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KNASTER AND FRIENDS III: SUBADDITIVE COLORINGS

CHRIS LAMBIE-HANSON AND ASSAF RINOT

Abstract. We continue our study of strongly unbounded colorings, this time

focusing on subadditive maps. In Part I of this series, we showed that, for

many pairs of infinite cardinals θ < κ, the existence of a strongly unbounded
coloring c : [κ]2 → θ is a theorem of ZFC. Adding the requirement of subaddi-

tivity to a strongly unbounded coloring is a significant strengthening, though,

and here we see that in many cases the existence of a subadditive strongly un-
bounded coloring c : [κ]2 → θ is independent of ZFC. We connect the existence

of subadditive strongly unbounded colorings with a number of other infinitary

combinatorial principles, including the narrow system property, the existence
of κ-Aronszajn trees with ascent paths, and square principles. In particular,

we show that the existence of a closed, subadditive, strongly unbounded col-
oring c : [κ]2 → θ is equivalent to a certain weak indexed square principle

�ind(κ, θ). We conclude the paper with an application to the failure of the

infinite productivity of κ-stationarily layered posets, answering a question of
Cox.

1. Introduction

For infinite regular cardinals θ < κ, the positive partition relation κ → (κ)2
θ,

which asserts that every coloring c : [κ]2 → θ has a homogeneous set of cardinality
κ, is equivalent to κ being weakly compact. For non-weakly-compact cardinals
κ, though, one can seek to measure the incompactness of κ by asking whether
certain strengthenings of the negative relation κ 9 (κ)2

θ hold. One natural such
strenthening is to require that there exist colorings c : [κ]2 → θ witnessing certain
strong unboundedness properties. In [LHR18], which forms Part I of this series
of papers, the authors introduce the following coloring principle, which asserts the
existence of such strongly unbounded colorings, and use it to answer questions
about the infinite productivity of the κ-Knaster condition for uncountable κ.

Definition 1.1. U(κ, µ, θ, χ) asserts the existence of a coloring c : [κ]2 → θ such
that for every σ < χ, every pairwise disjoint subfamily A ⊆ [κ]σ of size κ, and every
i < θ, there exists B ∈ [A]µ such that min(c[a× b]) > i for all (a, b) ∈ [B]2.

Much of [LHR18] is devoted to analyzing situations in which U(. . .) necessarily
holds and, moreover, is witnessed by closed or somewhere-closed colorings (see
Definition 2.1 below). In Part II of this series [LHR21], we studied Cspec(κ), the
C-sequence spectrum of κ (see Definition 5.5 below), which is another measure of
the incompactness of κ, and found some unexpected connections between Cspec(κ)
and the validity of instances of U(κ, . . .).

In this paper, which can be read largely independently of [LHR18, LHR21], we
investigate subadditive witnesses to U(. . .).
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2 CHRIS LAMBIE-HANSON AND ASSAF RINOT

Definition 1.2. A coloring c : [κ]2 → θ is subadditive if, for all α < β < γ < κ,
the following inequalities hold:

(1) c(α, γ) ≤ max{c(α, β), c(β, γ)};
(2) c(α, β) ≤ max{c(α, γ), c(β, γ)}.

Adding the requirement of subadditivity significantly strengthens the coloring
principle, and we prove that the existence of closed, subadditive witnesses to U(. . .)
is equivalent to a certain indexed square principle. Our first main result improves
Clause (1) of [LHR18, Theorem A].

Theorem A. Let θ < κ be a pair of infinite regular cardinals. The following are
equivalent:

(1) �ind(κ, θ) holds;
(2) There is a closed, subadditive witness to U(κ, 2, θ, 2);
(3) There is a closed, subadditive witness to U(κ, κ, θ, sup(Reg(κ)).

In addition, �(κ,vθ) implies (1)–(3).

We also prove that a version of square with built-in diamond for a singular
cardinal λ gives rise to somewhere-closed subadditive witnesses to U(λ+, . . .), which
in turn imply that the C-sequence spectrum of λ+ is rich:

Theorem B. Suppose that λ is a singular cardinal, ~f is a scale for λ in some

product
∏~λ, and ♦(~λ) holds. Let Σ denote the set of good points for ~f .

Then, for every θ ∈ Reg(λ) \ (cf(λ) + 1), there exists a Σ-closed, subadditive
witness to U(λ+, λ+, θ, λ). In particular, Reg(λ) ⊆ Cspec(λ+).

For a pair of infinite regular cardinals θ < κ and a coloring c : [κ]2 → θ, an
interesting facet of the study of the unboundedness properties of c is the set ∂(c)
of its levels of divergence (see Definition 3.22 below). Any coloring c for which
∂(c) is stationary is automatically a somewhere-closed witness to U(κ, κ, θ, θ). We
prove that the existence of a (fully) closed witness c to U(κ, κ, θ, θ) for which ∂(c) is
stationary is equivalent to the existence of a nonreflecting stationary subset of Eκθ ,
and that the existence of a nonreflecting stationary subset of Eκθ does not suffice to
yield a subadditive witness to U(κ, 2, θ, 2). We have three main consistency results
concerning the characteristic ∂(c):

Theorem C. (1) For any pair of infinite regular cardinals θ < κ, there is a κ-
strategically closed, θ+-directed closed forcing notion that adds a subadditive
witness c to U(κ, κ, θ, θ) for which ∂(c) is stationary;

(2) For any pair of infinite regular cardinals θ < κ, there is a κ-strategically
closed, θ-directed closed forcing notion that adds a closed subadditive witness
c to U(κ, κ, θ, θ) for which ∂(c) is stationary;

(3) For regular uncountable cardinals θ < λ < κ such that λ is supercompact
and κ is weakly compact, there is a forcing extension in which �(κ, θ) fails,
yet, there is a closed, subadditive witness c to U(κ, κ, θ, θ) for which ∂(c) is
stationary.

On the Ramsey-theoretic side, we prove that in the presence of large cardinals,
for many pairs of infinite regular cardinals θ < κ, κ→ [κ]2θ,finite holds restricted to

the class of subadditive colorings (in particular, refuting subadditive instances of
U(κ, 2, θ, 2)), and that similar results hold at small cardinals in forcing extensions
or in the presence of forcing axioms.
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On the anti-Ramsey-theoretic side, we have a result reminiscent of the motivating
result of [LHR18] concerning the infinite productivity of strong forms of the κ-chain
condition. When combined with Theorem A, the next theorem shows that �(κ)
yields a gallery of counterexamples to productivity of κ-stationarily layered posets,
answering a question of Cox [Cox17].

Theorem D. Suppose that θ ≤ χ < κ are infinite, regular cardinals, κ is (<χ)-
inaccessible, and there is a closed and subadditive witness c to U(κ, 2, θ, 2). Then
there is a sequence of posets 〈Pi | i < θ〉 such that:

(1) for all i < θ, Pi is well-met and χ-directed closed with greatest lower bounds;
(2) for all j < θ,

∏
i<j Pi is κ-stationarily layered;

(3)
∏
i<θ Pi is not κ-cc.

If, in addition, ∂(c) ∩ Eκχ is stationary, then the sequence 〈Pi | i < θ〉 can be
made constant.

As a corollary, we get that Magidor’s forcing for changing the cofinality of a
measurable cardinal λ to a regular cardinal θ < λ adds a poset P whose θth power
is not λ+-cc, but all of whose lower powers are λ+-stationarily layered.

1.1. Organization of this paper. In Section 2, we present some useful definitions
and facts about U(κ, µ, θ, χ), largely derived from Part I of this series. We also
present a pseudo-inverse to the fact, observed in Part I, that Shelah’s principle
Pr1(κ, κ, θ, χ) implies U(κ, 2, θ, χ).

