self�su�
ient level (zero imports). The de
ision on the orientation of DEAmodels is also supported by 
onsidering the degree of farmer's 
ontrol over variables inDMU's produ
tion mix (ri
e farm). Ri
e farmers have more 
ontrol over their inputs thantheir outputs. Therefore, as in other agri
ultural produ
tivity studies [e.g., Wadud andWhite (2000b, Davidova and Latru�e (2003); and Krasa
hat (2004)℄, the input�orientedDEA model is used.When using the DEA approa
h, the set of n homogenous farms des
ribed by an inputve
tor xj = (x1j , . . . , xmj)
T ∈ Rm

+ of m inputs are employed to produ
e s outputs inamounts des
ribed by ve
tor yj = (y1j , . . . , ysj)
T ∈ Rs

+.
2 Therefore, data on produ
tion2Here, R+ means the set of positive real numbers and 1 is a 
olumn ve
tor of ones.50



pro
ess observations 
onsist of n pairs of input�output ve
tors (xj , yj) ∈ Rm+s
+ and byaggregating these ve
tors, the following matrix notation is used to des
ribe inputsXm×n =

(x1, . . . , xn) and outputs by matrix Ys×n = (y1, . . . , yn).The DEA methodology approa
h developed by Charnes, Cooper, and Rhodes (1978)and reviewed by Seiford and Thrall (1990) and by Charnes et al. (1994) show that Farrell's(1957) input�oriented e�
ien
y measure for the DMUj is found as an optimal solutionto the following linear programming problem (model):
min

λj ,θj ,ej ,sj

θj (2.1)
s.t. Xλj + ej = θjxj ,

yj − Y λj + sj = 0,

ϕ(1Tλj) = ϕ,

λj, ej , sj ≥ 0,where λj ∈ Rn
+; θj ∈ R+; ej ∈ Rm

+ ; sj ∈ Rs
+ and ϕ is 0 for the model (CCR model) with
onstant returns to s
ale introdu
ed by Charnes, Cooper, and Rhodes (1978) and 1 forthe model (BCC model) with variable returns to s
ale by Banker, Charnes, and Cooper(1984). For the DMUj the optimal value θ∗j measures the maximal equi�proportionalinput redu
tion without altering the level of outputs. The ve
tor λ∗j of intensity variablesindi
ates parti
ipation of ea
h 
onsidered farm in the 
onstru
tion of the virtual referen
efarm that the DMUj is 
ompared with.Problem 2.1 is solved n times to generate the optimal values of the obje
tive fun
tionand the elements of intensity variables ve
tor λ for ea
h farm.3 In the DEA literature [e.g.,Charnes et al. 1994; Banker, Charnes, and Cooper 1984℄, the e�
ien
y of the DMUj isevaluated using the optimal solution (λ∗j , θ
∗

j , e
∗

j , s
∗

j) of Problem 2.1 under the assumptionof the sele
ted returns to s
ale (RTS) type a

ording to the following theorem:Theorem 4. E�
ient DMUj : The DMUj is DEA e�
ient if both of the following
onditions are satis�ed: 1) θ∗j = 1; and 2) all values of sla
ks are zero: 1T e∗j = 0 and
1T s∗j = 0. Otherwise the DMUj is ine�
ient.If the DMUj is identi�ed as ine�
ient a

ording to Theorem 4, optimal values ofnon�proportional sla
ks e∗j , s∗j and the optimal value θ∗j identify the sour
es and levels of3For more information on solving DEA models, see 
hapter �Computational aspe
ts of DEA approa
h�in Charnes et al. (1994). 51



present ine�
ien
y and the following input�oriented e�
ien
y measure by Tone (1993)that a

ounts for the presen
e of proportional and non�proportional sla
ks:
χj =

(
θ∗j −

1T e∗j
1Txj

)
1Tyj

1TY λ∗j .
(2.2)Properties of Tone's (1993) e�
ien
y measure guarantee that this e�
ien
y measureuniquely identi�es the e�
ient DMUj when χj = 1. Further, the properties of χj (mono-toni
ally in
reasing in values of inputs and outputs; de
reasing in the relative values ofthe sla
ks; and units' invarian
y) provide rationale for the use of this e�
ien
y measureto 
reate e�
ien
y ranking for the analyzed DMUs.Solving the CCR version of the problem 2.1 (ϕ = 0), the total te
hni
al e�
ien
ymeasure φ∗

j (CCR) is obtained by 
omparing of small s
ale units with large s
ale unitsand vi
e versa without 
onsidering the e
onomies of s
ale. This may be inappropriatefor all of the farms in the sample; therefore, the BCC model (ϕ = 1 in problem 2.1)that allows for variations in the RTS is 
onsidered. The BCC model formulation allowsone to 
al
ulate the pure te
hni
al e�
ien
y φ∗

j(BCC) and de
ompose the te
hni
ale�
ien
y s
ore into pure te
hni
al e�
ien
y and s
ale e�
ien
y (SE). Evaluation of thes
ale e�
ien
y measure of the DMUj assumes 
al
ulation of φ∗

j(BCC) and φ∗

j(CCR) andthe s
ale e�
ien
y measure is 
al
ulated as in the summary of SE 
al
ulation methodsby Löthgren and Tambour (1996):
SEj =

φ∗

j(CCR)

φ∗

j(BCC)
. (2.3)The value of the SE measure is interpreted in the following way: if SEj = 1 then theDMUj is 
onsidered as a s
ale e�
ient unit and this unit shows 
onstant returns to s
aleproperty (CRS); if SEj < 1 then the produ
tion mix of the DMUj is not s
ale e�
ient.S
ale ine�
ien
ies arise be
ause of the presen
e of either de
reasing (DRS) or in
reas-ing (IRS) returns to s
ale. As largely outlined in the DEA literature [e.g. Färe andGrosskopf 1994; Zhu and Shen 1995; and Löthgren and Tambour 1996℄, returns to s
ale
hara
terize lo
ally the produ
tion frontier so that they 
an be solely 
omputed withrespe
t to originally e�
ient DMUs or proje
tions (equi�proportional inputs redu
tion)of ine�
ient DMUs belonging to the produ
tion possibility set.Following the Löthgren and Tambour's (1996) review of identi�
ation of the RTS typepro
edures, the method of the sum of the intensity variables is employed. This method52



originates from Banker, Charnes, and Cooper's (1984) analysis of the CCR model byCharnes, Cooper, and Rhodes (1978). The ability to determine the RTS type of theDMU by Banker, Charnes, and Cooper's (1984) method was later questioned by Färeand Grosskopf (1994) and an improved method of sum of the intensity variables is given,as in Zhu and Shen (1995), by the following theorem:Theorem 5. Sum of intensity variables method: For the spe
i�
 DMUj, let us de�ne
SEj =

θ∗j (CRS)

θ∗j (V RS)
. We have SEj = 1 i� the DMUj exhibits CRS; otherwise if SEj < 1, then

∑
λ∗j < 1 i� the DMUj exhibits IRS; ∑λ∗j > 1 i� the DMUj exhibits DRS.An important part of the DEA is the analysis of e�
ien
y s
ore sensitivity with respe
tto model spe
i�
ations. In this 
hapter, the 
omparison of the sto
hasti
 frontier methodwith the DEA and the sto
hasti
 DEA approa
h presented in the previous 
hapter isutilized. For analysis of e�
ien
y determinants, the additive formulation of produ
tionfun
tion is used be
ause this formulation (pie
ewise linear envelopment surfa
e) is more
onsistent (in terms of rank 
orrelation) with sto
hasti
 frontier analysis than the modelwith multipli
ative formulation (pie
ewise Cobb�Douglas envelopment surfa
e) as shownin the previous 
hapter. Further, the robustness of 
al
ulated e�
ien
y rankings is an-alyzed with respe
t to model spe
i�
ation by use of two di�erent output spe
i�
ations.The 
onsisten
y of e�
ien
y ranking is evaluated by using a rank 
orrelation 
oe�
ient bySpearman (1904) and the hypothesis of rank independen
e is tested. Spearman's (1904)rank 
orrelation 
oe�
ient is used be
ause its important feature is lower sensitivity toextreme values when 
ompared with the standard 
orrelation 
oe�
ient.42.4 Tobit modelThe goal of the se
ond stage is to explore relationships between the te
hni
al e�
ien
ymeasure and other relevant variables su
h as size, ri
e variety used, BIMAS parti
ipationor intensity of fa
tor employment. Some of the 
onsidered fa
tors are neither inputs oroutputs of the produ
tion pro
ess, but rather 
ir
umstan
es fa
ed by de
ision makers,e.g., wet growing period, pri
es of inputs or lo
ation of paddy.The used two stage pro
edure originates from Timmer's (1971) idea for the expla-nation of aggregated (at state level) te
hni
al e�
ien
y of individual farmers. Kumar4For implementation details of Spearman's (1904) rank 
orrelation 
oe�
ient, see Stata Corporation(2003). 53



and Russell (2002) used this pro
edure to regress the 
hange in e�
ien
y against theoutput per worker to show that output per worker is positively related with the 
hangein the te
hnology index 
onstru
ted by using the DEA. Further, Cooper (1999) arguesthat the se
ond stage regression is useful for 
he
king the 
onsisten
y of the DEA resultsand identi�
ation of explanatory variables. Moreover, as Fried, S
hmidt, and Yaisawarng(1999) summarize, an advantage of the two-stage approa
h is that the in�uen
e of theexternal variables on the produ
tion pro
ess 
an be tested in terms of both sign andsigni�
an
e. However, they point out that the disadvantage is that the se
ond stage re-gression ignores the information 
ontained in the sla
ks and surpluses and this may biasthe parameter estimates and give misleading 
on
lusions regarding the impa
t of ea
hexternal variable on e�
ien
y. Therefore, they proposed a four stage pro
ess to 
orre
tthe measure of te
hni
al e�
ien
y for the presen
e of sla
ks. Fried et al. (2002) presentan improved version of Fried, S
hmidt, and Yaisawarng's (1999) te
hnique for in
orpo-rating environmental e�e
ts and statisti
al noise into a produ
er performan
e evaluationbased on data envelopment analysis (DEA) where the sla
ks are de
omposed to a partattributable to environmental e�e
ts, a part attributable to managerial ine�
ien
y andto a part attributable to statisti
al noise.Let us assume that the e�
ien
y of farms 
ould be presented, in a simpli�ed settingsuggested by many studies [e.g., Parikh, Ali, and Shah 1995; Hallam and Ma
hado 1996;Llewelyn and Williams 1996; Sha�q and Rehman 2000; and Grigorian and Manole 2002℄by the following fun
tion:
χjt = E(Fjt, Pjt, Xt, ǫjt),where χjt is the measure of farm j e�
ien
y in period t, Fjt is a ve
tor of farm j spe
i�
variables, Pjt is a ve
tor of e
onomi
 fa
tors, Xt is a ve
tor of period t external fa
tors thatare likely to a�e
t the e�
ien
y of farm j; βj is a ve
tor of parameters to be estimatedand ǫj is the part attributable to statisti
al noise.The DEA approa
h provides e�
ien
y measure χjt with distribution bounded between1 and 0. Alternatively, the e�
ien
y s
ores are 
ensored at 0.9 when assuming that thereis not too mu
h di�eren
e between fully e�
ient farms and over 90% e�
ient farms. Inthis 
ase the ordinary least squares method 
an not be applied be
ause the expe
ted errorswill not equal zero, and so standard regression will provide a biased estimate. Therefore,the limited dependent variable approa
h is preferred and the Tobit model is applied.Following Kmenta (1990) and Wooldridge (2002), the model 
an be written in follow-54



ing way:
χ∗

jt = αTF + βTP + γTX + εjt, (2.4)where χ∗

jt is a latent variable that refers to the te
hni
al e�
ien
y of ri
e farms and x areexplanatory variables. However, due to nature of the e�
ien
y measure, the following isobserved:
χjt = 0 if χjt ≤ 0 (2.5)
χjt = χ∗

jt if 0 < χjt < 1

χjt = 1 if 1 ≤ χjt.To estimate the e�e
ts of farm 
hara
teristi
s on the te
hni
al e�
ien
y s
ore, theTobit and random�e�e
t Tobit models are used. The random�e�e
t Tobit model 
ap-tures individual�spe
i�
 e�e
ts, assuming no 
orrelation between the individual�spe
i�
e�e
ts and explanatory variables. The random�e�e
t Tobit model for e�
ien
y s
ores is
onsidered in the following form:
χ∗

jt = αTF + βTP + γTX + νj + ǫjtassuming that χjt is 
ensored at 0 and 1 (0.9 respe
tively). In here random�e�e
ts, νj, areiid N(0, σ2
ν) and ǫjt are iid N(0, σ2

ǫ ) independently of νj . Assessed models are estimatedusing the maximum likelihood estimation pro
edures implemented in STATA.Here, the �xed�e�e
t Tobit model is not used to model the e�
ien
y s
ore, as theredoes not exist a su�
ient statisti
 that allows the �xed�e�e
t to be 
onditioned out ofthe likelihood. Un
onditional �xed�e�e
t Tobit models may be �tted by using the Tobitmodel with an individual indi
ator. However, these estimates are biased. A

ordingto Greene (2004), the varian
e estimator (
ru
ial parameter for inferen
e and analysispurposes) in the Tobit model is a�e
ted spe
ially in samples with a small number of timeperiods observed, as in the 
ase of this analysis.However, it is possible to 
ontrol for 
orrelation with unobserved heterogeneity be
auseWooldridge (2002) suggests that in this 
ase one should utilize an assumption presentedby Mundlak (1978). Mundlak (1978) assumed that unobserved heterogeneity 
an bemodelled as a fun
tion of the means of in
luded regressors. So, the following relation55



is assumed: νj = ᾱT F̄j + β̄T P̄j + γ̄T X̄j + δj . Here, δj is assumed to be a part of afarm's unobserved heterogeneity su
h that it is un
orrelated with regressors F, P,X and
F̄j , P̄j, X̄j, where F̄j, P̄j, X̄j, are ve
tors of farm j means for individual regressors over theobserved growing periods. After, the additional set of mean regressors is in
luded, thee�
ien
y equation 
an be estimated by the random�e�e
t Tobit approa
h.2.5 Te
hni
al e�
ien
yAs mentioned in previous se
tions, the te
hni
al e�
ien
y and pure te
hni
al e�
ien
ys
ores are evaluated by use of the input�oriented DEA models via solving Problem 2.1 fortwo di�erent output spe
i�
ations under the assumption of a period spe
i�
 produ
tionfrontier. The model with the output spe
i�ed by gross ri
e produ
tion is referred toas the one�output model and the model with harvest 
ost and net ri
e used to spe
ifyprodu
tion output is referred to as the two�outputs model. Further, for the two�outputsspe
i�
ation, e�
ien
y s
ores were 
al
ulated under the assumption of the time invariantprodu
tion frontier (pooled sample, referred to as the pooled DEA).The DEA estimates of te
hni
al e�
ien
y are summarized in Table 2.2. The di�er-en
es in e�
ien
y s
ore (χ) and te
hni
al e�
ien
y s
ore (θ) result from the presen
e ofpositive non�proportional sla
ks (e, s). From 
omparison of χ and θ values, it 
an beobserved that these non�proportional sla
ks are less important than equi�proportionalredu
tion of inputs (θ).From 
omparison of the reported te
hni
al e�
ien
y s
ores with Krasa
hat's (2004)results for Thai ri
e farms, it 
an be 
on
luded that West Javan and Thai ri
e farmsare operating approximately at the same level of relative e�
ien
y. Krasa
hat (2004)reports an average te
hni
al e�
ien
y s
ore of 0.74 for Thai farms while in the analyzedsample of West Javan, farms the te
hni
al e�
ien
y ranges from 0.60 to 0.77 (underthe assumption of the time varying produ
tion possibility frontier). Also, the te
hni
ale�
ien
y s
ores of West Javan ri
e farms are lower than te
hni
al e�
ien
y s
ores of ri
efarm in Bangladesh reported by Wadud and White (2000b), where the average te
hni
ale�
ien
y ranges from 0.86 to 0.91 and standard deviation ranges from 0.10 to 0.12.With awareness of the fa
t that Llewelyn andWilliams (1996) used an output�orientedmeasure, these results 
an be liken to results presented in Llewelyn and Williams's (1996)study on multi�produ
t food�
rop produ
ing farms (58.1% of their produ
tion 
an be at-tributed to ri
e) in East Java during the 1994 growing season. Llewelyn and Williams56



