Photosynthetica, 2015 (vol. 53), issue 3

Photosynthetica 2015, 53(3):369-377 | DOI: 10.1007/s11099-015-0129-y

Structural and functional changes in the photosynthetic apparatus of Chlamydomonas reinhardtii during nitrogen deprivation and replenishment

É. Preininger1,*, A. Kósa1, Z. S. Lőrincz1, P. Nyitrai2, J. Simon1, B. Böddi1, Á. Keresztes1, I. Gyurján1
1 Department of Plant Anatomy, Eötvös Loránd University, Budapest, Hungary
2 Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest, Hungary

Nitrogen is an essential factor for normal plant and algal development. As a component of nucleic acids, proteins, and chlorophyll (Chl) molecules, it has a crucial role in the organization of a functioning photosynthetic apparatus. Our aim was to study the effects of nitrogen starvation in cultures of the unicellular green alga, Chlamydomonas reinhardtii, maintained on nitrogen-free, and then on nitrogen-containing medium. During the three-week-long degreening process, considerable changes were observed in the Chl content, the ratio of Chl-protein complexes, and photosynthetic activity of the cultures as well as in the ultrastructure of single chloroplasts. The regreening process was much faster then the degradation; total greening of the cells occurred within four days. The rate of regeneration depended on the nitrogen content. At least 50% of the normal nitrogen content of Tris-Acetate-Phosphate (TAP) medium was required in the medium for the complete regreening of the cells and regeneration of chloroplasts.

Keywords: electron microscopy; nitrogen starvation; O2 evolution; 77K fluorescence

Received: August 29, 2014; Accepted: January 22, 2015; Published: September 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Preininger, É., Kósa, A., Lőrincz, Z.S., Nyitrai, P., Simon, J., Böddi, B., Keresztes, Á., & Gyurján, I. (2015). Structural and functional changes in the photosynthetic apparatus of Chlamydomonas reinhardtii during nitrogen deprivation and replenishment. Photosynthetica53(3), 369-377. doi: 10.1007/s11099-015-0129-y.
Download citation