In Section 3, we review the notion of subadditivity and some of its variations and
prove that any subadditive witness to U(κ, 2, θ, 2) is in fact a witness to U(κ, µ, θ, χ)
for all µ < κ and all χ ≤ cf(θ) (and, under certain closure assumptions, even
stronger principles). Subsection 3.1 contains results connecting subadditive strongly
unbounded colorings to narrow systems and trees with ascent paths. In Subsec-
tion 3.2, we discuss locally small colorings of the form c : [λ+]2 → cf(λ), focusing in
particular on the case in which λ is a singular cardinal. Locally small colorings are
necessarily witnesses to U(λ+, 2, cf(λ), cf(λ)), and retain this property in any outer
model with the same cardinals. In Subsection 3.3, we introduce a subset ∂(c) ⊆ κ
associated with a coloring c : [κ]2 → θ that is useful in the analysis of U(κ, µ, θ, χ),
particularly in the context of subadditive colorings. We then introduce a forcing
notion that establishes Clause (1) of Theorem C. Subsection 3.4 contains a number
of results indicating the extent to which various compactness principles place limits
on the existence of certain subadditive witnesses to U(κ, µ, θ, χ). In particular, it
is shown that simultaneous stationary reflection, the existence of highly complete
or indecomposable ultrafilters, and the P-ideal dichotomy all have such an effect.

In Section 4, we introduce an indexed square principle �ind(κ, θ) and prove that
it is equivalent to the existence of a closed, subadditive witness to U(κ, 2, θ, 2),
thereby establishing the first part of Theorem A. We also prove a consistency result
indicating that �ind(κ, θ) is a proper weakening of �ind(κ, θ) and does not even
imply �(κ, θ), in the process proving Clause (3) of Theorem C. Section 4 also
contains the proof of the second part of Theorem A and the proof of Clause (2) of
Theorem C.

Section 5 is concerned with successors of singular cardinals. We begin by proving
Theorem B, showing that a certain square with built-in diamond sequence on a
singular cardinal λ entails the existence of a subadditive witness to U(λ+, λ+, θ, λ)
for all θ ∈ Reg(λ)\(cf(λ)+1). We then present an improvement upon a result from
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Part I of this series proving the existence of closed witnesses to U(λ+, λ+, θ, cf(λ))
for all singular λ whose cofinality is not greatly Mahlo and all θ ≤ cf(λ).

Section 6 deals with the infinity productivity of κ-stationarily layered posets and
contains our proof of Theorem D.

1.2. Notation and conventions. Throughout the paper, κ denotes a regular un-
countable cardinal, and χ, θ, and µ denote cardinals ≤ κ. λ will always denote an
infinite cardinal. We say that κ is χ-inaccessible iff, for all ν < κ, νχ < κ, and say
that κ is (<χ)-inaccessible iff, for all ν < κ and µ < χ, νµ < κ. We denote by
HΥ the collection of all sets of hereditary cardinality less Υ, where Υ is a regular
cardinal sufficiently large to ensure that all objects of interest are in HΥ.

Reg denotes the class of infinite regular cardinals, and Reg(κ) denotes Reg∩κ.
Eκχ denotes the set {α < κ | cf(α) = χ}, and Eκ≥χ, Eκ<χ, Eκ6=χ, etc. are defined
analogously.

For a set of ordinals a, we write ssup(a) := sup{α+ 1 | α ∈ a}, acc+(a) := {α <
ssup(a) | sup(a ∩ α) = α > 0}, acc(a) := a ∩ acc+(a), nacc(a) := a \ acc(a), and
cl(a) := a ∪ acc+(a). For sets of ordinals a and b, we write a < b if, for all α ∈ a
and all β ∈ b, we have α < β. For a set of ordinals a and an ordinal β, we write
a < β instead of a < {β} and β < a instead of {β} < a.

For any set A, we write [A]χ := {B ⊆ A | |B| = χ} and [A]<χ := {B ⊆ A |
|B| < χ}. In particular, [A]2 consists of all unordered pairs from A. In some
scenarios, we will also be interested in ordered pairs from A. In particular, if A is
either a set of ordinals or a collection of sets of ordinals, then we will abuse notation
and write (a, b) ∈ [A]2 to mean {a, b} ∈ [A]2 and a < b.

2. Preliminaries

In this brief section, we recall a key definition and present a few useful facts about
U(. . .). We start by recalling the following definition from [LHR18] concerning
closed colorings.

Definition 2.1. Suppose that c : [κ]2 → θ is a coloring.

(1) For all β < κ and i ≤ θ, we let Dc
≤i(β) denote the set {α < β | c(α, β) ≤ i}.

(2) For all Σ ⊆ κ, c is Σ-closed if, for all β < κ and i ≤ θ,
acc+(Dc

≤i(β)) ∩ Σ ⊆ Dc
≤i(β).

(3) c is somewhere-closed if it is Σ-closed for some stationary Σ ⊆ κ.
(4) c is closed if it is κ-closed.

The following fact is a useful tool for proving that certain colorings satisfy strong
instances of U(. . .).

Fact 2.2 ([LHR18]). Suppose that c : [κ]2 → θ is a coloring and ω ≤ χ < κ. Then
(1) =⇒ (2) =⇒ (3):

(1) For some stationary Σ ⊆ Eκ≥χ, c is a Σ-closed witness to U(κ, 2, θ, χ).

(2) For every family A ⊆ [κ]<χ consisting of κ-many pairwise disjoint sets, for
every club D ⊆ κ, and for every i < θ, there exist γ ∈ D, a ∈ A, and ε < γ
such that:
• γ < a;
• for all α ∈ (ε, γ) and all β ∈ a, we have c(α, β) > i.

(3) c witnesses U(κ, κ, θ, χ).
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It is sometimes useful to consider the following unbalanced form of U(· · · ).

Definition 2.3. U(κ, µ ~ ν, θ, χ) asserts the existence of a coloring c : [κ]2 → θ
such that for every σ < χ, every pairwise disjoint subfamily A ⊆ [κ]σ of size κ, and
every i < θ, there exist A′ ∈ [A]µ and B′ ∈ [A]ν such that, for every (a, b) ∈ A′×B′,
a < b and min(c[a× b]) > i.

Lemma 2.4. Suppose that c : [κ]2 → θ witnesses U(κ, 2, θ, 2), with θ < κ.

(1) For every cofinal A ⊆ κ, there exists ε < κ such that

sup{β ∈ A \ ε | sup{c(α, β) | α ∈ A ∩ ε} = θ} = κ;

(2) For every cofinal A ⊆ κ, there exists β ∈ A such that {c(α, β) | α ∈ A ∩ β}
is unbounded in θ. In particular, c witnesses U(κ, cf(θ)~ 1, θ, 2);

(3) For every stationary S ⊆ κ, there exists ε < κ such that, for every i < θ,
{β ∈ S | ε < β, c(ε, β) > i} is stationary;

(4) For every stationary S ⊆ κ and a family of functions H ∈ [Sθ]<κ, there
exists ε ∈ S such that, for every h ∈ H, the following set is stationary:

{β ∈ S | ε < β, c(ε, β) > max{h(ε), h(β)}}.

Proof. Clause (2) follows from Clause (1), and Clause (3) follows from Clause (4).
(1) Towards a contradiction, suppose that A is a counterexample. Then, for

every ε < κ, there exists a large enough ηε ∈ [ε, κ) such that, for every β ∈ A \ ηε,
for some i < θ, A ∩ ε ⊆ Dc

≤i(β). Fix a sparse enough cofinal subset A′ ⊆ A such

that, for every ε ∈ A′, min(A′ \ (ε+ 1)) ≥ ηε+1. It follows that for every β ∈ A′, for
some iβ < θ, A ∩ β ⊆ Dc

≤iβ (β). Fix i∗ < θ and an unbounded A∗ ⊆ A′ such that

iβ = i∗ for all β ∈ A∗. Since c witnesses U(κ, 2, θ, 2), we can find (α, β) ∈ [A∗]2

such that c(α, β) > i∗, contradicting the fact that α ∈ A ∩ β ⊆ Dc
≤i∗(β).