(1996) reports farms' te
hni
al e�
ien
y in the range from 0.95 to 0.98 with standarddeviation ranging from 0.019 to 0.043. Also, the histograms of 
omputed te
hni
al e�-
ien
y s
ores plotted in Figure 2.1 and 2.2 illustrate the observed high degree of diversityin farms' performan
e. In both �gures, the typi
al pattern of the DEA e�
ien
y measures
hara
terized by a peak at one is observed. From a 
omparison of standard deviationvalues, it follows that produ
tivity performan
e of West Java ri
e farms was mu
h moreheterogenous than in other 
ountries at that time and in East Java in early 1990s. There-fore, it is appropriate to 
onje
ture that the low average te
hni
al e�
ien
y performan
eof West Java farms is 
aused by high heterogeneity of ri
e farming pra
ti
es in Indonesiain the late 1970s.Assessing the s
ale e�
ien
y results reported in Table 2.2, one 
an 
on
lude thats
ale ine�
ien
y is not the major sour
e of Indonesian ri
e farm ine�
ien
y. The averages
ale e�
ien
y value of 0.90 is 
omparable to s
ale e�
ien
y s
ores of farms in Thailand[0.96 reported by Krasa
hat (2004)℄ and Bangladesh [0.91 reported by Wadud and White(2000b)℄. The international 
omparison of the RTS identi�
ation is presented Table 2.3.These results shows that most of the farms in West Java and Bangladesh operate in theprodu
tion possibility region with de
reasing returns to s
ale property. While in the 
aseof Thailand and East Java, most of the farms are operating in either the 
onstant orin
reasing returns to s
ale region of their produ
tion possibility set.From these results it follows that in
reases in inputs intensity leads to less than aproportional in
reases in the outputs be
ause farmers were not using the proper mix ofinputs that 
ould generate 
onstant or in
reasing returns to s
ale of operations. Te
hni
ale�
ien
y results suggest that at the time of the survey, it was more bene�
ial to drivethe e�
ien
y improvements through the employment of �best pra
tise� te
hnology thantrying to exploit the s
ale of operations. Be
ause the size of operations 
onsidered bygovernment programs, further analysis examines the size of the operations�produ
tivityrelation in detail in the following se
tion.The 
onsisten
y of DEA results with respe
t to spe
i�
ation of the input�output re-lation is evaluated by 
omparing e�
ien
y rankings. To 
ompare SFA and DEA results,the DEA rank is 
onstru
ted using the average e�
ien
y s
ore 
omputed over the 
on-sidered growing periods. Table 2.4 reports rank 
orrelation 
oe�
ients for models witha time varying produ
tion frontier that ranges from 0.73 to 0.97. Also, high values ofranking 
orrelation 
oe�
ients (0.65�0.93) under the assumption of a 
ommon frontierfor all periods reported in Table 2.5 support the hypothesis of robust input�output spe
-57



i�
ations. The box plots in Figure 2.3 show development of te
hni
al and pure te
hni
ale�
ien
y over the observed growing periods. These box plots show that there no signi�-
ant te
hnologi
al 
hange over the observed periods. This result is also supported by ananalysis of the Malmquist produ
tivity index of te
hnologi
al 
hange, where the index ofgeometri
 average te
hnology 
hange is 0.978 and the average index of e�
ien
y 
hangeis 1.007 (the unity value of index means no 
hange). Further, the DEA rankings are
ompared with the SFA rankings estimated by Druska and Horra
e (2004). A

ording tothe literature on parametri
 and non�parametri
 methods 
omparison, e.g., Wadud andWhite (2000b), a high level of DEA�SFA ranking 
onsisten
y is observed. Be
ause inea
h 
ase the majority of the farms are s
ale ine�
ient and operating in the de
reasingreturns to s
ale region, the following analysis is fo
used on the e�
ien
y s
ores obtainedfrom two�output models under variable returns to s
ale.2.6 Fa
tors asso
iated with e�
ien
yUsing the e�
ien
y s
ores from the model with a time varying produ
tion frontier andassessing 
hara
teristi
s of ine�
ient and e�
ient farms summarized in Table 2.6, itseems that larger farm size, lower usage of fertilizers and higher pesti
ides 
osts tend tobe asso
iated with the te
hni
al e�
ien
y of farms. To provide a 
loser look on shifts indistribution of e�
ien
y, box�plots in Figure 2.4 illustrate the relation of mean values ofe�
ien
y s
ore (under CRS and VRS assumption) a

ording to 
ategories of ownership,variety type and BIMAS parti
ipation. Even partial appli
ation of high yielding varietiesshifts farms towards higher e�
ien
y. Mixing types of land status is re�e
ted in a shifttowards less e�
ien
y. This may re�e
t fri
tions originating from heterogenous ownershipstru
tures of the land. An striking distributional shift o

urs when parti
ipation inan intensi�
ation program with e�
ien
y is 
onsidered. The downward shift may beattributed to the fa
t that farmers were re
eiving the same pa
kage of inputs that werenot e�
ient produ
tion mixes for all of them due to the heterogeneity of 
onditions.Also, parti
ipating farmers due to easy availability of inputs [e.g., pesti
ides℄ may tendto overuse these inputs.For a more detailed analysis of fa
tors related to te
hni
al e�
ien
y, a Tobit modelis used. To do this the e�
ien
y is tra
ked over time under a time variant and invariantprodu
tion possibility frontier. In the 
ase of the time varying frontier, the e�
ien
yof farm may not be dire
tly 
ompared with the e�
ien
y of another farm in di�erent58



time (in
luding itself) be
ause the farm is in ea
h period 
ompared to di�erent �bestpra
ti
e� farms. However, this analysis is bene�
ial for assessing the relative performan
eimprovements. When a pooled produ
tion frontier is used, the e�
ien
y of a farm maybe dire
tly 
ompared and tra
ked over time be
ause the produ
tion possibility frontier is
onstru
ted by use of the same best performers in all periods. Using this approa
h, thedownward e�
ien
y shift is observed in the 
ase when all DMUs in some period fa
edan unfavorable produ
tion 
ondition, e.g., the third and fourth period in Figure 2.3. To
ontrol for these unfavorable 
onditions, time dummies (t3, t4) are introdu
ed.In the re
ent literature on agri
ultural development [Pearson et al. (1991, Towsend,Kirsten, and Vink (1998, Llewelyn and Williams (1996, Davidova and Latru�e (2003); andHelfand and Levine (2004)℄, the most 
ommon variables used to asses the fa
tors asso
i-ated with farms' e�
ien
y 
over 
hara
teristi
s like farm size, age of farmers, s
hooling ofthe farmers and employment level of ma
hinery. The Tobit regression de�ned by equation2.4 is estimated for all 
ombinations of frontier types and 
orre
tions of e�
ien
y s
ores(
ensoring bound).The fa
tors analyzed 
an be divided into three groups: farm spe
i�
 variables (in-tensity of inputs � labor, fertilizers, seeds and farm size; organizational stru
ture � landstatus, BIMAS parti
ipation, ri
e variety used), e
onomi
 fa
tors (pri
es of some inputs)and environmental fa
tors (wet�dry period, village). Due to the assumption of homo-geneity of inputs in all six villages (parti
ulary land quality, sea level), village dummiesare in
lude into the models to 
ontrol for di�eren
es a
ross villages.Table 2.8 reports the results of the Tobit and random�e�e
t Tobit estimations andTable 2.9 reports the results of the random�e�e
t estimation when Mundlak's (1978)
orre
tion is applied. In all estimated models, only signi�
ant the e�e
t of geographi
allo
ation is found for Ciwangi village. This re�e
ts the fa
t that Ciwangi village is lo
atedin the 
enter part of West Java island with an average altitude of 375 meters, while therest of the villages are lo
ated along the oast (10�15 meters above sea level) or in the
entral area of island (600�1000 meters above sea level). The di�eren
e between the DEAapproa
h and the sto
hasti
 frontier analysis is illustrated by low signi�
an
e of lo
atione�e
t when DEA is used, while Druska and Horra
e (2004) report that SFA s
ores showsigni�
ant spatial e�e
t.All the 
oe�
ients related to the intensity of input use per he
tare have the expe
tedsign, and high 
onsumption of input per unit of size may indi
ate wastage of the 
on-sidered input. Sizes of the e�e
ts indi
ate possible substitutability between labor and59



bio
hemi
al inputs (fertilizers and seeds) when sear
hing for e�
ien
y improvements asmentioned by Barker, Herdt, and Rose (1985) in the 
hapter on trends in labor use. Theyalso mention that experiments on proper timing and pla
ement of fertilizer suggest thatfertilizer inputs 
an be redu
ed as mu
h as one third without lowering yields.As it follows from the estimation results, the e�e
t of the wet season is not 
learbe
ause several opposing e�e
ts o

ur. It would be natural to expe
t that a signi�
antpositive e�e
t of the wet season is due to water demanding nature of ri
e. The 
onje
tureis that the positive e�e
t of wet weather is ruled out by the fa
ts that most of the areasla
k a reliable transportation system (paved roads) during the wet season and farmersare not 
apable of delivering proper 
are to paddies. Also, �ooding and lodging 
an a�e
tyields when severe weather o

urs, as mentioned by Pearson et al. (1991).The prevailing positive but not signi�
ant e�e
t of a shift towards land tenan
y 
anbe explained by Timmer's (1971) reasoning that ownership status might be asso
iatedwith the extra e�ort and motivation of tenant farmers who are attempting to save enough
apital to buy their own land. However, Pearson et al. (1991) mention that share
ropping
ontra
ts were often arranged so that the bene�ts of higher returns to land go to ownersrather than tenants and this dis
ouraged tenants from in
reasing their produ
tivity. Also,Umetsu, Lekpri
hkui, and Chakravorty (2003) and Helfand and Levine (2004) identify asimilar negative relationship between landlord share and e�
ien
y; therefore, to assessthe e�e
t of land ownership in West Java ri
e farming, more details on 
ontra
t arrange-ment are needed. From the view of prin
ipal�agent theories, the trade�o� between theinsuran
e and in
entive aspe
ts in 
ontra
ts is the most 
ru
ial information. And thesimple prin
ipal�agent models illustrate how share
ropping arises when landlords are un-sure about the true ability and 
an not observe the produ
tivity of their tenants, as inRay (1998).Further, the estimation result suggest that a signi�
ant positive performan
e gain
omes from employing modern high�yielding varieties. This result is also supported bythe observed rapid and widespread repla
ement of traditional seed varieties with short-duration HYVs during the period 1969�1980. The use of HYVs has transformed thenature of wetland ri
e agri
ulture in Indonesia from one of low yields, nonuse of pur
hasedinputs, and single annual ri
e 
rops to one of high yields, high levels of pur
hased inputs,and multiple ri
e 
rops. So, self�su�
ien
y was attained in the beginning of the 1980s.As mentioned in the review, the BIMAS program was an important ingredient ofri
e development poli
y in the beginning of the 1970s, while its importan
e de
lined by60



the 1980s after most farmers adopted HYVs and were 
apable of funding inputs fromri
e pro�ts. The negative e�e
t of BIMAS parti
ipation it not so surprising be
ause theintensi�
ation programs provided farmers with a te
hnology pa
kage that in
luded inputre
ommendations; subsidized 
redit, fertilizer and pesti
ides in pres
ribed 
omposition.5Also, this result supports the hypothesis that in the later period of the intensi�
ationprogram the positive e�e
ts from introdu
ing HYVs rea
hed their limits. Further, be
ause
hoi
e of ownership type, HYV employment and program parti
ipation is suspe
ted forpossible endogeneity, Table 2.7 reports the results of exogeneity test statisti
s by Smithand Blundell (1986). In all 
ases, we a

epted exogeneity of explanatory variables.Assessing the positive 
oe�
ients of seed and urea pri
e, it 
an be 
on
luded that anin
rease in these fa
tor pri
es has a signi�
ant impa
t on in
reasing e�
ien
y, whi
h 
ansupport the thesis that the goal of te
hnology improvement is to redu
e 
ostly inputs. Thenegative e�e
t of fertilizer pri
e on farm e�
ien
y (attaining the given yield level) is theresult of low fertilizer use. Barker, Herdt, and Rose (1985) do
ument de
reasing returnsto s
ale in yield with respe
t to fertilizer use. Together with the fa
t that farmers inIndonesia were applying very low levels of fertilizers 
ompared to industrialized 
ountries'farmers [Japan, South Korea℄, this indi
ates that the negative e�e
t of redu
ed fertilizeruse prevails over any positive e�e
t originating from more e�
ient use of fertilizers.The opposite e�e
t is observed in the 
ase of pesti
ides 
osts (thousands of rupiahper he
tare) be
ause pesti
ides are used to prevent losses while the initial appli
ation offertilizers always in
reases 
rop yield. Also as mentioned in the se
tion on ri
e farming,low pri
es of pesti
ides lead to overuse, whi
h has negative e�e
ts on the yield due toenvironment degradation. Generalizations about the te
hni
al e�
ien
y response to theuse of pesti
ide treatment are di�
ult to make be
ause of the high number of intera
tingfa
tors [weather, type of pests, variety resistan
e℄.Farm size in Indonesia has been assessed sin
e the 1960s (Basi
 Agrarian Law), sin
ethis law was imposed, the average farm size has tended to in
rease. Farm size is animportant produ
tion fa
tor be
ause it a�e
ts the way of farming. Farm size in Javawas mu
h smaller (on average 0.439 he
tare in the analyzed sample) than on the outerislands. Pakpahan (1992) reports, using the Agri
ultural 
ensus that the average size ofland holding was 1.77 ha in 1973 and 1.78 ha in 1983. This di�eren
e provides rationalefor the limits imposed by Basi
 Agrarian Law, whi
h sets the minimum and maximum5For more details on this intensi�
ation pa
kage 
ontents, see e.g., Pearson et al. (1991, Barker, Herdt,and Rose (1985); and Lokollo (2002). 61



size of 2 and 20 ha, respe
tively.Be
ause of the fo
us on the relation of farm size to e�
ien
y, the quadrati
 term wasadded, as in Wadud and White (2000b), to 
apture non-linearities that were usually notexplored in works that identi�ed a negative relationship between farm size and produ
-tivity. The negative e�e
t of size on produ
tivity is 
onsistent with the fa
t that land is
onsidered as an input, and with empiri
al �ndings for Asian 
ountries summarized byRay (1998). Assessing the positive sign for the quadrati
 term (Size2), it 
an be 
on
ludedthat there exists a threshold size and farms larger than this threshold show a positiverelationship between farm size and produ
tivity. These thresholds are 
al
ulated using
al
ulus and for a time varying frontier range 1.26�1.44 ha, 1.71�1.88 ha when Mund-lak's 
orre
tion is used, and the average threshold size is 1.60 ha. For the time invariantfrontier, the average threshold size is 1.67 ha, while thresholds range from 1.45 to 1.62ha and 1.68�1.94 ha for estimations with Mundlak's 
orre
tion. The 
omputed thresholdsizes are very similar to the size of ri
e farms in other parts of Indonesia (outer islands)or East Asia and this result 
an be used to advo
ate the intensi�
ation programs andlegal restri
tions with aims to in
rease the size of ri
e farms.Further, these results 
oin
ide with Wadud and White's (2000b) �ndings that, onaverage, farmers with lower land fragmentation (greater plot size) more likely have theopportunity to apply new te
hnologies su
h as tra
tors or irrigation, resulting in thehigher e�
ien
y of their farms. Also, Pearson et al. (1991) and Ray (1998) note thatespe
ially the small size of plots and the impra
ti
ality of using tra
tors in hilly areas,are the main 
onstraints on me
hanization of land preparation. Under the obje
tive ofin
reasing farm size even pooling of smaller farms may be bene�
ial be
ause with anin
rease in farm size, employment of me
hanization will allow an in
reased produ
tion ofri
e and small landowners would lend their plots to larger landowners be
ause the returnsfrom land renting will in
rease. However, 
onstraints on greater tra
tor use (espe
ially,on the outer islands) are probably more varied due to topographi
 limitations and greaterdi�
ulty in obtaining and servi
ing tra
tors.Analyzing the time evolution of e�
ien
y s
ores summarized in Table 2.8, the sign ofthe estimated 
oe�
ient indi
ates that the relative te
hni
al e�
ien
y was only slightlyin
reasing during the end of the 1970s�beginning of the 1980s. When the time evolution ofe�
ien
y s
ores under time varying frontier is 
onsidered this observation indi
ates thatadoption of e�
ient te
hniques is not the major fa
tor for in
rease in farms's e�
ien
yand it supports the view that the in
rease in ri
e produ
tion was driven by expansion of62



