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Abstract

We investigate the complete family of (aligned) Robinson-Trautman spacetimes sourced by con-
formally invariant non-linear electrodynamics in D dimensions in the presence of an arbitrary cos-
mological constant. After presenting general features of the solutions (which exist only in even
dimensions), we discuss in more detail some particular subclasses. Static metrics contain dyonic
black holes with various possible horizon geometries (Kähler if there is a magnetic field, including
flat branes) and different asymptotics. In addition, there exist also time-dependent solutions (not
possible in the D > 4 linear theory) which may represent white hole evaporation by emission of elec-
tromagnetic radiation (or a time-reversed picture of black hole formation). For those, we comment
on a quasi-local characterization of possible past horizons. Finally, we briefly discuss the special case
of stealth solutions. In an appendix, a theory-independent result on the redundancy of the gravity
part of the field equations for Robinson-Trautman spacetimes is further obtained.
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1 Introduction

Non-linear classical theories of electrodynamics were originally introduced in order to cure the divergent
electron’s self-energy [1–3]. Modified theories also naturally appear as effective Lagrangians taking into
account various quantum corrections (cf., e.g., the review [4] and references therein) as well as low-
energy limits of string theory [5–7]. Coupling modified electrodynamics to gravity is clearly also of
interest and it is remarkable that certain non-linearities can regularize black holes [8–10].

In recent years, higher-dimensional scenarios have attracted increasing attention, with motivation
coming from different directions, such as string theory, the AdS/CFT correspondence, and brane-world
models. While higher-dimensional static black hole solutions in the Einstein-Maxwell theory were
obtained several decades ago [11], it is a natural question to ask how their properties are modified
when Einstein’s gravity is coupled to more general electrodynamics. Perhaps the simplest extensions
of the Maxwell Langrangian include polynomial functions of the invariant F ≡ FµνF

µν – yet already
such simple higher-order corrections make the field equations in general much more difficult to solve.
Within this class of theories, the only conformally invariant action in D dimensions is defined by the
monomial FD/4 [12] (see also section 1.1). While for D = 4 this reduces to the standard Maxwell action,
it gives rise to non-linear equations of motion when D > 4.1 Nevertheless, the conformal character of
the matter field allows for a considerable simplification of the field equations. Indeed, a simple exact
solution representing an electrically charged, spherically symmetric, asympotically flat black hole was
obtained in [12] (provided D is a multiple of four). This result is of interest also in that it contrasts with
certain no-go theorems obtained for the case of higher-dimensional black holes coupled to a conformally
invariant scalar field [15,16].

1A different (and linear) conformally invariant extension of Maxwell’s theory is defined in D = 2p dimensions by the
Lagrangian density

√
−gFα1...αpF

α1...αp , where Fα1...αp is a p-form field [13]. See [14] and references therein for non-linear
p-form theories admitting conformal invariance.
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The purpose of the present paper is to study black hole solutions of the theory proposed in [12] from
a more general viewpoint. To this end, we will analyze systematically the class of Robinson-Trautman
solutions, which are defined by the existence of an expanding, shearfree and twistfree congruence of
null geodesics (see section 2.1 for a short summary).2 In four-dimensional General Relativity, such
spacetimes were first constructed in [19] as an example of spherical gravitational radiation, and studied
more systematically in [20] and in several subsequent papers by various authors (cf. [21,22] for reviews
and for a number of references). The family of solutions of [19, 20] comprises diverse (electro)vacuum
spacetimes ranging from static Schwarzschild-like black holes of various topologies to their accelerating
(C-metric) or null fluid (Vaidya metric) counterparts, as well as more general radiative solutions. An
interesting feature of the latter is that at late times (in vacuum and under suitable initial conditions)
they decay to the Schwarzschild (or Kottler) spacetime by emitting gravitational waves (see [22] for
a review and relevant references). They also serve as exact models where various quasi-local charac-
terizations of horizons in dynamical situations can be tested and visualized [23–25]. In the charged
case with Λ = 0, however, linear perturbations lead to an instability, and the physical meaning of such
solutions is less clear [26,27].

The general form of Robinson-Trautman metrics in D-dimensions was obtained in [28] (see [29] for
an earlier discussion from a more geometrical viewpoint), where vacuum solutions were also studied.
Extensions to the higher dimensional Einstein-Maxwell theory were later obtained in [30]. In both
cases, such family of solutions turned out to be much more restricted when D > 4, in particular it does
not contain the interesting radiative spacetimes known for D = 4. The motivation to consider here the
theory of [12] is thus twofold. On the one hand, adopting an ansatz more general than the one used
in [12] enables one to explore the space of static black hole solutions more systematically, including
dyonic configurations, various horizon geometries and different asymptotics (and also when D is not
a multiple of four, under certain conditions – cf. the following). This can possibly be of interest in
the context of generalized thermodynamics (see, e.g., the recent work [31] and references therein for
general results, and [32] for a discussion relevant to the theory considered here). Furthermore, by
allowing for time-dependent solutions, one can analyze to what extent the negative results of [28, 30]
can be bypassed thanks to the conformal invariance of the action for matter fields (this is in part
motivated by the results of [33] for the p-form Einstein-Maxwell theory in D = 2p dimensions – cf.
footnote 1). As we will show, time-dependent solutions which can be interpreted as dynamical black
holes emitting (or absorbing) electromagnetic radiation do indeed exist in the theory of [12]. These are
also interesting from the viewpoint of dynamical “quasi-local” horizons.

The plan of the paper is as follows. In section 1.1 we outline the basic features of the theory under
consideration [12]. In section 1.2 we compactly summarize our main results in the case of Robinson-
Trautman non-stealth solutions. After outlining their derivation in section 2, we describe those in
more detail in sections 3 and 4 in the most interesting cases of static black holes and their time-
dependent (radiating) extensions. Stealth solutions are briefly discussed in section 5. Some concluding
remarks are given in section 6. Appendices A and B contain some technical results useful for the
derivation of the solutions in section 2. Namely, appendix A presents a result on the redundancy of the
gravity part of the field equations for Robinson-Trautman spacetimes which applies to a large class of

2We observe that four-dimensional Robinson-Trautman solutions coupled to non-linear electrodynamics have been
studied in [17, 18]. There is however no overlap with the results of our paper, since the matter field equations of the
theory (1) become linear when D = 4.
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diffeomorphism-invariant metric theories of gravity arbitrarily coupled to (unspecified) matter fields.
Appendix B contains the components of the Ricci tensor for Robinson-Trautman metrics, needed to
integrate Einstein’s equations.

