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Abstract

We prove a number of new results on the large-scale geometry of the Lp-metrics on the group of
area-preserving diffeomorphisms of each orientable surface. Our proofs use in a key way the Fulton-
MacPherson type compactification of the configuration space of n points on the surface due to
Axelrod-Singer and Kontsevich. This allows us to apply the Švarc-Milnor lemma to configuration
spaces, a natural approach which we carry out successfully for the first time. As sample results,
we prove that all right-angled Artin groups admit quasi-isometric embeddings into the group of
area-preserving diffeomorphisms endowed with the Lp-metric, and that all Gambaudo-Ghys quasi-
morphisms on this metric group coming from the braid group on n strands are Lipschitz. This
was conjectured to hold, yet proven only for low values of n and the genus g of the surface.
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1 Introduction and main results

1.1 Introduction

The L2-length of a path of volume-preserving diffeomorphisms, which describes a time-dependent flow
of an ideal incompressible fluid, corresponds to the hydrodynamic action of the flow in the same way
as the length of a path in a Riemannian manifold corresponds to its energy (cf. [50]). Indeed, it is
the length of this path with respect to the formal right-invariant Riemannian metric on the group G
of volume preserving diffeomorphisms introduced by Arnol’d in [1]. The L1-length of the same path
has a dynamical interpretation as the average length of a trajectory of a point under the flow.

Therefore, following the principle of least action, it makes sense to consider the infimum of the lengths
of paths connecting two fixed volume-preserving diffeomorphisms. This gives rise to a right-invariant
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distance function (metric) on G. Taking the identity transformation as the initial point, Arnol’d ob-
serves that a path whose L2-length is minimal (and equal to the distance) necessarily solves the Euler
equation of an ideal incompressible fluid.

It follows from works of Ebin and Marsden [21] that for diffeomorphisms in G that are C2-close to the
identity, the infimum is indeed achieved. Further, more global results on the corresponding Riemannian
exponential map were obtained in [19],[51] (see also [20]). In [49, 50] Shnirel’man showed, among a
number of surprising facts about this subject, that in the case of the ball of dimension 3, the diameter
of the L2-metric is bounded. This result is conjectured to hold for all compact simply connected
manifolds of dimension 3 or larger (see [23, 38, 2]), while its analogue in the non-simply-connected case
is false [23, 7]. Furthermore, Shnirel’man has conjectured that for compact manifolds of dimension 2,
the L2-diameter is infinite.

Shnirel’man’s conjecture, and its analogues for Lp-metrics, with p ≥ 1 are by now proven. It follows
from results of Eliashberg and Ratiu [23] that on compact surfaces (possibly with boundary) other
than T 2 and S2, Shnirel’man’s conjecture holds for all p ≥ 1. Their arguments rely on the Calabi
homomorphism Cal [16] from the compactly supported Hamiltonian group Hamc(M,σ) to the real
numbers in the case of a surface M with non-empty boundary (σ is the area form), and on non-trivial
first cohomology combined with trivial center of the fundamental group in the closed case. For the
two-torus T 2 Shnirel’man’s conjecture holds by [14, Appendix A]. Finally, the case of S2 was settled
in [14] by means of differential forms on the configuration space related to the cross-ratio map. In [43]
the second author gave a new uniform proof of Shnirel’man’s conjecture for all compact surfaces.

The methods that were used to prove Shnirel’man’s conjecture are two-dimensional in nature, and have
to do with braiding of trajectories of time-dependent two-dimensional Hamiltonian flows (in extended
phase space). Indeed, Shnirel’man has proposed to use relative rotation numbers to bound from below
the L2-lengths of two-dimensional Hamiltonian paths in [50]. This direction is related to the method of
[23] by a theorem of Fathi [24] and Gambaudo and Ghys [27] (see also [48, 31, 33]). This theorem shows
that the Calabi homomorphism is proportional to the relative rotation number of the trajectories of
two distinct points in the two-disc D under a Hamiltonian flow, averaged over the configuration space
of ordered pairs of distinct points (x1, x2) in the two-disc.

This line of research was notably pursued in [29], and further in [4], [18], [7], [9], [39], [14] obtaining
quasi-isometric and bi-Lipschitz embeddings of various groups (right-angled Artin groups and additive
groups of finite-dimensional real vector spaces) into Hamc(D2, dx∧dy), into ker(Cal) ⊂ Hamc(D2, dx∧
dy), and into Ham(S2, σ) endowed with their respective Lp-metrics (see [10] for similar embedding
results on manifolds with a sufficiently complicated fundamental group). In all cases, the key technical
estimate is an upper bound, via the Lp-length of an isotopy of volume-preserving diffeomorphisms,
of the average, over all points in a configuration space of the manifold, of the word length in the
fundamental group of the configuration space of the trace of the point under the induced isotopy
(closed up to a loop by a system of short paths on the configuration space).

Such estimates were initially produced by means of analyzing relative rotation numbers of pairs of
braids, or quadruples as in [14]. However, in the case of a single braid, as observed by Polterovich, a
simpler estimate is possible via the Švarc-Milnor lemma [22, 54, 44]. A similar estimate in the case of
braids on more than one strand is not as readily available, because the configuration space Xn(M) of n
points on M is not a compact metric space. In [43], the second author has introduced a new complete
metric on Xn(M) which has allowed for a new proof of Shnirel’man’s conjecture. However, with this
metric Xn(M) still can not be considered to be a compact metric space from the point of view of the
Švarc-Milnor lemma.

