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Abstract

The paper presents estimates of stable power GARCH models for returns
aggregated with varying temporal frequency. Although the stable GARCH
model gradually converges towards a GARCH model based on normally
distributed innovations, convergence is slow, and stable GARCH clearly
dominates ‘standard’ (power) GARCH.

When innovations follow a Lévy stable distribution, the properties of
standard tests and estimators may change substantially. We explore the
behaviour of the standard portmanteau test under stable distribution.

The empirical work is based on two substantially different investment.
We found substantial difference between the properties of a very liquid
paper traded on a sophisticated market, and one which is bought by much
fewer investors on a thin market. Stable GARCH model seems to be more
relevant in emerging capital markets, indicating that investors are more
likely to be hit by extreme shocks on an emerging capital market.
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1 Introduction

GARCH models are the single most important econometric tools for describing
the return process of securities.! These models reasonably depict some typical
characteristics of the return series recorded at exchange markets (e.g. volatility
clustering, heavy tails), but they still fail in many cases. The proliferation of
alternative GARCH models? indicates the intensity of the effort to improve the
performance of these models.

A possible reason for the failures of GARCH may be the assumption about
the distribution of innovations: diverse GARCH variants frequently assume nor-
mally distributed innovations,® however, that is often not supported by empirical
evidence. On the one hand, we can find examples of return series, for which
GARCH filtered residuals are skewed and/or leptokurtic—a behavior inconsis-
tent with the normal assumption. Many recent applications therefore use more
heavy tailed distributions for the innovation process, e.g., Student-t with low de-
grees of freedom. However, the usage of these distributions seems to be arbitrary,
lacking theoretical justification. On the other hand, an interesting example is
given by Ait Sahalia et al. (2001), who find substantial discrepancies between
the option implied and the asset implied state-price densities for the S&P 500
index of the NYSE, which, under some regularity conditions and the no-arbitrage
assumption should be identical. They attribute the differences to a Poisson jump
process generating excess skewness and kurtosis in the unconditional distribution
of asset prices. Jumps correspond to recurring extreme events, the effect of which
may not be captured by a GARCH process driven by innovations from a distribu-
tion with finite kurtosis (e.g., Gaussian or Student-t(k) with k& > 4). Modelling
these extreme events is, however, very important for practical problems like as-
sessment of the risk of an investment. Non-parametric methods are unable to
deal with relatively rare events; thus we need a parametric approach.

Choosing a distribution to model GARCH innovations is still an open prob-

lem. None of the candidates tried so far (e.g. normal, Student-¢, generalized

LGARCH is widely used among practitioners: for example, the most popular VaR (Value at
Risk) model is based on an integrated GARCH model, with predetermined parameters.

2Bollerslev et al. (1994) give a long list of alternative models of the family.

3In practice, quasi ML is usually used, in which case the underlying distribution can be
different from normal, but it should still maintain the most important characteristics of a
Gaussian innovation process.



exponential, Pareto stable distributions) have proven to be significantly better
in general than the others. Stable distributions (normal is a special case) can be
favoured against the others by their special role in probability theory: by the gen-
eralized central limit theorem. Stable distributions are the only non-degenerate
distributions arising as limits of normalized sums of independent and identically
distributed random variables. Thus if we think of innovations as sums of ran-
dom effects too numerous and difficult to incorporate into the model, then stable
distributions are a natural choice to describe them. The name stable refers to
stability under addition: the distribution of appropriately normalized sums of iid
stable distributions is the same as the distribution of the summands. The key
parameter of stable distributions is the index of stability (this parameter is invari-
ant under convolution) 0 < o < 2. For the normal distribution o« = 2. Besides
« there is a location, a scale and a skewness parameter, thus stable distributions
are rather flexible.*

Both the so called Pareto stable models (returns are considered iid, following
a stable law with a < 2) and GARCH models with normal or Student-¢ inno-
vations are able to describe the heavy tail property of return series, and in this
sense these models have been considered as competing models by several authors.
The question that motivated some studies was whether the fat tail property of
data is "produced" by infinite variance stable distributions, or GARCH driven by
finite variance innovations. Several authors are reluctant to accept infinite vari-
ance random variables as building blocks for econometric models. The results of
some studies make it clear though, that the above models cannot be compared.
Ghose and Kroner 1995 show for example that data simulated from some properly
parameterized integrated GARCH models seem to have the stability under sum-
mation property, and one might erroneously conclude that they actually come
from a stable distribution. Thus, it only seems to make sense to check for the
stability of GARCH filtered innovations.

The use of stable innovations in GARCH models has been proposed by sev-
eral authors: McCulloch (1985), Liu and Brorsen (1995), Panorska, Mittnik and
Rachev (1995), Mittnik, Paolella and Rachev (2000), but they are still rarely used
by practitioners, mainly because of theoretical problems (identification, station-

arity conditions, etc.), and computational difficulties. Some problems have been

“The ¢(1) distribution (the Cauchy distribution) is the symmetrical stable distribution with
oa=1.



solved, and some are topics of active research.

We have a dual goal in this paper. On the one hand, we compare the per-
formance of GARCH models with Gaussian and Lévy distributions (stable with
a < 2). We use return series with different frequencies, to analyse the stability
of the risk process. On the other hand, we compare the properties of two invest-
ments at two very different markets: one major stock from NASDAQ, and one
from the Budapest Stock Exchange (BSE), which is a recently (re)established,
small, thin market with little tradition and experience in the proper management
of an exchange market.