1.1 The theory

We consider D-dimensional Einstein gravity minimally coupled to a 2-form F = dA in the following
theory [12]

S =

∫
dDx
√
−g
[

1

κ
(R− 2Λ)− 2βFD/4

]
, (1)

where κ and β are coupling constants, and

F ≡ FµνFµν . (2)

Variations of (1) w.r.t. g and A give rise to the equations of motion [12]

1

κ
(Gµν + Λgµν) = βFD/4−1 (DFµρF

ρ
ν − gµνF ) , (3)

1√
−g

∂µ

(√
−gF

D
4
−1Fµν

)
= 0. (4)

The latter can be understood as generalized Maxwell equations. For the sake of brevity, in the following
we will just refer to (4) as the Maxwell equations of the theory (1). We will also write eq. (3) compactly
as Eµν = 0 (cf. (A2)), in order to later refer to some of its components for specific values of the indices.
The RHS of (3) defines the energy-momentum tensor Tµν .

In addition, F must be closed, i.e.,
F[µν,ρ] = 0. (5)

Since the RHS of (3) is traceless, the Ricci scalar is a constant, i.e.,

R =
2D

D − 2
Λ. (6)

For later computations we observe that this allows one to write the LHS of (3) as Gµν + Λgµν =
Rµν − 2Λgµν/(D − 2).

Let us observe that for D 6= 4 the theory (1) admits stealth solutions, i.e., non-trivial electromagnetic
configurations for which the energy-momentum tensor, i.e., the RHS of (3), vanishes identically.3 It is
easy to prove that those are precisely the configurations such that F = 0 (see section 5). This clearly
also ensures that the Maxwell equations (4) are identically satisfied. Therefore, any closed 2-form F
provides a solution to the theory (1) in any Einstein spacetime.

The reality of the quantity F
D
4 (which appears in the field equations) implies that D must be a

multiple of 4 when F < 0. From the above discussion it also follows that the requirement of a non-
negative energy density (in an orthonormal frame) T0̂0̂ ≥ 0 amounts to βFD/4−1 ≥ 0, so that (as

3This should be contrasted with the standard linear Maxwell theory, for which non-zero fields with vanishing energy-
momentum are not permitted (in any dimension) – cf. e.g. footnote 10 of [34] and references therein. Stealth fields
in non-linear four-dimensional theories have been studied in [35]. See [36] for a more general discussion on matter field
Lagrangians with vanishing energy-momentum.
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discussed in a special case in [12]): i) β > 0 if F > 0, or if F < 0 with D/4 being odd; (ii) β < 0 if
F < 0 with D/4 being even; (iii) β can have any sign in the stealth case F = 0. This will be assumed
in the following.

1.2 Summary of the results (non-stealth fields)

Let us assume here that the electromagnetic field is non-stealth (i.e., F 6= 0). The line-element is given
by

ds2 = r2hijdx
idxj−2 dudr − 2Hdu2, (7)

where Latin indices i, j, . . . = 1, . . . , D − 2 label the spatial coordinates xi (from now on collectively
denoted simply as x), and the base space metric hij = h1/(D−2)(u, x)γij(x) represents a Riemannian
Einstein space of dimension D− 2 and scalar curvature R = K(D− 2)(D− 3) (we denoted h ≡ dethij ,
such that γij is unimodular).

The (aligned) electromagnetic field is

F =
e

r2
dr ∧ du+

(e,i
r
− ξi

)
du ∧ dxi +

1

2
Fijdx

i ∧ dxj , (8)

and the metric function H in (7) is defined by

2H = K +
2

D − 2

(
ln
√
h
)
,u
r − λr2 − µ

rD−3
+

Q2

rD−2
(K = 0,±1), (9)

λ ≡ 2Λ

(D − 2)(D − 1)
, Q2 ≡ 2κβF

D
4
−1

0

(
b2

D − 2
+ e2

)
. (10)

In (8)–(10), the quantities e, ξi, Fij , µ, b and F0 may in general depend on (u, x), with (hij denotes
the inverse of hij)

F0 ≡ b2 − 2e2, b2 ≡ FikFjlhijhkl, (11)

and F = r−4F0. The functions e and b characterize the strength of, respectively, the purely electric
and purely magnetic parts of the electromagnetic field (8), while ξi its radiative (null) component (see
also footnote 9 and eq. (50)). By the observations in section 1.1 it follows that D must be a multiple
of 4 when b2− 2e2 < 0. The singularity of F at r = 0 represents also a (timelike) curvature singularity,
as can be checked by computing, e.g., the invariant RµνR

µν .
Further conditions coming from the Maxwell and Einstein equations are

F[ij,k] = 0, Fij,u = ξi,j − ξj,i, (12)

F
D
4
−1

0

√
hhije,j =

(
F
D
4
−1

0

√
hhikhjlFkl

)
,j
,

(
F
D
4
−1

0

√
hhijξj

)
,i

=
(
F
D
4
−1

0

√
he
)
,u
, (13)

and

µ,i = 2κβDF
D
4
−1

0

(
eξi − Fikξjhkj

)
, (14)

(D − 2)µ,u = −(D − 1)µ
(

ln
√
h
)
,u
− 2κDβF

D
4
−1

0 hijξiξj (D > 4). (15)

Note that none of the above equations contain Λ.
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Finally, when F contains a non-zero magnetic component Fij 6= 0 (⇔ b2 6= 0), Fij and the spatial
metric must further obey the constraint

b2hij = (D − 2)FikFjlh
lk, (16)

which means that the base space is almost-Hermitian [37] (in addition to being Einstein)4 and D must
therefore be even. Vice versa, when D is odd (recalling that in this case F must be non-negative, cf.
section 1.1) one has necessarily b2 = 0 = 2e2, i.e., F = 0, contradicting the assumption made above that
the field is non-stealth – odd dimensional solutions cannot therefore occur here (but they are contained
in the discussion of section 5).