Supplementary files

Download filephs-201503-0006_S1.pdf

File size: 268.12 kB

References

  1. Abe J., Kubo T., Takagi Y. et al.: The transcriptional program of synchronous gametogenesis in Chlamydomonas reinhardtii. - Curr. Genet. 46: 304-315, 2004. Go to original source...
  2. Abe J., Kubo T., Saito T. et al.: The regulatory networks of gene expression during the sexual differentiation of Chlamydomonas reinhardtii, as analyzed by mutants for gametogenesis. - Plant Cell Physiol. 46: 312-316, 2005. Go to original source...
  3. Appenroth K.J., Keresztes Á., Sárvári É. et al.: Multiple effects of chromate on Spirodela polyrhiza: Electron microscopy and biochemical investigations. - Plant Biol. 5: 315-323, 2003. Go to original source...
  4. Aseeva E., Ossenbühl F., Eichacker L.A. et al.: Complex formation of Vipp1 depends on its α-helical PspA-like domain. - J. Biol. Chem. 279: 35535-35541, 2004. Go to original source...
  5. Baszyński T., Pańczyk B., Król M. et al.: The effect of nitrogen deficiency on some aspects of photosynthesis in maize leaves. - Z. Pflanzenphysiol. 74: 200-207, 1975. Go to original source...
  6. Beardall J., Roberts S., Millhouse J.: Effects of nitrogen limitation on uptake of inorganic carbon and specific activity of ribulose-1,5-bisphosphate carboxylase/oxygenase in green microalgae. - Can. J. Bot. 69: 1146-1150, 1991. Go to original source...
  7. Beck C.F., Haring M.A.: Gametic differentiation of Chlamydomonas. - Int. Rev. Cytol. 168: 259-302, 1996. Go to original source...
  8. Bennoun P.: The present model for chlororespiration. - Photosynth. Res. 73: 273-277, 2002. Go to original source...
  9. Berges J.A., Charlebois D.O., Mauzerall D.C. et al.: Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. - Plant Physiol. 110: 689-696, 1996. Go to original source...
  10. Bouma D.: Effects of nitrogen nutrition on leaf expansion and photosynthesis of Trifolium subterraneum L. Comparison between different levels of nitrogen supply. - Ann. Bot. 34: 1131-1142, 1970. Go to original source...
  11. Coleman L.W., Rosen B.H., Schwartzbach S.D.: Preferential loss of chloroplast proteins in nitrogen deficient Euglena. - Plant Cell Physiol. 29: 1007-1014, 1988.
  12. Davies J.P., Grossman A.R.: The use of Chlamydomonas (Chlorophyta: Volvocales) as a model algal system for genome studies and the elucidation of photosynthetic processes. - J. Phycol. 34: 907-917, 1998. Go to original source...
  13. Doncheva S., Vassileva V., Ignatov G. et al.: Influence of nitrogen deficiency on photosynthesis and chloroplast ultrastructure of pepper plants. - Agr. Food Sci. Finland 10: 59-64, 2001. Go to original source...
  14. Fernandez E., Galvan A.: Inorganic nitrogen assimilation in Chlamydomonas. - J. Exp. Bot. 58: 2279-2287, 2007. Go to original source...
  15. Fernandez E., Galvan A.: Nitrate assimilation in Chlamydomonas. - Eucaryot. Cell. 7: 555-559, 2008. Go to original source...
  16. Giordano M., Kansiz M., Heraud P. et al.: Fourier transformation infrared pectroscopy as a novel tool to investigate changes in intracellular macromolecular pools in the marine microalga Chaetoceros muellerii (Bacillariophyceae). - J. Phycol. 37: 271-279, 2001. Go to original source...
  17. Goodenough U.W., Levine R.P.: Chloroplast ultrastructure in mutant strains of Chlamydomonas reinhardi lacking components of the photosynthetic apparatus. - Plant Physiol. 44: 990-1000, 1969. Go to original source...
  18. Guiaimét J.J., Pichersky E., Noodén L.D.: Mass exodus from senescing soybean chloroplasts. - Plant Cell Physiol. 40: 986-992, 1999. Go to original source...
  19. Gyurján I., Erdős G., Keresztes Á. et al.: Photosynthetic functions and structure in pigment-deficient mutants of Chlamydomonas reinhardtii. - Photosynthetica 14: 12-16, 1980.
  20. Gyurján I., Nagy A.H., Erdős G. et al.: Photosynthetic functions and thylakoid membrane polipeptide composition in lightsensitive mutants of Chlamydomonas reinhardtii. - Photosynth. Res. 3: 255-271, 1982. Go to original source...
  21. Hoober J.K., Boyd C.O., Paavola L.G.: Origin of tylakoid membranes in Chlamydomonas reinhardtii y-1 at 38°C. - Plant Physiol. 96: 1321-1328, 1991. Go to original source...
  22. James G.O., Hocart C.H., Hillier W. et al.: Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. - Bioresource Technol. 102: 3343-3351, 2011. Go to original source...
  23. Joyard J., Teyssier E., Miège C. et al.: The biochemical machinery of plastid envelope membranes. - Plant Physiol. 118: 715-723, 1998. Go to original source...
  24. Komatsu M., Waguri S., Ueno T. et al.: Impairment of starvationinduced and constitutive autophagy in Atg7-deficient mice. - J. Cell Biol. 169: 425-434, 2005. Go to original source...
  25. Kroll D., Meierhoff K., Bechtold N. et al..: VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. - P. Natl. Acad. Sci. USA 98: 4238-4242, 2001. Go to original source...
  26. Kutík J., Činčerová A., Dvořák M.: Chloroplasts ultrastructural development during the ontogeny of the second leaf of wheat under nitrogen deficiency. - Photosynthetica 28: 447-453, 1993.