Section 2 describes some important market characteristics, and preliminary a-
nalysis of the data. Section 3 outlines major features of stable GARCH processes,

and empirical results, while Section 4 concludes.

2 Markets and Data

Our samples come from transaction level data from 1998, full year. We consider
returns of two stocks, CISCO traded at NASDAQ, and MOL traded at BSE.

There is probably no need to present the operation of NASDAQ), or to describe
one of its most heavily traded stocks of the period, CISCO. We chose this stock
because it is well known, many investors traded in it, and it had such a high
liquidity, that the properties of its return process may be expected to reflect the
characteristics of an efficient capital market.

The Budapest Stock Exchange was gradually set up during the period 1988-90
as a bond market, and it was inaugurated in 1990. Regular daily trading started
early 1991. Initially, there was only one share traded on the floor, and the number
of listed companies increased very slowly. As the market was extremely thin, little
trading occurred after the novelty faded. It was a very small, negligible, lacklustre
market until after the 1995 macroeconomic stabilization package. The market,
however, was set up by professionals keen on creating a properly functioning
modern stock exchange. Thus, it probably was the best-regulated and most
transparent market in the Central and Eastern European region.

Hungary chose a more gradualist approach to economic transformation than
most other transition economies. The careful constitution of the institutional

framework of a market economy got strong preference. By the mid-1990’s it could



develop into a ‘normal’ market, leaving behind most of the initial peculiarities.
Both market participants and regulatory authorities acquired the skills necessary
for operating smoothly on the market (c.f., Johnson and Schleifer, 1999).

The gradualism of the Hungarian transition was not restricted to institu-
tion building. Despite some timid attempts for mass privatisation, most former
state-owned enterprises were sold on a case-by-case basis to (usually strategic,
frequently foreign) investors, who typically got majority stakes. Privatisation
through the stock exchange was rarely used, although later several large priva-
tised companies were introduced to BSE, usually well after the majority was sold
to a strategic investor. Thus, some of the biggest Hungarian enterprises are in
fact traded on BSE.

MOL (Hungarian Oil Co) is one of the largest privatised companies listed
on BSE. Unlike most other large Hungarian corporations, MOL has no single
dominant owner, thus its share price is clearly determined by market forces.
However, MOL is large on the Hungarian market only; it is a very small company
compared to the multinational firms in the oil sector, or, indeed, compared to
CISCO. Although many Hungarians invested into the stock exchange, and into
MOL after the boom started in late 1996, the bulk of trading was (and still
is) executed by a handful of foreign investment funds, thus it is traded on an
oligopolistic market. So we expected the return series of the two stocks to have
rather different characteristics. (c.f., Palagyi and Mantegna (1999) and Palagyi
et al. (2001).)

Our sources for transaction level data were TAQ (CISCO), and BSE informa-
tion office (MOL). Trading time was recorded with the precision of one second
in both markets. Transactions registered at the same second were consolidated
as the first step of data processing. A well-known characteristic of transaction-
level data is that prices change relatively infrequently (Campbell et al., 1997).
In our case, more than half of transaction level returns were zero for any largish
subsample; the ratio for MOL was as large as 2/3.

For a preliminary analysis we described transaction-level returns as a mixture
of a Lévy and a degenerate (constant zero) distribution. In this approach some
of the zero returns may be considered as coming from the Lévy distribution, but
since we cannot identify these zeros, we simply left them out of the estimation of

the index of stability («). This way (as our Monte Carlo simulations showed) we



slightly overestimated the value of «, however, the upward bias was of the order
of the standard error of estimation.
The question whether a series of returns rq, ..., r,, is stable under addition can

be investigated by forming non-overlapping sums of size n of successive returns

r§") =71 . T, ré”) = Tpgp1+ ...+ 7o, ..., and estimating the index of stability

o, of the sequence r§") of aggregated returns. If the original sequence of returns

is stable, then «, is a constant independent of n. If we start with non-zero

transaction level returns, then r§") can be interpreted as the return of the asset

after n successive price changes on the market. On the other hand, if we start
(n)
J

Figure 1. depicts the convergence patterns of «,, for CISCO and MOL, using

with one-minute returns, r; " is the return on the asset after n minutes.

both transaction-level, and one-minute returns as initial (disaggregated) series.
To facilitate a proper comparison of the graphs we note that on the average
964 /160 non-zero price changes occur in one hour for CISCO/MOL respectively.
While alpha estimated from 60 minute returns of CISCO is about 1.7 (top right
panel), alpha estimated from the returns of CISCO after 964 successive price
changes is 2 (top left panel). On the left-hand side graph alpha converges rapidly
to two, while on the right one it converges very slowly. In fact, stability of one
minute returns of CISCO might not be rejected by a formal test. The explanation
of this phenomenon most probably is that returns over equidistant time intervals
are defined by (a random number of) non-zero transaction level returns falling
into the interval. Thus, we may think of the distribution of say 30 minute returns
of CISCO as a mixture of distributions with different parameters.

Pictures for MOL (bottom panels) look very different at first glance, but we
must take into account the fact that the market for CISCO is about 6 times faster
(in terms of number of price changes) than that for MOL. In fact the left graph
of MOL looks a bit like a magnified version of the left graph of CISCO. Using the
1 hour=160 price changes conversion the right graph of MOL can be considered
the same as the left pushed down by 0.2. The right graph gets very noisy at the
end, because sample size gets smaller with aggregation, however, fluctuations can
be interpreted as the size of error, and then the end of the right graph is on the
average a horizontal line.