All the above equations hold also in the limit D = 4, except for (15) (see section 2 and [20, 21, 30]
for more details on the D = 4 case).5 For D > 4, it should also be observed that several features of
the obtained solutions contrast with those of the linear theory [30]. First, the non-linearities cause the
magnetic term in (9) to fall off more quickly at infinity and thus make the geometry better behaved
(for a slower fall-off as in the linear theory [30] cf. also related comments in [42]). They also give rise
to a dimensional-independent fall-off of the electric component of (8) (as already observed in [12] and
in contrast to the standard Coulomb field of the linear theory [11], see also [30]). In addition, apart
from the electric and magnetic components e and Fij , the electromagnetic field (8) may contain also a
radiative null term Fui, which is related to a possible mass loss (or gain) encapsulated in eq. (15). This
has also to do with the fact that the line-element is in general time-dependent (cf. also footnote 7 in
section 3).6

Particular specializations of the above family of solutions may thus describe various physical con-
figurations, such as static dyonic black holes, but also time-dependent solutions with a radiating term
in F . These are discussed, respectively, in sections 3 and 4.

2 Ansatz and integration of the field equations

2.1 Robinson-Trautman geometry with an aligned 2-form field

A D-dimensional Robinson-Trautman spacetime [28] is defined by admitting a non-twisting, non-
shearing, expanding geodesic null vector field k. This can be expressed invariantly as [29]

kµk
µ = 0, k[ρkµ;ν] = 0, £kgµν = ρgµν + kµξν + ξµkν , ρ 6= 0. (17)

The latter condition is precisely the one which defines a non-zero expansion (the case ρ = 0 correspond-
ing, instead, to Kundt spacetimes [28]).

The associated Robinson-Trautman line-element was obtained in adapted coordinates in [28].

4While this condition is identically satisfied in the case D = 4, it restricts considerably the permitted spatial geometries
when D > 4 – cf. section 3 for more comments and related references. From a geometric viewpoint, it is also worth pointing
out that such spacetimes with the 2-form F naturally define almost-Robinson manifolds [38–41].

5Beware of two typos in [30]: the RHS of (B.13) should read 8P 2(Q,1ξ1 + Q,2ξ2), while on the RHS of (B.14) there
should be a factor 8 (instead of 4).

6A similar behaviour in a linear theory is possible provided one considers, instead of a 2-form, a p-form in D = 2p
dimensions [33].
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It is the purpose of the present paper to determine Robinson-Trautman solutions of the theory (1).
We shall restrict to the case of electromagnetic fields that are aligned with k [30], i.e.,

Fαβk
β = Nkα. (18)

Thanks to (18), Einstein’s equations (3) reveal that the Ricci tensor is necessarily doubly aligned
with k (i.e., Rµνk

ν ∝ kµ). Similarly as in [33], this enables one to specialize the form of the general
Robinson-Trautman metric obtained in [28], i.e., we can already start from the simplified line-element

ds2 = r2hij(u, x)
(
dxi +W idu

) (
dxj +W jdu

)
−2 dudr − 2Hdu2, (19)

W i = αi(u, x) + r1−Dβi(u, x), (20)

where the function H can depend on all spacetime coordinates, and hij denotes a (so far unspecified)
Riemannian metric in D − 2 dimensions. For later purposes let us note that

√
−g = rD−2

√
h, (21)

where g ≡ det gµν .
Using the above coordinates one has

kµ∂µ = ∂r, kµdxµ = −du, (22)

such that r is an affine parameter along k. Condition (18) reads

Fri = 0, Fru = N. (23)

2.2 Integration of the field equations

Eqs. (19), (20) and (23) already ensure that Err = 0 = Eri (cf. [28, 30,33] for related discussions).
With (23), eq. (5) reads

Fij,r = 0, (24)

Fui,r = −N,i, (25)

Fij,u = Fuj,i − Fui,j , (26)

F[ij,k] = 0, (27)

while eq. (4) becomes (using also (19) – the explicit relation between covariant and contravariant
components of F can be found in [30])(

rD−2F
D
4
−1N

)
,r

= 0, (28)

√
h
(
rD−2F

D
4
−1F ir

)
,r

= −rD−2
(√

hF
D
4
−1F ij

)
,j
, (29)(√

hF
D
4
−1F ir

)
,i

= −
(√

hF
D
4
−1N

)
,u
. (30)
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The r-dependence of F is determined by (24), (28) and (25), namely

Fij = Fij(u, x), (31)

N =
e(u, x)

r2
, (32)

Fui =
e,i
r
− ξi(x, u), (33)

where e and ξi are integration functions.
Substituting (33) into (26) gives

Fij,u = ξi,j − ξj,i. (34)

Eq. (27) simply means that Fij defines a closed 2-form in the spatial base manifold. Consequences
of the remaining equations (29) and (30) will be discussed more easily after (36) is obtained below.

At this stage, the invariant (2) (useful in the following) takes the form

F = r−4F0, (35)

where we have defined F0 as in (11).
Using (23), (31) and (35) one finds that the (ij) component of the RHS of (3) is proportional to

r2−D. Comparing this with the Ricci tensor component (B1) implies βi = 0. Furthermore, a coordinate
transformation enables one to set (at least locally) αi = 0 [28]. From now on we shall thus have in (19)

W i = 0, (36)

which simplifies several quantities.
Eq. (36) with (32), (33), (35) enables one to easily write the remaining Maxwell equations (29) and

(30) as

F
D
4
−1

0

√
hhije,j =

(
F
D
4
−1

0

√
hhikhjlFkl

)
,j
,

(
F
D
4
−1

0

√
hhijξj

)
,i

=
(
F
D
4
−1

0

√
he
)
,u
. (37)

Alternatively, these can be rewritten covariantly as F
D
4
−1

0 e,i =
(
F
D
4
−1

0 Fij
)||j

and
√
h(F

D
4
−1

0 hijξj)||i =

(F
D
4
−1

0

√
he),u, where a double bar denotes a covariant derivative in the base space.