(4) Towards a contradiction, suppose that S and H form a counterexample. For
every ε ∈ S, fix a function hε ∈ H and a club Dε ⊆ κ disjoint from {β ∈ S |
ε < β, c(ε, β) > max{hε(ε), hε(β)}}. Let D :=

a
ε<κDε. As |H| < κ, find h ∈ H

for which A := {ε ∈ D ∩ S | hε = h} is cofinal in κ. As θ < κ, find i < θ for which
B := {β ∈ A | h(β) = i} is cofinal in κ. Now, as c witnesses U(κ, 2, θ, 2), we may
pick (ε, β) ∈ [B]2 such that c(ε, β) > i. But i = max{hε(ε), hε(β)}, contradicting
the fact that β ∈ Dε ∩ S. �

The following is a corollary to a result from [LHR18] which we never took the
time to derive.

Proposition 2.5. If κ is a Mahlo cardinal admitting a nonreflecting stationary
subset of Reg(κ), then U(κ, κ, θ, κ) holds for every θ ≤ κ.

Proof. By [LHR18, Theorem 4.11]. �

By [LHR18, Lemma 2.3], Shelah’s principle Pr1(κ, κ, θ, χ) implies U(κ, 2, θ, χ).
Here we deal with a pseudo-inverse:

Proposition 2.6. Suppose that U(κ, 2, θ, χ) holds with χ ≤ cf(θ) = θ ≤ θ<θ < κ.
Then V Add(θ,1) |= Pr1(κ, κ, θ, χ).

Proof. In V , let c : [κ]2 → θ be a witness to U(κ, 2, θ, χ). Let G be Add(θ, 1)-
generic over V , and work for now in V Add(θ,1). Let g : θ → θ be the Cohen-generic
function, and set d := g◦c. To see that d witnesses Pr1(κ, κ, θ, χ), let A be a κ-sized
pairwise disjoint subfamily of [κ]<χ, and let τ < θ; we need to find (a, b) ∈ [A]2
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such that d[a × b] = {τ}. Since χ ≤ θ, every element of A is in V . Also, letting

Ȧ ∈ V be an Add(θ, 1)-name for A, we can fix for each a ∈ A a condition pa ∈ G
such that pa 
 “a ∈ Ȧ. As χ ≤ θ<θ < κ, and hence |Add(θ, 1)| < κ, by passing
to a subfamily if necessary, we may assume that there is a fixed p∗ ∈ G such that
pa = p∗ for all a ∈ A, and therefore A = {a ∈ [κ]<χ | p 
 “a ∈ Ȧ”} is in V . We
therefore move back to V and run a density argument. Let p : i→ θ be an arbitrary
condition in Add(θ, 1) below p∗. By the hypothesis on c, pick (a, b) ∈ [A]2 such
that x := c[a × b] is disjont from i. Let j := ssup(x), and let q : j → θ be some
condition extending p and satisfying q(ξ) = τ for all ξ ∈ x. Clearly, q(c(α, β)) = τ
for all (α, β) ∈ a× b, so q forces that d[a× b] = {τ}, as sought. �

We conclude this short section with another simple fact worth recording.

Proposition 2.7. If κ is weakly compact, then, in V Add(κ,1):

(1) U(κ, κ, ω, 2) holds;
(2) U(κ, 2, ω, ω) holds;
(3) U(κ, 2, θ, 2) fails for every regular uncountable θ < κ.

Proof. (1) By [LHR18, Lemma 2.7].
(2) It is not hard to see that, in V Add(κ,1), Pr1(κ, ω1, ω, ω) holds. In particular,

by [LHR18, Lemma 2.3], U(κ, 2, ω, ω) holds.
(3) Evidently, for every ccc forcing P and every infinite cardinal θ, κ → [κ]2θ

implies V P |= κ → [κ]2θ,ω. In particular, in V Add(κ,1), U(κ, 2, θ, 2) fails for every
regular uncountable θ < κ. �

3. Subadditive colorings

We now turn to subadditive colorings, which form the primary topic of this paper.
We begin by recalling the definition of subadditivity, splitting the definition into
its two constituent parts.

Definition 3.1. A coloring c : [κ]2 → θ is subadditive iff the following two state-
ments hold:

(1) c is subadditive of the first kind, that is, for all α < β < γ < κ,

c(α, γ) ≤ max{c(α, β), c(β, γ)};
(2) c is subadditive of the second kind, that is, for all α < β < γ < κ,

c(α, β) ≤ max{c(α, γ), c(β, γ)}.

We shall write Usubadditive(κ, µ, θ, χ) to assert that U(κ, µ, θ, χ) holds and that
it moreover admits a subadditive witness. Note that the function c : [κ]2 → κ
defined by letting c(α, β) := α for all (α, β) ∈ [κ]2 is a closed, subadditive witness
to U(κ, κ, κ, κ), so, in all situations of interest, we will have θ < κ.

Subadditivity allows us to show that witnesses to certain instances of U(. . .) in
fact satisfy stronger instances, as in the following lemma.

Lemma 3.2. Suppose that c : [κ]2 → θ is a witness to Usubadditive(κ, 2, θ, 2), with
θ < κ. Then the following statements all hold.

(1) For every µ < κ, c witnesses U(κ, µ, θ, 2). If there exist no κ-Souslin trees,
then c moreover witnesses U(κ, κ, θ, 2).

(2) For every µ ≤ κ, if c witnesses U(κ, µ, θ, 2), then c moreover witnesses
U(κ, µ, θ, cf(θ)).
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(3) For every χ ∈ Reg(κ), if c is Σ-closed for some stationary Σ ⊆ Eκ≥χ, then

c witnesses U(κ, κ, θ, χ).

Proof. For each i < θ, we define an ordering <i on κ by letting α <i β iff α < β and
c(α, β) ≤ i. The fact that <i is transitive follows from the fact that c is subadditive
of the first kind.

Claim 3.2.1. For every i < θ, (κ,<i) is a tree with no branches of size κ.

Proof. Let i < θ and γ < κ. To see that set {α < κ | α <i γ} is well-ordered
by <i, fix α < β such that α, β <i γ. As c is subadditive of the second kind,
c(α, β) ≤ max{c(α, γ), c(β, γ)} ≤ i, so α <i β.

In addition, by the hypothesis on c, for everyA ∈ [κ]κ, there is a pair (α, β) ∈ [A]2

such that c(α, β) > i, so ¬(α <i β). That is, (κ,<i) has no chains of size κ. �

(1) Fix µ ≤ κ, and suppose that we are given some A ∈ [κ]κ and i < θ. We
would like to find B ∈ [A]µ such that c(α, β) > i for all (α, β) ∈ [B]2. In particular,
if there exists B ∈ [κ]µ which is an antichain with respect to <i, then we are done.
Hereafter, suppose this is not the case.
I If µ < κ, then (A,<i) is a tree of size κ all of whose levels have size < µ.

Since µ < κ and κ is regular, a result of Kurepa [Kur77] implies that (κ,<i) has a
branch of size κ, contradicting the preceding claim.
I If µ = κ, then (A,<i) forms a κ-Souslin tree.

(2) Suppose that µ ≤ κ and c witnesses U(κ, µ, θ, 2). Suppose also that A ⊆
[κ]<cf(θ) consists of κ-many pairwise disjoint sets and i < θ is a prescribed color.
We will find B ∈ [A]µ such that min(c[a × b]) > i for all (a, b) ∈ [B]2. For each
γ < κ, pick aγ ∈ A with γ < aγ . Define f : κ→ θ and g : κ→ κ by setting, for all
γ < κ,

• f(γ) := sup{c(γ, α) | α ∈ aγ};
• g(γ) := sup(aγ).