In this paper we show how to successfully carry out the strategy of the Švarc-Milnor lemma for
configuration spaces. While hints of a similar approach can be discerned in [26] in the special case of
the two-disk and of double collisions, it was not known earlier to be applicable in the general context
discussed herein. Specifically, we consider a metric on Xn(M) coming from a natural compactification
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Xn(M) thereof, which is a compact geodesic metric space. This compactification is equivariant under
the action of the diffeomorphism group Diff(M) on Xn(M) in the sense that the action extends
naturally to the compactification1. Furthermore, the map π1(Xn(M)) → π1(Xn(M)) induced by the
inclusion is an isomorphism. Hence we may apply the Švarc-Milnor lemma to Xn(M). This, and
further comparison to the metric from [43] allows us to prove our main estimate.

The compactification we use was introduced by Axelrod-Singer in [3] and by Kontsevich in [40, 41],
inspired by the Fulton-MacPherson compactification in algebraic geometry [25]. The compactification
Xn(M) is roughly speaking a certain positive oriented blow-up of Mn along its multi-diagonals. For
instance, one part of its codimension 1 boundary stratum is identified with the disjoint union of
spaces of the form N1(Dij(M))|D0

ij(M) where N1 is the unit normal bundle, Dij(M) ⊂ Mn is the

submanifold of points (x1, . . . , xn) where xi = xj and D0
ij(M) ⊂ Dij(M) is the open dense subset where

xk 6= xi = xj for all k ∈ {1, . . . , n} \ {i, j}. Note that this is an S1-bundle. Intuitively, from a physical
perspective, this means that one resolves a double collision of points by recording the collision point
and the direction in which they have collided. Other parts of the codimension 1 stratum correspond
to simple k-tuple collisions, and correspond to S2k−3-bundles normal to k-diagonals. Higher strata
correspond to more complicated collisions modeled by suitable graphs. It will, however, be technically
most convenient for us to use a model of this compactification recently constructed directly as a
subspace of a Euclidean space by Sinha [52]. We describe this construction in Section 2 below.

Finally, we observe that lower bounds on the average word length can often be provided by quasimor-
phisms - functions that are additive with respect to the group multiplication - up to an error which is
uniformly bounded (as a function of two variables). The quasimorphisms we consider here were intro-
duced and studied by Gambaudo and Ghys in the beautiful paper [28] (see also [8, 45, 46, 47, 6, 14, 13]).
These quasimorphisms essentially appear from invariants of braids traced out by the action of a Hamil-
tonian path on an ordered n-tuple of distinct points in the surface (suitably closed up), averaged over
the configuration space Xn(M) of n-tuples of distinct points on the surface M . As one of our results,
we prove that all homogeneous Gambaudo-Ghys quasi-morphisms are Lipschitz in the Lp-metric for
all p ≥ 1. This subsumes all previous results in this direction and provides a maximally general result.
It also contrasts a recent result of Khanevsky according to which none of these quasi-morphisms are
continuous in Hofer’s metric [37].

We prove further stronger results on the large-scale geometry on the Lp-metric on G. In particular, we
provide bi-Lipschitz group monomorphisms of Rm endowed with the standard (say Euclidean) metric
into (G, dLp) for each positive integer m and each p ≥ 1. Finally, our methods combined with an
argument of Kim-Koberda [39] (cf. Crisp-Wiest [18], Benaim-Gambaudo [4]) show the existence of
quasi-isometric group monomorphisms from each right-angled Artin group to (G, dLp) for each p ≥ 1.
We note that this was previously known only for D2 and S2 [39, 14].

Let M1 ↪→ M2 be a measure preserving embedding of surfaces. It is an open question if the induced
monomorphism Diff0(M1, σ1) ↪→ Diff0(M2, σ2) is a quasi-isometric embedding. Note that our results
provide a partial positive answer to this problem, see Remark 1.3.5.
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(Sonatina 2018/28/C/ST1/00542) and by the GAČR project 19-05271Y and by RVO: 67985840.
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1It is curious to note that the same is not true for the action of Homeo(M) as was recently proven [42].
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1.2 Preliminaries

1.2.1 The Lp-metric

Let M denote a smooth oriented manifold without boundary that is either closed, or M = X \ ∂X for
a compact manifold X. Let M be endowed with a Riemannian metric g and smooth measure µ (given
by an orientation on M and volume form, which in our case of a surface M is an area form σ). We
require that g and µ extend continuously to X in the second case. Finally denote by

G = Diffc,0(M,µ)

the identity component of the group of compactly supported diffeomorphisms of M preserving the
smooth measure µ. In other words, if M = X \ ∂X, it is the identity component of the group of
measure preserving diffeomorphisms of X fixing point-wise a neighbourhood of ∂X.

Fix p ≥ 1. For a smooth isotopy {φt}t∈[0,1], from φ0 = 1 to φ1 = φ, we define the Lp-length by

lp({φt}) =

∫ 1

0

(
1

vol(M,µ)
·
∫
M

|Xt|pdµ
) 1

p

dt ,

where Xt = d
dt′ |t′=tφt′ ◦ φ

−1
t is the time-dependent vector field generating the isotopy {φt}, and |Xt|

is its length with respect to the Riemannian structure on M . As is easily seen by a displacement
argument, the Lp-length functional determines a non-degenerate norm on G by the formula

dp(1, φ) = inf lp({φt}).