Based on the above results it seems reasonable to try to model returns over

fixed physical time horizons. We use stable GARCH in this paper.
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Figure 1: Convergence patterns of the index of stability (a) of returns for the stocks
CISCO (top panels), and MOL (bottom panels) as a function of the level of aggregation
(n). On the left panels non-zero transaction level returns are aggregated while on the
right panels one-minute returns are aggregated. The average number of price changes
per hour is 964 for CISCO, and 160 for MOL.

3 Stable GARCH estimation results

The series y, is said to follow a stable power GARCH, Sf% s GARCH (r,s) process
(Mittnik, Paolella, Rachev (2000)) if

Yt = [t T €,

where ¢, = 0,24, 2 ~ S.(1,3,0), and

T S
5 5 5
oy =cy+ g cile—i|® + g djoy_; .
=1 =1

Sa(o, B, 1) denotes the stable distribution with parameters « (index of stability),
o (scale), 5 (skewness), p (location). We use the parametrization of Samorod-

nitsky and Taqqu (1994). In our analysis we use symmetric distributions only



(8 =0), s denotes a strictly stationary ARMA process.

Sufficient conditions for the strict stationarity of the Sf; 5 GARCH(r, s) pro-
cess with 1 < a <2 and 0 < d < « are given in Mittnik, Paolella, Rachev 2002:
co>0,¢,2>0,1=1,...,r,r>1,d; >0,5=1,...,5,5s >0, > s, and

V= E|zt\5zr:ci +§:dj <1
i=1 j=1

Ifl<a<2and 0 <6 < a, E|z|° can be written in the following closed form:

1 ) )
E\zt|5 = Ao gs = %F(l — a)(l + Tiﬁ)% cos(a arctan 7,.),

where 7, 5 := [ tan(anr/2) and

s = I'(1—0) cos %2, if 6 # 1,
°T /2, if § = 1.

If « <2and § > o, then E|z]° = oo (if « < 2 and § — «, then )\, 55 — 00).
Mittnik, Paolella and Rachev (2002) examine the case § = a < 2 by Monte Carlo
simulations, and conclude that in this case the process is not stationary.

The above model incorporates the ‘usual’ GARCH (Bollerslev, 1986) as a
special case when o = § = 2 (one can easily check that at the limit « — 2, § — 2
the above stationarity condition on V becomes the 'usual’ stationarity condition
for GARCH), and the symmetric models in the APARCH family of Ding et al.
(1993), when 0 < § < a = 2.

We estimated the above model by Maximum Likelihood, using the Nelder-
Mead polytope method of Press et al (1992). Maximization of the log likelihood
function was restricted to the parameter space satisfying the stationarity con-
ditions. As there is no closed form of the relevant partial derivatives of the
likelihood function, standard errors and confidence intervals had to be estimated
by the bootstrap method. (LePage et al., 2001)

Before estimating the model, we tested for autocorrelation in the series of re-
turns and squared returns. We calculated the most popular portmanteau statis-
tics (Ljung-Box) from the returns series. Unfortunately, the distribution of the

test statistics is unknown under the null hypothesis that the data generating



process follows an i.i.d. Lévy stable distribution. If the moments of the data
generating process are finite, at least up to the fourth order, its asymptotic dis-
tribution is y2. However, non-Gaussian stable distributions do not have finite
second and higher moments. Thus, the asymptotic distribution of the Ljung-Box
statistics is unknown, and it may not exist. Therefore, we tabulated the response
surface of the Ljung-Box statistics for various values of o in Table 1, assuming

® Further, as the moments of the

2000 observations, using 100000 repetitions.
data generating process do not exist, there is no guarantee that the Ljung-Box
statistic has the same critical values if it is computed from the powers of the
series. Table 2 gives critical values when the statistic is computed from the au-

‘6"’ power of the observations, where § = o — 0.001,° while

tocorrelations of the
Table 3 tabulates the critical values for the squared time series.

Indeed, our expectation that the properties of these three test statistics are
different is justified. Critical values corresponding to the same «, and order of
the autocorrelation test are frequently substantially different. As o decreases the
distribution becomes more extreme: while the 95% ordinate of the distribution
for the Ljung-Box test statistic seems to converge towards 0 with decreasing «
and increasing power, the 99 ordinate tends to increase.

We also did some sensitivity analysis with respect to the sample size. It
appears that some very extreme values may emerge as sample-size increases. The
distribution seems to gradually degenerate to a small number of extremely large
test statistics, while most of the values become very small. Thus the normalisation
of the distribution of the portmanteau test may not be correct when innovations
follow stable distribution. Which really means that we have to simulate the
critical values for each sample size separately.

When testing the autocorrelation of the relevant powers of returns, thus we
simulated critical values directly corresponding to the actual sample information
(see Table ?7). We first estimated the index of stability (o) from the return
series, then generated 1000 samples of iid « stable random numbers. The size of
the simulated samples agreed with the original sample size, and the critical values

correspond to .01 significance level. These critical values ("¢ Lévy’ lines in the

5The row labelled x? reproduces the asymptotic critical values for time series with finite
moments.