Fix ε < θ for which A := {γ < κ | f(γ) = ε & g[γ] ⊆ γ} is stationary. Since c
witnesses U(κ, µ, θ, 2), we can pick B ∈ [A]µ such that c(γ, δ) > max{ε, i} for all
(γ, δ) ∈ [B]2. We claim that B := {aγ | γ ∈ B} is a subfamily of A as sought. To see
this, pick a pair (γ, δ) ∈ [B]2 along with (α, β) ∈ aγ × aδ. Clearly, γ < α < δ < β.
By the subadditivity of c and the choice of ε, we have:

c(γ, δ) ≤ max{c(γ, α), c(α, δ)} ≤ max{c(γ, α), c(α, β), c(δ, β)} ≤ max{ε, c(α, β)}.
Recalling that max{ε, i} < c(γ, δ), we infer that i < c(γ, δ) ≤ c(α, β), as sought.

(3) Suppose that χ ∈ Reg(κ), Σ ⊆ Eκ≥χ is stationary, and c is Σ-closed.

Claim 3.2.2. Suppose that A ⊆ [κ]<χ is a family consisting of κ-many pairwise
disjoint sets, D is a club in κ, and i < θ is a prescribed color. Then there exist
γ ∈ D ∩ Σ and a ∈ A such that

(a) γ < a;
(b) for all β ∈ a, we have c(γ, β) > i.

Proof. Suppose not. Let T := D ∩ Σ, and note that, for all γ ∈ T and all a ∈ A
with a > γ, for some β ∈ a, we have c(γ, β) ≤ i. Consider the tree (T,<i). We
claim that it has no antichains of size χ. To see this, fix an arbitrary X ⊆ T of
order type χ, and let δ := sup(X). Fix an arbitrary a ∈ A with a > δ. For all
γ ∈ X, since a > γ, we may find some β ∈ a with c(γ, β) ≤ i. Since |X| = χ > |a|,
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we may then pick (γ, γ′) ∈ [X]2 and β ∈ a such that c(γ, β) ≤ i and c(γ′, β) ≤ i.
It follows that c(γ, γ′) ≤ max{c(γ, β), c(γ′, β)} ≤ i. In particular, X is not an
antichain. Now, since χ < κ are regular cardinals, the aforementioned result of
Kurepa [Kur77] entails the existence of B ∈ [T ]κ which is a chain with respect to
<i. By the hypothesis on c, we can pick (α, β) ∈ [B]2 such that c(α, β) > i. Then
¬(α <i β) which is a contradiction to the fact that B is a chain in (T,<i). �

As c is Σ-closed and Σ ⊆ Eκ≥χ, Clause (b) of the preceding is equivalent to:

(b’) there is ε < γ such that, for all α ∈ (ε, γ) and all β ∈ a, we have c(α, β) > i.

Thus, by the implication (2) =⇒ (3) of Fact 2.2, we can conclude that c witnesses
U(κ, κ, θ, χ), as desired. �

3.1. Narrow systems and trees with ascent paths. Given a binary relation
R on a set X, for a, b ∈ X, we say that a and b are R-comparable iff a = b, a R b,
or b R a. R is tree-like iff, for all a, b, c ∈ X, if a R c and b R c, then a and b are
R-comparable.

Definition 3.3 (Magidor-Shelah, [MS96]). S = 〈
⋃
α∈I{α} × θα,R〉 is a κ-system

if all of the following hold:

(1) I ⊆ κ is unbounded and, for all α ∈ I, θα is a cardinal such that 0 < θα < κ;
(2) R is a set of binary, transitive, tree-like relations on

⋃
α∈I{α} × θα and

0 < |R| < κ;
(3) for all R ∈ R, α0, α1 ∈ I, β0 < θα0

, and β1 < θα1
, if (α0, β0) R (α1, β1),

then α0 < α1;
(4) for every (α0, α1) ∈ [I]2. there are (β0, β1) ∈ θα0 × θα1 and R ∈ R such

that (α0, β0) R (α1, β1).

Define width(S) := sup{|R|, θα | α ∈ I}. A κ-system S is narrow if width(S)+ <
κ. For R ∈ R, a branch of S through R is a set B ⊆

⋃
α∈I{α} × θα such that for

all a, b ∈ B, a and b are R-comparable. A branch B is cofinal iff sup{α ∈ I |
∃τ < θα (α, τ) ∈ B} = κ.

Definition 3.4 ([LH17b]). The (θ, κ)-narrow system property, abbreviated NSP(θ, κ),
asserts that every narrow κ-system of width < θ has a cofinal branch.

Lemma 3.5. Suppose that θ < θ+ < κ and c : [κ]2 → θ is a subadditive coloring.
If NSP(θ+, κ) holds, then c fails to witness U(κ, 2, θ, 2).

Proof. Define an binary relation R on κ × θ by letting (α, i) R (β, j) iff α < β,
i = j, and c(α, β) ≤ i.

Claim 3.5.1. Let α < β < γ < κ. Then:

(1) there exists i < θ such that (α, i) R (β, i);
(2) for all i < θ, if (α, i) R (β, i) and (β, i) R (γ, i), then (α, i) R (γ, i);
(3) for all i < θ, if (α, i) R (γ, i) and (β, i) R (γ, i), then (α, i) R (β, i).

Proof. (1) Just take i := c(α, β).
(2) By subadditivity of the first kind.
(3) By subadditivity of the second kind. �

It thus follows that S := 〈κ × θ, {R}〉 is a narrow κ-system. So, assuming
that NSP(θ+, κ) holds, we may fix B ⊆ κ × θ that forms a cofinal branch of S
through R. Pick A ∈ [κ]κ and i < θ such that B = A × {i}. Now, if c were to
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witness U(κ, 2, θ, 2), then we could fix (α, β) ∈ [A]2 such that c(α, β) > i. But then
(α, i) R (β, i) would fail to hold, contradicting the fact that {(α, i), (β, i)} ⊆ B. �

We thus arrive at the following Ramsey-theoretic result.

Corollary 3.6. Suppose that θ < θ+ < κ and NSP(θ+, κ) holds. For every subad-
ditive coloring c : [κ]2 → θ, there exists A ∈ [κ]κ such that c“[A]2 is finite.

Proof. Suppose that c : [κ]2 → θ is subadditive coloring. By the preceding lemma,
we may fix A0 ∈ [κ]κ such that θ0 := |c“[A0]| is smaller than θ. If θ0 is finite, then
we are done. Otherwise, we may identity c � [A0]2 with a subadditive map from [κ]2

to θ0, and then utilize NSP((θ0)+, κ) to find A1 ∈ [A0]κ for which θ1 := |c“[A1]|
is smaller than θ0. Continuing in this fashion, we produce a decreasing chain of
sets A0 ⊇ A1 ⊇ . . . and a strictly decreasing sequence of cardinals θ0 > θ1 > · · · .
As the cardinals are well-founded, after finitely many steps we will arrive at a set
An ∈ [κ]κ for which θn := |c“[An]| is finite. �

Corollary 3.7. PFA implies that for every regular cardinal κ ≥ ℵ2, for every
subadditive coloring c : [κ]2 → ω, there exists A ∈ [κ]κ such that c“[A]2 is finite.

Proof. By [LH17b, §10], PFA implies NSP(ω1, κ) for all regular κ ≥ ω2. Now, appeal
to Lemma 3.5. �

Next, we prove a pair of lemmas linking Usubadditive(. . .) to the existence of trees
with ascent paths but no cofinal branches. We first recall the following definition.

Definition 3.8. Suppose that T = (T,<T ) is a tree of height κ.

(1) For all α < κ, Tα denotes level α of T .
(2) A θ-ascent path through T is a sequence of functions 〈fα | α < κ〉 such that

(a) for all α < κ, fα : θ → Tα;
(b) for all α < β < κ, there is i < θ such that, for all j ∈ [i, θ), we have

fα(j) <T fβ(j).

Lemma 3.9. Suppose that θ ∈ Reg(κ), and T is a tree of height κ admitting a

θ-ascent path but no branch of size κ. Then Usubadditive(κ, 2, θ, θ) holds.

Proof. Write T as (T,<T ). Fix a θ-ascent path 〈fα | α < κ〉 through T , and derive
a coloring c : [κ]2 → θ via

c(α, β) := min{i < θ | ∀j ∈ [i, θ) fα(j) <T fβ(j)}.