This in turn defines a right-invariant metric on G by the formula

dp(φ0, φ1) = dp(1, φ1φ0
−1).

Remark 1.2.1. Consider the case p = 1. It is easy to see that the L1-length of an isotopy is equal to the
average Riemannian length of the trajectory {φt(x)}t∈[0,1] (over x ∈M, with respect to µ). Moreover
for each p ≥ 1, by Jensen’s (or Hölder’s) inequality, we have

lp({φt}) ≥ l1({φt}).

Denote by 1̃ the identity element of the universal cover G̃ of G. Similarly one has the Lp-pseudo-norm
(that induces the right-invariant Lp-pseudo-metric) on G̃, defined for φ̃ ∈ G̃ as

dp(1̃, φ̃) = inf lp({φt}),

where the infimum is taken over all paths {φt} in the class of φ̃. Clearly dp(1, φ) = inf dp(1̃, φ̃), where

the infimum runs over all φ̃ ∈ G̃ that map to φ under the natural epimorphism G̃ → G.

Up to bi-Lipschitz equivalence of metrics (d and d′ are equivalent if 1
C d ≤ d′ ≤ Cd for a certain

constant C > 0) the Lp-metric on G (and its pseudo-metric analogue on G̃) is independent of the choice
Riemannian structure and of the volume form µ on M. In particular, the question of boundedness or
unboundedness of the Lp-metric enjoys the same invariance property.

Terminology: For a positive integer n, we use A,B,C > 0 as generic notation for positive constants
that depend only on M,µ, g and n.
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1.2.2 Quasimorphisms

Some of our results have to do with the notion of a quasimorphism. Quasimorphisms are a helpful
tool for the study of non-abelian groups, especially those that admit few homomorphisms to R. A
quasimorphism r : G→ R on a group G is a real-valued function that satisfies

r(xy) = r(x) + r(y) + br(x, y),

for a function br : G×G→ R that is uniformly bounded:

δ(r) := sup
G×G

|br| <∞.

A quasimorphism r : G → R is called homogeneous if r(xk) = kr(x) for all x ∈ G and k ∈ Z. In this
case, it is additive on each pair x, y ∈ G of commuting elements: r(xy) = r(x) + r(y) if xy = yx.

For each quasimorphism r : G → R there exists a unique homogeneous quasimorphism r that differs
from r by a bounded function:

sup
G
|r − r| <∞.

It is called the homogenization of r and satisfies

r(x) = lim
n→∞

r(xn)

n
.

Denote by Q(G) the real vector space of homogeneous quasimorphisms on G.

For a finitely-generated group G, with finite symmetric generating set S, define the word norm | · |S :
G→ Z≥0 by

|g|S = min{k | g = s1 · . . . · sk, ∀ 1 ≤ j ≤ k, sj ∈ S}

for g ∈ G. This is a norm on G, and as such it induces a right-invariant metric dS : G × G → Z≥0

by dS(f, g) = |gf−1|S . This metric is called the word metric. In this setting, any quasimorphism
r : G→ R is controlled by the word norm. Indeed, for all g ∈ G,

|r(g)| ≤
(
δ(r) + max

s∈S
|r(s)|

)
· |g|S .

When a specific symmetric generating set S for G can be fixed, we will usually denote | · |S by | · |G.

We refer to [17] for more information about quasimorphisms.

1.2.3 Configuration spaces and braid groups

For a manifold M, which in this paper is usually of dimension 2, the configuration space Xn(M) ⊂Mn

of n-tuples of points on M is defined as

Xn(M) = {(x1, . . . , xn)| xi 6= xj , 1 ≤ i < j ≤ n}.

That is
Xn(M) = Mn \

⋃
1≤i<j≤n

Dij

where for 1 ≤ i < j ≤ n, the partial diagonal Dij ⊂ Mn is defined as Dij = {(x1, . . . , xn)| xi = xj}.
Note that Dij is a submanifold of Mn of codimension dimM.

Finally, if dimM = 2, we define the pure braid group of M as

Pn(M) = π1(Xn(M)).
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Noting that the symmetric group Sn on n elements acts on Xn(M), we form the quotient Cn(M) =
Xn(M)/Sn and define the full braid group of M as

Bn(M) = π1(Cn(M)).

We note that Pn(M) and Bn(M) enter the exact sequence 1 → Pn(M) → Bn(M) → Sn → 1.
In particular Pn(M) is a normal subgroup of Bn(M) of finite index. We refer to [36] for further
information about braid groups.

1.2.4 Short paths and the Gambaudo-Ghys construction

Let M be a compact oriented surface. Given a real valued quasimorphism r on Pn(M) = π1(Xn(M), q)
for a fixed basepoint q ∈ Xn(M) there is a natural way to construct a real valued quasimorphism on

the universal cover G̃ of the group G = Diffc,0(M,σ) of area preserving diffeomorphisms of the surface
M . We shall see that in the case of M 6= T 2 this induces a quasimorphism on G itself, because
the fundamental group of G is finite. The same is true for M = T 2 where we consider the group
G = Ham(M,σ) of Hamiltonian diffeomorphisms instead. This is not a restrictive condition from the
viewpoint of large-scale geometry, since by a small modification of [14, Proposition A.1], the inclusion
(Ham(T 2, σ), dLp) ↪→ (Diff0(T 2, σ), dLp) is a quasi-isometry for all p ≥ 1.