the 
ultivated area. Assessing these results, it is observed that there exist periods wherethe signi�
ant de
rease in e�
ien
y is observed whi
h suggests that positive produ
tivitye�e
ts of the green revolution were not fully realized for some years after initial in
reasein produ
tivity. These results are 
onsistent with other studies of te
hnologi
al 
hange inless developed 
ountries that indi
ated de
lining agri
ultural produ
tivity. For example,Fulginiti and Perrin (1997) 
on�rmed �ndings that on average, agri
ultural produ
tivityhave de
lined in these 
ountries, espe
ially during 1961�1973, but also during 1974�1985.His �ndings reveal that the de
lining produ
tivity during 1974�1985 period 
hara
ter-ized even those 
ountries su
h as Pakistan and the Philippines, where green�revolutionvarieties of wheat and ri
e be
ame widely adopted sin
e the 1960s.Finally, the estimations results reveal 
onsistently signi�
ant positive relationshipbetween the share of family labor and e�
ien
y measure in all estimated models. Asfound by Dhungana, Nuthall, and Nartea (2004) this tend to negate the belief thatfarmers in developing 
ountries are operating ine�
iently due to ex
essive use of familylabor. As it was mentioned in the data des
ription se
tion, the timing for deliveringthe proper 
are to ri
e plants matters. Therefore, the positive relation between share offamily labor and e�
ien
y may be explained as the result of seasonal labor s
ar
ity whenthe farmers with larger families are able to deliver their family labor at the time whenthe demand for labor 
ulminates.Ray (1998) argues that in the world with unemployment that for somebody who hireslabor the opportunity 
osts of additional unit of labor are still at market wage rate, whilefor family labor the opportunity 
osts are lower be
ause of possibility of unemployment.He argues that this lead to higher employment of family labor by farmers with small sizeplot. Therefore, the observed positive relation of share of family labor to e�
ien
y is notsurprising and due to the substitutability of inputs the small size farmers deliver more
are to the plants are able to in
rease the e�
ien
y of other produ
tion fa
tors withoutin
reasing the intensity of use of these fa
tors.2.7 Con
lusionIn this 
hapter, I analyze performan
e of West Java ri
e farms during the late periods[end of 1970's � beginning of 1980's℄ of intensi�
ation program known as BIMAS. Theapplied non�parametri
 approa
h is more suitable to analyze produ
tion pro
esses indeveloping 
ountries where the availability of data is limited and produ
tion te
hnologies63



are less understood. The analysis of te
hni
al e�
ien
y s
ores reveals that farmers 
ouldbene�t from adoption of the best pra
ti
e methods of produ
tion be
ause the resultsindi
ate a wide di�eren
es in e�
ien
y a
ross farms. On average, the analyzed farmswere relatively ine�
ient with potential for redu
ing their inputs from 23 to 42 % togrow the same amount of ri
e. De
omposing the te
hni
al e�
ien
y into pure te
hni
ale�
ien
y and s
ale e�
ien
y it 
an be 
on
luded that the majority of farms operate ator 
lose to full s
ale e�
ien
y. So, farmers that are operating te
hni
ally ine�
iently aredoing so be
ause of employment of te
hni
ally ine�
ient produ
tion mixes rather thanthe size of their operations. Further, up to 77% of s
ale ine�
ient farms shows de
reasingreturns to s
ale.The se
ond stage analysis of the fa
tors asso
iated with observed te
hni
al e�
ien
ys
ore indi
ates what aspe
ts of the 
onsidered ri
e farms 
ould be targeted in order toimprove farm e�
ien
y. The employment of modern varieties had a positive and signif-i
ant e�e
t on the ri
e farms performan
e but the time pattern of produ
tivity suggestthat during the 
onsidered period the yield potential of introdu
ed modern varieties wasexhausted.The surprising result is that the parti
ipation in intensi�
ation program did not pro-vided signi�
antly positive e�e
ts on employment of the best pra
ti
e farming te
hnolo-gies. Similarly as in Daryanto, Battese, and Fleming (2002b), the predominan
e of nega-tive relationships between te
hni
al e�
ien
y and parti
ipation in intensi�
ation programsuggest that the program has often failed to in
rease the te
hni
al e�
ien
y of ri
e farmsin West Java. The main assumption of the intensi�
ation program (BIMAS) approa
hwas that small s
ale farmer produ
tivity 
ould be raised if they had better a

ess to
ertain inputs and used them a

ording to a set of pres
ribed instru
tions but the fa
-tors whi
h a�e
ts the de
ision on fa
tors intensities di�ers signi�
antly among farmers.To be su

essful, future intensi�
ation programs should re
ognize these di�eren
es andbe personalized to a

ommodate them. For personalization the detailed data on farmer
hara
teristi
s (edu
ation, age and family size of farmers); infrastru
ture of villages (ir-rigation, types of roads); and me
hanization used (water pumps, tra
tors or bu�alos)should be analyzed for e�e
ts on te
hni
al e�
ien
y.The main result of the size�e�
ien
y relation analysis suggests that it is misleadingto generalize the inverse relationship between farm size and produ
tivity as it is notedin re
ent agri
ultural studies, e.g. Towsend, Kirsten, and Vink (1998) and Helfand andLevine (2004). The non�linearity in this relation is identi�ed and it allows for 
al
ulation64



of threshold size over whi
h the size�e�
ien
y relation turns to be positive. The 
al
ulatedthreshold size 
oin
ides with average sizes of ri
e farms on the other Indonesian islandsand in other Asian 
ountries. Assessing this fa
t, the in
rease in farms size (poolingplots) looks bene�
ial for further in
rease in produ
tion of ri
e. Also, when the plot sizeswill be in
reased the produ
tion of ri
e 
an be me
hanized and this 
an indu
e furthergrowth of ri
e produ
tion. When farm size in
rease is 
onsidered, poli
y makers shouldbe aware of de
reasing returns to s
ale be
ause for the majority of the West Java farmsthe in
rease in farms size without 
hange in the relative input levels will lead to thede
rease in the te
hni
al e�
ien
y. Therefore, the assessment of yields in
rease to attainself�su�
ien
y in ri
e produ
tion should distinguish between enlarging farm size, and thee�orts to in
rease te
hni
al e�
ien
y of the small size farms.A suggestion that 
an be drawn from the presented analysis is that the future inten-si�
ation programs have to take into a

ount the 
apa
ity of farmers for applying theavailable te
hnology more e�
iently. Therefore, the poli
ies aimed to spread the e�-
ient te
hnology should improve the a

ess to personalized intensi�
ation programs, orby in
reasing the edu
ational levels of farmers, as many studies on farming performan
esuggest, e.g. Llewelyn and Williams (1996), Dawson and Lingard (1991) and Dhungana,Nuthall, and Nartea (2004).2.A Figures and TablesVariables Farms Periods Mean Std. Dev. Min MaxInputsLand (he
tares) 160 6 0.439 0.560 0.014 5.322Seed (kg) 160 6 18.470 46.681 1.000 1250.000Urea (kg) 160 6 96.525 130.393 1.000 1250.000Phosphate (kg) 160 6 33.807 48.348 0.000 700.000Labor (hours) 160 6 394.224 496.016 17.000 4774.000OutputsGross yield (kg) 160 6 1414.205 1966.252 42.000 20960.000Net Yield (kg) 160 6 1248.825 1675.924 42.000 17610.000Harvest 
osts (kg) 160 6 165.380 302.433 0.000 3350.000Table 2.1: Input�Output summary
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Model Obs. Mean Std.Dev. Min MaxOne�output χ�CCR 960 0.6016 0.2158 0.1869 1
θ�CCR 960 0.6750 0.1956 0.2553 1
χ�BCC 960 0.6777 0.2149 0.2056 1
θ�BCC 960 0.7457 0.1922 0.3227 1S
ale e�
ien
y 960 0.9074 0.1190 0.4029 1Two�outputs
χ�CCR 960 0.6199 0.2221 0.1612 1
θ�CCR 960 0.7069 0.1942 0.2795 1
χ�BCC 960 0.7016 0.2216 0.2065 1
θ�BCC 960 0.7757 0.1884 0.3294 1S
ale e�
ien
y 960 0.9126 0.1123 0.4493 1Two�outputs � pooled frontier
χ�CCR 960 0.5155 0.2024 0.1647 1
θ�CCR 960 0.5866 0.1948 0.2116 1
χ�BCC 960 0.5913 0.2012 0.2309 1
θ�BCC 960 0.6533 0.1988 0.2591 1S
ale e�
ien
y 960 0.9003 0.1183 0.3618 1Table 2.2: E�
ien
y s
ores (χ) and te
hni
al e�
ien
y (θ) summary statisti
sModel DRS CRS IRSOne�output 66% 12% 22%Two�outputs 62% 16% 22%Two�outputs � pooled frontier 77% 5% 18%Thailand∗ 19% 32% 49%Bangladesh∗∗ 63% 16% 21%

∗ From Krasa
hat (2004), ∗∗ From Wadud and White (2000b)Table 2.3: Returns to s
ale summaryRankings One�output Two�outputs SFACCR BCC CCR BCCOne�outputCCR 1.0000BCC 0.7377 1.0000Two�outputsCCR 0.9714 0.7318 1.0000BCC 0.7520 0.9726 0.7632 1.0000SFA 0.8521 0.6080 0.8248 0.6114 1.0000Note: In all 
ases the hypothesis of rank independen
e was reje
ted at the 1% signi�
an
e level.Table 2.4: Spearman rank 
orrelation 
oe�
ients68



Rankings Two�outputs Two�outputs � pooled SFACCR BCC CCR BCCTwo�outputsCCR 1.0000BCC 0.7377 1.0000Two�outputs � pooled frontierCCR 0.9342 0.6195 1.0000BCC 0.7736 0.9235 0.7300 1.0000SFA 0.8521 0.6080 0.8248 0.6114 1.0000Note: In all 
ases the hypothesis of rank independen
e was reje
ted at the 1% signi�
an
e level.Table 2.5: Spearman rank 
orrelation 
oe�
ients
Ine�
ient produ
tion mixesVariable Obs Mean Std. Dev. Min MaxSize 711 0.3977 0.4029 0.0360 3.6430Land status 711 1.3713 0.6097 1 3Variety 711 1.5218 0.8503 1 3BIMAS 711 1.3417 0.6301 1 3Seed per ha 711 43.5229 38.9072 13.0841 857.1429Urea per ha 711 237.8890 107.3938 6.9930 712.2507Phosphate per ha 711 98.1660 70.1368 0.0000 418.9944Labor per ha 711 1060.4180 463.1572 314.0625 3414.6340Family labor ratio 711 0.5122 0.2701 0.0006 1.0000Yield per ha 711 3048.3050 1064.2220 630.6667 6305.7320Pesti
ides 
osts 711 459.2194 1755.3570 0.0000 24000E�
ient produ
tion mixesVariable Obs Mean Std. Dev. Min MaxSize 249 0.5599 0.8551 0.0140 5.3220Land status 249 1.3574 0.6874 1 3Variety 249 1.8313 0.9649 1 3BIMAS 249 1.2610 0.5536 1 3Seed per ha 249 43.6059 33.9238 4 350.1401Urea per ha 249 206.9264 131.4522 0.8748 682.7586Phosphate per ha 249 70.0780 76.5883 0.0000 375.9398Labor per ha 249 990.7551 516.3687 108.0000 2966.6670Family labor ratio 249 0.5854 0.3193 0.0002 1.0000Yield per ha 249 3884.5560 1467.2710 400.0000 7910.3450Pesti
ides 
osts 249 1017.4500 5113.0330 0.0000 62600Table 2.6: E�
ient vs. ine�
ient produ
tion mixes69



Model variable Test stat. P-value exogeneityProbit variety 0.1765 0.6744 a

eptedland status 1.0751 0.2998 a

eptedBIMAS 1.0573 0.3038 a

eptedTobit variety 1.4556 0.2279 a

eptedland status 0.8322 0.3619 a

eptedBIMAS 2.4549 0.1175 a

eptedTable 2.7: Smith-Blundell test of exogeneity for time invariant frontier
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Tobit Panel data Tobit Tobit � pooled Panel data Tobit �pooledVariable 
orre
ted original 
orre
ted original 
orre
ted original 
orre
ted originalLand status 0.01485 0.00921 0.0206 0.01608 0.01244 0.01196 0.01412 0.01365[0.01241℄ [0.01422℄ [0.01339℄ [0.01534℄ [0.00928℄ [0.01015℄ [0.00997℄ [0.01088℄Variety type 0.04907*** 0.05383*** 0.04961*** 0.05385*** 0.04119*** 0.04396*** 0.04133*** 0.04390***[0.01376℄ [0.01586℄ [0.01357℄ [0.01563℄ [0.01044℄ [0.01141℄ [0.01030℄ [0.01128℄BIMAS -0.03128** -0.03658** -0.02545* -0.03085* -0.02738*** -0.03247*** -0.02453** -0.02984**[0.01353℄ [0.01558℄ [0.01432℄ [0.01647℄ [0.01032℄ [0.01130℄ [0.01088℄ [0.01190℄Wet period -0.0214 -0.01345 -0.02154 -0.01315 0.00692 0.00714 0.00619 0.00627[0.02026℄ [0.02334℄ [0.01907℄ [0.02201℄ [0.01541℄ [0.01685℄ [0.01458℄ [0.01600℄Size -0.19627*** -0.20257*** -0.18978*** -0.19922*** -0.14774*** -0.14682*** -0.14945*** -0.15032***[0.04573℄ [0.05246℄ [0.04893℄ [0.05600℄ [0.03248℄ [0.03497℄ [0.03421℄ [0.03682℄Size2 0.07438*** 0.08065*** 0.06603*** 0.07244*** 0.04858*** 0.05063*** 0.04611*** 0.04854***[0.01449℄ [0.01650℄ [0.01506℄ [0.01710℄ [0.00931℄ [0.00986℄ [0.00947℄ [0.01005℄Fam. lab/Tot. lab. 0.14400*** 0.17678*** 0.14518*** 0.18010*** 0.08898*** 0.09789*** 0.08333*** 0.09287***[0.03278℄ [0.03769℄ [0.03505℄ [0.04028℄ [0.02466℄ [0.02694℄ [0.02630℄ [0.02868℄Seed per ha. -0.0003 -0.0003 -0.00037* -0.00038* -0.00033** -0.00035** -0.00036** -0.00038**[0.00020℄ [0.00023℄ [0.00019℄ [0.00022℄ [0.00015℄ [0.00017℄ [0.00015℄ [0.00016℄Urea per ha. -0.00024*** -0.00027*** -0.00031*** -0.00034*** -0.00027*** -0.00029*** -0.00031*** -0.00033***[0.00008℄ [0.00009℄ [0.00008℄ [0.00009℄ [0.00006℄ [0.00006℄ [0.00006℄ [0.00007℄Phosphate per ha. -0.00037*** -0.00045*** -0.00027** -0.00034** -0.00023** -0.00025** -0.00019* -0.00021*[0.00013℄ [0.00015℄ [0.00013℄ [0.00015℄ [0.00010℄ [0.00011℄ [0.00010℄ [0.00011℄Labor per ha. -0.00009*** -0.00009*** -0.00009*** -0.00009*** -0.00009*** -0.00009*** -0.00009*** -0.00009***[0.00002℄ [0.00002℄ [0.00002℄ [0.00002℄ [0.00001℄ [0.00001℄ [0.00001℄ [0.00001℄Phosphate pri
e -0.01215*** -0.01411*** -0.01216*** -0.01429*** -0.01151*** -0.01251*** -0.01151*** -0.01262***[0.00316℄ [0.00366℄ [0.00312℄ [0.00361℄ [0.00244℄ [0.00268℄ [0.00241℄ [0.00264℄Seed pri
e -0.00004 -0.00009 0.00005 0.00001 -0.00009 -0.00015 -0.00005 -0.00011[0.00020℄ [0.00023℄ [0.00020℄ [0.00023℄ [0.00015℄ [0.00017℄ [0.00015℄ [0.00017℄Urea pri
e 0.00740** 0.00844** 0.00800** 0.00933** 0.00565** 0.00607** 0.00616** 0.00672**[0.00329℄ [0.00380℄ [0.00324℄ [0.00375℄ [0.00254℄ [0.00278℄ [0.00250℄ [0.00275℄Pesti
ide 
ost 0.00520*** 0.00588*** 0.00462** 0.00524** 0.00510*** 0.00588*** 0.00511*** 0.00595***[0.00195℄ [0.00225℄ [0.00189℄ [0.00218℄ [0.00149℄ [0.00163℄ [0.00144℄ [0.00158℄v2dum 0.00671 -0.00911 0.00724 -0.00703 0.01767 0.02275 0.01808 0.02348[0.03278℄ [0.03765℄ [0.04147℄ [0.04743℄ [0.02450℄ [0.02671℄ [0.03059℄ [0.03299℄v3dum -0.01483 -0.03266 -0.02021 -0.03891 -0.02377 -0.03058 -0.02591 -0.03337[0.03751℄ [0.04322℄ [0.04399℄ [0.05047℄ [0.02835℄ [0.03093℄ [0.03284℄ [0.03555℄v4dum -0.0203 -0.04288 -0.03115 -0.05552 -0.00408 -0.00677 -0.00915 -0.01296[0.04141℄ [0.04773℄ [0.04786℄ [0.05496℄ [0.03134℄ [0.03426℄ [0.03580℄ [0.03885℄v5dum 0.03985 0.02376 0.02921 0.01116 0.02182 0.01874 0.01631 0.01209[0.03825℄ [0.04397℄ [0.04621℄ [0.05290℄ [0.02873℄ [0.03140℄ [0.03425℄ [0.03709℄v6dum 0.09297** 0.08592* 0.08536* 0.07728 0.08166*** 0.08298** 0.07666** 0.07729**[0.04097℄ [0.04713℄ [0.04709℄ [0.05398℄ [0.03088℄ [0.03373℄ [0.03512℄ [0.03809℄t 0.00114 0.00411 -0.00216 0.00027 0.02031*** 0.02349*** 0.01823** 0.02128***[0.01001℄ [0.01152℄ [0.00982℄ [0.01131℄ [0.00758℄ [0.00828℄ [0.00745℄ [0.00817℄t3 -0.01239 -0.01968 -0.00383 -0.00962 -0.18757*** -0.20436*** -0.17964*** -0.19600***[0.03612℄ [0.04160℄ [0.03493℄ [0.04029℄ [0.02722℄ [0.02977℄ [0.02643℄ [0.02900℄t4 -0.14961*** -0.16709*** -0.13720*** -0.15251*** -0.22122*** -0.23597*** -0.21271*** -0.22723***[0.03514℄ [0.04045℄ [0.03399℄ [0.03916℄ [0.02660℄ [0.02911℄ [0.02582℄ [0.02834℄Constant 1.22415*** 1.33253*** 1.17699*** 1.27925*** 1.17662*** 1.23888*** 1.14502*** 1.20686***[0.14783℄ [0.17047℄ [0.14764℄ [0.17023℄ [0.11183℄ [0.12237℄ [0.11178℄ [0.12248℄se 0.21706*** 0.25190*** 0.16970*** 0.18640***[0.00632℄ [0.00717℄ [0.00424℄ [0.00461℄