6In the stable power GARCH model we would need the autocorrelation function of the
unknown 6" power of the time series. As § < « is a necessary condition for stationarity, we
chose a value close to the upper bound of this region.



table), however, always depend on the ‘unconditional’ «, i.e., & estimated from
the raw data. This way we reproduce the ‘model identification’ phase. However,
& will in general be biased, if there is a significant autocorrelation in the return
series, or in its powers. Assume, for example, that returns were simulated by a
stable GARCH process with index «. In this case the estimated value of a—
as a result of ignoring the GARCH dependence structure in the data—can, for
example, be 0.2 smaller than that of the proper data generating process. This
difference (which seems to be quite typical) increases the critical value corre-
sponding to the first order Ljung-Box statistics by roughly 2, therefore it is more
likely that the null hypothesis of the data being independent will be accepted.
Even taking the above uncertainty into account, most statistics reported in the
table are well below critical values for returns, and well above critical values for
squared returns. Exceptions are third and fourth order statistics calculated from
30 minute returns, and from 60 minute squared returns. The latter result is irrel-
evant, and from the former one we might anticipate the presence of higher order
ARMA terms, but that was later not confirmed by specification tests.”

Critical values reported in the ’c normal’ rows of the tables correspond to
the normal distribution. For comparison with the Lévy values, these were also
obtained by Monte Carlo simulations, but they are close to the asymptotic values.
Lévy critical values are typically greater than the normal ones, and the difference
is more marked for critical values calculated from squared returns.

In light of the above results for CISCO we took the ARMA part of the stable
GARCH model () to be constant. We did not attempt to identify the orders
of GARCH because we have no knowledge of the distribution of the sample
autocorrelations of the 6 power of returns (p, xs(h)), but even if we had, we
would not know the value of delta prior to estimation. The results of Mikosch and
Starica (2000), concerning the distribution of p,, x2(h) for X being a GARCH(1,1)
process with finite variance innovations are rather discouraging: they found that
Pn.x2(h) does not converge to a constant limit for a nearly integrated GARCH(1,1)
process, so this statistics does not estimate anything.

We used 15, 30 and 60 minute returns of CISCO, and 15 minute returns of
MOL in the year 1998 (full year) for estimation of the stable GARCH model. We

only used 15 minute returns for MOL because the sample size for longer time

Tt is well-known that an ignored GARCH process biases tests for residual autocorrelation
towards rejection of no serial correlation in the residuals.



horizons was relatively small.® We also estimated two kinds of restrictions of the
general model: normal power GARCH (a = 2) and normal GARCH (o = 0 = 2).
We found that ARMA(0,0) GARCH(1,1) models best fit data in all cases (we
used the AIC criterion for model selection).

Tables 4-6 (CISCO) and Table 8 (MOL) report estimated parameters, stan-
dard errors, upper and lower limits of 99% confidence intervals, persistence (1)
and optimal value of the log likelihood function (loglik), and the Jarque-Bera
test for normality of the innovations (JB-norm). Reported standard errors and
confidence intervals were calculated by bootstrap.’

Looking at the results for CISCO we note that the estimated values of «
slightly increase with increasing time horizons. The 60 minute « is outside of
the 99% confidence interval for the 15 minute a; however, the 15 minute « is
just on the lower limit of the 60 minute confidence interval. The Lévy GARCH
model fits better than the normal to all data series, the a = 2 restriction is
always rejected at any meaningful significance level, and innovations are clearly
not normally distributed. The value of a for MOL is lower than for CISCO,
indicating that ouliers are more frequent among the Hungarian stock’s returns.
A possible reason for this might be the Russian crisis during the investigated
period. Another reason may be the size of the market: a smaller market may
well be more sensitive to shocks.

Estimated values of § for CISCO seem to increase with longer time hori-
zons. Delta is significantly less than alpha in all cases (a condition for strict
stationarity). The distribution of the estimate of delta is skewed. An interest-
ing phenomenon is that normal power GARCH coincides with normal GARCH
for the 30 and 60 minute returns of CISCO. The value of persistence is one in
Lévy power GARCH models, and slightly lower in other models. A high value of
persistence means that the effect of shocks die out slowly on the market.

As we used relatively large frequency time series, high values of persistence
are by no means surprising. However, it is interesting to note that Lévy GARCH
always gives larger persistence values than the corresponding Gaussian GARCH
models. It is also intriguing that Gaussian GARCH for CISCO does not give

8The Budapest Stock Exchange only operated for two hours daily in 1998. Opening times
were extended in 1999.

9The number of repetitions was 1000, and simulated sample sizes agreed with the size of the
data sample the model was estimated from.
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decreasing persistence values for aggregated time series.

Drost and Nijman (1993) analysed the effect of temporal aggregation on
GARCH models when (the i.i.d.) innovations have finite kurtosis. They proved
that weak GARCH(1,1) is closed to temporal aggregation, i.e., the aggregated
series will also follow a GARCH(1,1) process, and its persistence will be the k"
power of the persistence of the high frequency model, where k is the number of
cumulated periods in the low frequency time series, provided that the persistence
is less than one. Our Gaussian GARCH models satisfy these conditions, but the
estimated persistencies do not follow this property.'® This clearly indicates that
the assumption of Gaussian innovations should be rejected.

Even though the derivation in Drost and Nijman (1993) does not apply to
GARCH models with Lévy distributed innovations, as the higher moments of
the distribution do not exist unless o« = 2 (i.e., the Gaussian case), the intuition
behind their theorem strongly points to the case that stable GARCH models
should also be closed to aggregation. And that should also mean that « should

be constant; however, our results for CISCO do not contradict to that conclusion.

10Given that persistence is roughly 0.9 in the 15 minute model, it should be .81 in the 30
minute model, and .66 in the 60 minute model. However, our estimates for the 30 and 60
minutes persistence are higher than that of the 15 minutes series, c.f., Table 6.