The construction is carried out by the following steps (cf. [28, 45, 6]).

1. For all x ∈ Xn(M)\Z, with Z a closed negligible subset (e.g. a union of submanifolds of positive
codimension) choose a smooth path γ(x) : [0, 1] → Xn(M) between the basepoint q ∈ Xn(M)
and x. Make this choice continuous in Xn(M)\Z. We first choose a system of paths on M itself.
Then we consider the induced coordinate-wise paths in Mn, and pick Z to ensure that these
induced paths actually lie in Xn(M). After choosing the system of paths {γ(x)}x∈Xn(M)\Z we
extend it measurably to all x ∈ Xn(M) (obviously, no numerical values computed in the paper
will depend on this extension). We call the resulting choice a ”system of short paths”.

2. Given a path {φt}t∈[0,1] in G starting at Id, and a point x ∈ Xn(M) consider the path {φt · x},
to which we then catenate the corresponding short paths. That is consider the loop

λ(x, {φt}) := γ(x)#{φt · x}#γ(y)−1

in Xn(M) based at q, where −1 denotes time reversal. Hence we obtain for each x ∈ Xn(M) \
Z ∪ (φ1)−1(Z) an element [λ(x, {φt})] ∈ π1(Xn(M), q) (or rather for each x ∈ Xn(M) after the
measurable extension in Step 1).

3. Consequently applying the quasimorphism r : π1(Xn(M), q)→ R we obtain a measurable func-

tion f : Xn(M) → R. Namely f(x) = r([λ(x, {φt})]). The quasimorphism Φ on G̃ is defined
by

Φ([{φt}]) =

∫
Xn(M)

f dµ⊗n.

It is immediate to see that this function is well-defined by topological reasons. The quasimor-
phism property follows by the quasimorphism property of r combined with finiteness of volume.
The fact that the function f is absolutely integrable can be shown to hold a-priori by a reduc-
tion to the case of the disc. We note, however, that by Tonelli’s theorem this fact follows as a
by-product of the proof of our main theorem, and therefore requires no additional proof.

4. Of course this quasimorphism can be homogenized, to obtain a homogeneous quasimorphism Φ.

Remark 1.2.2. If M 6= S2 and M 6= T 2, then π1(G) = 0 and for M = T 2 the same is true for G =
Ham(M,σ). In the case M = S2, by the result of Smale [53] π1(G) = Z/2Z. Hence the quasimorphisms
descend to quasimorphisms on G, e.g. by minimizing over the two-element fibers of the projection
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G̃ → G. For Φ, the situation is easier since by homogeneity it vanishes on π1(G) ⊂ Z(G̃), and therefore

depends only on the image in G of an element in G̃. We keep the same notations for the induced
quasimorphisms.

1.3 Main results

Recall that we work with the group G = Diffc,0(M,σ) for (M,σ) a compact oriented surface with an
area form. Our main technical result is the following.

Theorem 1. For an isotopy φ = {φt} in G, the average word norm of a trajectory λ(x, φ) is controlled
by the L1-length of φ :

W (φ) =

∫
Xn(M)\Z∪(φ1)−1(Z)

|[λ(x, φ)]|Pn(M) dµ
⊗n(x) ≤ A · l1(φ) +B,

for certain constants A,B > 0.

Remark 1.3.1. Note that W (φ) depends only on the class φ̃ = [φ] ∈ G̃ of φ in the universal cover G̃ of
G. Hence for all closed surfaces of positive genus W (φ) does not depend on the chosen isotopy φ, but
only on the diffeomorphism φ1. This is because G is simply connected.

Theorem 1 has a number of consequences concerning the large-scale geometry of the L1-metric on
G. Firstly, as any quasimorphism on a finitely generated group is controlled by the word norm, we
immediately obtain the following statement.

Corollary 1. The homogenization Φ of each Gambaudo-Ghys quasimorphism Φ satisfies

|Φ(φ)| ≤ C · d1(φ, 1).

In particular, Corollary 1 implies that all Gambaudo-Ghys quasimorphisms are continuous in the
L1-metric (and hence in the Lp-metric, see Remark 1.3.4), a fact which was known so far only for
the genus zero case (see [14, 7]) and for the higher genus case only when one considers Gambaudo-
Ghys quasimorphisms coming from the fundamental group P1(M), see [7]. Note that none of these
quasimorphisms are continuous in the Hofer metric by a recent result by Khanevsky [37].

By a theorem of Ishida [34] in the genus zero case and its generalisation to any compact oriented
surface [12, Theorem 2.2] (see all well Brandenbursky-Kedra-Shelukhin [11] in the genus one case, and

Brandenbursky [8] in the higher genus case), the image of the map Q(Pn(M))
GG−−→ Q(G) is infinite

dimensional for n ≥ 4. Thus Q(G) is an infinite-dimensional vector space. Hence by Corollary 1 we
obtain in particular the following.

Corollary 2. The L1-diameter of G is infinite.

Let Entk be the set of products of at most k entropy zero diffeomorphisms. Theorem 1 in [12] and
Corollary 1 imply the following.

Corollary 3. For each positive integer k, the complement in G of the set Entk contains a ball of any
arbitrarily large radius in the L1-metric. In particular, the set of non-autonomous diffeomorphisms
contains a ball of any arbitrarily large radius in the L1-metric.

