Pralesní půdy se dosud vyvíjejí spontánně a faktory, které je spoluutvářejí, ještě nebyly výrazně změněny lidskými aktivitami. Ve studii se zabýváme evolucí půd v zalesněné krajině. Zvláštní pozornost věnujeme schopnosti stromů urychlovat nebo zpomalovat pedogenezi, měnit směr trajektorie vývoje půd a účastnit se svahových procesů. Půda následně formuje novou generaci stromů.
Použitá a citovaná literatura:
BENNIE, A. T. Growth and mechanical impedance. In: WAISEL, Yoav; ESHEL, Amram; KAFKAFI, Uzi (eds.). Plant roots: the hidden half. Marcel Dekker, Inc.: New York, 1991.
BINKLEY, D. A. N.; GIARDINA, Christian. Why do tree species affect soils? The warp and woof of tree-soil interactions. Biogeochemistry, 1998, 42: 89-106.
BLOOMFIELD, C. A study of podzolization: Part II. The mobilization of iron and aluminium by the leaves and bark of Agathis australis (Kauri). Journal of Soil Science, 1953, 4.1: 17-23.
BOBEK, Přemysl; ŠAMONIL, Pavel; JAMRICHOVÁ, Eva. Biotic controls on Holocene fire frequency in a temperate mountain forest, Czech Republic. Journal of Quaternary Science, 2018, 33: 892-904.
BORMANN, Bernard T., et al. Rapid soil development after windthrow disturbance in pristine forests. Journal of Ecology, 1995, 83: 747-757.
CORENBLIT, Dov, et al. Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: a review of foundation concepts and current understandings. Earth-Science Reviews, 2011, 106.3-4: 307-331.
DANĚK, Pavel; ŠAMONIL, Pavel; PHILLIPS, Jonathan D. Geomorphic controls of soil spatial complexity in a primeval mountain forest in the Czech Republic. Geomorphology, 2016, 273: 280-291.
GABET, Emmanuel J.; MUDD, Simon M. Bedrock erosion by root fracture and tree throw: A coupled biogeomorphic model to explore the humped soil production function and the persistence of hillslope soils. Journal of Geophysical Research: Earth Surface, 2010, 115.F4.
GILBERT, Grove Karl. Report on the Geology of the Henry Mountains, Department of the interior, US Geographical and Geological Survey of the Rocky Mountain Region, Washington DC, USA. US Government Printing Office, 1877.
HOFFMAN, Benjamin SS; ANDERSON, Robert S. Tree root mounds and their role in transporting soil on forested landscapes. Earth Surface Processes and Landforms, 2014, 39.6: 711-722.
CHOJNACKY, David C.; HEATH, Linda S.; JENKINS, Jennifer C. Updated generalized biomass equations for North American tree species. Forestry, 2013, 87.1: 129-151.
KAYAHARA, G. J.; KLINKA, K.; LAVKULICH, L. M. Effects of decaying wood on eluviation, podzolization, acidification, and nutrition in soils with different moisture regimes. Environmental Monitoring and Assessment. 1996, 39: 485-492.
LUTZ, Harold John. Movement of rocks by uprooting of forest trees. American Journal of Science, 1960, 258.10: 752-756.
MICHÉLI, E.; SCHAD, Peter; SPAARGAREN, Otto (eds.). World Reference Base for Soil Resources 2006. First Update 2007. World Soil Resources Reports, 2007, 103.
NĚMEC, A. Studie o minerální výživě odumírajícího smrkového porostu v polesí Sv. Tomáš na Šumavě. Lesnická práce, 1940, 19: 12-23.
PAWLIK, Łukasz; ŠAMONIL, Pavel. Biomechanical and biochemical effects recorded in the tree root zone–soil memory, historical contingency and soil evolution under trees. Plant and Soil, 2018, 426.1-2: 109-134.
PAWLIK, Łukasz; PHILLIPS, Jonathan D.; ŠAMONIL, Pavel. Roots, rock, and regolith: Biomechanical and biochemical weathering by trees and its impact on hillslopes—A critical literature review. Earth-science reviews, 2016, 159: 142-159.
PHILLIPS, Jonathan D. Landforms as extended composite phenotypes. Earth Surface Processes and Landforms, 2016, 41.1: 16-26.
PHILLIPS, Jonathan D.; MARION, Daniel A. Biomechanical effects of trees on soil and regolith: beyond treethrow. Annals of the Association of American Geographers, 2006, 96.2: 233-247.
PHILLIPS, Jonathan D., et al. Domination of hillslope denudation by tree uprooting in an old-growth forest. Geomorphology, 2017, 276: 27-36.
PHILLIPS, Jonathan D. Divergent evolution and the spatial structure of soil landscape variability. Catena, 2001, 43.2: 101-113.
SHOUSE, Michael; PHILLIPS, Jonathan. Soil deepening by trees and the effects of parent material. Geomorphology, 2016, 269: 1-7.
SMITH, Myron L.; BRUHN, Johann N.; ANDERSON, James B. The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature, 1992, 356.6368: 428-431.
SPEARS, J. D. H.; LAJTHA, K. The imprint of coarse woody debris on soil chemistry in the western Oregon Cascades. Biogeochemistry, 2004, 71.2: 163-175.
ŠAMONIL, Pavel, et al. Biomechanical effects of trees in an old‐growth temperate forest. Earth Surface Processes and Landforms, 2018, 43.5: 1063-1072.
ŠAMONIL, Pavel, et al. Soil mixing and genesis as affected by tree uprooting in three temperate forests. European Journal of Soil Science, 2015, 66.3: 589-603.
ŠAMONIL, Pavel, et al. Crossdating of disturbances by tree uprooting: Can treethrow microtopography persist for 6000 years?. Forest ecology and management, 2013, 307: 123-135.
ŠAMONIL, Pavel, et al. Impacts of old, comparatively stable, treethrow microtopography on soils and forest dynamics in the northern hardwoods of Michigan, USA. Catena, 2016, 140: 55-65.
Old-growth forest soils have always developed spontaneously, without human intervention. This study deals with soil evolution in forested landscapes. Particular attention is paid to the ability of individual trees to accelerate or slow down soil formation processes, to change the pedogenetical pathway, and to participate in slope processes. Soil subsequently co-forms a new generation of trees.