11



Table 1: Response surface of the Ljung-Box test statistic to «, original series: (z;)
@ p=1 p=2 p=3 p=4

0951099095 099 [ 095]| 0.99 | 0.95| 0.99
x? |3.84[6.64 599 9.21 | 7.82 | 11.34 | 9.49 | 13.28

2 1382|656 595 9.23 | 7.83 | 11.35 | 9.53 | 13.28
1.9513.79 | 6.57 | 591 | 9.11 | 7.71 | 11.34 | 9.40 | 13.16
1.9 |3.7516.53 585 | 9.19 | 7.64 | 11.34 | 9.30 | 13.38
1.85]3.62 | 6.55 | 5.78 | 9.26 | 7.60 | 11.55 | 9.24 | 13.57
1.8 | 3531646 | 561 | 936 | 7.37 | 11.83 | 9.04 | 13.84
1751338 | 6.33 | 542 | 9.38 | 7.22 | 12.04 | 8.86 | 14.53
1.7 13.20 1 6.52 | 531 | 992 | 7.08 | 13.00 | 8.75 | 15.74
1.65 | 3.10 | 6.77 | 5.12 | 10.66 | 6.97 | 14.45 | 8.67 | 18.22
1.6 |2.89]6.55|4.90 | 11.03 | 6.69 | 15.37 | 8.36 | 19.09
1.55 | 2.66 | 6.72 | 4.64 | 11.81 | 6.46 | 17.31 | 8.20 | 22.00
1.5 | 2.43 1688|433 |12.76 | 6.13 | 19.16 | 7.93 | 24.58
1.45 218 | 6.84 | 4.02 | 13.41 | 5.84 | 19.93 | 7.65 | 26.18
1.4 | 1.96 | 6.78 | 3.69 | 14.58 | 5.47 | 21.66 | 7.20 | 27.92
1.35 | 1.70 | 6.64 | 3.31 | 14.07 | 5.05 | 22.05 | 6.80 | 30.06
1.3 | 1.44 1 6.55 | 2.89 | 13.78 | 4.47 | 21.61 | 6.15 | 29.78
1.25 | 1.23 | 6.55 | 2.59 | 15.02 | 4.10 | 23.26 | 5.77 | 31.85
1.2 10.99 | 6.02 | 2.18 | 13.56 | 3.58 | 21.94 | 5.04 | 30.62
1.15 | 0.77 | 4.69 | 1.76 | 12.54 | 2.97 | 21.05 | 4.39 | 30.39
1.1 1 0.60 | 4.54 | 1.43 | 12.14 | 2.56 | 20.49 | 3.87 | 30.19

x? gives the asymptotic critical values for distributions with finite moments. We used
2000 observations for the time series. The number of repetitions was 100000.
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Table 2: Response surface of the Ljung—Box test statistic to a, power series: (|2]?)
@ p=1 p=2 p=3 p=4

0.95]0.99]095] 099 |0.95] 0.99 [ 095 0.99
x? |3.84[6.64 599 9.21 | 7.82 | 11.34 | 9.49 | 13.28

2 1377664594 | 938 | 7.77|11.49 | 9.45 | 13.41
1.95 1246 | 6.24 | 4.36 | 10.41 | 6.13 | 14.52 | 7.91 | 18.33
1.9 | 1.68 | 6.43 | 3.37 | 12.83 | 5.08 | 18.77 | 6.80 | 24.74
1.85 | 1.28 | 6.50 | 2.80 | 14.46 | 4.48 | 23.38 | 6.23 | 30.54
1.8 | 1.06 | 6.60 | 2.50 | 15.58 | 4.16 | 25.19 | 6.04 | 33.17
1.7510.93 | 6.80 | 2.28 | 15.84 | 3.98 | 25.33 | 5.80 | 34.90
1.7 1 0.85 | 7.15 | 2.20 | 16.39 | 3.95 | 26.09 | 5.84 | 35.02
1.65|0.79 | 7.03 | 2.10 | 16.40 | 3.83 | 27.12 | 5.82 | 36.58
1.6 | 0.74 | 7.07 | 2.02 | 16.47 | 3.69 | 26.26 | 5.62 | 33.72
1.55 1 0.74 | 6.77 | 2.01 | 16.37 | 3.68 | 26.43 | 5.63 | 37.43
1.5 | 0.71 | 6.75 | 1.96 | 16.37 | 3.61 | 26.90 | 5.55 | 36.04
1.4510.70 | 7.15 | 1.99 | 17.63 | 3.70 | 26.91 | 5.62 | 36.84
1.4 10.67]6.73 194 | 16.66 | 3.63 | 27.42 | 5.62 | 36.68
1.35 1 0.67 | 7.38 | 1.96 | 17.59 | 3.70 | 28.20 | 5.77 | 37.58
1.3 [ 0.67 684|194 |17.28 | 3.67 | 27.39 | 5.50 | 37.32
1.25 1 0.65 | 7.25 | 1.87 | 16.69 | 3.66 | 26.10 | 5.58 | 35.64
1.2 [ 0.65 | 7.24 | 1.90 | 17.79 | 3.61 | 27.48 | 5.64 | 39.47
1.15 1 0.64 | 7.08 | 1.85 | 17.57 | 3.61 | 28.00 | 5.69 | 39.16
1.1 {0.62|6.70 | 1.81 | 17.25 | 3.49 | 27.12 | 5.42 | 37.04

x? gives the asymptotic critical values for distributions with finite moments. We used
2000 observations for the time series. The number of repetitions was 100000. The
value of § was set to a — .001 in all cases.
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Table 3: Response surface of the Ljung-Box test statistic to o, squared series: (27)
@ p=1 p=2 p=3 p=4