In what follows, we apply an argument of Kim-Koberda [39] (cf. Benaim-Gambaudo [4] and Crisp-
Wiest [18]), and use Theorem 1 in order to obtain the following statement, which generalizes an answer
to a question of Kapovich [35] in the case of S2 [14] to arbitrary compact oriented surfaces.

7



Corollary 4. The metric group (G, d1) admits a quasi-isometric group embedding from each right-
angled Artin group endowed with the word metric.

Proof. Assume first that M = Σg a closed surface of a positive genus. The S2 case was already done
in [35] and the case of surfaces with boundary will be discussed at the and of the proof. Let n ∈ N.
Let D ⊂ Σg be a smoothly embedded open disc and z1, . . . , zn disjoint points in D. For each i, let
Di ⊂ D be an embedded open disc centered at zi such that each short geodesic between two points in
Di lies in Di, and Di ∩Dj = ∅ for each i 6= j. We denote by Diff(D;D1, . . . , Dn) < G a group which
contains all diffeomorphisms in G which are compactly supported in D and act by identity on each Di.
This subgroup is equipped with the L1-metric coming from G.

Lemma 1. Let n > 4. We identify Pn with the pure mapping class group of the disc D punctured at
z1, . . . , zn. Then the inclusion Pn → Pn(Σg) is a quasi-isometric embedding.

Proof. Since Pn is quasi-isometric to Bn and Pn(Σg) is quasi-isometric to Bn(Σg), it is enough to
show that the inclusion Bn → Bn(Σg) is a quasi-isometric embedding, where Bn is identified with the
mapping class group of the disc D punctured at z1, . . . , zn. By results of Goldberg [30] (c.f. Birman
[5]) we have that Bn is a subgroup of Bn(Σg). In addition, the composition

Bn
i−→ Bn(Σg)

F−→MCGg,n

is injective, where i is the inclusion, the map F : Bn(Σg) → MCGg,n is the point pushing map
and MCGg,n is the mapping class group of Σg punctured at z1, . . . , zn. Moreover, by a result of
Hamenstadt [32, Theorem 2] the map F ◦ i : Bn ↪→MCGg,n is a quasi-isometric embedding for n > 4.
Since F is Lipschitz, it follows follows that i is a quasi-isometric embedding (see [10, Lemma 2.1]).

Let us return to the proof of the corollary. Let

H : Diff(D;D1, . . . , Dn)→ Pn < Pn(Σg),

where H(φ) is an element in Pn(Σg) represented by a path (φt(z1), . . . , φt(zn)) in the configuration
space, and {φt} is any isotopy in G between the identity φ0 and φ := φ1.

It follows from the results of Kim-Koberda [39] (c.f. Crisp-Wiest [18] and Benaim-Gambaudo [4]) that
for each RAAG Γ there exists n and an embedding of Γ into Diff(D;D1, . . . , Dn) whose composition
with H is a quasi-isometric embedding of Γ into Pn. By Lemma 1, it gives as well a quasi-isometric
embedding of Γ into Pn(Σg). Then in order to obtain a quasi-isometric embedding of Γ into G it is
enough to show that the map H is large-scale Lipschitz whenever n > 4.

This fact follows from our main result, Theorem 1. Let us prove it. Set

X(D1, . . . , Dn) := {(x1, . . . , xn) ∈ Xn(Σg)|xi ∈ Di}.

Let {φt} be any isotopy in G between the identity φ0 = 1 and φ := φ1. It follows from Theorem 1 that
there exist positive constants A and B which depend only on n such that∫

X(D1,...,Dn)

|[λ(x, φ)]|Pn(Σg) dµ
⊗n(x) ≤ A · l1(φ) +B .

Note that for each x ∈ X(D1, . . . , Dn) we have [λ(x, φ)] = H(φ). Thus∫
X(D1,...,Dn)

|[λ(x, φ)]|Pn(Σg) dµ
⊗n(x) = vol(X(D1, . . . , Dn)) · |H(φ)|Pn(Σg),
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and we obtain the result, i.e., H is large-scale Lipschitz:

|H(φ)|Pn(Σg) ≤
A

vol(X(D1, . . . , Dn))
· l1(φ) +

B

vol(X(D1, . . . , Dn))
.

Assume now that S is a surface with boundary. We can embed S in a closed surface S′ such that
the embedding is area preserving. This induces a monomorphism ι : Diffc,0(M1, σ1) ↪→ Diffc,0(M2, σ2)
(note that elements of Diffc,0(M1, σ1) fix point-wise the neighbourhood of the boundary, so they can
be extended by the identity). Since ι it Lipschitz, and the embedding of Γ to Diffc,0(M2, σ2) can
be constructed such that it factors through Diffc,0(M1, σ1), we get a quasi-isometric embedding to
Diffc,0(M1, σ1).

Remark 1.3.2. We note that Corollary 4 implies Corollary 2, providing the latter with a proof that
does not use quasimorphisms.

Furthermore, note that Corollary 4 implies that for each k ∈ N there is a quasi-isometric embedding
ik : Zk → (G, d1). Moreover, there exists a k-tuple of autonomous Hamiltonian flows (one-parameter
subgroups) {{φti}t∈R}1≤i≤k which have disjoint supports, and ik(ej) = φ1

j for each 1 ≤ j ≤ k, where
ej = (0, . . . , 1, . . . , 0) and 1 lies in the j-th entry. The above k-tuple of flows defines a homomorphism
jk : Rk → (G, d1) such that ik = jk|Zk . Since Rk is quasi-isometric to Zk, we obtain the following
statement:

Corollary 5. The metric group (G, d1) admits a quasi-isometric embedding from (Rk, d) where d is
any metric on Rk induced by a vector-space norm.