Further analysis of various powers of r appearing in Eij determines the r-dependence of H

2H =
R

(D − 2)(D − 3)
+

2

D − 2

(
ln
√
h
)
,u
r − 2Λ

(D − 2)(D − 1)
r2 − µ

rD−3

+
2κβ

D − 2
F
D
4
−1

0

b2 + (D − 2)e2

rD−2
, (38)

and additionally gives the following conditions

Rij =
R

D − 2
hij , (39)

hij,u =
2(ln
√
h),u

D − 2
hij , (40)

b2hij = (D − 2)FikFjlh
lk, (41)
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where the identity hijhij,u = 2(ln
√
h),u has been used. Here Rij is the Ricci tensor associated with the

spatial metric hij , R = hijRij its Ricci scalar, and µ an integration function independent of r.
Using (38) and (B2) one finds that the equation Eur is satisfied identically.
Using (38), (40) and (B3), the vanishing of the coefficient of the term r2−D in the equation Eui

requires

µ,i = 2κβDF
D
4
−1

0

(
eξi − Fikξjhkj

)
. (42)

Coefficients of some other powers of r vanish identically as a consequence of (A8).
Finally, with (38) and (B4), the vanishing of the coefficient of the term r2−D in the equation Euu

gives

(D − 2)µ,u = −(D − 1)µ
(

ln
√
h
)
,u
− 2κDβF

D
4
−1

0 hijξiξj (D > 4), (43)

while other powers of r in Euu vanish identically as a consequence of (A9). For later purposes it is
useful to point out that one of those identities reads

4
[
F
D
4
−1

0

[
b2 + (D − 2)e2

]]
= D(D − 2)F

D
4
−1

0 hije,ie,j , (44)

where 4 ≡ 1√
h
∂j(
√
hhij∂i) is the Laplace operator in the (D − 2)-dimensional space with metric hij .

All the equations obtained previously hold also for D = 4, except for (43), which applies only to
the case D > 4 – the reason for this is that Euu contains terms with powers r−2 and r2−D, which
combine precisely when D = 4 (resulting in an additional term proportional to 4R in (43), cf. [20,21]
and appendix B of [30]). On the other hand, for D = 4 eq. (39) is an identity, whereas for D > 4 it
means that the metric hij is Einstein and therefore R = R(u). Eq. (40) means that hij can depend on
u only via a conformal factor, i.e., hij = h1/(D−2) γij(x) [28].

To conclude, we note that a transformation of the form [20,28]

u = u(ũ), r = r̃/u̇(ũ), (45)

can be used to rescale the first term in (38) arbitrarily (provided µ, e and b are also appropriately
redefined), so that without losing generality we can hereafter assumeR = 0,±(D−2)(D−3). Combining
all the results obtained above one arrives at the summary given in section 1.2.

3 Static black holes

3.1 The solutions

Here we assume that ∂u is a Killing vector field of the metric (7), so that the spacetime is static in
regions where H > 0. This requires h,u = 0, so that hij = hij(x), along with µ,u = 0 and Q,u = 0.
Plugging these conditions into (15), (14), (12) one easily concludes that ξi = 0, µ =const, Fij,u = 0
(and therefore also b,u = 0) and e,u = 0.7

7In other words, the time-dependence of the general line-element (7), (9) is due to the radiative component of F in (8)
(see in particular eq. (15)). From a complementary viewpoint, when µ 6= 0 staticity of the metric also follows by assuming
ξi = 0 in (8) (and using (45), see a related discussion in [30,33]).
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Now, let us recall the identity (44). Since its RHS is non-negative, Hopf’s theorem (see, e.g.,

[37]) implies that when the base manifold is compact then both F
D
4
−1

0

[
b2 + (D − 2)e2

]
and e must be

constant, and therefore such must be also b. Having in mind primarily black hole spacetimes, hereafter
we shall thus restrict ourselves to the case e =const and b =const.

The solutions of interest are thus given by the line-element (7)8 with the base space metric hij(x)
being Einstein, and

2H = K − λr2 − µ

rD−3
+

Q2

rD−2
, (46)

while the electromagnetic field reads

F =
e

r2
dr ∧ du+

1

2
Fij(x)dxi ∧ dxj , (47)

with (10), (11). The constant K = 0,±1 represents the sign of the Ricci scalar of hij , µ is a mass
parameter, while e and b parametrize the electric and magnetic components of F .9 In the above
expressions, the main differences w.r.t. the D > 4 Einstein-Maxwell solutions [30] are the better
behaved magnetic term in (46) (the electric and magnetic terms in [30] fall off as 1/r2(D−3) and 1/r2,
respectively) and the fact that the fall-off of electric field component in (47) does not depend on D (as
noticed in [12]).

The only remaining field equations reduce to (cf. (12), (13))

F[ij,k] = 0,
(√

hhikhjlFkl

)
,j

= 0, (48)

along with (16). This means that the 2-form Fij must be closed and coclosed in the base space geometry
and that, when Fij 6= 0, the base space must be almost-Kähler [37] (and not just almost-Hermitian,
as in the general case of section 1.2) – in particular, the only permitted space of constant curvature
is flat space [37], in which case Fij||k = 0 and a solution can be easily found in closed form [30] and
interpreted as a black brane (as done in [46] in the D-dimensional Einstein-Maxwell theory).10 This
also implies that dyonic (or purely magnetic) solutions cannot be asymptotically flat. By contrast,
in the purely electric case (Fij = 0) the base manifold can be any Einstein space, so in particular a
round sphere. The latter solutions were found in [12] in the case Λ = 0. When e = 0 = b, i.e., F = 0,
eq. (46) describes familiar Schwarzschild-like black holes of vacuum Einstein’s gravity [11, 53, 54] (see
also section 5).

8Standard Schwarzschild coordinates are obtained by the well-known transformation du = dt− dr/2H (cf., e.g., [21,
30]).

9At least for asymptotically flat purely electric solutions, the mass and electric charge were computed in [12] using
a reduced Hamiltonian action and, perhaps not surprisingly, are determined in terms of the parameters µ and e. The
thermodynamics was studied subsequently in [32]. For a definition of the electric and magnetic parts of an arbitrary tensor
in any dimension cf., e.g., [43–45].