0.9510.990.95| 0.99 | 0.95| 0.99 | 0.95| 0.99
x? 13.8416.64 599 | 9.21 | 7.82 | 11.34 | 9.49 | 13.28

2 1377664594 | 938 | 7.77|11.49 | 9.45 | 13.41
1.95] 238 |6.21 | 4.27 | 10.54 | 6.05 | 14.77 | 7.80 | 18.70
1.9 | 1.50 | 6.19 | 3.09 | 12.75 | 4.75 | 19.00 | 6.40 | 24.97
1.85]1.02 | 5.93 | 2.33 | 14.39 | 3.87 | 23.25 | 5.49 | 30.81
1.8 [ 0.74 | 5.63 | 1.86 | 14.49 | 3.22 | 24.27 | 4.94 | 32.62
1.75 1 0.56 | 5.48 | 1.50 | 13.84 | 2.83 | 23.83 | 4.34 | 33.72
1.7 1046 | 5.37 | 1.28 | 13.96 | 2.51 | 24.00 | 4.00 | 32.84
1.65 | 0.36 | 4.68 | 1.08 | 13.38 | 2.18 | 24.35 | 3.58 | 34.36
1.6 {0.30 | 4.38 | 0.89 | 13.10 | 1.87 | 21.85 | 3.09 | 29.93
1.55 | 0.25 | 3.87 | 0.77 | 11.42 | 1.65 | 21.39 | 2.72 | 33.67
1.5 10.21 | 3.15|0.64 | 11.01 | 1.39 | 20.38 | 2.43 | 30.54
1.45 1 0.18 | 3.15 | 0.55 | 11.21 | 1.20 | 20.07 | 2.13 | 28.84
1.4 10.15 1254|046 | 9.37 | 0.99 | 18.34 | 1.87 | 27.90
1.3510.13 | 2.57 | 0.38 | 9.86 | 0.86 | 17.73 | 1.61 | 26.60
1.3 10.11 1 2.06 | 0.31 | 836 | 0.70 | 16.60 | 1.26 | 25.73
1.25 1 0.09 | 1.82 | 0.25 | 7.04 | 0.55 | 13.92 | 1.08 | 22.40
1.2 1 0.07 | 1.56 | 0.20 | 6.35 | 0.44 | 13.85 | 0.88 | 23.23
1.150.06 | 1.22 | 0.17 | 5.79 | 0.37 | 13.17 | 0.70 | 21.10
1.1 {0.05]0.78 | 0.13 | 4.55 | 0.28 | 10.39 | 0.53 | 17.32

x? gives the asymptotic critical values for distributions with finite moments. We used
2000 observations for the time series. The number of repetitions was 100000.
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Table 4: Estimated parameters of the Lévy power GARCH model, CISCO

Frequency | Nob | 10%: | « 5 |10 | ¢ dy V| loglik
15 min 6548 | 69 | 1.75| 1.50 14 | 0.107 | 0.721 | 1.000 | 26719
45 | 0.02 | 0.06 10 | 0.008 | 0.016
182 | 1.80 | 1.58 | 72 | 0.130 | 0.760
-58 | 1.71 ] 1.22 9 0.088 | 0.681
30 min 3274 | 91 | 1.77 | 1.54 6 0.036 | 0.905 | 1.000 | 12137
99 1 0.02 | 0.07 4 0.005 | 0.009
347 | 1.84 | 1.68 | 29 | 0.049 | 0.926
-152 | 1.72 | 1.27 3 0.024 | 0.874
60 min 1637 | 141 | 1.83 | 1.66 8 0.034 | 0.899 | 1.000 | 5448
198 | 0.03 | 0.12 | 51 0.008 | 0.018
670 | 1.91 | 1.82 | 143 | 0.063 | 0.937
-343 | 1.75 | 1.15 3 0.018 | 0.841

Estimated parameters appear in the first row of each frequency. Standard errors,
upper and lower limits of 99% confidence intervals are reported in rows 2, 3 and 4,
respectively.

Table 5: Estimated parameters of the normal power GARCH model, CISCO

Frequency | Nob | 10%: | & | 10%qg | ¢ d; V| loglik | JB-norm
15 min 6548 | 60 | 1.69 7 0.129 | 0.685 | 0.894 | 26496 1864
50 | 0.16 13 | 0.011 | 0.020
174 | 2.00 76 | 0.155 | 0.731
-69 | 1.28 1 0.103 | 0.632
30 min 3274 | 70 | 2.00 1 0.035 | 0.901 | 0.971 | 12026 720
109 | 0.09 1 0.005 | 0.014
343 | 2.00 10 | 0.052 | 0.932
-213 | 1.47 0 0.024 | 0.861
60 min 1637 | 72 | 2.00 2 0.044 | 0.873 | 0.960 | 5409 281
218 | 0.15 10 0.010 | 0.028
588 | 2.00 | 70 |0.076 | 0.920
-453 | 1.32 1 0.025 | 0.780

Estimated parameters appear in the first row of each frequency. Standard errors,
upper and lower limits of 99% confidence intervals are reported in rows 2, 3 and 4,
respectively.
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Table 6: Estimated parameters of the normal GARCH model, CISCO

Frequency | Nob | 10 | 10, | ¢ d, V| loglik | JB-norm
15 min 6548 | 61 1 0.113 | 0.671 | 0.898 | 26494 1906
49 0 0.007 | 0.020
173 2 0.133 | 0.718
-65 1 0.094 | 0.617
30 min 3274 | 70 1 0.035 | 0.901 | 0.971 | 12026 720
109 0 0.005 | 0.013
331 1 0.047 | 0.930
-229 0 0.022 | 0.862
60 min 1637 | 71 2 0.044 | 0.873 | 0.960 | 5409 281
216 1 0.008 | 0.022
627 4 0.065 | 0.923
-483 1 0.024 | 0.800

Estimated parameters appear in the first row of each frequency. Standard errors,
upper and lower limits of 99% confidence intervals are reported in rows 2, 3 and 4,
respectively.