We shall show that c witnesses Usubadditive(κ, 2, θ, θ).

Claim 3.9.1. c is subadditive.

Proof. Suppose that α < β < γ < κ.
I Let i := max{c(α, β), c(β, γ)}. Then, for all j ∈ [i, θ), we have

fα(j) <T fβ(j) <T fγ(j),

and hence fα(j) <T fγ(j). Consequently, c(α, γ) ≤ i.
I Let i := max{c(α, γ), c(β, γ)}. Then, for all j ∈ [i, θ), we have fα(j) <T fγ(j)

and fβ(j) <T fγ(j). But T is a tree, and hence fα(j) <T fβ(j). Consequently,
c(α, β) ≤ i. �
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By Lemma 3.2, it remains to verify that c witnesses U(κ, 2, θ, 2). Suppose this
is not the case. Then for some A ∈ [κ]κ, i := sup(c“[A]2) is < θ. But then the <T -
downward closure of {fα(i) | α ∈ A} is a branch of size κ through T , contradicting
our assumptions. �

The preceding admits a partial converse. Before stating it, we recall the notion
of a C-sequence, which will be used in its proof.

Definition 3.10. A C-sequence over κ is a sequence 〈Cβ | β < κ〉 such that, for
all β < κ, Cβ is a closed subset of β with sup(Cβ) = sup(β).

Lemma 3.11. Suppose that θ ∈ Reg(κ). If there exists a somewhere-closed witness

to Usubadditive(κ, 2, θ, θ), then there exists a tree T of height κ admitting a θ-ascent
path but no branch of size κ.

Proof. As there is an ω1-Aronszajn tree, and as any ω1-Aronszajn tree admits an
ω-ascent path, we may assume that κ ≥ ℵ2. Fix a stationary subset Σ ⊆ κ and a Σ-
closed coloring c : [κ]2 → θ witnessing Usubadditive(κ, 2, θ, θ). For every β ∈ acc(κ),
let i(β) denote the least i ≤ θ such that sup(Dc

≤i(β)) = β. Note that if cf(β) 6= θ,

then i(β) < θ. Now, for every i < θ, define a C-sequence ~Ci := 〈Ciβ | β < κ〉 as
follows.
I Let Ci0 := ∅.
I For all β < κ, let Ciβ+1 := {β}.
I For all β ∈ acc(κ) such that i ≥ i(β), let Ciβ := cl(Dc

≤i(β)).

I For all β ∈ acc(κ) such that i < i(β) < θ, let Ciβ := cl(Dc
≤i(β)(β)).

I For any other β, let Ciβ be a club in β of order-type θ.

Then, let ρi2 : [κ]2 → ω be the corresponding number of steps function derived

from walking along ~Ci, as in [Tod07, §6.3]. Then, for all i < θ and β < κ, define a
function ρi2β : β → ω via ρi2β(α) := ρi2(α, β). Now, let

T := {ρi2β � α | i < θ, α ≤ β < κ}.
It is clear that T := (T,⊆) is a tree of height κ.

Claim 3.11.1. T has no branch of size κ.

Proof. Otherwise, by a standard argument (e.g., the proof of [Rin14, Corollary 2.6]),
there exists i < θ for which ρi2 admits a homogeneous set of size κ. Fix such an
i. By [Tod07, Theorem 6.3.2], then, we may fix a club C ⊆ κ such that, for every

α < κ, there exists β < κ such that C ∩ α ⊆ Ciβ . By the definition of ~Ci, for every

α < κ with otp(C ∩ α) > θ, it follows that there exist j < θ and β < κ such that
C ∩ α ⊆ cl(Dc

≤j(β)). By the pigeonhole principle, we may now fix j < κ such that

for every α < κ, there exists βα ≥ α such that C ∩ α ⊆ cl(Dc
≤j(βα)).

As c in particular witnesses U(κ, 2, θ, 3), we may now find (γ, α) ∈ [C ∩Σ]2 such
that c(γ, βα) > j. As γ ∈ C ∩ α, we infer that γ ∈ cl(Dc

≤j(βα)). As γ ∈ Σ and c is

Σ-closed, it follows that γ ∈ Dc
≤j(βα), contradicting the fact c(γ, βα) > j. �

Claim 3.11.2. T admits a θ-ascent path.

Proof. As κ ≥ ℵ2, S := acc(κ) \ Eκθ is stationary. For every α < κ, define fα :
θ → Tα via fα(i) := ρi2 min(S\α) � α. To see that 〈fα | α < κ〉 forms a θ-ascent path

through our tree, fix arbitrary α < β < κ. Write γ := min(S\α) and δ := min(S\β).
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To avoid trivialities, suppose that γ 6= δ, so that α ≤ γ < β ≤ δ. As (γ, δ) ∈ [S]2,
i := max{i(γ), i(δ), c(γ, δ)} is < θ, and, for all j ∈ [i, θ), Cjγ := cl(Dc

≤j(γ)) and

Cjδ := cl(Dc
≤j(δ)). By subadditivity, for every ε < γ, c(ε, γ) ≤ max{c(ε, δ), c(γ, δ)}

and c(ε, δ) ≤ max{c(ε, γ), c(γ, δ)}. So, for every j ∈ [i, θ), from c(γ, δ) ≤ i ≤ j, we

infer that Cjγ = Cjδ ∩ γ, ρj2γ = ρj2δ and fα(j) ⊆ fβ(j), as sought. �

This completes the proof. �

3.2. Locally small colorings.

Definition 3.12. A coloring c : [λ+]2 → cf(λ) is locally small iff |Dc
≤i(β)| < λ for

all i < cf(λ) and β < λ+.

By Corollary 3.27 below, if λ is regular, then any locally small coloring is a
witness to U(λ+, λ+, λ, λ). In the general case, a locally small coloring witnesses
an unbalanced strengthening of U(λ+, 2, cf(λ), cf(λ)), as follows.

Lemma 3.13. Suppose that c : [λ+]2 → cf(λ) is a locally small coloring.

(1) For every ν < cf(λ), c witnesses U(λ+, λ~ ν, cf(λ), cf(λ));
(2) If c is subadditive, then c moreover witnesses U(λ+, λ+, cf(λ), cf(λ)).

Proof. Suppose that we are given σ < cf(λ), a pairwise disjoint subfamilyA ⊆ [λ+]σ

of size λ+, and some i < cf(λ). Find a large enough ε < λ+ such that A ∩ P(ε)
has size λ. Now, given ν < cf(λ), fix any B′ ∈ [A]ν with min(

⋃
B′) > ε. Since c is

locally small and |
⋃
B′| < cf(λ), X :=

⋃
b∈B′

⋃
β∈bD

c
≤i(β) has size < λ. AsA∩P(ε)

consists of λ-many pairwise disjoint sets, it follows that A′ := {a ∈ A ∩ P(ε) |
a ∩ X = ∅} has size λ. Evidently, for every (a, b) ∈ A′ × B′, we have a < b and
min(c[a× b]) > i.

(2) Suppose that c is subadditive. By Lemma 3.2(2), it suffices to prove that c

witnesses U(λ+, λ+, cf(λ), 2). So, let A ∈ [λ+]λ
+

and i < cf(λ) be given; we need

to find B ∈ [A]λ
+

such that c(α, β) > i for all (α, β) ∈ [B]λ
+

.
As in the proof of Lemma 3.2, we define a tree ordering<i on λ+ by letting α <i β

iff α < β and c(α, β) ≤ i. By Clause (1), c in particular witnesses U(λ+, 2, λ+, 2),
and hence (λ+, <i) admits no chains of size λ+. Assuming that the sought-after

B ∈ [A]λ
+

does not exist, it follows that (A,<i) has no antichains of size λ+, so
(A,<i) is a λ+-Souslin tree. Forcing with this tree, we arrive at a λ+-distributive
forcing extension V [G] in which (A,<i) does admit a chain of size λ+. But V [G] is
a λ+-distributive forcing extension of V , and hence c remains locally small in V [G],
and in particular, it witnesses U(λ+, 2, cf(λ), 2). This is a contradiction. �

Lemma 3.14. For every infinite cardinal λ, there exists a locally small witness to
U(λ+, λ+, cf(λ), λ) which is subadditive of the first kind.