10Recall that, apart from flat space, examples of Einstein-Kähler spaces are provided by direct products of identical
2-dimensional spaces of constant curvature S2 × S2 × . . . or H2 × H2 × . . ., or the complex projective space CP

n
2 and

the complex hyperbolic space H
n
2
C with the Fubini-Study metric [47]. A thorough description and more examples can be

found, e.g., in [37,47,48] (see [49,50] and references therein for almost-Kähler Einstein manifolds). The relevance of these
geometries in the context of higher-dimensional charged black hole spacetimes has been already pointed out for linear
electrodynamics in [30,33,51,52] and for modified theories in [34].
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It is interesting to observe that all the above black hole solutions turn out to be “immune” to some
corrections to the gravity part of the action (1), i.e., they coincide with electric [55] and magnetic [34]
solutions of certain f(R) gravities. This is no longer true for extensions of (1) to Gauss-Bonnet gravity,
however exact solutions thereof are also known in the case of electric [56] and dyonic [34] fields (for
Gauss-Bonnet magnetic black holes coupled to different power-like electrodynamics see [57]).

It is also worth remarking that when Λ = 0 metric (46) can also be seen as a vacuum (non-Einstein)
solution of pure R2-gravity (in which case Q2 in (46) is simply an integration constant) [58,59]. When
Λ and Einstein terms are added to the action, or for more general f(R) theories, this remains true
provided the parameters of the theory are suitably fine-tuned [58–60]. That this is the case can be
traced back to the fact that the Ricci scalar of (46) is constant [34, 58–60]. Similarly, the same metric
also solves Einstein’s gravity coupled to a conformal scalar field [61].

3.2 Horizons and spacetime structure

Since the vacuum case is known, in the following discussion we shall assume F 6= 0. As mentioned in
section 1.2, there is a timelike curvature singularity at r = 0 (similarly as in the Reissner–Nordström
spacetime, cf., e.g., [22] and refereces therein). We can therefore restrict ourselves to the range r > 0.

The spacetime is static in regions where H > 0, whereas positive values of r such that H = 0
represent Killing horizons. The latter are defined by positive real roots of the polynomial

−λrD +KrD−2 − µr +Q2 = 0, (49)

where the last term is positive by the conditions on β (cf. section 1). Using Descartes’s rule of signs
one can place restrictions on the signs of the parameters Λ, K and µ in order for such roots to exist,
and simultaneously count how many of those may occur. This is straightforward and summarized in
table 1. Note that the counting of the roots includes their multiplicities, so the case of 2 roots also
possibly includes a double one (an extreme horizon), while the case of 3 roots (in general corresponding
to a cosmological, an outer and an inner horizon) also allows for a single root accompanied by a double
one, or for a triple root. In particular, the latter case occurs at r = r3 ≡

√
(D − 3)(D − 2)2/

√
2DΛ

when Λ > 0, K = 1, and for the special values µ =
4DΛrD−1

3
(D−3)(D−2)(D−1) , (D−2)2Q2 = 4ΛrD3 (cf. [62] in the

case D = 4). More generally, assessing the precise number of horizons which do actually occur (e.g.,
2 vs. 0, or 3 vs. 1) depends on the particular chosen ranges of the parameters. This is illustrated in
figures 1–4 by plotting H as a function of r for various values of µ in the exemplificative cases Λ < 0
with K = 0 and K = −1, and Λ > 0 with K = 1. All combinations of signs which do not appear in
table 1 (for example, (Λ ≤ 0,K ≥ 0, µ ≤ 0)) describe naked singularities. We observe that the structure
of Killing horizons is qualitatively similar to the one of the four-dimensional (A)dS-Reissner-Nordström
metrics [22,62]. Some related comments and plots complementary to the one given above can be found
in [58] for the case Λ = 0 and in [55] for Λ < 0 with K = 1.

The asymptotic properties at r → ∞ are determined by the sign of Λ, similarly as in vacuum
Einstein’s gravity (cf. [54]). In particular, when the base space is a round sphere (which requires
Fij = 0, as mentioned above), the spacetime is asymptotically flat or (A)dS. When Fij 6= 0 this is not
possible, however, the spacetime is asymptotically locally AdS if hij is a flat metric and Λ < 0. The
Killing vector field ∂u is spacelike near infinity when Λ > 0 and timelike for Λ < 0. When Λ = 0, it is
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Figure 1: Plot of the function 2H(r) (eq. (46)) for D = 8 in the case Λ < 0, K = 0. For the cosmological
constant and the electromagnetic field strength we have chosen the values λ = −1 (recall (10)), Q2 = 1,
while the mass parameter µ ranges from 2 (lower, magenta curve) to −6 (upper, light blue curve).
Intersections with the r-axis represent Killing horizons. In particular, the red curve denotes a double
horizon (at µ ≈ 1.458, within numerical accuracy).

Figure 2: Plot of the function 2H(r) for D = 8 in the case Λ < 0, K = −1. Here λ = −0.7, Q2 = 0.05,
and µ ranges from 0.1 (lower, magenta curve) to −1 (upper, light blue curve). The dark blue curve
denotes a double horizon (at µ ≈ −0.251, within numerical accuracy).
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Figure 3: Plot of the function 2H(r) for D = 8 in the case Λ > 0, K = 1. Here λ = 0.5, Q2 = 0.05, and
µ ranges from 0.16 (lower, red curve), over 0 (black curve), to −4 (upper, light blue curve). The red
curve displays a case when there are three distinct Killing horizons (inner, black hole and cosmological
horizons).