σu 0.08417*** 0.09557*** 0.06078*** 0.06418***[0.01039℄ [0.01200℄ [0.00770℄ [0.00853℄

σe 0.20036*** 0.23325*** 0.15829*** 0.17480***[0.00627℄ [0.00716℄ [0.00431℄ [0.00472℄Observations 960 960 960 960 960 960 960 960Llikelihood -175.25 -268.49 -159.26 -253.49 179.73 110.7 193.92 123.01Censored 277 249 277 249 108 93 108 93Standard errors in bra
kets, signi�
ant at 10%; ** signi�
ant at 5%; *** signi�
ant at 1%Table 2.8: Tobit regression results
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Time varying frontier Time varying frontier Pooled frontier Pooled frontierVariable 
orre
ted original 
orre
ted original 
orre
ted original 
orre
ted originalLand status 0.04597*** 0.04689** 0.03881** 0.03915** 0.02254* 0.02289 0.02066 0.02115[0.01702℄ [0.01953℄ [0.01683℄ [0.01936℄ [0.01315℄ [0.01446℄ [0.01276℄ [0.01404℄Variety type 0.04703*** 0.04946*** 0.04806*** 0.05100*** 0.03323*** 0.03482*** 0.04052*** 0.04246***[0.01470℄ [0.01689℄ [0.01453℄ [0.01673℄ [0.01142℄ [0.01253℄ [0.01108℄ [0.01217℄BIMAS -0.00766 -0.01349 -0.0145 -0.02067 -0.01526 -0.0207 -0.01895 -0.02427*[0.01736℄ [0.01997℄ [0.01713℄ [0.01976℄ [0.01359℄ [0.01492℄ [0.01317℄ [0.01448℄Wet period 0.0144 0.0255 -0.01837 -0.00848 -0.01803 -0.02103 0.00713 0.00757[0.01559℄ [0.01793℄ [0.01946℄ [0.02246℄ [0.01209℄ [0.01329℄ [0.01492℄ [0.01640℄Size -0.20886*** -0.23580*** -0.22449*** -0.25330*** -0.11080** -0.11658** -0.17450*** -0.18404***[0.06116℄ [0.07004℄ [0.06143℄ [0.07049℄ [0.04362℄ [0.04729℄ [0.04341℄ [0.04704℄Size2 0.05663*** 0.06495*** 0.05921*** 0.06792*** 0.03213*** 0.03477*** 0.04506*** 0.04845***[0.01755℄ [0.01996℄ [0.01748℄ [0.01992℄ [0.01104℄ [0.01183℄ [0.01103℄ [0.01179℄Fam. lab/Tot. lab. 0.17658*** 0.22079*** 0.15409*** 0.19654*** 0.08730** 0.09937*** 0.07259** 0.08430**[0.04452℄ [0.05119℄ [0.04408℄ [0.05078℄ [0.03442℄ [0.03779℄ [0.03345℄ [0.03676℄Seed per ha. -0.00048** -0.00050** -0.00049** -0.00052** -0.00043*** -0.00047*** -0.00040*** -0.00044***[0.00021℄ [0.00024℄ [0.00020℄ [0.00023℄ [0.00016℄ [0.00017℄ [0.00015℄ [0.00017℄Urea per ha. -0.00044*** -0.00050*** -0.00043*** -0.00049*** -0.00040*** -0.00043*** -0.00039*** -0.00042***[0.00009℄ [0.00010℄ [0.00009℄ [0.00010℄ [0.00007℄ [0.00008℄ [0.00007℄ [0.00007℄Phosphate per ha. -0.00005 -0.00009 -0.00013 -0.00018 0.00002 0.00002 -0.00012 -0.00014[0.00014℄ [0.00017℄ [0.00014℄ [0.00017℄ [0.00011℄ [0.00012℄ [0.00011℄ [0.00012℄Labor per ha. -0.00010*** -0.00011*** -0.00010*** -0.00010*** -0.00009*** -0.00009*** -0.00009*** -0.00009***[0.00002℄ [0.00002℄ [0.00002℄ [0.00002℄ [0.00002℄ [0.00002℄ [0.00001℄ [0.00002℄Phosphate pri
e -0.01074*** -0.01282*** -0.01156*** -0.01380*** -0.00651** -0.00740*** -0.01137*** -0.01264***[0.00331℄ [0.00382℄ [0.00338℄ [0.00391℄ [0.00259℄ [0.00285℄ [0.00260℄ [0.00286℄Seed pri
e 0.00027 0.00028 0.00019 0.00018 0.00055*** 0.00054*** 0.00002 -0.00002[0.00019℄ [0.00022℄ [0.00021℄ [0.00024℄ [0.00015℄ [0.00016℄ [0.00016℄ [0.00018℄Urea pri
e 0.01076*** 0.01271*** 0.00848** 0.01016** 0.01165*** 0.01282*** 0.00686** 0.00768***[0.00345℄ [0.00398℄ [0.00349℄ [0.00404℄ [0.00271℄ [0.00298℄ [0.00269℄ [0.00296℄Pesti
ide 
ost 0.00330* 0.00367 0.00382* 0.00422* 0.00499*** 0.00589*** 0.00500*** 0.00590***[0.00199℄ [0.00229℄ [0.00196℄ [0.00226℄ [0.00156℄ [0.00171℄ [0.00151℄ [0.00166℄v2dum 0.00136 -0.01532 0.00093 -0.01589 0.01519 0.01919 0.01511 0.01914[0.04203℄ [0.04791℄ [0.04183℄ [0.04772℄ [0.03169℄ [0.03414℄ [0.03165℄ [0.03409℄v3dum 0.0047 -0.01164 0.00358 -0.01306 -0.01603 -0.01968 -0.01737 -0.021[0.07319℄ [0.08362℄ [0.07285℄ [0.08327℄ [0.05558℄ [0.05996℄ [0.05553℄ [0.05989℄v4dum 0.03286 0.01413 0.03156 0.0127 0.03132 0.0355 0.02932 0.03374[0.08311℄ [0.09499℄ [0.08271℄ [0.09458℄ [0.06313℄ [0.06814℄ [0.06307℄ [0.06807℄v5dum 0.09582 0.08559 0.09468 0.08431 0.06364 0.06822 0.06183 0.0667[0.06754℄ [0.07710℄ [0.06721℄ [0.07676℄ [0.05113℄ [0.05518℄ [0.05107℄ [0.05511℄v6dum 0.12386 0.11088 0.12236 0.10908 0.11422* 0.11969* 0.11206* 0.11781*[0.08574℄ [0.09794℄ [0.08534℄ [0.09753℄ [0.06509℄ [0.07026℄ [0.06503℄ [0.07018℄t -0.01798*** -0.01811** -0.00653 -0.00487 -0.02852*** -0.02932*** 0.01545* 0.01803**[0.00687℄ [0.00790℄ [0.01045℄ [0.01205℄ [0.00534℄ [0.00587℄ [0.00797℄ [0.00876℄t3 0.0108 0.00686 -0.16787*** -0.18292***[0.03661℄ [0.04224℄ [0.02783℄ [0.03060℄t4 -0.11784*** -0.12990*** -0.19980*** -0.21278***[0.03558℄ [0.04098℄ [0.02713℄ [0.02983℄Constant 1.48242*** 1.62337*** 1.47043*** 1.61236*** 1.57939*** 1.67962*** 1.47045*** 1.56163***[0.44797℄ [0.51156℄ [0.44623℄ [0.50980℄ [0.33885℄ [0.36559℄ [0.33872℄ [0.36542℄

σu 0.07355*** 0.08316*** 0.07436*** 0.08397*** 0.05421*** 0.05679*** 0.05682*** 0.05969***[0.01029℄ [0.01186℄ [0.01007℄ [0.01163℄ [0.00802℄ [0.00894℄ [0.00761℄ [0.00845℄

σe 0.20252*** 0.23515*** 0.19922*** 0.23182*** 0.16358*** 0.18039*** 0.15787*** 0.17433***[0.00630℄ [0.00717℄ [0.00620℄ [0.00707℄ [0.00444℄ [0.00486℄ [0.00429℄ [0.00470℄Observations 960 960 960 960 960 960 960 960Number of farms 160 160 160 160 160 160 160 160Llikelihood -155.8 -247.8 -144.87 -238.27 173.55 104.43 201.01 130.46Censored 277 249 108 93 277 249 108 93Standard errors in bra
kets, signi�
ant at 10%; ** signi�
ant at 5%; *** signi�
ant at 1%Table 2.9: Tobit regression results: Mundlak's 
orre
tion
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Chapter 3Announ
ed regime swit
h: Optimal poli
y fortransition period

It is not rare for monetary authority to 
onsider a swit
h in the fo
us of their monetarypoli
y. One of the most interesting 
ases is a swit
h to a regime of managed, peggedex
hange rate or even �xed ex
hange rate. The motivation for swit
h may stem frominternational treaties or beliefs of 
entral bankers about the bene�ts of a new monetarypoli
y regime. New members of the European Union have agreed on joining the Europeanmonetary union (EMU) in the a

ession treaty. The ERM II a

ession pro
ess asks themto maintain stability of the ex
hange rate over the evaluation period. This periods usuallyends with the adoption of the 
ommon 
urren
y, e.g. Malta, Slovenia and Slovakia as themost re
ent 
ases.Countries like Bulgaria and Estonia voluntarily de
ided to set-up a 
urren
y boardeven before entering the evaluation period. The de
ision to manage or to peg the ex-
hange rate is based on their belief that a 
urren
y board is advantageous for small opene
onomies. Also, there exist 
ountries that �nd their own monetary poli
y di�
ult tosustain, e.g., Sweden and Finland in the early 1990's. Countries like these opt for man-aging their ex
hange rate in order to a
hieve ma
roe
onomi
 stability during 
urren
ydistress. Regardless, the motivation for the poli
y swit
h, the newly adopted poli
y rulein the aforementioned 
ases, is usually a sort of nominal ex
hange rate peg.Many re
ent works in monetary e
onomi
s that fo
us on the 
hoi
e of monetary poli
ystudy the properties of alternative monetary poli
y rules by analyzing ma
roe
onomi
stability [Collard and Dellas (2002)℄; using the loss fun
tion of the monetary authority73



[Santa
reu (2005)℄; or the welfare fun
tion of households [Gali and Mona
elli (2005)℄ toidentify the optimal poli
y. These studies 
onsider models with a given monetary poli
yrule and there is no 
hange of rule possible. Therefore, these analyses 
an be 
onsideredas stati
 in form of rule. The stati
 
omparison does not determine if it is worth to swit
hto another poli
y rule, while it omits the loss o

urring over the transition.The aforementioned points motivate me to fo
us on the analysis of small open e
onomybehavior over the transition period towards the ex
hange rate peg. An important issueis how announ
ing the adoption of the ex
hange rate peg a�e
ts the properties of thebusiness 
y
les of the small open e
onomy.I address these issues using the standard sto
hasti
 general equilibrium model of thesmall open e
onomy, e.g., Justiniano and Preston (2004), Gali and Mona
elli (2005) andCu
he-Curti, Dellas, and Natal (2008). To simplify my analysis, I de
ided to use themodel by Justiniano and Preston (2004), where all goods are tradable. However, thismodel uses a Calvo type rigidities as the more 
omplex models do. To provide a spe
i�
example, I identify the large e
onomy as the Euro area and the small open e
onomy asthe Cze
h Republi
. While the Cze
h Republi
 is a representative 
ountry that aims toadopt the 
ommon 
urren
y, it also 
opes with the limitations of its own independentmonetary poli
y.For a better des
ription of the Cze
h Republi
 monetary poli
y, I 
lose the modelby monetary poli
y of fore
asted in�ation targeting. Also, stru
tural parameters of themodel are estimated for the Cze
h Republi
.The novelty presented in this 
hapter is the approa
h to modeling the transition periodwhen the 
hange in the monetary regime type is announ
ed. As Farmer, Waggoner, andZha (2007) summarize, re
ent works rely on Markov swit
hing pro
esses to a

ount for
hanges of poli
y rule. Generally, the solution is 
omputed by as a average of separatemodels weighted by the probability matrix of the pro
ess. Instead of the Markov swit
hingpro
ess, I extend the standard model with a binary indi
ator of the regime that identi�esthe operative monetary poli
y. Moreover, in my simulations the 
hange in the regimeindi
ator is 
redibly announ
ed in advan
e. Therefore, a model with this indi
ator o�ersan alternative approa
h that more 
losely models the 
ommitment to the regime 
hangethan models based on Markov pro
ess.For my analysis of the ma
roe
onomi
 stability over the transition, I assume that themonetary authority follows an optimal poli
y with respe
t to the loss fun
tion for themonetary authority as in Laxton and Pesenti (2003) and Santa
reu (2005). As Cu
he-74