Proof. We focus on the case in which λ is singular, since, if λ is regular, a better
result is given by Lemma 3.15(1) below. Let 〈λi | i < cf(λ)〉 be a strictly increasing
sequence of regular uncountable cardinals converging to λ. By [She91, Lemma 4.1],
there exists a coloring c : [λ+]2 → cf(λ) which is subadditive of the first kind
and locally small in the following strong sense: for all i < cf(λ) and β < λ+,
|Dc
≤i(β)| ≤ λi.

Claim 3.14.1. For every pairwise disjoint subfamily A ⊆ [λ+]<λ of size λ+, for
every club D ⊆ λ+, and for every i < cf(λ), there exist γ ∈ D, a ∈ A, and ε < γ
such that:
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• γ < a;
• for all α ∈ (ε, γ) and β ∈ a, we have c(α, β) > i.

Proof. Given A and i as above, fix a large enough j < cf(λ) such that j ≥ i and

Aj := {a ∈ A | |a| ≤ λj} has size λ+. Now, given a club D ⊆ λ+, fix γ ∈ D∩Eλ+

>λj
,

and pick any a ∈ Aj with γ < a.
For all β ∈ a, we have |Dc

≤j(β)| ≤ λj < cf(γ), so ε := sup(
⋃
{Dc
≤j(β) ∩ γ |

β ∈ a}) is < γ. Then for all α ∈ (ε, γ) and β ∈ a, we have c(α, β) > j ≥ i. �

It now follows from Fact 2.2 that c witnesses U(λ+, λ+, cf(λ), λ). �

Lemma 3.15 (Todorcevic, [Tod07]). (1) If λ is regular, then there exists a lo-
cally small and subadditive witness to U(λ+, λ+, λ, λ).

(2) If �λ holds, then there exists a locally small and subadditive witness to
U(λ+, λ+, cf(λ), λ) which is moreover closed.

Proof. (1) Consider the function ρ : [λ+]2 → λ defined in [Tod07, §9.1]. By [Tod07,
Lemma 9.1.1], ρ is locally small. By [Tod07, Lemma 9.1.2], ρ is subadditive. By
[Tod07, Theorem 6.2.7], ρ is a witness to U(λ+, λ+, λ, λ).

(2) This follows from Lemmas 7.3.7, 7.3.8, 7.3.11 and 7.3.12 of [Tod07], together
with Lemma 3.2(3). For λ singular, a slightly better result is proved in [LH17a,
Theorem 5.8]. �

The following result, due independently to Shani and Lambie-Hanson, shows
that the hypothesis of �λ cannot be weakened to �λ,2 in Lemma 3.15(2). (We note
that GCH is not explicitly mentioned in the quoted results, but it is evident from
their proofs that, if GCH holds in the relevant ground models, then it continues to
hold in the forcing extensions witnessing the conclusion of the result.)

Fact 3.16 (Shani, [Sha16, Theorem 1], Lambie-Hanson, [LH17a, Corollaries 5.13
and 5.14]). Relative to the existence of large cardinals, it is consistent with GCH
that there is an uncountable cardinal λ such that �λ,2 holds, and, for every θ < λ,

Usubadditive(λ+, 2, θ, 2) fails. λ can be either regular or singular here, though attain-
ing the result for singular λ requires significantly larger cardinals than attaining it
for regular λ.

The principle SAP∗λ was introduced in [Rin10, Definition 2.12] as a weakening of
Jensen’s weak square principle �∗λ. By [Rin10, Theorem 2.6], assuming 2λ = λ+,
SAP∗λ implies that ♦(S) holds for every stationary subset S ⊆ λ+ that reflects
stationarily often. By [Rin10, Corollary 2.16], if λ is a singular cardinal such that

2<λ < 2λ = λ+ and every stationary subset of Eλ
+

cf(λ) reflects, then SAP∗λ moreover

implies ♦∗(λ+).

Proposition 3.17. Suppose that λ is a singular cardinal and there exists a locally

small and subadditive coloring c : [λ+]2 → cf(λ). Then SAP∗λ holds and Eλ
+

>cf(λ) ∈
I[λ+;λ].

Proof. Let c be as above. By [Rin10, Definitions 2.4 and 2.12], as c is locally small
and subadditive of the first kind,1 to verify SAP∗λ, it suffices to verify that for every

1The terminology in [Rin10] is slightly different; there locally small is dubbed normal, and
subadditive of the first kind is dubbed subadditive.
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stationary S ⊆ Eλ
+

cf(λ) and every γ ∈ Tr(S), there exists a stationary Sγ ⊆ S ∩ γ
such that sup(c“[Sγ ]2) < cf(λ).

To this end, fix arbitrary γ ∈ Eλ+

>cf(λ) and a stationary s ⊆ γ. As cf(γ) > cf(λ),

there exists a large enough i < cf(λ) such that Sγ := Dc
≤i(γ)∩ s is stationary in γ.

Since c is subadditive of the second kind, for any pair (α, β) ∈ [Sγ ]2, we have that
c(α, β) ≤ max{c(α, γ), c(β, γ)} ≤ i. Therefore, sup(c“[Sγ ]2) ≤ i. Recalling [Rin10,

Definitions 2.3], the very same argument shows that Eλ
+

>cf(λ) ∈ I[λ+;λ]. �

Corollary 3.18. If λ is a singular strong limit and there exists a locally small and
subadditive coloring c : [λ+]2 → cf(λ), then APλ holds.

Proof. By the preceding proposition, the hypothesis imply that Eλ
+

>cf(λ) ∈ I[λ+;λ].

Now, given that λ is a strong limit, we moreover get that λ+ ∈ I[λ+;λ] = I[λ+],
meaning that APλ holds. �

3.3. Forms of coherence and levels of divergence. We will also be interested
in variants of subadditivity, as captured by the next definitions.

Definition 3.19. A coloring c : [κ]2 → θ is weakly subadditive iff the following two
statements hold:

(1) c is weakly subadditive of the first kind, that is, for all β < γ < κ and i < θ,
there is j < θ such that Dc

≤i(β) ⊆ Dc
≤j(γ);

(2) c is weakly subadditive of the second kind, that is, for all β < γ < κ and
i < θ, there is j < θ such that Dc

≤i(γ) ∩ β ⊆ Dc
≤j(β).

Definition 3.20 (Forms of coherence). Let c : [κ]2 → θ be a coloring.

(1) c is `∞-coherent iff for all γ < δ < κ, there is j < θ such that, for all i < θ,
Dc
≤i(γ) ⊆ Dc

≤i+j(δ) and Dc
≤i(δ) ∩ γ ⊆ Dc

≤i+j(γ);

(2) For a cardinal λ < κ, c is λ-coherent iff for every (γ, δ) ∈ [κ]2,

|{α < γ | c(α, γ) 6= c(α, δ)}| < λ;

(3) For S ⊆ acc(κ),2 c is S-coherent iff for all β ≤ γ < δ < κ with β ∈ S,

sup{α < β | c(α, γ) 6= c(α, δ)} < β.

Remark 3.21. For every λ ∈ Reg(κ), c is λ-coherent iff it is Eκλ -coherent iff it is
Eκ≥λ-coherent.

Motivated by the proof of Lemma 3.11, we introduce the following definition.

Definition 3.22 (Levels of divergence). For a coloring c : [κ]2 → θ, let

∂(c) := {β ∈ acc(κ) | ∀γ < κ∀i < θ sup(Dc
≤i(γ) ∩ β) < β}.

Note that ∂(c) ⊆ Eκcf(θ) and that c is vacuously ∂(c)-closed.

