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Field equations
Navier–Stokes–Fourier system

∂t%+ divx(%u) = 0

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = divxS(ϑ,∇xu) + %g

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) + divx

(q

ϑ

)
=

1

ϑ

(
S : ∇xu− q · ∇xϑ

ϑ

)

Constitutive relations

Gibbs’ equation, thermodynamics stability

ϑDs = De + pD

(
1

%

)
,
∂p(%, ϑ)

∂%
> 0,

∂e(%, ϑ)

∂ϑ
> 0

Newton’s rheological law

S(ϑ,∇xu) = µ(ϑ)

(
∇xu +∇xut − 2

d
divxuI

)
+ η(ϑ)divxuI

Fourier’s law
q = −κ(ϑ)∇xϑ



Open fluid systems, boundary conditions

Dissipative systems

Physical space occupied by the fluid – Ω ⊂ Rd , d = 1, 2, 3 bounded domain
Mechanically open - mass interchange with the outer world allowed

Energetically open - energy (heat) interchange with the outer world allowed

Dirichlet boundary condition for the velocity

u = uB on ∂Ω, Γin = {x ∈ ∂Ω | uB · n < 0}

Mass inflow boundary condition

% = %B on Γin

Dirichlet boundary conditions for the temperature

ϑ = ϑB on ∂Ω

Alternatively: Heat flow through the boundary

(%Be(%B , ϑ)uB + q) · n = FB on Γin, q · n = 0 otherwise



Long time behavior of open systems
Total energy

E (%, u, ϑ) =
1

2
%|u|2 + %e(%, ϑ)

Velocity relative energy

EV

(
%, u, ϑ

∣∣∣uB

)
=

1

2
%|u− uB |2 + %e(%, ϑ)

Ballistic energy

EB

(
%, u, ϑ

∣∣∣uB , ϑB

)
=

1

2
%|u− uB |2 + %e(%, ϑ)− ϑB%s(%, ϑ)

Main goals:

Dissipativity - bounded absorbing sets

lim sup
t→∞

∫
Ω

E(%, u, ϑ)(t, ·) dx ≤ E∞

Convergence of ergodic averages

1

T

∫ T

0

F(%, u, ϑ)dt →
∫
P
F(z) dµ(z) as T →∞, P − phase space



Why weak solutions?

far from equilibrium (not “small”)
global in time solutions ≈ weak solutions

Possible formulation of the energy balance:

Internal energy balance ≈ “heat equation”

∂t(%e) + divx(%eu) + divxq = S(ϑ,∇xu) : ∇xu− pdivxu

Energy balance ≈ First law

∂tE + divx(Eu) + divx(pu) + divxq− divx(S · u) = %g · u

Entropy balance ≈ Second law

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) + divx

(q

ϑ

)
=

1

ϑ

(
S : ∇xu− q · ∇xϑ

ϑ

)



Weak solutions – basic idea

Entropy inequality ≈ Second law

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) + divx

(q

ϑ

)
≥ 1

ϑ

(
S : ∇xu− q · ∇xϑ

ϑ

)

Total energy balance ≈ First law

d

dt

∫
Ω

E dx ≤
∫

Ω

%g dx + boundary energy flux



Weak solutions - basic definition

Equation of continuity

∂t%+ divx(%u) = 0

Momentum balance

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = divxS + %g

Entropy inequality

∂t(%s) + divx(%su) + divx

(q

ϑ

)
≥ 1

ϑ

(
S : ∇xu− q · ∇xϑ

ϑ

)

Some form of total energy balance must be added
for the system to be (formally) well posed



Energy balance – flux b.c. for temperature

Relative (velocity) energy inequality

d

dt

∫
Ω

[
1

2
%|u− uB |2 + %e

]
dx

+

∫
∂Ω

FB sgn [uB · n]−dσx +

∫
∂Ω

[
%e(%, ϑB)

]
[uB · n]+dσx

≤ −
∫

Ω

[
%u⊗ u + pI− S

]
: ∇xuB dx +

1

2

∫
Ω

%u · ∇x |uB |2 dx

+

∫
Ω

%(u− uB) · (g − ∂tuB) dx



Main problem with the Dirichlet b.c. for the temperature

Boundary heat flux in the energy balance∫
∂Ω

q · n dσx

Solution – compensation with the entropy flux∫
∂Ω

q · n dσx =

∫
∂Ω

q · n
ϑ

ϑBdσx , ϑ|∂Ω = ϑB

⇔
Replace energy by ballistic energy!



Energy balance – Dirichlet b.c. for temperature

Ballistic energy inequality

d

dt

∫
Ω

[
1

2
%|u− uB |2 + %e − ϑB%s

]
dx

+

∫
∂Ω

[
%Be(%B , ϑB)− ϑB%Bs(%B , ϑB)

]
[uB · n]−dσx

+

∫
∂Ω

[
%e(%, ϑB)− ϑB%s(%, ϑB)

]
[uB · n]+dσx

+

∫
Ω

ϑB

ϑ

(
S : ∇xu− q · ∇xϑ

ϑ

)
dx

≤ −
∫

Ω

[
%u⊗ u + pI− S

]
: ∇xuB dx +

1

2

∫
Ω

%u · ∇x |uB |2 dx

+

∫
Ω

%(u− uB) · (g − ∂tuB) dx

−
∫

Ω

[
%s (∂tϑB + u · ∇xϑB) +

q

ϑ
· ∇xϑB

]
dx .



Results I, existence of weak solutions

Sufficient conditions for global existence of weak solutions

p ≈ %e, p ≈ q(%)︸︷︷︸
elastic component

+pm(%, ϑ) + aϑ4︸︷︷︸
radiation component

, q(%)
>∼ %γ , γ > d

2

µ(ϑ) ≈ 1 + ϑΛ, η(ϑ)
<∼ 1 + ϑΛ,

1

2
≤ Λ ≤ 1

κ(ϑ) ≈ 1 + ϑβ , β
>∼ 3 for temperature flux b.c.

β
>∼ 6 Dirichlet b.c. for temperature

Results:

Existence. Weak solutions exist globally in time for any finite energy
initial data

Compatibility. Any sufficiently smooth weak solution is a strong
(classical) solution

Weak–strong uniqueness (β ≈ 3). A weak solution coincides with
the strong solutions corresponding to the same initial/boundary data
as long as the latter exists



Results II, bounded absorbing set

Hard sphere pressure EOS

q(%) ≈ (%− %)−α, % > 0

Results:

Bounded absorbing set. There is a bounded absorbing set

Asymptotic compactness. Positive time shifts of any global in time
solution

ST (%, u, ϑ)(t, ·) = (%, u, ϑ)(T + t, ·)

are precompact in the strong Lp topology. In particular, their
asymptotic limit is another solution of the same problem (for
autonomous boundary data)



Results III, ergodic averages, statistical solutions

Trajectory space [idea of Sell, Nečas]

P =
{
t ∈ R

∣∣∣ (%,m = %, u, S = %s(%, ϑ)
}

Ergodic averages

1

T

∫ T

0

F (Sτ [%,m, S ])dτ

Krylov – Bogolyubov method ⇒ any bounded global trajectory
generates a stationary statistical solution ≈ a shift invariant measure
V on the trajectory space ≈ a stationary stochastic process solving
the problem V ma.s.

Birkhoff – Khinchin theorem ⇒ the ergodic averages converge for
µ- a.a. trajectory
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