Curti, Dellas, and Natal (2008) and Dellas and Tavlas (2003) summarize, there is nostraightforward re
ommendation for the type of the optimal poli
y. The optimal poli
y
hoi
e depends on many fa
tors like the presen
e and origin of rigidities and stru
turalsho
ks. Therefore, I solve for the optimal poli
y that takes a simple form where monetaryauthority rea
ts to deviations output gap, in�ation and 
hange in nominal ex
hange rate.Moreover, as Cu
he-Curti, Dellas, and Natal (2008) point out, the simple form ofthe optimal poli
y avoids questioning information 
apabilities of the monetary authority.To identify the simple optimal monetary poli
y for the transition period for variouspreferen
es on in�ation, output and poli
y stability, the utility has one degree of freedomas in Santa
reu (2005).The goal of monetary poli
y for the transition is still to support ma
roe
onomi
 sta-bility. However, it is also important to know how these poli
ies 
hange the 
hara
teristi
sof the business 
y
les. To analyze these 
hanges, I 
ompute and analyze the 
orrelationsof business 
y
les as des
ribed by in�ation, output and interest rate.The rest of the 
hapter is organized as follows. Se
tion 3.1 presents the model of ruleswit
h. In se
tion 3.2, the parameters estimation is presented. Basi
 
hara
teristi
s andproperties of the model are presented in se
tion 3.3. Se
tion 3.4 presents the ma
roe
o-nomi
 stability results obtained and se
tion 3.6 
on
ludes. All �gures 
an be found inthe appendix se
tions.
3.1 ModelThe basi
s of the model are taken from Justiniano and Preston (2004). The used model
onsists of a small open e
onomy (domesti
) and the rest of the world (foreign). Thedomesti
 e
onomy is 
hara
terized by the existen
e of habit formation and indexation ofpri
es to in�ation. The fundamental model is based on the work of Gali and Mona
elli(2002) and Mona
elli (2005), where mi
ro-foundations for the small open e
onomy modelare summarized and in
omplete pass-through is dis
ussed. The following se
tions provide
ommented derivations of the stru
tural equations of Justiniano and Preston's (2004)model. Further, the modi�
ation of monetary poli
y and approa
h to modeling thetransition period is des
ribed in the separate subse
tion.75



3.1.1 HouseholdsThe 
onsidered small open e
onomy is populated by a representative household thatmaximizes its lifetime utility fun
tion
Et

∞∑

t=0

βtegt

[
(Ct −Ht)

1−σ

1 − σ
−
Nt

1+ϕ

1 + ϕ

]

, (3.1)where β, 0 < β < 1, is the utility dis
ount fa
tor; σ and ϕ are the inverse of elasti
itiesof the inter-temporal substitution and labor supply, respe
tively; Nt is total labor e�ort;
gt = ρggt−1 + εgt is a preferen
e sho
k, and εgt ∼ N(0, σ2

g); Ct is the 
onsumption of a
omposite good; Ht = hCt−1 is the external habit taken as exogenous by household aspresented by Fuhrer (2000). The parameter h indexes the importan
e of habit formation.The household 
onsumes a Dixit-Stiglitz 
omposite of the home and foreign good:
Ct = [(1 − α)

1

η (CH
t )

η−1

η + α
1

η (CF
t )

η−1

η ]
η

η−1 , (3.2)where α is the share of the imported good in domesti
 
onsumption and η > 0 is theintra-temporal elasti
ity of substitution between the domesti
 and foreign good.Given the spe
i�
ation of the household's preferen
es, the minimization of expendi-tures for the given level of 
onsumption Ct implies, as in Walsh (2003), the followingaggregate domesti
 
onsumer pri
e index (CPI):
Pt = [(1 − α)(PH

t )1−η + α(P F
t )1−η]

1

1−η , (3.3)where PH
t and P F

t are pri
es of the domesti
 and foreign Dixit-Stiglitz 
omposite goodused to produ
e the �nal 
omposite good Ct.In aggregate, the household maximizes lifetime utility a

ording to the following bud-get 
onstraint:
PtCt +Qt,t+1Dt+1 ≤ Dt +WtNt + Tt, (3.4)where Wt is the nominal wage; Dt+1 is the nominal pay-o� re
eived in the period t + 1a
quired from the portfolio held at the end of the period t, and Qt,t+1 is the value of thedis
ount fa
tor of this portfolio; Tt are transfers that in
lude taxes/subsidies and pro�ts
olle
ted from domesti
 �rms and importers.76



Given the Dixit-Stiglitz aggregation, households optimally (
ost minimization) allo-
ate their aggregate expenditures for the foreign and domesti
 good a

ording to thefollowing demand fun
tions:
CH
t = (1 − α)

(
PH
t

Pt

)−η

Ct

CF
t = α

(
P F
t

Pt

)−η

Ct. (3.5)The �rst order ne
essary 
onditions imply the domesti
 Euler equation in the followingform:
λtEt[Qt,t+1] = βEt[λt+1

Pt
Pt+1

], (3.6)where λt is the Lagrange multiplier asso
iated with a budget 
onstraint. This equationis used in the following se
tion to link the domesti
 and foreign e
onomy.3.1.2 International arrangementsThe real ex
hange rate is de�ned as the ratio of foreign pri
es in domesti
 
urren
y to thedomesti
 pri
es q̂t ≡ êt
P ∗

t

Pt
, where êt is the nominal ex
hange rate (in terms of the domesti

urren
y per unit of foreign 
urren
y); P ∗

t is the foreign 
onsumer pri
e index and Pt isthe domesti
 
onsumer pri
e index given by equation (3.3). An in
rease in êt 
oin
ideswith an depre
iation of the domesti
 
urren
y.1 Further, I assume that P ∗

t = P F∗

t (P F∗

tis the pri
e of the foreign good in a foreign 
urren
y), the law of one pri
e gap is given by
ΨF
t = êt

P ∗

t

PF
t

, as in Mona
elli (2005). The law of one pri
e gap represents a wedge betweenthe foreign pri
e of a foreign good P F∗

t and pri
e of the foreign good when sold on thedomesti
 market P F
t by importers [see Lubik (2005) for details℄. The law of one pri
e(LOP) holds when ΨF
t = 1; for ΨF

t > 1, importers realize losses due to in
reasing 
ostsof imported goods; when ΨF
t < 1, importers enjoy pro�ts.The foreign e
onomy is identi
al in preferen
es, therefore optimality 
onditions aresimilar to the domesti
 optimality 
onditions. The foreign e
onomy is 
onsidered to belarge and the domesti
 good takes only a negligible fra
tion of its 
onsumption. Therefore,the foreign 
omposite 
onsumption bundle 
an be simpli�ed and only foreign produ
edgood are 
onsidered in the overall foreign 
onsumption. Further, under the assumption1The supers
ript * denotes �foreign� equivalents of domesti
 variables throughout this 
hapter.77



of 
omplete international �nan
ial markets, arbitrage implies that the marginal utility of
onsumption in a foreign e
onomy is proportional to that in a domesti
 e
onomy. Usingthe domesti
 Euler equation (3.6), the following 
ondition is derived:
βEt[

λt+1

λt

Pt
Pt+1

] = Et[Qt,t+1] = βEt[
λ∗t+1

λ∗t

P ∗

t

P ∗

t+1

êt+1

êt
]. (3.7)De�ning the gross nominal return on the portfolio as R−1

t = Et[Qt,t+1], the risk shar-ing 
ondition (3.7) equation implies the following un
overed interest rate parity (UIP)
ondition:
Et[Qt,t+1(Rt − R∗

t (
êt
êt+1

))] = 0. (3.8)The un
overed interest rate parity pla
es a restri
tion on the relative movement ofthe domesti
 and foreign interest rate and on the nominal ex
hange rate. However,the interest rate parity 
an be distorted by a risk premium sho
k. Therefore, as inKollmann (2002), a sho
k that 
aptures deviations from pur
hasing power parity and notalready explained endogenously through imperfe
t pass-through, su
h as a time varyingrisk premium, is added into the log-linearized form of the model. Moreover, the riskpremium is 
onstant in the steady state and equation (3.8) 
ollapses to the standardun
overed interest rate parity equation for the nominal ex
hange rate in the steady state.Finally, the terms of trade are de�ned as the relative pri
e of imports in terms ofexports:
St =

P F
t

PH
t

. (3.9)Note that 
hanges in the terms of trade may re�e
t future 
hanges in the 
ompetitivenessof an e
onomy. The depre
iation of the ex
hange rate indu
es an in
rease in import pri
esand deterioration of terms of trade. However, the depre
iated ex
hange rate restores
ompetitiveness of the e
onomy sin
e demand for 
heaper exports grows and importdemand from domesti
 
onsumers de
reases.3.1.3 FirmsIn this e
onomy, the nominal rigidities driving the pri
e adjustment o

urs due to monop-olisti
 
ompetition in the good market. Suppose there is a 
ontinuum of domesti
 �rms78



indexed by i, 0 ≤ i ≤ 1. A typi
al �rm i in the home 
ountry produ
es a di�erentiatedgood with 
onstant returns to s
ale a

ording to the following produ
tion fun
tion:
Yt(i) = AtNt(i),where Nt(i) is labor supplied by a household to �rm i; At is a 
ommon stationary produ
-tivity pro
ess that follows log(At) = at = ρaat + εat , where εat ∼ N(0, σ2

a) is an exogenousprodu
tivity sho
k 
ommon to all �rms. The �rm's index 
an be dropped, while in thesymmetri
 equilibrium all 
hoi
es of the �rms are identi
al. A

ording to the produ
tionfun
tion, the representative �rm fa
es real marginal 
osts MCt = Wt

PtAt
, where Wt is thenominal wage.Here, the domesti
 in�ation rate is de�ned as πHt = log(PH

t /P
H
t−1). Firms produ
inga domesti
 good are monopolisti
ally 
ompetitive with a Calvo-style pri
e setting usingthe in�ation indexation. Further, only a fra
tion (1−θH) of �rms are allowed to set theirpri
e PH,new

t optimally in the 
onsidered period. The remaining fra
tion θH , 0 ≤ θH < 1sets its pri
e a

ording to the following indexation rule:
log(PH

t (i)) = log(PH
t−1(i)) + δπHt−1,where 0 ≤ δ < 1 is the degree of indexation. Therefore, the aggregate pri
e index isevolving a

ording to the following relation:

PH
t =



(1 − θH)(PH,new
t )(1−ε) + θH

(
PH
t−1

(
PH
t−1

PH
t−2

)δ)(1−ε)



1/(1−ε)

, (3.10)where ε > 1 is the elasti
ity of substitution between the varieties of goods produ
ed bydomesti
 �rms. Firm i, setting its pri
e in period t and following the indexation rule inall subsequent periods T, T ≥ t, fa
es the following demand 
urve in period T :
yHT (i) =

(
PH,new
t (i)

PH
T

(
PH
T−1

PH
t−1

)δ)−ε

(CH
T + CH∗

T ),where CH
t is domesti
 demand and CH∗

t is foreign demand for the 
omposite domesti
good. While �rm i is maximizing its present value by maximizing the value of the real79



pro�ts stream, the �rm's pri
e-setting problem in period t is to solve:
max
PH

t (i)
Et

∞∑

T=t

(θH)T−tQt,Ty
H
t (i)

[
PH,new
t (i)

(
PH
T−1

PH
t−1

)δ
− PH

t MCT

]

subje
t to the aforementioned demand 
urve. This implies the following �rst-order 
on-dition:
Et

∞∑

T=t

(θH)T−tQt,Ty
H
t (i)

[
PH,new
t (i)

(
PH
T−1

PH
t−1

)δ
−

ε

1 − ε
PH
t MCT

]
= 0,where MCT are real marginal 
osts in the period of pri
e de
ision.Similarly, as in the domesti
 good produ
tion, the nominal rigidities in the foreigngood se
tor are resulting from staggered pri
e setting and monopolisti
 
ompetition.Foreign good retailers import foreign goods so that the law of one pri
e holds �at thedo
ks� and resell them in a monopolisti
ally 
ompetitive market. To set their pri
es,importers also use Calvo pri
ing with indexation to past in�ation of imported good pri
es,whi
h is de�ned as πFt = log(P F

t /P
F
t−1).Again, only a fra
tion (1− θF ) of importers are allowed to set their new pri
e P F,new

toptimally in ea
h period. The fra
tion θF , 0 ≤ θF < 1 of importers just updates its pri
ea

ording to the following indexation rule:
log(P F

t (i)) = log(P F
t−1(i)) + δπFt−1,where the same degree of indexation δ as for domesti
 produ
ers is assumed. The foreigngood pri
e index is evolving a

ording the following relation:

P F
t =



(1 − θF )(P F,new
t )(1−ε) + θF

(

P F
t−1

(
P F
t−1

P F
t−2

)δ)(1−ε)



1/(1−ε)

.Similarly, importer i, who is setting its pri
e in period t, fa
es the following demand 
urvein period T, T ≥ t:
yFT (i) =

(
P F,new
t (i)

P F
T

(
P F
T−1

P F
t−1

)δ)−ε

CF
T , (3.11)as for the domesti
 good, in here ε > 1 is a parameter des
ribing the substitution between80



the varieties of foreign goods. Therefore, the importer's pri
e-setting problem in period
t is to maximize

Et

∞∑

T=t

(θF )T−tQt,Ty
F
t (i)

[

P F,new
t (i)

(
P F
T−1

P F
t−1

)δ
− êTP

F
t MCT

]

subje
t to the aforementioned demand equation (3.11). This implies the following �rst-order 
ondition:
Et

∞∑

T=t

(θF )T−tQt,T y
F
t (i)

[
P F,new
t (i)

(
P F
T−1

P F
t−1

)δ
−

ε

1 − ε
êTP

F
t MCT

]
= 0,and the new optimal pri
e P F,new

t (i) is the solution to this equation. The presen
e ofmonopolisti
 
ompetition results in deviations from the law of one pri
e in the short run,while a 
omplete pass-through is rea
hed in the long-run as presented in Mona
elli (2005).
3.1.4 EquilibriumEquilibrium requires that all markets 
lear. The good market 
learing 
ondition in thedomesti
 e
onomy is given by the following equation:

Y H
t = CH

t + CH∗

t . (3.12)Under the assumption of a large foreign e
onomy, market 
learing in the foreign e
on-omy gives Y ∗

t = C∗

t . Households, whi
h are assumed to have identi
al initial wealth,make identi
al 
onsumption and portfolio de
isions. So, the following analysis 
onsidersa symmetri
 equilibrium, domesti
 produ
ers, importers, and foreign �rms also behaveidenti
ally. Therefore, the individual index 
an be dropped and the representative house-hold, representative �rm, and the single good in ea
h se
tor 
an be used for the modelsolution. In period t the representative domesti
 produ
ers set 
ommon pri
es PH
T . Im-porters also set a 
ommon pri
e P F

t , so do the foreign produ
ers when setting P ∗

t . Finally,as in Gali and Mona
elli (2002) and Justiniano and Preston (2004), I assume that thegovernment o�-sets distortions originating from monopolisti
 
ompetition in the goodsmarkets by a subsidy/transfer that is �nan
ed through a lump-sum tax Tt on represen-tative household. 81



3.1.5 A log-linearized modelTo analyze the behavior of the underlying model, an approximation around the non-sto
hasti
 steady state of the presented model is obtained as in Justiniano and Preston(2004). For any variable, the lower
ase letters denote the log-deviation from the steadystate of their upper
ase 
ounterparts in the fri
tionless equilibrium. The non-sto
hasti
steady state is 
hara
terized by setting all sho
ks to zero for all periods.As in Justiniano and Preston (2004), I assume a zero in�ation steady state, so that
πt = Pt

Pt−1
=

PH
t

PH
t−1

=
PF

t

PF
t−1

= 1, and for the steady state of the nominal interest rate
1 + it = 1

β
.Linearizing the domesti
 good market 
learing 
ondition (3.12) together with a lin-earized version of the demand fun
tions (3.5) implies

(1 − α)ct = yt − αη(2 − α)st − αηψFt − αy∗t , (3.13)where ψFt = (et + p∗t ) − pFt is a log-linear approximation of the law of one pri
e, and
st = pFt − pHt is a log-linear approximation of the terms of trade given by equation (3.9).Time di�erentiating of the terms of trade de�nition implies

∆st = πFt − πHt . (3.14)Using the log-linearized equations of the law of one pri
e gap and terms of the trade, thefollowing link between the terms of trade and the real ex
hange rate 
an be derived:
qt = ψFt + (1 − α)st. (3.15)The log-linear approximation to the optimality 
onditions of domesti
 �rms for pri
esetting, the law of motion for the domesti
 produ
ers pri
e, and the domesti
 pri
e indexgiven by equation (3.10) imply the following hybrid Philips 
urve:

πHt − δπHt−1 =
1 − θH

θH
(1 − θHβ)mct + βEt[(π

H
t+1 − δπHt )], (3.16)where the marginal 
osts is

mct = ϕyt − (1 + ϕ)at + αst + σ(1 − h)−1(ct − hct−1). (3.17)82



The log-linear form of the real marginal 
osts mct of the representative �rm originatesfrom the log-linearization of the aggregate produ
tion fun
tion and the household's opti-mality 
ondition for labor 
hoi
e.Similarly, the optimality 
ondition for the pri
ing problem of retailers results in thefollowing Philips 
urve:
πFt − δπFt−1 =