Figure 4: Plot of the function 2H(r) for D = 8 in the case Λ > 0, K = 1. Note that in this
case we have chosen different values of the parameters for each curve – this is just a technicality
that enables us to plot in a single figure various curves describing different special cases. Namely,
the magenta ((Q2, λ, µ) ≈ (0.05, 0.5, 0.127)) and green ((Q2, λ, µ) ≈ (0.5, 0.5, 1.119)) curves contain a
double horizon, while the red curve ((Q2, λ, µ) ≈ (0.15, 1.08, 0.293)) denotes a triple one. The black
curve ((Q2, λ, µ) = (0.05, 0.5, 0)) possesses only a single horizon.
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Λ K µ # horizons ∂u for r →∞
< 0 ≥ 0 > 0 2,0 timelike

< 0 any 2,0

> 0 > 0 2,0 timelike
0 0 > 0 1 spacelike

< 0 any 1 spacelike

> 0 > 0 3,1
> 0 > 0 ≤ 0 1 spacelike

≤ 0 any 1

Table 1: Possible combinations of the signs of the parameters Λ, K(= 0,±1) and µ that permit the
polynomial equations (49) to admit positive real roots. In the fourth column the possible number
of roots is indicated (including their multiplicities) for each case (in some cases there may be more
than one possibility, depending on the specific range of the parameters). The last column displays the
character of the Killing vector field ∂u sufficiently close to infinity, i.e., in the outer region. See the
main text for more information.

timelike if K > 0 and spacelike if K < 0 (if also K = 0, its character is determined by the sign of µ; if
K = 0 = µ, it is timelike), see also table 1.

4 Time-dependent solutions

In this section we consider non-stealth solutions with a non-zero radiating term ξi 6= 0 in the electro-
magnetic field (8). As discussed in section 3, this ensures that ∂u is not Killing. Eq. (14) further implies
µ,i 6= 0, while eq. (15) shows how ξi contributes to a mass loss due to electromagnetic radiation as the
retarded time u evolves. The electromagnetic energy flux along the Robinson-Trautman null vector
field k = ∂r is measured by the leading term of the scalar Tµνn

µnν , where n = ∂u − H∂r is another
null vector field such that nµkµ = −1. One finds (Tµν is defined in section 1.1)

Tµνn
µnν = βDF

D/4−1
0

hijξiξj
rD−2

+O(r1−D), (50)

where the leading term actually takes the same value in any frame parallely transported along k and
is thus an invariant quantity. As expected from the above comments, it vanishes iff ξi = 0.

If the base manifold is taken to be compact, the same argument as used in section 3 gives e,i = 0 = b,i
– but here e and b can depend on u. We observe that in four dimensions there exist simple (Vaidya-like)
explicit solutions describing the evaporation of a white hole (or, by time-reversal, black hole formation)
by emission (collapse) of electromagnetic radiation, which has the form of a null field [63]. However,
no analog of those solutions is possible here, both because µ,i 6= 0 and because null fields are stealth
and thus do not backreact.

Time-dependent solutions can be understood as dynamical extensions of the static black holes of
section 3. It is an open question whether they indeed do settle down to a static configuration at late
times (at least under suitable initial conditions) or whether they develop instabilities as some of their

14



four-dimensional counterparts [26, 27]. This would deserve a separate investigation. However, even if
the future evolution was sound (with a possible extension across a future horizon), one may still expect
the past evolution to be singular [64], preventing one from sensibly defining a past event horizon. From
this viewpoint it is more appropriate to study, instead, past quasi-local horizons [24–26,65–67]. In the
following we show how one can do that for Robinson-Trautman spacetimes in higher dimensions, and
specifically for solutions of the theory (1) (see [68] for earlier results in the presence of null radiation
but without an electromagnetic field).

4.1 General setup in Robinson-Trautman spacetimes

Given the spacetime (7), let us consider a family of (D − 2)-dimensional spacelike surfaces S defined
by

u = u0, r = X(x;u0), (51)

where u0 is a constant parameter and X a positive function (at this stage arbitrary) of its arguments.
Similarly as in [68] (see also the earlier work [26, 65] in four dimensions), a null frame adapted to

the above surfaces is defined by

k = ∂r, n = ∂u +
1

2

(
−2H + r−2hijY,iY,j

)
∂r + r−2hijY,i∂j , m(α) = r−1m̃i

(α) (∂i +X,i) ∂r, (52)

where m̃i
(α) are the components of an orthonormal frame in the base space with metric h (i.e.,

hijm̃
i
(α)m̃

j
(β) = δ(α)(β)). The null vectors k and n are, respectively, the outgoing and ingoing future-

oriented normals to the surfaces S, while the m(α) span such surfaces. The expansion Θk of k is
positive by construction, whereas for n one finds

(D − 2)Θn = X−1

[
4 lnX − (D − 2)H +X(ln

√
h),u +

1

2
(D − 4)hij(lnX),i(lnX),j

]
, (53)

where H has to be evaluated with (51) holding.
For choices of X such that Θn > 0, the corresponding S are (past) trapped surfaces (at least if they

are compact) [69], while solutions of the equation Θn = 0 (if they exist) represent marginally trapped
surfaces [23]. In the latter case, the (D−1)-dimensional hypersurface H defined by r = X(x, u) (where
now u is not fixed) is thus a marginally trapped tube (foliated by the surfaces S). Furthermore, if H is
spacelike, it defines a dynamical horizon [70].11 Since the normal toH is Nµdxµ = −dr+X,udu+X,idx

i,
this happens when

2(H +X,u) + hij(lnX),i(lnX),j < 0, (54)

where we have imposed r = X and also H has to be evaluated at H.

4.2 Past horizons in Einstein gravity with conformally invariant electrodynamics

So far the discussion has been general, i.e., it applies to any spacetime of the form (7). In the case
of the solutions constructed in the present paper, H is given by (9), so that using (53) the equation

11To be precise, in [70] a “time-reversed” situation is considered, i.e., (future) horizons with Θk < 0.
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Θn = 0 defining marginally trapped surfaces reads explicitly

24 lnX − (D − 2)

(
K − λX2 − µ

XD−3
+

Q2

XD−2

)
+ (D − 4)hij(lnX),i(lnX),j = 0. (55)

This is a non-linear PDE for the unknown function X(x;u0), and for Q = 0 it reduces to a result
of [68]. As noticed there, the last term in (55) makes the non-linearity worse when D > 4.12 Recall
that µ and Q are generically functions of (u, x) (but Q,i = 0 if the base space is compact), constrained
by the field equations (12)–(15). As suggested in [25] in four dimensions, solutions to (55) define
an analog of the past horizon in Robinson-Trautman spacetimes. However, proving existence (and,
possibly, uniqueness) of such solutions requires a thorough and rigorous mathematical analysis which
goes well beyond the scope of the present paper, and we leave it for future investigations (see [25] for
the original results for four dimensional vacua, and [68] for a modification thereof suitable for the case
D > 4).