The following lemma allows us to prove that the quasi-isometric embeddings of Zk,Rk from Corollary
5 are in fact bi-Lipschitz embeddings.

Lemma 2. Let (G, d) be a metric group and let A ⊂ V be a subgroup of a normed linear space. Then
each Lipschitz quasi-isometric embedding j : A → G of metric groups is a bi-Lipschitz embedding. If
A is discrete and finitely generated then each homomorphism j : A→ G is Lipschitz.

Proof. Let j : A → G be a homomorphism. If A is discrete and finitely generated, then A ∼= Zl for
l ∈ Z≥0, the norm being equivalent to the standard norm on Zl. The upper bound d(j(x),1) ≤ C|x|
for all x ∈ A is now immediate. Hence j is Lipschitz.

Suppose now that A ⊂ V is a subgroup and j : A→ G is a Lipschitz quasi-isometric embedding. Let
C ≥ 1 be such that

1

C
|x| −B ≤ d(j(x),1) ≤ C|x| (1)

for a constant B ≥ 0 and all x ∈ A. We claim that the inequality (1) holds with B = 0. Indeed,
consider (1) for xm where m ∈ Z>0. We have

1

C
m|x| −B ≤ d(j(xm),1) = d(j(x)m,1) ≤ m · d(j(x),1),

where the last inequality is due to the right-invariance of d. Dividing by m yields

1

C
|x| −B/m ≤ d(j(x),1),

which finishes the proof by taking limits as m→∞.

9



This immediately implies the following strengthening of Corollary 5, since jk is evidently Lipschitz.

Corollary 6. The metric group (G, d1) admits a bi-Lipschitz embedding from (Rk, d) where d is any
metric on Rk induced by a vector-space norm.

Remark 1.3.3. It should be possible to prove Corollary 6 by using quasimorphisms, as in [14].

Remark 1.3.4. Let p ≥ 1. Note that since, by Jensen’s (or Hölder’s) inequality,

d1 ≤ dp,

all the above results for d1 continue to hold for dp.

Recall that if M has boundary then we assume that elements of Diffc,0(M,σ1) fix point-wise an open
neighbourhood of ∂M . Thus if (M1, σ1) ↪→ (M2, σ2) is a measure preserving embedding of manifolds,
then extending a diffeomorphism on M1 by the identity to a diffeomorphim of M2 gives a well defined
monomorphism ι : Diffc,0(M1, σ1) ↪→ Diffc,0(M2, σ2).

We finish this section with a question.

Question 1. Let (M1, σ1) ↪→ (M2, σ2) be a measure preserving embedding of surfaces. Is the monomor-
phism ι : Diffc,0(M1, σ1) ↪→ Diffc,0(M2, σ2) a quasi-isometric embedding?

Remark 1.3.5. Note that this question is motivated by our results since the statement holds for the
compositions of ι with the embeddings of right-angled Artin groups and (Rk, d) from the proofs of
Corollary 4 and Corollary 6.

1.4 Outline of the proof

In order to show Theorem 1, we define a Riemannian metric g on Xn(M) such that dg, the geodesic
metric on Xn(M) induced by g, extends to the geodesic metric on the compactification Xn(M). This
allows us to use the Švarc-Milnor lemma.

More precisely, Theorem 1 is a consequence of the following two propositions (we defer the proofs to
Section 2).

Proposition 1.1. Let λ be a piecewise C1 loop in Xn(M) based at q. Let S be a finite generating set
of Pn(M). The word norm of the class [λ] ∈ π1(Xn(M), q) ∼= Pn(M) with respect to S satisfies

|[λ]|Pn(M) ≤ A0 · lg(λ) +B0,

for constants A0, B0 > 0 depending only on S and n.

The next proposition says that the average length of loops λ(x, φ) is controlled by l1(φ).

Proposition 1.2. Let φ = {φt} be an isotopy in G such that φ0 = 1. There exist constants A1, B1 > 0
depending only on n, such that∫

Xn(M)\Z∪(φ1)−1(Z)

lg(λ(x, φ)) dµ⊗n(x) ≤ A1 · l1(φ) +B1.

To show this proposition, we first compare a metric g to an auxiliary metric g0. The metric g0 does
not extend to a metric on the compactification Xn(M), but it is relatively easy to show [43, Lemma
5.2], that the inequality from Proposition 1.2 holds for g0.
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2 Proofs.

2.1 Compactification of the configuration space

In this section M is a compact m-dimensional manifold. Below we describe the compactification of
Xn(M) using an embedding of the configuration space to a high dimensional Euclidean space. We
follow closely the construction given in [52].