Lemma 3.23. Suppose that c : [κ]2 → θ is a coloring. If c is weakly subadditive of
the second kind, then

∂(c) = {β ∈ acc(κ) | ∀i < θ sup(Dc
≤i(β)) < β}.

2Strictly speaking, to avoid ambiguity with Clause (2), we need to assume that |S| ≥ 2, but
in all cases of interest S will in fact be stationary in κ.
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Proof. If c is weakly subadditive of the second kind, then for all β < γ < κ and i < θ
such that sup(Dc

≤i(γ)∩ β) = β, there exists j < θ such that Dc
≤i(γ)∩ β ⊆ Dc

≤j(β),

and hence sup(Dc
≤j(β)) = β. �

We will be particularly interested in situations in which ∂(c) is stationary in κ;
one reason for this is the following lemma, indicating that colorings c for which ∂(c)
is stationary automatically witness an instance of U(. . .).

Lemma 3.24. Suppose that c : [κ]2 → θ is a coloring for which ∂(c) is stationary.
Then c witnesses U(κ, κ, θ, cf(θ)).

Proof. We prove that c satisfies Clause (2) of Fact 2.2 with χ := cf(θ), which
will yield our desired conclusion. Fix a family A ⊆ [κ]<cf(θ) consisting of κ-many
pairwise disjoint sets, a club D ⊆ κ, and an i < θ. Since ∂(c) is stationary, we can
fix γ ∈ ∂(c) ∩D. Also fix an a ∈ A such that γ < a. As γ ∈ ∂(c), for all β ∈ a, we
have sup(Dc

≤i(β) ∩ γ) < γ. Since |a| < cf(θ) = cf(γ), we can find ε < γ such that

sup(Dc
≤i(β) ∩ γ) < ε for all β ∈ a. Now, for all α ∈ (ε, γ) and all β ∈ a, we have

α /∈ Dc
≤i(β), so c(α, β) > i, as desired. �

Corollary 3.25. Suppose that θ ∈ Reg(κ). If there exists a subadditive coloring
c : [κ]2 → θ for which ∂(c) is stationary, then there exists a tree T of height κ
admitting a θ-ascent path but no branch of size κ.

Proof. This follows from Lemma 3.11, since any coloring as above is somewhere-
closed, and witnesses U(κ, κ, θ, θ). �

Lemma 3.26. Let c : [κ]2 → θ be a coloring, with θ ∈ Reg(κ).

(1) If c is θ-coherent, then it is `∞-coherent;
(2) If c is subadditive, then it is ∂(c)-coherent and `∞-coherent;
(3) If c is `∞-coherent, then it is weakly subadditive.

Proof. (1) If c is θ-coherent, then for all γ < δ < κ,

j := sup{c(α, γ), c(α, δ) | α < γ, c(α, γ) 6= c(α, δ)}

is < θ, and, for every i ∈ [j, θ), Dc
≤i(γ) = Dc

≤i(δ) ∩ γ.

(2) Suppose that c is subadditive. To see that c is `∞-coherent, let γ < δ <
κ be arbitrary. Set j := c(γ, δ). For all i < θ and α ∈ Dc

≤i(γ), c(α, δ) ≤
max{c(α, γ), c(γ, δ)} ≤ max{i, j}, and, for all i < θ and α ∈ Dc

≤i(δ) ∩ γ, c(α, γ) ≤
max{c(α, δ), c(γ, δ)} ≤ max{i, j}. Altogether, Dc

≤i(γ) = Dc
≤i(δ) ∩ γ for every

i ∈ [j, θ).
Next, we show that c is ∂(c)-coherent. To this end, fix β ≤ γ < δ < κ with

β ∈ ∂(S). Set i := c(γ, δ). By the subadditivity of c, it follows that Dc
≤j(γ) =

Dc
≤j(δ)∩γ for all j ∈ [i, θ). In particular, {α < β | c(α, γ) 6= c(α, δ)} ⊆ Dc

≤i(γ)∩β.

Since β ∈ ∂(c), sup(Dc
≤i(γ) ∩ β) < β, so we are done.

(3) This is clear. �

Corollary 3.27. If λ is regular and c : [λ+]2 → λ is locally small, then ∂(c) = Eλ
+

λ ,
and hence:

(1) c is a witness to U(λ+, λ+, λ, λ);
(2) If c is subadditive, then c is λ-coherent.
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Proof. The fact that ∂(c) = Eλ
+

λ is immediate. Now, Clause (1) follows from
Lemma 3.24, and Clause (2) follows from Lemma 3.26(2). �

Lemma 3.28. Let θ ∈ Reg(κ). If there exists a θ-coherent witness to U(κ, 2, θ, 2),

then Usubadditive(κ, 2, θ, 2) holds.

Proof. Suppose that c : [κ]2 → θ is a θ-coherent witness to U(κ, 2, θ, 2). Define a
coloring d : [κ]2 → θ by letting, for all γ < δ < κ, d(γ, δ) be the least j < θ such
that Dc

≤i(γ) = Dc
≤i(δ)∩γ for every i ∈ [j, θ). It is clear that d is subadditive. Now,

if d fails to witness U(κ, 2, θ, 2), then we may fix A ∈ [κ]κ and j < θ such that
d(γ, δ) ≤ j for all (γ, δ) ∈ [A]2. For every γ ∈ A, let γ′ := min(A \ (γ + 1)) and
iγ := c(γ, γ′). Fix A′ ∈ [A]κ and i < θ such that i = max{j, iγ} for all γ ∈ A′.

Then, for every (γ, δ) ∈ [A′]2, γ < γ′ ≤ δ and γ ∈ Dc
≤iγ (γ′) ⊆ Dc

≤i(γ
′) =

Dc
≤i(δ) ∩ γ′, so c(γ, δ) ≤ i. It follows that c“[A′]2 is bounded in θ, contradicting

the fact that c witnesses U(κ, 2, θ, 2). �

Corollary 3.29. If there exists a uniformly coherent κ-Souslin tree, then, for every
θ ∈ Reg(κ), Usubadditive(κ, 2, θ, θ) holds.

Proof. Suppose that there exists a uniformly coherent κ-Souslin tree. This means
that there exists a downward closed subfamily T ⊆ <κ2 such that:

(a) (T,⊆) is a κ-Souslin tree;
(b) for all s, t ∈ T , {ε ∈ dom(s) ∩ dom(t) | s(ε) 6= t(ε)} is finite;
(c) for all s, t ∈ T , if dom(s) < dom(t), then s ∗ t := s∪ (t � (dom(t) \ dom(s)))

is in T .

Claim 3.29.1. There exists a downward closed subfamily T̂ ⊆ <κκ satisfying (a)–
(c), in addition to the following:

(d) For all t ∈ T̂ ∩ ακ and i < α, ta〈i〉 ∈ T̂ .

Proof. The proof is similar to that of [Kön03, Theorem 3.6]. Denote Tα := T ∩ ακ
for all α < κ. By a standard fact, we may fix a club E ⊆ κ such that, for every
(α, β) ∈ [E]2, every node in Tα admits at least |α| many extensions in Tβ . We may
also assume that 0 ∈ E. Let π : κ↔ E denote the order-preserving bijection, and
denote T ′ :=

⋃
α<κ Tπ(α). Our next goal is to define a map Π : T ′ → <κκ such that

all of the following hold:

(1) for all α < κ and t ∈ Tπ(α), Π(t) ∈ ακ;
(2) for all s ( t from T ′, Π(s) ( Π(t);
(3) for all s, t ∈ T ′, if dom(s) < dom(t), then Π(s ∗ t) = Π(s) ∗Π(t).

We shall define Π � Tπ(α) by recursion on α < κ:

I For α = 0, we have Tπ(α) = T0 = {∅}, so we set Π(∅) := ∅.
I For α = ᾱ + 1 such that Π � Tπ(ᾱ) has been successfully defined, we first

fix t̄ ∈ Tπ(ᾱ). Find a cardinal µ ≥ |ᾱ| and an injective enumeration 〈ti |
i < µ〉 of all the extensions of t̄ in Tπ(α). Finally, for every t ∈ Tπ(α), find

the unique i < µ such that t̄ ∗ t = ti, and then let Π(t) := Π(t � ᾱ)a〈i〉. It
is clear that Properties (1)–(3) are preserved.