5 Stealth solutions

5.1 General characterization of stealth solutions

First of all, let us prove that, as pointed out in section 1, a 2-form F has a vanishing energy-momentum
tensor in the theory (1) iff F = 0. That the latter condition is sufficient follows obviously from
(3). To see that it is also necessary, it suffices to set up an orthonormal frame {e0̂, eî} (such that

î, ĵ = 1, . . . , D−1 and e0̂ ·e0̂ = −1, eî ·eĵ = δîĵ). Then one sees that the (0̂0̂) component of the RHS of
(3) vanishes only if either F = 0 or (D− 2)F0̂iF0̂i +FîĵFîĵ = 0 (where we used F = −2F0̂̂iF0̂̂i +FîĵFîĵ).
However, the latter expression is non-negative and vanishes iff F0̂̂i = 0 = Fîĵ , which is equivalent to
the trivial configuration Fµν = 0. Therefore the only possible stealth fields are those with F = 0, as we
wanted to show. In particular, all null fields are stealth.

For a stealth field the Maxwell equations (4) are also identically satisfied and, in order to have a
solution, it thus suffices to ensure that dF = 0. Any closed 2-form F hence provides a solution to
the theory (1) in any Einstein spacetime (other matter fields can obviously be included provided the
Einstein equations (3) are modified accordingly – yet a stealth F will not affect those).13 We also
observe that for stealth fields the number of dimensions D can also be odd, since the quantity FD/4 is
identically zero.

5.2 Stealth solutions in Robinson-Trautman spacetimes

Let us now specialize the results outlined above to the case of aligned stealth fields in Robinson-
Trautman spacetimes. Since the field is stealth, the Robinson-Trautman metric must be Einstein and
thus [28] of the form (7), where the spatial metric hij = h1/(D−2)(u, x)γij(x) is also Einstein (more

12By setting D = 4 one recovers the equation first obtained in [24, 25] for Λ = 0 = Q, and extended to more general
cases in [17,26,67].

13The fact that null electromagnetic fields may be simultaneous solutions of large classes of electrodynamic theories (and
thus have “universal” properties) has first been pointed out in [71,72] and investigated more systematically recently [73–75]
(see also [76] for earlier observations).
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details below). The alignment assumption (18) (i.e., (23)) together with the conditions F = 0 (stealth)
and dF = 0 (closed) mean that F can be written as

F =
e

r2
dr ∧ du+

(e,i
r
− ξi

)
du ∧ dxi +

1

2
Fijdx

i ∧ dxj , (56)

where the functions e, ξi and Fij depend on (u, x), and further obey

2e2 = FikFjlh
ijhkl, F[ij,k] = 0, Fij,u = ξi,j − ξj,i. (57)

Simple examples are given by a generalized Coulomb field with e,i = ξi = Fij = 0, or by null fields
with e = Fij = 0 and ξi = ϕ,i (where ϕ(u, x) is an arbitrary real function).

Concerning the possible background geometries, let us recall that vacuum Robinson-Trautman
spacetimes in Einstein gravity consist of two subclasses [28]. Generically one can arrive at a canonical
form of the metric (7) with h,u = 0 and

2H = K − λr2 − µ

rD−3
(K = 0,±1), (58)

where µ and K (such that R = K(D − 2)(D − 3)) are constants. The base space metric hij(x) can be
any Einstein space. These spacetimes describe generalized Schwarzschild black holes [11,53,54].

In the special case µ = 0, the u-dependence of the spatial metric cannot in general be removed
[28,77], and one has instead

2H = K +
2

D − 2

(
ln
√
h
)
,u
r − λr2 (K = 0,±1). (59)

The base space metric hij(u, x) is Einstein and further constrained [77] by being conformal to other
Einstein spaces, and thus belongs to the class studied thoroughly in [78,79].

6 Conclusions

We have presented the complete family of Robinson-Trautman spacetimes admitting an aligned con-
formally invariant electromagnetic field in the D-dimensional theory (1) put forward in [12]. The main
differences w.r.t. the linear theory studied in [30] include a better behaved magnetic term in the metric
function H, the existence of radiative solutions and the possibility of stealth fields.

A subclass of these metrics represents static dyonic black holes/branes which generalize in various
ways an earlier purely electric solution of [12]. In particular, the presence of a magnetic field allows
also for even dimensions which are not a multiple of four. On the other hand, it constrains the horizon
geometries more severely (eq. (16)), in particular ruling out asymptotically flat solutions. Various
properties of the general class, such as the structure of horizons, have been clarified.

Furthermore, a new branch of solutions includes time-dependent spacetimes. These describe dy-
namical black holes emitting (or receiving) electromagnetic radiation. In such a context, quasi-local
characterizations of horizon are useful in clarifying geometric properties. We have commented on
marginally trapped surfaces and the equation which defines a possible family of past horizons (in the
sense of [25]). Further study will be required to assess the existence and uniqueness properties of the

17



solutions of such equation. Another interesting open question concerns the stability of the time evolu-
tion of Robinson-Trautman spacetimes. We only remark here that (as already noticed in the vacuum
case [28]) the D > 4 “Robinson-Trautman equation” (43) presents qualitatively new features as op-
posed to the well-studied D = 4 case (notably missing the term corresponding to a Calabi flow when
D = 4 [25]), and one may thus possibly expect a significantly different behaviour in higher dimensions.

Some ancillary results have been presented in the appendices. In particular, we deem the conclusions
of appendix A to be of some interest in their own right. Since they are theory-independent, they will
prove useful to future studies of Robinson-Trautman spacetimes (and in particular of static black holes)
also in different contexts.

Future work may point at extensions of our investigation beyond Einstein’s gravity, still in the
context of the electrodynamics of [12]. Some results about static black holes are already available,
see [34, 56, 57, 80]. Analyzing the thermodynamics of the obtained solutions and their modifications
would also be of considerable interest (cf. [32]). More general power-like electrodynamics [81] are also
worth considering, also from the viewpoint of string theory (cf., e.g., [57]). Not possessing conformal
invariance they may display rather different properties (cf. also [57,80–82]).