Let us start with describing a family of maps on Xn(Rd). Let πij : Xn(Rd)→ Sd−1 by defined by the
formula

πij(x) =
xi − xj
|xi − xj |

,

where 0 < i < j < n+ 1 and x = (x1, . . . , xn) ∈ Xn(Rd). Let sijk : Xn(Rd)→ [0,∞] be defined by the
formula

sijk(x) =
|xi − xj |
|xi − xk|

,

where 0 < i < j < k < n+ 1 and [0,∞] is the one point compactification of [0,∞). Let ι : Xn(Rd) ↪→
(Rd)n be the standard inclusion and let An[Rd] = (Rd)n × (Sn−1)(

n
2) × [0,∞](

n
3). We consider the

embedding of Xn(Rd) to the ambient space An[R] given by the product map

αn = ι× (πij)× (sijk) : Xn(Rd)→ An[Rd].

Suppose M is a submanifold of Rd. Let Xn(M) be the closure of the image αn(Xn(M)) in An[Rd].
Then Xn(M) is a manifold with boundary, and the inclusion Xn(M) ↪→ Xn(M) is a homotopy
equivalence [52, Theorem 4.4 and Corollary 4.5].

2.2 Two metrics on Xn(M) and proof of Proposition 1.1

On [0,∞] we introduce the structure of a smooth manifold by a 1-map atlas e−x : [0,∞]→ [0, 1]. Let
gexp be the Riemannian metric on [0,∞] given by the pull-back of the Euclidean metric from [0, 1]. In
particular, we have that |dx|gexp

= e−x, where dx is a standard ’unit’ vector field on [0,∞).

Let euc be the metric on An[Rd] given by the product of standard metrics on Rd, Sd−1 and ([0,∞], gexp).
The first metric on Xn(Rd) we want to consider is defined to be the pull-back of euc to Xn(Rd) by the
map αn:

g = α∗n(euc).

Now, since we regard M as a submanifold of Rd, g induces a Riemannian metric on Xn(M).

The second metric is defined as follows. Let x = (x1, . . . , xn) ∈ Xn(Rd). Let d(x) denote the minimal
distance between the points in x, that is:

d(x) = min{|xi − xj | : i 6= j},

where |x− y| denotes the standard Euclidean distance between vectors x, y ∈ Rd.

Note that on Xn(Rd) we have the Euclidean metric restricted from (Rd)n. We rescale this metric by
the factor 1

d , i.e. we define a metric g0 on Xn(Rd) by

|v|g0 =
|v|
d(x)

,

where v ∈ Tx(Xn(Rd)) = (Rd)n and |v| is the Euclidean length of v ∈ (Rd)n. One should note that
d(x), and consequently g0, is continuous, but not differentiable. A manifold with such a metric is
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called a C0-Riemannian manifold. On a C0-Riemannian manifold one defines the lengths of paths and
a geodesic metric in the same way as in the smooth case.

Again, g0 restricts to a metric on Xn(M).

Proof of Proposition 1.1. We need to show that

|[λ]|Pn(M) ≤ A0 · lg(λ) +B0,

where λ be a piecewise C1 loop in Xn(M) based at q, [λ] ∈ π1(Xn(M), q) ∼= Pn(M) and |[λ]|Pn(M) is
the word norm of [λ].

By [52, Theorem 4.4] Xn(M) is a manifold with corners and Xn(M) is its interior. Moreover, the
coordinate charts on Xn(M) are defined in such a way that the embedding of Xn(M) into An[Rd]
is smooth. Thus one can restrict the metric euc to Xn(M). In other words, g = α∗n(euc) extends
to the compactification Xn(M). Now the proposition follows directly from the Švarc-Milnor lemma
[22, 54, 44]. More precisely, consider the following formulation of this result [15, Proposition 8.19].

Lemma 3. Let a group Γ act properly and discontinuously by isometries on a proper length space X.
If the action is cocompact, then Γ is finitely generated and for any choice of base-point x0 ∈ X, the
map Γ→ X, h 7→ h · x0, is a quasi-isometry.

Denote by gc the metric on Xn(M) restricted from euc. We apply this result to X = X̃n(M),
Γ = π1(Xn(M), π(x0)) ∼= π1(Xn(M), π(x0)), and the length space structure on X being induced by
the lift g̃c = π∗gc to X of gc on K = X/Γ = Xn(M) by the natural projection map π : X → K.
Note that dg̃c(x0, h · x0) ≤ lgc(λ) where λ is any C1 loop in Xn(M) based at π(x0) representing the
element h. Moreover, since gc is an extension of g, we have lgc(λ) = lg(λ).

2.3 Proof of Proposition 1.2

We begin with the proof of the main technical result:

Lemma 4. There exists C > 0 depending only on n, such that |v|g ≤ C ·|v|g0 for every v ∈ T (Xn(M)).

Proof. Since αn is a product map, in order to get a bound on the norm |v|g, we need to bound norms of
vectors Dπij(v) and Dsijk(v). Let x = (x1, . . . , xn) ∈ Xn(M) and let v = (v1, . . . , vn) ∈ Tx(Xn(M)).
There exists ε > 0 such that x + tv ∈ Xn(Rd) for every t < ε. Note that even though the path
{x + tv}t∈[0,ε] is not contained in Xn(M), it still represents the tangent vector v ∈ Tx(Xn(M)) <

Tx(Xn(Rd)). We have

Dπij(v) =
d

dt |t=0
πij(x+ tv)

=
d

dt |t=0

xi − xj + t(vi − vj)
|xi − xj + t(vi − vj)|

=
vi − vj
|xi − xj |

− (xi − xj)〈vi − vj , xi − xj〉
|xi − xj |3

.