Table 7: Ljung-Box test statistics and critical values, CISCO

15 min 30 min 60 min

n 2 3 4 1 2 3 4 1 2 3 4
Yt 0.16 | 0.85 | 0.93 | 0.93 || 044 | 3.20 | 15.3 | 21.5 || 0.04 | 0.49 | 0.55 | 1.25
¢ (Lévy) 6.60 | 10.1 | 14.6 | 18.2 || 7.78 | 10.6 | 13.7 | 16.5 || 6.57 | 11.4 | 14.8 | 16.7
¢ (normal) | 6.53 | 8.94 | 10.8 | 13.0 || 6.64 | 8.84 | 11.7 | 12.6 || 7.56 | 9.47 | 11.5 | 12.6
2 501 | 781 | 994 | 1208 || 59.3 | 92.6 | 419 | 426 || 12.8 | 25.4 | 27.0 | 32.6
c (Lévy) |2.65|17.2|20.6 | 47.7 || 2.35 | 14.0 | 19.0 | 34.0 || 6.16 | 23.3 | 33.2 | 39.5
¢ (normal) | 6.87 | 8.77 | 11.1 | 13.0 || 6.28 | 9.08 | 11.3 | 12.5 || 6.85 | 8.32 | 11.0 | 12.6

Lévy power GARCH residuals
PAR 0.24 | 0.29 | 0.41 | 0.51 || 6.09 | 29.0 | 35.5 | 42.0 || 7.78 | 8.73 | 14.4 | 144
c 5.56 | 18.6 | 29.3 | 47.5 || 4.74 | 15.8 | 21.6 | 374 || 7.35 | 23.1 | 30.8 | 37.8
th 043 | 0.43 | 1.01 | 1.18 || 2.88 | 46.2 | 52.4 | 55.6 || 8.25 | 8.83 | 11.7 | 11.8
c 2.65 | 17.2 | 20.6 | 47.7 || 2.35 | 14.0 | 19.0 | 34.0 || 6.16 | 23.3 | 33.2 | 39.5
Normal power GARCH residuals
|2]° 0.05 | 0.16 | 0.19 | 0.20 || 1.41 | 9.60 | 17.3 | 22.5 || 1.42 | 2.97 | 10.2 | 10.6
c 721 19.05|11.2 | 13.3 || 6.28 | 9.08 | 11.3 | 12.5 || 6.85 | 8.32 | 11.0 | 12.6
P 0.07 | 0.10 | 0.29 | 0.34 || 1.41 | 9.60 | 17.3 | 22.5 || 1.42 | 2.97 | 10.2 | 10.6
c 6.87 | 877 | 11.1 | 13.0 || 6.28 | 9.08 | 11.3 | 12.5 || 6.85 | 8.32 | 11.0 | 12.6
Normal GARCH residuals

th 0.50 | 0.51 | 0.72 | 0.87 || 1.41 | 9.59 | 17.3 | 22.5 || 1.42 | 2.97 | 10.2 | 10.6
c 6.87 | 877 | 11.1 | 13.0 || 6.28 | 9.08 | 11.3 | 12.5 || 6.85 | 8.32 | 11.0 | 12.6

n denotes the order of statistics. Statistics calculated from various powers of returns
(y;) and residuals (z;) appear in the rows v, y?2, |2|°, and z?. Below the statistics
critical values (c) corresponding to 99% probability appear (see text).
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Table 8: Parameters of Lévy power GARCH and normal GARCH models esti-
mated from 15 minute returns of MOL, as well as Ljung-Box test statistics and
critical values calculated from powers of model residuals.

105 | « 5 |10, | ¢ dy V| loglik | JB-norm
Lévy 129 [ 1.38 | 0.85 | 125 | 0.054 | 0.911 | 0.998 | 6426.3 10862
61 | 0.03]0.07 87 0.008 | 0.009
297 | 147 | 1.03 | 583 | 0.077 | 0.936
-3 1.31 | 0.64 45 0.034 | 0.885
2 0.00 (9.41) 0.03 (32.7) 0.05 (35.9) 0.07 (36.8)
|2 0.02 (11.5)  0.03 (29.7) 0.03 (33.6) 0.03 (38.1)
th 0.00 (3.69) 0.00 (19.7)  0.00 (21.0) 0.00 (21.7)
normal | 1574 5 0.039 | 0.805 | 0.883 | 5947.0 6539
214 2 0.010 | 0.063
2109 14 0.065 | 0.911
1028 2 0.014 | 0.559
zt 2.80 (6.18) 2.81 (8.43) 2.95 (11.1) 3.08 (12.2)
> 079 (6.35) 2.01 (3.46) 2.80 (10.4) 2.97 (12.6)