1 − θF

θF
(1 − θFβ)ψFt + βEt[(π

F
t+1 − δπFt )]. (3.18)Following the arguments of Justiniano and Preston (2004) and the derivation by Gali andMona
elli (2002), the 
omplete markets assumption together with 
ondition (3.7) implythe following relation for the log-linear approximation of the Euler equation (3.6):

ct − hct−1 = y∗t − hy∗t−1 + σ−1(1 − h)[ψFt + (1 − α)st] + σ−1(1 − h)gt. (3.19)The log-linear approximation of the un
overed interest rate parity equation (3.8) gives
it − i∗t = Et∆et+1. As mentioned in the previous se
tion, to 
apture the deviations fromUIP, a risk premium sho
k ǫt is added into equation (3.8); ǫt = ρsǫt−1 + εst , here εst ∼

N(0, σ2
s). Using the de�nition of the real ex
hange rate,

∆et = ∆qt + πt − π∗

t , (3.20)the following equation is derived:
(it − Etπt+1) − (i∗t − Etπ

∗

t+1) = Et∆qt+1 + ǫt. (3.21)The risk premium sho
k ǫt is zero in the steady state, so the steady state equation (3.21)
ollapses to a standard un
overed interest rate parity equation. Also, note that thepositive (negative) values of ∆et re�e
t domesti
 
urren
y depre
iation (appre
iation).Finally, the approximations of the CPI equation (3.3) and the 
hange in terms oftrade (3.14) give the following relation:
πt = πHt + α∆st. (3.22)Sin
e the goods produ
ed in the home e
onomy represent only a small fra
tion of theforeign e
onomy 
onsumption, I 
onsider the large foreign e
onomy as exogenous to the83



domesti
 e
onomy. Therefore, I assume that the paths of foreign variables π∗

t , y
∗

t , and i∗tare determined by the following VAR pro
ess:
π∗

t = ωπππ
∗

t−1 + ωπy y
∗

t−1 + ωπi i
∗

t−1 + επt , (3.23)
y∗t = ωyππ

∗

t−1 + ωyyy
∗

t−1 + ωyi i
∗

t−1 + εyt , (3.24)
i∗t = ωiππ

∗

t−1 + ωiyy
∗

t−1 + ωiii
∗

t−1 + εit, (3.25)where επt , εyt , and εit; εyt ∼ N(0, σ2
y), ε

π
t ∼ N(0, σ2

π), and εit ∼ N(0, σ2
i ), represent theindependent stru
tural sho
ks that drive the foreign e
onomy.

3.1.6 Model of the transition periodThe des
ription of the model is 
losed by des
ribing the behavior of the domesti
 monetaryauthority. While the Cze
h 
entral bank rea
ts to the fore
asted in�ation, I deviate fromJustiniano and Preston (2004) in my analysis. As dis
ussed by Carlstrom and Fuerst(2000), I assume that the monetary authority a
ts a

ording to expe
ted in�ation ratherthan using the a
tual level of in�ation. To keep my analysis simple, I assume that themonetary authority is forward looking only for one period ahead.The fo
us of this 
hapter is to analyze ma
roe
onomi
 stability during the transition.The e
onomy begins in time t = 1, when it is announ
ed that the regime will 
hangein period T, T > 1. To simplify the analysis, I also assume that the monetary authorityfollows the same poli
y rule over all periods of the transition, t ≤ T.So, the monetary poli
y rule for the model of the transition period takes the followingform:
it = regimet(ρiit−1 + ρπEt[πt+1] + ρyyt + ρe∆et + εmt ) +

+ (1 − regimet)ρ̂e

∞∑

j=t

(
1

2

)t−j
∆Et[ej], (3.26)where 0 ≤ ρi < 1, ρπ > 1, ρy > 0 and ρe ≥ 0 are weights des
ribing the responses of thedomesti
 monetary authority; and εmt , εmt ∼ N(0, σ2
m) is the sho
k 
apturing errors arisingfrom the des
ription of the monetary poli
y. In here, the e�e
tive monetary regime issele
ted via the regime indi
ator. In my experiment when the 
hange is announ
ed in84



the �rst period, the indi
ator is de�ned as follows:
regimet =

{
1, if t < T ;
0, if t ≥ T ,where T is the announ
ed time of regime 
hange.By varying values of the rule parameters ρπ, ρy and ρe in rule (3.26), I am able tomodel a wide range of monetary poli
ies for the transition (t < T ), e.g. in�ation targetingor ex
hange rate targeting. Further, the only obje
tive of the post-transition monetaryregime t ≥ T , is to o�-set all the foreseen 
hanges in the nominal ex
hange rate. Thisregime is 
hara
terized by ρ̂e, whi
h measures the o�-setting of the 
hange in the nominalex
hange rate. To keep the level of ex
hange rate volatility reasonably low, I set ρ̂e = 2.0.The introdu
tion of the regime indi
ator transforms the problem of modeling an an-noun
ed 
hange to a problem of foreseen 
hanges in the indi
ator. To model the an-noun
ed 
hanges in the indi
ator, I extend the state spa
e of the model by an informationbu�er of length N, where N > T. This information bu�er is 
apable of storing informationfor N periods ahead and takes the following form:

regimet = inft,1

inft,1 = inft−1,2 + νt,1

inft,2 = inft−1,3 + νt,2...
inft,N−1 = inft−1,N + νt,N−1

inft,N = νt,N , (3.27)where inft,i, i ∈ 1, . . . , N are the new endogenous variables, and νt,i, i ∈ 1, . . . , N are theannoun
ement sho
ks, su
h that νt,i takes values 0 and 1 for all i = 1, . . . , N and t > 0.The initial 
ondition for the bu�er is inf0,i = 0 and ν0,i = 0, ∀i ∈ 1, . . . , N.In the experiment, I fo
us on the perfe
tly 
redible announ
ements. Therefore, I 
anthink about νt,is as random variables with zero mean and zero varian
e. However, byvarying the assumption about information sho
ks, it is possible to model the un
ertaintyabout keeping the 
ommitment of the poli
y rule swit
h announ
ed by the monetaryauthority. The higher the un
ertainty about keeping 
ommitments, the higher value ofinformation sho
k varian
e should be used.85



The announ
ement of the regime 
hange in t = 1 is modeled by the realization of theinformation sho
ks νt,i i ∈ 1, . . . , N a

ording to the following s
heme:
ν1,i =

{
1, i ≤ T ;
0, i > T , (3.28)and νt,i = 0, ∀i and in the all subsequent periods t, 1 < t ≤ T. This realization ofinformation sho
ks des
ribes a one-time announ
ement of a poli
y rule swit
h in period

T without any further 
hanges of transition length.The model of the transition period 
onsists of equations (3.13)�(3.25), the monetarypoli
y rule (3.26), the information bu�er given by equations (3.27), and de�nitions of theAR(1) pro
esses for te
hnology and preferen
e sho
ks.Further, I assume that there are no sho
ks (for t ≥ T ) to risk premium when theregime of o�-setting of the ex
hange rate 
hanges is adopted. So, the risk premium sho
k
ǫt des
ribed by equation (3.21) will be
ome ǫt = ρsǫt−1. To make this 
hange foreseen inthe model of transition, the AR(1) pro
ess for risk premium sho
k ǫt in equation (3.21)will be
ome εt = ρsεt−1 + regimetε

s
t , ε

s
t ∼ N(0, σ2

s) sin
e t > T.The 
onstru
tion of the poli
y indi
ator regimet 
reates non-linearities in the mon-etary poli
y rule and risk premium pro
ess. Therefore, to solve and simulate the tran-sition period model, the se
ond order approximation is used. The model is solved byDynare++.2 A brief des
ription of the 
omputation of the transition period model ispresented in Appendix (3.A).3.2 EstimationTo provide a spe
i�
 example, in my analysis I estimate the parameters of the model usingdata on the Cze
h Republi
. In re
ent literature, Bayesian methods are 
onsidered anattra
tive tool for estimating a model's parameters, espe
ially in open e
onomy modeling.The most re
ent examples in
lude Smets and Wouters (2003), who estimate the Eurozonemodel; Lubik and S
horfheide (2003) and Lubik and S
horfheide (2005), who analyze thebehavior of the monetary authority; and Ireland (2004).Due to the short span of the Cze
h data sample, I prefer Bayesian methods be
ause2Dynare++, developed by Kameník (2007), is a standalone C++ version of Dynare. Dynare isthe pre-pro
essor and 
olle
tion of Matlab routines introdu
ed by Juillard (1996), Collard and Juillard(2001b) and Collard and Juillard (2001a). 86



it allows me to in
orporate information from previous studies in the form of informativepriors on parameter values. This approa
h is preferred be
ause the use of priors makesthe estimation results more stable.Model M and its asso
iated parameters Θ 
an be estimated using the method out-lined by An and S
horfheide (2007). In the Bayesian 
ontext, given a prior p(Θ) and asample of data Y , the posterior density of the model parameters Θ is evaluated, and itis proportional to the likelihood of the data multiplied by the prior p(Θ):
p(Θ|Y,M) ∝ L(Θ|Y,M)p(Θ), . (3.29)The goal of the Bayesian estimation is to estimate the posterior distribution and to�nd su
h parameter estimates that given the model, the likelihood value L(Θ|Y,M) ismaximized.The Bayesian estimation pro
edure 
onsists of the following three steps. In the �rststep, the model is extended for a measurement blo
k that links model variables to data.The extended model is solved. In the se
ond step, the fa
t that the solution of themodel is in the form of a state spa
e model is exploited. This allows me to 
omputethe likelihood fun
tion of the underlying model by use of the Kalman �lter, the observeddata, and priors. The obje
tive is to maximize the value of likelihood as the fun
tion ofthe model parameters. The se
ond step results in the maximum-likelihood estimates ofthe model parameters. The obje
tive of these estimation steps is to get parameter valuesfor this model.In the third step, the likelihood fun
tion 
onditional on a parameters estimate is 
om-bined with the prior distribution of parameters to obtain the posterior density fun
tion.The Metropolis-Hastings (MH) algorithm, whi
h is an implementation of the Monte CarloMarkov 
hain (MCMC) method, is used to estimate the posterior distributions. The ob-je
tive of the posterior distributions 
omputation is to evaluate the sensitivity of theresults to my 
hoi
e of priors and optimization algorithm settings.3.2.1 Data and priorsThe used data sample 
overs a period of an CPI in�ation targeting regime from itsintrodu
tion in 1998 until the third quarter of 2007. Over this period 
hanges in thein�ation target o

urred. However, the nature of the regime was not 
hanged thus thisdoes not lead to stru
tural 
hanges. Therefore, I 
an abstra
t from the e�e
ts of a87



de
reasing in�ation target. The detailed des
ription of data and transformations usedare summarized in Appendix 3.B.1.The domesti
 blo
k of the underlying model is estimated using the de-trended data onoutput growth, in�ation, the nominal interest rate, terms of trade, and the real ex
hangerate. The foreign blo
k is des
ribed by the de-trended series of e�e
tive output, in�ation,and the nominal interest rate. The e�e
tive series are 
onstru
ted as a sum of the tradepartners series weighted by the export shares.Model variables are expressed in per
entage deviations from a steady state. The dataseries are related to model variables via a blo
k of measurement equations. The measure-ment blo
k 
onne
ts the model variables with the observed data using the measurementerror. The blo
k of measurement equations and measurement errors 
hara
teristi
s aresummarized in Appendix 3.B.2.The 
hoi
e of parameter priors is derived from previous studies [Lubik and S
horfheide(2003); Natalu

i and Ravenna (2003); Justiniano and Preston (2004); and Musil andVa²í£ek (2006)℄ and is guided by the following 
onsiderations. The 
hoi
e of prior distri-butions re�e
ts the restri
tions on the parameters su
h as non-negativity deviations orinterval 
onstraints. Therefore, for parameters 
onstrained to the 〈0, 1〉 interval, the betadistribution is used. Prior distributions for standard deviations of sho
ks have been set toinverse gamma. Similarly, for parameters taking positive values, the gamma distributionis used. The standard deviation of priors also re�e
ts my beliefs about 
on�den
e in thepriors, and I de
ided to use loose priors rather than tighter ones. Tables 3.3 and 3.4provide an overview of my 
hoi
e of priors. Further, I assume β = 0.99 (stri
t prior),whi
h implies an annual interest rate of about 4% in a steady state.The model for estimation is 
losed by the simple monetary poli
y rule given as follows:
it = ρiit−1 + ρπEt[πt+1] + ρyyt + ρe∆et + εmt , (3.30)and the risk premium pro
ess is given by equation (3.8) is used. The estimated modelalso does not in
lude the information bu�er.For 
onstru
tion of the joint probabilisti
 distribution, I assume that the priors areindependent of ea
h other to simplify the use of the MCMC algorithm. The Dynaretoolbox to estimate the presented model. Given the data and priors, I generated 300,000draws for ea
h of the 7 Markov 
hains using the MH algorithm. While a

eptan
e ratesbetween 20% and 40% are 
onsidered as reasonable for distribution sampling, I set the88



s
aling parameter for jumping distribution in MH so that the average a

eptan
e rate is0.35.3.2.2 Estimation resultsThe estimation results are summarized in Tables 3.3 and 3.4 in appendix 3.B.3. Theanalysis of the posterior distributions for ea
h estimated parameter does not indi
ate thepresen
e of 
omputational problems.The openness parameter α is estimated to be 0.35, implying 0.54 for a steady stateratio of domesti
 to foreign goods in the domesti
 
onsumption basket. The estimatedvalue is very 
lose to openness estimates by Natalu

i and Ravenna (2003) and Musiland Va²í£ek (2006). These works base their estimates on imports share in 
onsumptionrather than on imports share in gross domesti
 produ
t. The openness parameter isalso in a

ordan
e with the value 0.27 of foreign-domesti
 good substitution η be
ause itindi
ates low willingness of households to substitute domesti
 for foreign goods.The value 0.92 of inverse elasti
ity of inter-temporal substitution σ implies inter-temporal elasti
ity of 1.08. This value of elasti
ity indi
ates that households are 
on
ernedabout their 
onsumption path and they are willing to substitute today's 
onsumption forthe future one. The a

eptan
e of 
onsumption 
hanges is 
onsistent with a low valueof habit persisten
e. Also, the value of inverse elasti
ity of labor substitution, σ = 1.08,implies non-elasti
ity of the labor supply. The in
rease in real wage by 1% implies just0.92% in
rease in the labor supply. I believe that this value is 
onsistent with the lowlabor mobility that 
hara
terizes Cze
h labor market, espe
ially at the beginning of the
onsidered period.A

ording to the estimation results, interest rate smoothing ρi takes just a slightlyhigher value (0.58) than my prior (0.50). The rea
tion to in�ation and the output gapdeviation are taking values 1.38 and 0.47, respe
tively. These values of ρπ and ρy revealthat the monetary authority pla
es 2.9 more weight on keeping future in�ation stablethan 
losing the output gap. Moreover, the low value of rea
tion to the deviation ofthe nominal ex
hange rate ρe re�e
ts the in�ation targeting fo
us de
lared by the Cze
hNational Bank.My priors for the pri
e sti
kiness parameters θ′s are 
hosen based on Lubik andS
horfheide (2005), and they re�e
t the eviden
e on US pri
es. The prior value of pri
eindexation to in�ation is set to 0.70, while studies exists where the value of indexation89



is set to unity. My estimation results show that there is a low fra
tion of domesti
 �rms(estimate of θH takes value 0.26) that optimize their pri
es every quarter. This is 
on-sistent with estimates using the European data presented by Smets and Wouters (2003).Approximately the same fra
tion of importers optimize their pri
es every period so theaverage 
ontra
t length is approximately 4 quarters. The value of in�ation indexation
δ means that the pri
e of the good is updated by half of pri
e level 
hange. I �nd it
onsistent with my estimates of the low frequen
y of pri
e optimization. The estimatedvalue of 0.56 for in�ation indexation δ is almost three times as high as the estimatesreported by Justiniano and Preston (2004).I assume a high persisten
y of te
hnologi
al, risk premium and taste sho
ks, so thepriors are set to 0.85. However, estimates show that the most persistent sho
k is thepreferen
e sho
k with a value of 0.95 for ρg. This indi
ates that impa
ts of the preferen
esho
ks are not temporary but near permanent. I believe that the low persisten
y ofte
hnologi
al sho
k, taking value 0.83, with a large standard deviation of te
hnologi
alsho
k, re�e
ts the stru
tural 
hanges of Cze
h industry over the 
onsidered period.For the foreign blo
k, I assume the auto
orrelation of foreign sho
ks to be 0.7 [used byNatalu

i and Ravenna (2002)℄, while I �nd the values of Justiniano and Preston (2004)quite low. However, my estimation results show little persisten
y in the foreign in�ationseries. The foreign monetary poli
y des
ribed by equation (3.25) reveals persisten
y 
loseto the prior value, thus indi
ating signi�
ant interest rate smoothing in the Eurozone.Only, the foreign output series reveal persisten
y higher then a prior values, and the valueof 0.93 is in a

ordan
e with estimates for developed e
onomies, like the USA.Priors and estimates of the standard deviation of stru
tural sho
ks are summarizedin Table 3.4. These results show that the preferen
e sho
k εgt is most volatile. However,this does not mean that the preferen
e sho
k is the main driving for
e of the variables ofmy interest. Using varian
e de
omposition, I found that the preferen
e sho
k generatesonly 7.5% of in�ation volatility, 4.5% of output growth, and 7.3% of nominal interest ratevarian
e. Due to the high value of openness, I determined that the risk premium sho
kgenerates 26% of domesti
 CPI in�ation varian
e. However, for the estimated 
oe�
ients,varian
e de
omposition shows that the foreign sho
ks are not the main drivers of domesti
variables volatility. The sho
ks to foreign in�ation and interest rates are responsible forapproximately 11.3%, respe
tively 2.8% of domesti
 in�ation varian
e.To evaluate empiri
al properties of the generi
 model, Table 3.1 
ompares moments ofthe time series used for estimation with moments of the variables of the estimated model.90