By definition Dπij(v) is a vector in Rd tangent to a (d − 1)-dimensional sphere at point πij(x). By
|Dπij(v)| we denote its Euclidean length.
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After applying inequalities 〈vi − vj , xi − xj〉 ≤ |vi − vj ||xi − xj | and |vi − vj | ≤ |vi|+ |vj |, we obtain:

|Dπij(v)| ≤ 2
1

|xi − xj |
(|vi|+ |vj |)

≤ 2

d(x)
(|vi|+ |vj |)

≤ 2

d(x)
(
∑
i

|vi|).

Similarly, for sijk we compute (already in the map):

De−sijk(v) =
d

dt |t=0
e−sijk(x+tv)

=
d

dt |t=0
e
−
|xi−xj+t(vi−vj)|
|xi−xk+t(vi−vk)|

=
[ 〈vi − vj , xi − xj〉
|xi − xj ||xi − xk|

− |xi − xj |〈xi − xk, vi − vk〉
|xi − xk|3

]
e
−
|xi−xj |
|xi−xk| .

By definition |Dsijk(v)|gexp
= |De−sijk(v)|. Using similar inequalities as before we get:

|Dsijk(v)|gexp
≤
[ |vi|+ |vj |
|xi − xk|

+
(|vi|+ |vk|)|xi − xj |

|xi − xk|2
]
e
−
|xi−xj |
|xi−xk| .

Applying the inequality e−x ≤ 1
x to the last term we obtain:

|Dsijk(v)|gexp
≤
[ |vi|+ |vj |
|xi − xk|

+
(|vi|+ |vk|)|xi − xj |

|xi − xk|2
] |xi − xk|
|xi − xj |

=
|vi|+ |vj |
|xi − xj |

+
|vi|+ |vk|
|xi − xk|

≤ 1

d(x)
(2|vi|+ |vj |+ |vk|)

≤ 2

d(x)
(
∑
i

|vi|).

Finally, since
∑
i |vi| ≤

√
n|v|, we get:

|Dπij(v)| ≤
√
n

d(x)
|v|,

|Dsijk(v)|gexp ≤
2
√
n

d(x)
|v|.

We assume that M is compact, therefore there exists A > 0 such that d(x) ≤ A for every x ∈ Xn(M).
Now we can bound the pulled-back metric | · |g:

|v|2g = |Dι(v)|2 +
∑
i,j

|Dπij(v)|2 +
∑
i,j,k

|Dsijk(v)|2gexp

≤ A2

d(x)2
|v|2 +

∑
i,j

n

d(x)2
|v|2 +

∑
i,j,k

4n

d(x)2
|v|2

= C
|v|2

d(x)2
= C · |v|2g0 ,
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for C = A2 + n
(
n
2

)
+ 4n

(
n
3

)
.

Remark 2.3.1. In the proof of Lemma 4, the inequality e−x < 1
x is used to show the bound on the length

of Dsijk. Indeed, the choice of the function e−x : [0,∞]→ [0, 1] to define a smooth structure and the
metric on [0,∞] is not completely arbitrary. For a different identification, e.g. ln(x+e

x+1 ) : [0,∞]→ [0, 1],
we get a different smooth structure on [0,∞] (in the sense, that the identity map is not smooth) and
a metric which is not equivalent to gexp. Then after pull-back by αn we get a metric on Xn(M) which
is not equivalent to g and for this metric Lemma 4 might not hold.

Proof of Proposition 1.2. We need to show, that∫
Xn(M)\Z∪(φ1)−1(Z)

lg(λ(x, φ)) dµ⊗n(x) ≤ A1 · l1(φ) +B1,

where φ = {φt} is an isotopy in G such that φ0 = 1.

A similar inequality was proven in [43] for a metric which is equivalent to g0. Let us first describe this
metric. By dM denote the geodesic metric on M induced by the restriction of the standard Riemannian
metric on Rd. Let x ∈ Xn(M) and v ∈ Tx(Xn(M)). We define

|v|gb =
|v|

dM (x)
,

where dM (x) = min{dM (xi, xj) : i 6= j} and |v| is the Euclidean length of v seen as a vector in (Rd)n.
The difference between the function d used to define g0 and dM is that in d we measure the distance
between points xi and xj in the ambient space Rd and in dM inside M . Since M is compact, clearly
d and dM are equivalent and consequently gb and g0 are equivalent.

It follows from [43, Lemma 5.2] that∫
Xn(M)\Z∪(φ1)−1(Z)

lgb({φt · x}) dµ⊗n(x) ≤ C ′ · l1(φ).

Recall that {φt · x} is a path in Xn(M) (φt acts on x ∈ Xn(M) component-wise). Since g0 and gb are
equivalent, this inequality holds as well for g0 (with a possibly different constant).

Let us now focus on the metric g. Since the geodesic metric dg defined by g extends to the compact-
ification of Xn(M), the diameter of (Xn(M), dg) is finite. We can choose the system of short paths
γ(x) such that lg(γ(x)) ≤ D for some D > 0 and every x ∈ Xn(M) \ Z.

Thus for every x ∈ Xn(M) \ Z ∪ (φ1)−1(Z) we have

lg(λ(x, φ)) ≤ lg(γ(x)) + lg({φt · x}) + lg(γ(φ1(x))) ≤ 2D + lg({φt · x}).

Finally, due to Lemma 4, we have lg({φt · x}) ≤ C · lg0({φt · x}) and the proposition follows.
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