Estimated parameters appear in the rows labelled 'Lévy’ and 'Normal’. Standard
errors, upper and lower limits of 99% confidence intervals are reported in rows 2, 3
and 4, respectively. Ljung-Box statistics (up to fourth order) calculated from powers
of model residuals (z;) appear in rows |z|° and 27, followed by critical values (in
parentheses) corresponding to 99% probability level. Sample size is 1798.
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We calculated Ljung-Box test statistics from powers of model residuals (z,
|2:|° and 2?) to check if there was significant autocorrelation left in the filtered
data. (0 was set to the estimated value.) Results are reported in Tables 7-8.
As before, critical values were calculated from Monte Carlo simulations. For 15
minute return residuals of CISCO (Table 7.) statistics are well below critical
values. For the Lévy power GARCH residuals of 60 minute returns of CISCO,
however, the first order statistics are slightly higher than the critical values.
Interestingly, the normal GARCH model does better in this case, but neither
model does well on the 30 minute returns. We do not report the test statistics
calculated for residual autocorrelation of the CISCO returns; these were almost
zero: well below critical values for all frequencies. For the stock MOL (15 minute
data, Table 8.) all statistics were well below critical values; the Lévy model seems
to do slightly better in this respect.

Finally, we checked if residuals of the Lévy power GARCH models fitted to 15
minute CISCO and MOL returns were stable under addition. (We used residuals
from 15 minute returns partly because these constitute the largest sample, and
partly because these (and their powers) seemed to contain the least amount of
autocorrelation (see Ljung-Box statistics). This point is cruical - as we saw in
the example in the introduction, data containing serial autocorrelation in the
powers may appear to be stable under addition even if they do not come from a
stable process. We calculated Monte Carlo confidence intervals for a estimated
from aggregated residuals at the first 6 orders of aggregation. (We simulated
1000 samples of iid « stable random numbers with « set to the value estimated
from the residuals, and at each level of aggregation we calculated the average,
the upper and lower percentiles of o’s. Simulated samples had the same size as
the samples of residuals.)

Results are reported in Table 9. n is the level of aggregation, rows labeled
CISCO and MOL contain o’s estimated from aggregated residuals. Below these
values the average, the upper and lower confidence limits for the Lévy distributed
time series are reported.

« indices estimated from aggregated residuals converge to two quickly, and
all (except MOL, n = 2) lie outside respective confidence intervals. In contrast
to that, the average of a’s estimated from aggregates of simulated stable random

numbers remain practically constant. The width of confidence intervals increases
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Table 9: Monte Carlo test of stability of residuals of the Lévy power GARCH
model

n 1 2 3 4 ) 6
CISCO | 1.75| 1.89 | 1.94 | 1.96 | 1.98 | 2.00
1.75 | 1.75 | 1.75 | 1.75 | 1.75 | 1.75
1.79 | 1.81 | 1.82 | 1.84 | 1.85 | 1.87
1.70 | 1.68 | 1.66 | 1.65 | 1.65 | 1.64
MOL | 139|143 |1.58|1.75| 191|195
1.39 1 1.39 | 1.39 | 1.39 | 1.39 | 1.40
1.49 | 1.51 | 1.55 | 1.58 | 1.61 | 1.63
1.29 1 1.26 | 1.24 | 1.21 | 1.20 | 1.18

with the level of aggregation, as sample sizes decrease.

4 Conclusion

With efficiently computerised trading systems becoming standard even on small
markets, and with cheaply and abundantly available information, there are in-
creasingly more agents (in particular, day traders) on exchange markets who are
interested in the short-run risk of their investments. Extreme events may matter
more for day-traders than for strategic investors, interested in long-run returns.
However, GARCH models based on normally distributed innovations may give
less reliable prediction of the expected risk than models assuming stable dis-
tributed innovations.

One difficulty when developing a Lévy power GARCH model is that the stan-
dard identification and diagnostic tools cannot be applied the same way as with
more regular GARCH models. This means that users of stable GARCH models
will have to compute statistics by bootsrap. It seems that the estimated « value
depends on the GARCH model itself, so the traditional identification procedure
clearly cannot be used.

In our study we found that even though Lévy GARCH models fit to returns
better than normal GARCH does, we can reject stability of the residuals. On the
other hand Mittnik, Paolella and Rachev (2000), for example, reported results on
a return series, for which stability of the model residuals could not be rejected.

Both results are rather particular, and further studies are needed before a generic
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conclusion could be drawn about the stability of stable GARCH model residuals.

Even though our study demonstrated that the stability of residuals can be
rejected in several cases, GARCH models with Lévy innovations still provide a
better representation of the underlying data generating process than those driven
by Gaussian distributions. Apparently, Lévy models are vulnerable to stability
tests.!! But all models are just specific approximations of the true data generating
process, and stable GARCH models proved clearly superior to the Gaussian ones
in all cases.

Besides examining the goodness-of-fit of models and stability of residuals one
should compare models’ performance in financial applications like option pricing,
or value at risk calculations. A question one may consider for example is this:
how much would the result of a value at risk calculation based on a Lévy GARCH
model (say with o = 1.7) be affected by the fact that residuals are not stable?

Another very important result is that the gain in using a Lévy GARCH model
is much larger for MOL. Thus, extreme events are more likely to drive an emerg-
ing market than a mature one. Further, Gaussian GARCH estimated from MOL
is much more sensitive to sample adjustments than from CISCO, which also indi-
cates that risk analysis, based on Gaussian innovations, may be very misleading

on an emerging capital market.

U Empirical papers using Gaussian GARCH models provide ample evidence against the nor-
mality of the innovation process.
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