  27. Lawlor D.W., Kontturi M., Young A.T.: Photosynthesis by flag leaves of wheat in relation to protein, ribulose bisphosphate carboxilase activity and nitrogen supply. - J. Exp. Bot. 40: 43-52, 1989. Go to original source...
  28. Martin N.C., Goodenough U.W.: Gametic differentiation in Chlamydomonas reinhardtii. I. Production of gametes and their fine structure. - J. Cell Biol. 67: 587-605, 1975. Go to original source...
  29. Mayer F., Czygan F.C.: [Ultarstructural changes in the green algae Ankistrodesmus braunii and Chlorella fusca var. rubescens under conditions of nitrogen deficiency.] - Planta 86: 175-185, 1969. [In German] Go to original source...
  30. McLean R.J.: Ultrastructure of Spongiochloris typica during senescence. - J. Phycol. 4: 277-283, 1968. Go to original source...
  31. Morgan-Kiss R., Ivanov A.G., Williams J. et al.: Differential thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid membranes of a psychrophilic and a mesophilic alga. - Biochim. Biophys. Acta 1561: 251-265, 2002. Go to original source...
  32. Nyitrai P., Mayer M., Óvári M. et al.: Involvement of the phosphoinositide signaling pathway in the anti-senescence effect of low-concentration stressors on detached barley leaves. - Plant Biol. 9: 420-426, 2007. Go to original source...
  33. Onodera J., Ohsumi Y.: Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. - J. Biol. Chem. 280: 31582-31586, 2005. Go to original source...
  34. Ossenbühl F., Göhre V., Meurer J. et al.: Efficient assembly of photosystem II in Chlamydomonas reinhardtii requires Alb3.1p, a homolog of Arabidopsis ALBINO3. - Plant Cell. 16: 1790-1800, 2004.
  35. Ördög V., Stirk W.A., Bálint P. et al: Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. - J. Appl. Phycol. 24: 907-914, 2012.
  36. Plumley F.G., Schmidt G.W.: Nitrogen-dependent regulation of photosynthetic gene expression. - P. Natl. Acad. Sci. USA 86: 2678-2682, 1989. Go to original source...
  37. Porra R.J., Thomson W.A., Kriedemann P.E.: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. - BBA-Bioenergetics 975: 384-394, 1989. Go to original source...
  38. Pyliotis N.A., Goodchild D.J., Grimme LH.: The regreening of nitrogen-deficient Chlorella fusca II. Structural changes during synchronous regreening. - Arch. Microbiol. 103: 259-270, 1975. Go to original source...
  39. Sager R., Granick S.: Nutritional studies with Chlamydomonas reinhardtii. - Ann. N.Y. Acad. Sci. 56: 831-838, 1953. Go to original source...
  40. Sayed O.H.: Analysis of photosynthetic responses and adaptation to nitrogen starvation in Chlorella using in vivo chlorophyll fluorescence. - Photosynthetica 35: 611-619, 1998. Go to original source...
  41. Scott N.S., Possingham J.V.: Changes in chloroplast DNA levels during growth of spinach leaves. - J. Exp. Bot. 34: 1756-1767, 1983. Go to original source...
  42. Semenenko V.E., Vladimirova M.G., Orleanskaya O.B. et al.: [Physiological characteristics of Chlorella sp. K at high extremal temperatures. II. Changes in biosyntheses, ultrastructure and activity of photosynthetic apparatus during uncoupling of cellular functions by extreme temperature.] - Fiziol. Rast. 16: 210-220, 1969. [In Russian]
  43. Shtaida N., Khozin-Goldberg I., Solovchenko A. et al.: Downregulation of a putative plastid PDC E1α subunit impairs photosynthetic activity and triacylglycerol accumulation in nitrogen-starved photoautotrophic Chlamydomonas reinhardtii. - J. Exp. Bot. 65: 6563-6576, 2014. Go to original source...
  44. Sinetova M.P., Markelova A.G., Los D.A.: The effect on nitrogen starvation on the ultrastructure and pigment composition of chloroplasts in the acidothermophylic microalga Galdieria sulphuraria. - Russ. J. Plant Physiol. 53: 153-162, 2006. Go to original source...
  45. Verhoeven A.S., Demmig-Adams B., Adams W.W.: Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to hight light and N stress. - Plant Physiol. 113: 817-824, 1997. Go to original source...
  46. Wang Z.T., Ullrich N., Joo S. et al.: Algal lipid bodies: Stress induction, purification and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. - Eukaryot. Cell 8: 1856-1868, 2009.
  47. Wase N., Black P.N., Stanley B.A., DiRusso C.C.: Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. - J. Proteome Res. 13: 1373-1396, 2014. Go to original source...
  48. Wei L., Derrien B., Gautier A. et al.: Nitric oxide-triggered remodeling of chloroplast bioenergetics and thylakoid proteins upon nitrogen starvation in Chlamydomonas reinhardtii. - Plant Cell 26: 353-372, 2014. Go to original source...
  49. Work V.H., Radakovits R., Jinkerson RE. et al.: Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. - Eukaryot. Cell 9: 1251-1261, 2010. Go to original source...
  50. Young E.B., Beardall J.: Photosynthetic function in Dunaliella tertiolecta (Chlorophyta) during a nitrogen starvation and recovery cycle. - J. Phycol. 39: 897-905, 2003. Go to original source...
  51. Yu S., Zhao Q., Miao X., Shi J.: Enhancement of lipid production in low-starch mutants Chlamydomonas reinhardtii by adaptive laboratory evolution. - Biores. Technol. 147: 499-507, 2013. Go to original source...
  52. Zhao D., Reddy K.R., Kakani V.G. et al.: Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorgum. - Eur. J. Agro. 22: 391-403, 2005. Go to original source...