Data ModelVariable Std. dev. Corr. Std. dev. Corr.Output growth 1.05 1.00 2.28 1.00Nominal interest rate 1.38 -0.53 0.53 -0.35CPI in�ation 3.14 -0.12 3.34 -0.06Change in nominal ex. rate 8.37 0.17 8.12 0.11Real ex. rate 3.48 0.17 6.87 0.01Foreign output gap 0.81 0.02 0.74 0.03Foreign in�ation 0.66 0.21 0.81 -0.02Foreign nom. int. rate 0.65 -0.03 0.73 -0.02Table 3.1: Moments summaryThis 
omparison shows that the model exhibits more volatile output and real ex
hangerate series and ex
ess interest rate smoothing. However, the estimated model mat
hesthe properties of the foreign series.Finally, to evaluate the amount of information in
luded in the observed series, Iuse a 
omparison of priors and posteriors distributions. This 
omparison helps to gaininsight about the extent to whi
h the data provide information about the estimatedparameters. A

ording to plots presented in Figure 3.1, I 
on
lude that some of thepriors are signi�
antly updated by information in
luded in the data.3.3 Impulse response analysisThe goal of the following 
omparison is to point to di�eren
es indu
ed by adding thepossibility of a poli
y rule swit
h in the estimated model [model with the monetarypoli
y rule (3.26)℄. Therefore, the models of the announ
ed 
hange of monetary poli
yare 
alibrated with the same parameters values as the ben
hmark model. Figures (3.2)�(3.8) present impulse response fun
tions of the following four models: estimated model(dash-doted red line); model of swit
h in 4 (solid magenta line); 8 (dashed blue line);and 40 (dotted bla
k line) periods. The results are presented as quarterly per
entagedeviations from the steady state.Figure 3.2 depi
ts responses to the 1% domesti
 te
hnology sho
k to εat . As it is ex-pe
ted for the 
ase of a supply sho
k, output in
reases and in�ation de
reases. Via theun
overed interest rate parity relation, the de
rease in the domesti
 in�ation is a

om-panied with a 
urren
y appre
iation (sin
e the in�ation and interest rate of a foreigne
onomy does not rea
t to domesti
 sho
ks). The monetary authority de
reases interest91



rates. Due to the 
urren
y appre
iation and the fa
t that importers do not update theirpri
es immediately for lower input 
ost, the law-of-one-pri
e (LOP) gap 
loses, eliminatingimporter pro�ts. The presen
e of habit formation supports hump-shaped 
onsumptionpro�le be
ause households gradually adjust their 
onsumption pro�le. However, an up-date of imported good pri
es, with slowing 
urren
y appre
iation and real depre
iation,restrain the rise in demand for the foreign good. As in�ation in the imported good se
torrises, the steady state is established.In the 
ase of the estimated model (dash-dotted red line), due to the absen
e of regime
hange, mu
h stronger appre
iation is observed. The pri
e rigidity in imported goodsse
tor and appre
iation leads to a long period de�ation of imported goods pri
es. Due tolow in�ation, authority responds with expansive monetary poli
y. The main di�eren
ein responses between the model of announ
ed rule swit
h and the model of independentmonetary poli
y is in the extent of response to te
hnology sho
ks.Figure 3.3 presents responses to the domesti
 taste sho
k εgt . This sho
k initiatesan in
rease in domesti
 in�ation and output as expe
ted in the 
ase of demand sho
k.Be
ause of the initial 
urren
y appre
iation, whi
h results from an expe
ted hike ininterest rates, importers de
rease the pri
es of their goods. The foreign goods be
ome
heaper and this supports in
rease in demand for foreign good. Due to output rigidities,the in
rease in output follows with lag. In response to in�ation and output in
reases,the domesti
 monetary authority in
reases the interest rate. Due to the pri
e indexationof import pri
es to CPI in�ation, the initial response of the LOP gap is negative andimporters enjoy pro�ts.For the ben
hmark model, the import pri
e de
rease has a larger extent than in the
ase of a rule swit
h and this makes households in
rease their demand for a foreign good.This results from the rea
tion of the monetary authority, whi
h 
an not rely on theexpe
tations formed a

ording to ex
hange rate stabilizing poli
y. Moreover, the extentof these deviations is very small.Figure 3.4 presents responses to the risk premium sho
k εst . In the 
ase of an announ
ed
hange in monetary regime, this leads to initial depre
iation and an immediate in
rease inthe interest rate to prevent further depre
iation and a rise in in�ation. For the models ofthe poli
y swit
h, the monetary authority strongly in
reases the interest rate in order too�set the 
hange in the nominal ex
hange rate immediately. However, due to the extentof the depre
iation and the in�ation indexation of import pri
es, a signi�
ant in
rease inthe pri
e of imported goods is observed. In here, the main di�eren
e between the models92



is the extent of the initial depre
iation.In the 
ase of a monetary poli
y sho
k εmt , as shown in Figure 3.5, the shape of theresponses does not di�er mu
h between models of transition be
ause of the low persis-ten
y of the sho
k, and the steady state is qui
kly established. A positive monetarypoli
y sho
k is equivalent to a 
ontra
tionary poli
y. Therefore, output de
reases in linewith 
onsumption as inter-temporal substitution motivates households to postpone 
on-sumption. The indu
ed appre
iation results in a drop of pri
e of imports. The estimated
hange model initially rea
ts with mu
h stronger appre
iation, leading to a signi�
antdrop in in�ation and output, therefore expansionary poli
y is 
ondu
ted in the followingperiods. However, the steady state is established within periods.Responses to a foreign in�ation sho
k επt are presented in Figure 3.6. In models oftransition, an in
rease in the foreign in�ation rate leads to an immediate appre
iationof the domesti
 
urren
y (implied by UIP). An in
rease in pri
e of imports supportsdomesti
 in�ation rise. The monetary authority has to rea
t with 
ontra
tionary poli
y,whi
h suppresses output. But this deviation is very small. In the estimated model initialappre
iation is very strong, so the real ex
hange rate together with 
ontra
tionary poli
ydoes not allow for the initial in
rease in output fueled by in
reased foreign demand.Figure 3.7 depi
ts responses to the foreign positive output sho
k εyt . An in
rease inforeign e
onomi
 a
tivity leads to an in
rease in demand for the domesti
 goods anddomesti
 in�ation, so domesti
 output rises in response to this sho
k. High foreigndemand leads to in
rease of foreign good pri
es, leading to imported goods pri
e in
reasewhi
h together with domesti
 in�ation delivers domesti
 
urren
y depre
iation via UIP.Depre
iation eliminates importer pro�ts and is followed by a large in
rease in domesti
interest rates.For the foreign output sho
k, the main di�eren
es in responses o

ur in the initialperiod, where more extensive depre
iation is observed for the estimated model in theperiod following the sho
k realization. Therefore, the monetary authority responds with
ontra
tionary poli
y.Finally, Figure 3.8 depi
ts responses to the positive sho
k to foreign interest rate εit.The UIP implies an initial depre
iation of domesti
 
urren
y be
ause of the negativeinterest rate di�erential. Domesti
 
urren
y depre
iation is able to support an initialin
rease in foreign demand that fuels domesti
 output and in�ation in
rease. The do-mesti
 monetary authority rea
ts with 
ontra
tionary monetary poli
y in the followingperiods. However, even through interest rate in
reases, the analysis of the LOP gap93



shows that importers are fa
ings losses. This means that importers are bearing the 
ostsof depre
iation due to the high rigidity of import pri
es.3.4 Ma
roe
onomi
 stabilityAs dis
ussed in the previous se
tion, impulse response fun
tions mostly di�er in the extentof the deviations in rea
tions to sho
ks. Therefore, I fo
us on volatility of in�ation, outputgap, and the ex
hange rate 
hange.Fo
us on ma
roe
onomi
 stability was used as the standard approa
h in the earlyliterature on monetary poli
y evaluations. It simpli�es the analysis be
ause of the inde-penden
e from the welfare fun
tion spe
i�
ation. I believe it 
an still o�er interesting
omparisons, as re
ently presented by Cu
he-Curti, Dellas, and Natal (2008) and Collardand Dellas (2002).However, due to the volatility trade-o�s between variables, a simple 
omparison ofvolatilities does not straightforwardly identify the regime that delivers the highest levelof ma
roe
onomi
 stability. As Cu
he-Curti, Dellas, and Natal (2008) summarize, anex
hange rate peg 
an outperform a �exible ex
hange rate regime under assumptions of astable external environment and that the main sour
e of nominal rigidity is in the goodsmarket. They also �nd that poli
ies ignoring movements in the ex
hange rate 
an bedominated by a simple ex
hange rate targeting poli
y. Also, Dellas and Tavlas (2003)show that pegging of the ex
hange rate may be bene�
ial in the presen
e of nominalrigidities.Therefore, for the purpose of monetary regime 
omparison, I use the traditional formof the per-period loss fun
tion [e.g., as in Laxton and Pesenti (2003) and Santa
reu(2005)℄:
Lt = τV ar(πt) + (1 − τ)V ar(yt) +

τ

4
V ar(∆it), (3.31)where τ ∈< 0, 1 > is used to des
ribe the preferen
es of monetary authority aboutin�ation output and monetary poli
y stability. To 
ompute the loss over the transition,

β is used as the dis
ount fa
tor and the overall loss is 
omputed as a dis
ounted sum ofper period losses.Using the loss fun
tion, I 
ompute optimal poli
ies that minimize the value of the lossby 
hoi
e of the weights ρi, ρπ, ρy and ρe for the monetary poli
y rule given by equation94



(3.26).In this experiment, the varian
es from the estimated model are used as the initial
onditions for re
ursive 
omputation, as des
ribed in Appendix 3.A. Further, I 
omputethe optimal poli
y for various lengths of transition. I also repeat the minimization prob-lem for the various spe
i�
ations of preferen
es of the monetary authority by varying τ.The resulting loss is shown in Figure 3.9.It 
an be observed that a longer transition period leads to lower values of loss. Also, asthe monetary authority be
omes more 
on
erned about the output volatility (low valuesof τ), the authority is generally a
hieving lower loss.Figure 3.10 shows the parameters of the optimal poli
y rule for the transition periodas the fun
tion of transition length and preferen
es spe
i�
ation. The plot for the interestrate smoothing parameter ρi shows that for all transition periods, the poli
y rigidity issteeply in
reasing as the in�ation stability is gaining higher weight. The plot for the 
hoi
eof the in�ation targeting parameter ρπ does not show mu
h varian
e over the 
onsideredtransition lengths. Intuitively, as the weight on in�ation in loss fun
tion spe
i�
ation isgetting higher (τ in
reases), ρπ is also in
reasing.Further, for ρy the value of output gap targeting is varying among transition lengthsand preferen
es spe
i�
ations. Also, intuitively when output stability is extremely pre-ferred the ρy rea
hes the upper 
onstraint. It seems that there is a trade-o� betweenthe output gap and a 
hange in nominal ex
hange rate targeting while as preferen
esare shifted towards in�ation, stability ρe de
reases. This 
an be explained by the foreignsho
k absorbing nature of the ex
hange rate. Lower values of ex
hange rate targetingprovide a more �exible ex
hange rate, whi
h is able to absorb the foreign in�ation move-ments. At the same time, the 
hanges in ex
hange rate 
an a�e
t domesti
 output viathe foreign demand. Therefore to avoid in
rease in the domesti
 output volatility, ρy isin
reasing.3.4.1 Varian
e de
ompositionAs in Collard and Dellas (2002) and in order to better understand the for
es that drive
hange in the business 
y
le behavior, 
hange in the origins of the varian
e is analyzed.I analyze the 
hanges in varian
e de
omposition between the estimated model and themodel of post-transition (t ≥ T ). I report the 
hanges in varian
e 
ontribution sho
k tothe volatility of variables in Table 3.2. These 
hanges are 
omputed as a di�eren
e of95



sho
k 
ontribution to the total varian
e of the 
onsidered variable (in per
ents) in theestimated model and in the model of post-transition regime. In here, a positive valuesignals an in
rease in the 
ontribution to volatility in the model of the post-transitionregime. Sho
ksVariable εa εm εg εs επ εy εi

∆et -1.4 -16.4 -64.3 -9.8 16.4 41.1 40.4
it -19.5 -1.5 -7.3 -59.5 11.9 52.4 23.5
mct -1.2 -18.0 45.6 -10.7 0.2 -14.7 -1.3
πt -6.0 -43.9 84.1 -26.4 1.0 -6.1 -2.7
piFt -2.3 -16.9 -69.1 -10.2 51.0 39.8 7.7
piHt -3.4 -18.6 41.2 -11.2 0.4 -7.3 -1.1
ψFt -0.2 -18.2 -69.2 -10.8 80.7 4.7 12.9
yt -0.1 -1.7 2.7 -1.0 0.1 0.2 -0.1Table 3.2: Varian
e de
omposition: ChangesThe negative 
hange in the 
ontribution of the monetary poli
y sho
k and risk pre-mium originates from the design of my experiment when these sho
ks are eliminated inthe post-transition model. The 64.3% de
rease in the 
ontribution of the taste sho
k εato the volatility of 
hange in the ex
hange rate shows that the ex
hange rate operatesas a sho
k absorber in the estimated model. The taste sho
k εg be
ome the dominantsour
e of the domesti
 and CPI in�ation volatility in the model of the post-transitionregime, as the in
reases by 41.2% and 84.1% show. So o�setting of the nominal ex
hangerate 
hanges makes the stability of in�ation signi�
antly more vulnerable to the domesti
preferen
e sho
k that a
ts as a demand sho
k in the estimated model.As the ex
hange rate be
ome less volatile in the model of the post-transition regime,foreign sho
ks be
ome the major sour
es of ma
roe
onomi
 volatility. The sour
e ofvolatility in LOP gap (ψFt ) shifts from domesti
 preferen
e and monetary sho
k towardsforeign in�ation sho
k (80.7%) and foreign interest rate (12.9%). This indi
ates thatpro�ts of importers be
ome very sensible to sho
ks originating in the foreign e
onomyin the post-transition period. This also applies for imported in�ation be
ause importers'pro�ts are 
losely 
onne
ted with 
hanges in foreign pri
e level. The reason for this
hange is that the stable ex
hange rate is not able to work as a sho
k absorber for foreignsho
ks. Therefore, all foreign sho
ks are dire
tly transferred to the domesti
 e
onomy.A signi�
ant shift in sour
es of volatility o

urs for domesti
 interest rates as themonetary poli
y fo
uses on the ex
hange rate. For the interest rate, all domesti
 sour
es96