Acknowledgments
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A Conservation equation in Robinson-Trautman spacetimes

In this appendix we discuss certain properties of the structure of the equations of motion for gen-
eral Robinson-Trautman spacetimes in an arbitrary diffeomorphism-invariant metric theory of gravity,
including arbitrarily coupled matter fields. Certain results obtained previously (often after tedious
computations) in several special cases [28, 30, 33] (see [21] for the Einstein-Maxwell theory in four di-
mensions) are thus rederived in a more compact and general way. The present discussion applies, in
particular, also to the theory considered in the main body of the paper, thereby allowing one to get rid
of a redundancy in the gravity part of the field equations studied there.

Let us consider a diffeomorphism-invariant theory of gravity of the form

S =

∫
dDx
√
−gL(R,∇R, . . . ,Ψ,∇Ψ, . . .), (A1)

where L is a scalar invariant constructed locally from the Riemann tensor R, the matter fields Ψ and
their covariant derivatives of arbitrary order (following [83], here Ψ stands for an unspecified collection
of tensor fields with arbitrary index structure).

Extremizing the action w.r.t. g produces the gravity part of the corresponding equations of motion
E = 0, where E is a symmetric 2-tensor defined by [83,84]

Eµν ≡
1√
−g

δ (
√
−gL)

δgµν
. (A2)
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The explicit form of the matter field equations is not relevant to the following discussion. However,
once they are satisfied (as we assume hereafter), one obtains that E is conserved [83–87], i.e.,

∇νEµν = 0. (A3)

For a metric of the form (19)14 one finds [88] Γrrr = Γurr = Γuru = Γuri = Γirr = 0 and Γirj = r−1δij ,

Γuij = r−1gij , so that the various components of (A3) read

Euu,u + Eur,r + Eui,i + (2Γuuu + Γrru + Γiiu)Euu + (3Γuui + Γrri + Γjji)E
ui + ΓuijE

ij + ΓiirE
ur = 0,(A4)

Eiu,u + Eir,r + Eij,j + 2(ΓiruE
ru + ΓirjE

rj + ΓiujE
uj) + ΓiuuE

uu + ΓijkE
jk

+ ΓννuE
iu + ΓjjrE

ir + ΓννkE
ik = 0, (A5)

Eru,u + Err,r + Eri,i + (3Γrru + Γuuu + Γjju)Eru + (3Γrri + Γuui + Γjji)E
ri

+ ΓruuE
uu + 2ΓruiE

ui + ΓrijE
ij + ΓiirE

rr = 0. (A6)

Let us now assume the field equations Euu = 0 and Eui = 0 have already been solved. Then
eq. (A4) reduces to

(rD−2Eur),r + rD−1hijE
ij = 0. (A7)

From this condition we learn that the spatial trace of Eij does not provide an equation independent
of Eur, by virtue of the identity (A3) (and of the field equations that have already been solved; cf.
also [59] for related comments in a special case). Alternatively, one can also say that terms contained
in Eur that are proportional to powers of r different from 1/rD−2 necessarily vanish, once Eij = 0 has
been solved.

Once also Eur = 0 and Eij = 0 have been solved, eq. (A5) becomes

(rDEir),r = 0. (A8)

This means that terms of Eir that are proportional to powers of r different from 1/rD vanish identically.
Finally, after also Eir = 0 has been solved, eq. (A6) gives the last identity

(rD−2Err),r = 0. (A9)

Therefore, terms of Err proportional to powers of r different from 1/rD−2 are zero identically.
The above results are clearly theory-independent, only relying on the form of the metric ansatz (19).

As mentioned at the beginning of this appendix, explicit examples of such kind of identities for particular
theories have been worked out in [21,28,30,33].

Let us mention in passing that, similarly as done above, one can also analyze consequences of the
generalized Bianchi identity (A3) also in the case of Kundt spacetimes, arriving at somewhat different
conclusions. This will be discussed elsewhere.

14For the results of this appendix, the particular form of W i given in (20) will not be needed – i.e., they apply to any
Robinson-Trautman geometry subject to the only condition Rrr = 0 [28].
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B Ricci tensor of Robinson-Trautman spacetimes

Here we follow appendix A of [33] (cf. also [28,30,88]).
For a metric of the form (19) one has Rrr = 0 identically. Assuming also (20), one further obtains

Rri = 0 and

Rij = Rij − r4−D (rD−32H
)
,r
hij − r2(2−D) (D − 1)2

2
hikhjlβ

kβl

− r
[
D − 2

2

(
2hk(iα

k
,j) + αkhij,k−hij,u

)
+
(
αk,k + αk(ln

√
h),k−(ln

√
h),u

)
hij

]
+ r2−D

[
1

2

(
2hk(iβ

k
,j) + βkhij,k

)
−
(
βk,k + βk(ln

√
h),k

)
hij

]
, (B1)

where Rij is the Ricci tensor associated with the spatial metric hij , and a partial derivative w.r.t. xj

is denoted by a comma followed by j.
With the further assumption W i = 0 (which is precisely what we need in section 2), the remaining

Ricci components take the form

Rur = r2−D (rD−2H,r

)
,r
− r−1(ln

√
h),u, (B2)

Rui = r4−D (rD−4H,i

)
,r

+
1

2

(
hjkhik,u

)
,j

+
1

2
hjkhik,u(ln

√
h),j −

1

4
hjkhlmhkl,uhjm,i − (ln

√
h),ui, (B3)

Ruu = 2HRur−r2(r−2H),r(ln
√
h),u+(D − 2)r−1H,u

+ r−24H − (ln
√
h),uu −

1

4
hilhjk hij,uhkl,u, (B4)

where 4 is the transverse Laplace operator as in (44).
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[8] E. Ayón-Beato and A. Garćıa, Regular black hole in general relativity coupled to nonlinear
electrodynamics, Phys. Rev. Lett. 80 (1998) 5056–5059.

[9] K. A. Bronnikov, Comment on ‘regular black hole in general relativity coupled to nonlinear
electrodynamics’, Phys. Rev. Lett. 85 (2000) 4641.
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