of volatility are eliminated and volatility is almost fully driven by foreign sho
ks; 87.8%shift toward foreign sho
ks. This originates from the in
rease in ex
hange rate stabilitywhile the domesti
 e
onomy be
omes more vulnerable to foreign demand sho
ks. Also,the quite high persisten
y of foreign output and interest rate sho
ks is the reason thatthese sho
ks generate a large fra
tion (75%) of the domesti
 interest rate volatility.There are no important shifts in sour
es of output gap volatility over the regimes.Output volatility remains mainly driven by preferen
e, te
hnology and foreign outputsho
ks that a
t as the demand sho
k. As the 
ontribution of the supply sho
k εa tointerest rate is de
reased, I 
an 
on
lude that the demand sho
ks will be the dominantsour
e of volatility.3.4.2 Business 
y
les 
orrelationsIn the previous se
tions, my examples show how ma
roe
onomi
 volatility is 
hangingover the transition period. Also, the 
omparison of an estimated and a post-transitionregime provides a 
loser look at the 
hanges in the sour
es of in�ation. As the adoption ofa pegged or �xed ex
hange rate strengthens the links between e
onomies, the transmissionof disturban
es is also in
reased. A

ording to theories of 
urren
y areas, business 
y
lesyn
hronization is a ne
essary 
ondition for su

essful implementation and sustainabilityof pegged or �xed ex
hange rate regimes.This se
tion is devoted to the analysis of 
hanges in the syn
hronization of business
y
les between a small and large e
onomy. Therefore, Figures 3.11�3.13 show the evolu-tion of the 
orrelations with foreign variables over the various transition period lengths; 2,4, 8 and 12 quarters. To 
ompute the 
orrelations, the optimal poli
ies for these lengthsare used. For these 
omputations τ = 0.75 is 
hosen to re�e
t the preferen
e for in�ationstability as observed in the estimated rule, where the in�ation targeting weight ρπ is 2.9times higher than output gap weight ρy.As shown in Figure 3.11, the 
orrelation of foreign in�ation and ex
hange rate move-ments is suddenly 
hanged to a value 
lose to zero after the regime swit
h be
ause underthe post-transition rule 
hanges in the ex
hange rate are signi�
antly eliminated. Thisindi
ates that the ex
hange rate loses its sho
k-absorbing nature. As expe
ted, domesti
in�ation is be
oming more 
orrelated with foreign in�ation over the transition periodvia the imported goods 
hannel. Interestingly, at the end of the transition period this
orrelation drops temporarily. A similar pattern is observed for the 
orrelation of foreign97



in�ation and domesti
 nominal interest rate. This indi
ates that the monetary author-ity trades-o�s ex
hange rate in�ation targeting for ex
hange rate stability at the end oftransition. After transition is over, the in
rease of this 
orrelation 
ontinues as domesti
monetary authority has to follow 
hanges in imported goods pri
es while these are notabsorbed by the ex
hange rate movements.As shown in Figure 3.12, a steep in
rease in the 
orrelation of foreign and domesti
interest rate is observed. As the fo
us of a post-transition regime is a stable ex
hangerate, domesti
 monetary poli
y has to eliminate the pressures for ex
hange rate 
hangeoriginating from 
hange in foreign interest rate that is transferred via UIP. The steep in-
rease in the foreign interest rate and 
hanges in nominal ex
hange rate is also observed.Over the transition the domesti
 monetary authority does allow for 
hanges in the ex-
hange rate that helps as a sho
k absorber for foreign sho
ks. Therefore, the 
orrelationof foreign interest rate and domesti
 CPI in�ation is 
lose to zero or negative. However,the fo
us on stability of the ex
hange rate eliminates this sho
k absorbing feature so thesteep in
rease in this 
orrelation is a
hieved after the regime 
hange. Figure 3.12 showsthat the domesti
 monetary authority strongly rea
ts to 
hanges in foreign interest rate.Also, domesti
 output is getting more positively 
orrelated with foreign interest rate,while the UIP implies more depre
iation pressures as a rea
tion to the foreign interestrate in
rease. However, these 
hanges in 
orrelation are relatively small.Further, Figure 3.13 shows a 
orrelation with foreign output. Also, in here an in
reasein domesti
-foreign output syn
hronization is observed. These 
orrelation 
hanges aresmall while the in
rease in CPI in�ation-foreign output 
orrelation signals that the pri
eis in
reased in response to higher foreign demand for domesti
 goods. Therefore, thepositive value of foreign output-domesti
 interest rate 
orrelation over the transition isa result of in�ationary pressures that originate from 
hanges in foreign demand. Thesepressures require a response by the domesti
 monetary authority to suppress in�ation.Also the negative value of the ex
hange rate-foreign output 
orrelation shows that theex
hange rate is helping to absorb the output sho
k. Figure 3.13 also shows a dropin 
orrelation of domesti
 nominal interest and ex
hange rates with foreign output atthe end of transition. This shows that in the last periods of transition, the domesti
monetary poli
y is less 
ontra
tive while the 
hanges in foreign demand are absorbed bythe ex
hange rate. 98



3.5 Poli
y impli
ationsA very important 
on
ern of the monetary authority of a small open e
onomy is itsin�uen
e on in�ation and output. Figure 3.14 shows the evolution of the 
orrelation ofin�ation, output and ex
hange rate 
hanges with domesti
 nominal interest rates overthe transition. In these plots, the optimal poli
ies for various lengths of the transitionare 
onsidered as in the previous se
tion.The in�ation-interest rate 
orrelation drops mainly in the initial and late phase ofthe transition. The initial drop is originating from the announ
ement of the poli
y rule
hange. At this point, households realize that in future the in�ation stability will be notthe main 
on
ern of the monetary authority. The plot for in�ation-interest rate 
orrelationshows that the monetary authority loses its 
ontrol over domesti
 CPI in�ation rapidlyin the transition. The se
ond drop in its in�uen
e over in�ation o

urs in the last periodsof the transition when monetary poli
y is at the most 
ontra
tive level for output.Consistently with the experiment design, interest rate gets more 
orrelated with the
hanges in the ex
hange rate over the transition. This 
orrelation rea
hes almost unityin the post-transition regime, as the in
rease in the domesti
 interest rate is used toeliminate the depre
iation of the ex
hange rate.Interestingly, the 
orrelation of output and interest rate is initially negative, as thein
rease in interest rate leads to a 
ontra
tion of output. As the output-interest rateplot in Figure 3.14 shows, monetary poli
y is gaining more 
ontra
tionary power towardsthe end of the transition. However, after the regime is 
hanged, the in
reasing interestrate losses its 
ontra
tionary nature. This loss originates from the nature of the newregime, under whi
h the in
rease in interest rate is 
losely related to depre
iation underthe post-transition regime, as the interest-ex
hange rate plot shows.3.6 Con
lusionsIn this 
hapter, I analyze the e�e
ts of an announ
ed transition towards the regime ofpegged ex
hange rate for the small open e
onomy. Therefore, the model of the 
redibleand foreseen regime swit
h is needed to 
reate. I do this by extending the standard modelof the small open e
onomy with the binary regime indi
ator and information bu�er thatmakes the 
hanges of indi
ator foreseen.In the presented model of transition towards the pegged ex
hange rate, the announ
e-99



ment of the 
hange is modeled as the realization of information sho
ks that are enteringthe information bu�er.To parameterize the model, its parameters are estimated via Bayesian method usingdata on the Cze
h Republi
. The properties of the estimated model are examined viathe impulse response fun
tions. The impulse responses are 
omputed for the estimatedmodel with respe
t to the various lengths of the transition toward the pegged ex
hangerate regime.Further, setting up the ad-ho
 loss fun
tion allows me to 
ompute simple optimalpoli
ies for the transition period with the respe
t to preferen
es for in�ation-output sta-bilization and length of transition. Generally, the optimal poli
ies are able to deliver alower loss for long transition periods and under the strong fo
us on output stability. Themonetary poli
ies delivering the lowest loss are 
hara
terized by very low interest ratesmoothing and low weight on in�ation targeting.The business 
y
le syn
hronization analysis shows that there are signi�
ant 
hangesin the 
orrelations of in�ation, interest rate and ex
hange rate 
hanges. The 
orrelationof domesti
 variables and the interest rate shows that in the last period of transition,the 
ontra
tionary e�e
t of the interest rate is rea
hing its maximum. While after theadoption of the rule of the pegged ex
hange rate, in
reases in the interest rate be
omesa sign of expansion as the result of rea
tion to expe
ted depre
iation.
3.A Transition period modelThe solution of the transition period model given by equations (3.13)�(3.25), and equa-tions (3.27) takes the following general form:

xt = F (xt−1, εt, νt), 0 < t ≤ Twhere xt is the ve
tor of the model variables, εt = {επt , ε
y
t , ε

i
t, ε

a
t , ε

m
t , ε

g
t , ε

s
t} is the ve
torof foreign and domesti
 stru
tural sho
ks, νt = {νt,1, . . . , νt,N} is the ve
tor of informa-tion sho
ks, and F (.) is the se
ond-order polynomial. However, due to the independen
eof information and stru
tural sho
ks after the evaluation of information sho
ks (an an-noun
ement of the transition), the system will be be
ome linear. The evaluation takes theform given by s
heme (3.28) and νt,i = 0, ∀i and for all subsequent periods t, 1 < t ≤ T.Therefore, the transition period model with a given length of the transition period takesthe following form:

xt = Atxt−1 +Bεt, 0 ≤ t ≤ T (3.32)100



where matri
es At, t = 0, . . . , N and matrix B depend on the stru
tural parameters of themodel and the transition period length. Matrix B is time invariant while the stru
turalsho
ks are independent. However for t1, t2 > T, I have At1 = At2 be
ause νt for t > 1 isa ve
tor of zeros and after period T the information bu�er is �lled only with zeros.The state-spa
e solution 
onditional on evaluation of the information sho
ks is used tosimulate the model and 
ompute the 
ovarian
e matri
es Σt. To 
ompute the 
ovarian
ematrix Σt re
ursively the following formula is used:
Σt = AtΣt−1A

T
t +BV ar(εt)B

T , 0 < t ≤ T (3.33)where Σ0 is the 
ovarian
e matrix from the model estimated on data, V ar(εt) is timeinvariant 
ovarian
e matrix of stru
tural sho
ks. Further, to 
ompute the evolution ofvarian
e after the 
hange of regime, the following re
ursive formula for t > T is used:
Σt+1 = AfΣtA

fT +BfV ar(εt)B
f T , t > T (3.34)where matri
es Af and Bf are taken from the solution of the model with the monetarypoli
y rule given by equation (3.26) for regimet = 0.3.B Estimation3.B.1 Data des
riptionAll data in the estimation are from the Cze
h National Bank database. Series are sea-sonally adjusted with TRAMO/Seats and X12. All observed series are measured atquarterly frequen
y and �ltered. Series are in logs; therefore they 
an be interpreted asthe per
entage deviations from steady state levels.

• Domesti
 output growth (∆GDPt) is the HP de-trended annualized logarithm ofreal GDP growth.
• Domesti
 CPI in�ation deviation (PIt) is the HP de-trended annualized quarterlygrowth rate of the logarithm of the 
onsumer pri
e index (CPI).
• Foreign good in�ation (PIFt) is the HP de-trended annualized quarterly logarithmof the growth rate of imported good pri
e (in domesti
 
urren
y) index.
• Nominal interest rate (RSt) is the HP de-trended annualized quarterly value of the3-month PRIBOR.
• Real ex
hange rate (Qt) is the HP de-trended quarterly value of the real ex
hangerate.
• Foreign output gap (GDP ∗

t ) is the real GDI gap for an e�e
tive Eurozone 
reatedby the use of the export values weights and de-trended by the Kalman �lter.
• Foreign real interest rate (RS∗

t ) is the HP de-trended annualized quarterly valueof the 3-month EURIBOR. 101



• Foreign in�ation (PI∗t ) is the HP de-trended annualized quarterly growth rate inthe log of 
onsumer pri
e index for the e�e
tive Eurozone (export weights).All series used for estimation 
over the period from the �rst quarter of 1998 to the se
ondquarter of 2007.3.B.2 Measurement blo
kFor my estimation the following measurement blo
k is used to relate model variables toobserved time series data:
∆GDPt = 4 ∗ (yt − yt−1 + εat ) + εGDPt

PIt = 4 ∗ πt + εPIt
PIFt = 4 ∗ πFt + εPIFt

RSt = 4 ∗ it + εRSt
Qt = qt + εQt
PI∗t = 4 ∗ pi∗t + εPI

∗

t

RS∗

t = 4 ∗ i∗t + εRS
∗

t

GDP ∗

t = y∗t + εGDP
∗

t ,where I assume that εGDPt , εPIt , εPIFt , εRSt , εQt , ε
PI∗

t , εRS
∗

t , εGDP
∗

t are independent normallydistributed with zero mean. For estimation I assume that the standard deviations of themeasurement errors take following values 0.25, 0.5, 0.3, 2.0, 1.0, 0.1, 0.1, 0.1 (in the givenorder).3.B.3 Priors and posteriorsThe following tables summarize the distribution type and parameters 
hoi
e (mean, andstandard deviation) of prior distributions used to estimate the parameters of posteriordistributions (mode and standard deviation).
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Prior PosteriorVariable Des
ription Distr. Mean s.d. Mode s.d.
β Dis
ount fa
tor 0.99
α Degree of openness Beta 0.40 0.05 0.35 0.04
η Elasti
ity of F-H substitution Gamma 1.50 0.50 0.27 0.07
δ Degree of in�ation indexation Beta 0.70 0.10 0.56 0.13
σ Inverse elasti
ity of substitution Gamma 0.90 0.50 0.92 0.29
ϕ Inverse elasti
ity of labor supply Gamma 1.50 0.50 1.08 0.48
θF Calvo pri
ing - foreign Beta 0.50 0.10 0.22 0.04
θH Calvo pri
ing - domesti
 Beta 0.50 0.10 0.26 0.04
h Degree of habit formation Beta 0.80 0.10 0.65 0.11
ρi Interest rate smoothing Beta 0.50 0.05 0.58 0.04
ρπ Response to in�ation Gamma 1.50 0.20 1.38 0.23
ρy Response to output gap Gamma 0.50 0.10 0.47 0.09
ρe Response to ex. rate 
hange Gamma 0.10 0.05 0.04 0.02
ω11 Foreign VAR Normal 0.70 0.30 0.18 0.18
ω12 Foreign VAR Normal 0.00 0.20 0.10 0.04
ω13 Foreign VAR Normal 0.00 0.20 -0.14 0.16
ω21 Foreign VAR Normal 0.50 0.30 -0.07 0.22
ω22 Foreign VAR Normal 0.70 0.20 0.93 0.06
ω23 Foreign VAR Normal -0.10 0.20 -0.09 0.18
ω31 Foreign VAR Normal 1.50 0.20 0.27 0.09
ω32 Foreign VAR Normal 0.50 0.20 0.05 0.02
ω33 Foreign VAR Normal 0.70 0.30 0.58 0.13
ρa Te
hnology - VAR(1) Beta 0.85 0.10 0.83 0.11
ρs Ex. rate risk - VAR(1) Beta 0.85 0.10 0.59 0.20
ρg Taste sho
k - VAR(1) Beta 0.85 0.10 0.95 0.02Table 3.3: Results from posterior parameters (parameters)

Prior PosteriorVariable Des
ription Distribution Mean s.d. Mode s.d.
επ Foreign in�ation Gamma−1 0.60 0.50 0.18 0.02
εy Foreign demand sho
k Gamma−1 0.30 0.50 0.30 0.03
εi Foreign monetary sho
k Gamma−1 0.30 0.50 0.08 0.01
εa Domesti
 te
hnology sho
k Gamma−1 0.80 0.50 0.25 0.03
εm Domesti
 monetary sho
k Gamma−1 0.30 0.10 0.44 0.07
εg Domesti
 preferen
e sho
k Gamma−1 1.50 0.50 3.07 0.43
εs Risk premium sho
k Gamma−1 1.00 0.50 0.34 0.05Table 3.4: Estimation summary: Standard deviation of stru
tural sho
ks103
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Figure 3.1: Priors and posterior distributions3.C Impulse response fun
tionsHere, the dash-dotted red line represents an estimated model; the magenta solid line isfor regime swit
h in 4; the dashed blue line in 8; and the dotted bla
k line in 40 periods.The results are presented as quarterly per
entage deviations from the steady state.
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3.D Volatility and loss evaluation
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3.E Cy
les syn
hronizationHere, the dash-dotted red line is for a poli
y swit
h in 2 periods; the magenta solid lineis for regime swit
h in 4; dashed blue line in 8; the dotted bla
k line in 12 periods. Theresults are presented as quarterly per
entage deviations from the steady state.
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