I For α ∈ acc(κ) such that Π � Tπ(ᾱ) has been successfully defined for all
ᾱ < α, we just let Π(t) :=

⋃
{Π(t � π(ᾱ)) | ᾱ < α} for every t ∈ Tπ(α). It is

clear that Properties (1)–(3) are preserved.
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Set T̂ := Im(Π). By Property (2), (T̂ ,⊆) is order-isomorphic to (T ′,⊆) which is

a κ-sized subtree of (T,⊆), so (T̂ ,⊆) is indeed a κ-Souslin tree. By Properties (3)

and (b), for all s, t ∈ T̂ , {ε ∈ dom(s)∩ dom(t) | s(ε) 6= t(ε)} is finite. By Properties

(3) and (c), for all s, t ∈ T̂ , if dom(s) < dom(t), then s∗t := s∪(t�(dom(t)\dom(s)))
is in T . Finally, by the definition of Π � Tπ(α) for successor ordinals α < κ, and by

Property (c), it is indeed the case that, for all t ∈ T̂ ∩ ακ and i < α, ta〈i〉 ∈ T̂ . �

Let θ ∈ Reg(κ). By Lemma 3.28 and Lemma 3.2(2), to show that Usubadditive(κ, 2,
θ, θ) holds, it suffices to find a θ-coherent witness to U(κ, 2, θ, 2). To this end, fix

T̂ as in the preceding claim, and then fix some sequence 〈tβ | β < κ〉 such that

tβ ∈ T̂ ∩ βκ for all β < κ. Define a coloring c : [κ]2 → θ via:

c(α, β) :=

{
tβ(α), if tβ(α) < θ;

0, otherwise.

Evidently, c is ω-coherent. Now, given A ∈ [κ]κ, we claim that c“[A]2 = θ. To

see this, let i < θ, and note that S := {tαa〈i〉 | α ∈ A \ θ} forms a subset of T̂
of size κ, and hence it cannot be an antichain. Pick s, t ∈ S such that s ( t. Let
(α, β) ∈ [A]2 be such that s = tα

a〈i〉 and t = tβ
a〈i〉. As tα

a〈i〉 and tβ are both
initial segments of t, we infer that tβ(α) = i, and hence c(α, β) = i, as sought. �

Remark 3.30. By [BR19, Theorem C], for every singular cardinal λ, �(λ+) + GCH
entails the existence of a uniformly coherent λ+-Souslin tree. By Fact 3.16 and the
preceding Corollary, the same conclusion does not follow from �(λ+, 2) + GCH.

We now show that the existence of a coloring c for which ∂(c) is stationary is in
fact equivalent to the existence of a nonreflecting stationary subset of Eκθ .

Lemma 3.31. For a subset S ⊆ Eκθ , the following are equivalent:

(1) for every γ ∈ Eκ>ω, S ∩ γ is nonstationary in γ;
(2) there exists a coloring c : [κ]2 → θ for which ∂(c) ⊇ S;
(3) there exists an S-coherent, closed coloring c : [κ]2 → θ for which ∂(c) ⊇ S.

Proof. (3) =⇒ (2): This is trivial.
(2) =⇒ (1): Suppose that c : [κ]2 → θ is a coloring for which ∂(c) ⊇ S. Towards

a contradiction, suppose that we are given γ ∈ Eκ>ω such that S ∩ γ is stationary
in γ. As S ⊆ Eκθ , it follows that cf(γ) > θ, and hence γ /∈ ∂(c). As cf(γ) 6= θ, we
may pick i < θ such that sup(Dc

≤i(γ)) = γ. Now, pick β ∈ acc+(Dc
≤i(γ)) ∩ S. It

follows that sup(Dc
≤i(γ) ∩ β) = β, contradicting the fact that β ∈ S ⊆ ∂(c).

(1) =⇒ (3): Pick a C-sequence ~C = 〈Cα | α < κ〉 such that, for all α < κ,

otp(Cα) = cf(α) and acc(Cα) ∩ S = ∅. Let tr be the function derived from ~C as in
[LHR18, Definition 4.4]. Define a coloring c : [κ]2 → θ via

c(α, γ) := sup({otp(Cη ∩ α) | η ∈ Im(tr(α, γ))} ∩ θ).

By [LHR18, Lemma 4.7], c is closed.

Claim 3.31.1. Let β < γ < κ with β ∈ S. Then there exists ε < β such that, for
every α ∈ (ε, β), c(α, γ) = c(α, β) ≥ otp(Cβ ∩ α).
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Proof. For every α < β, since β ∈ Im(tr(α, β)) and otp(Cβ ∩ α) < otp(Cβ) = θ,
it is immediate that c(α, β) ≥ otp(Cβ ∩ α). Set j := c(β, γ), and then fix a large
enough ε < β such that j ≤ otp(Cβ ∩ ε) and λ(β, γ) ≤ ε.3

Let α ∈ (ε, β). Then tr(α, γ) = tr(β, γ)a tr(α, β), and hence

c(α, γ) = sup({otp(Cη ∩ α) | η ∈ Im(tr(β, γ)) ∪ Im(tr(α, β))} ∩ θ).

In particular, c(α, γ) ≥ c(α, β) ≥ otp(Cβ ∩ α) ≥ j. Now, as

j = c(β, γ) = sup({otp(Cη ∩ β) | η ∈ Im(tr(β, γ))} ∩ θ)
≥ sup({otp(Cη ∩ α) | η ∈ Im(tr(β, γ))} ∩ θ),

it follows that

c(α, γ) = sup({otp(Cη ∩ α) | η ∈ Im(tr(α, β))} ∩ θ) = c(α, β),

as sought. �

It now immediately follows that ∂(c) ⊇ S and that c is S-coherent. �

Remark 3.32. By Fact 3.16, the preceding lemma cannot be strengthened to assert
that the existence of a nonreflecting stationary subset of Eκθ gives rise to a subad-
ditive coloring c : [κ]2 → θ for which ∂(c) is stationary. In fact, a nonreflecting
stationary subset of Eκθ is not even enough to imply the existence of a coloring
c : [κ]2 → θ such that ∂(c) is stationary and c is weakly subadditive of the first
kind. This is because, by Theorem 3.45 below, PFA implies that, for example, any
witness to U(ω3, 2, ω, 2) is not weakly subadditive of the first kind, whereas, by a
result of Beaudoin (see the remark at the end of [Bea91, §2]), PFA is consistent
with the existence of a nonreflecting stationary subset of Eω3

ω .

By Lemma 3.15(1) and Lemma 3.27(2), for every infinite regular cardinal λ,
there exists a locally small coloring c : [λ+]2 → λ that is λ-coherent. We shall now
prove that for every singular cardinal λ, a locally small coloring c : [λ+]2 → cf(λ)
is never cf(λ)-coherent. Assuming that c is subadditive of the first kind (which is
indeed possible, by Lemma 3.14), even weaker forms of coherence are not feasible.

Lemma 3.33. Suppose that c : [λ+]2 → cf(λ) is a locally small coloring.

(1) If λ is regular or if c is subadditive of the first kind, then for every cardinal
θ < λ, c is not θ-coherent.

(2) If λ is singular, then c is not cf(λ)-coherent.

Proof. The proof is similar to that of [Kön03, Theorem 3.7]. Suppose for sake of
contradiction that c is θ-coherent for some fixed cardinal θ < λ and that either c is
subadditive of the first kind or θ ≤ cf(λ).

Claim 3.33.1. For every γ < λ+, there exists i < cf(λ) such that

otp(Dc
≤i(γ)) + θ < otp(Dc

≤i(γ + λ)).

3The function λ(·, ·) is defined on [Tod07, p. 258].
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Proof. Let γ < λ+. Denote δ := γ + λ. First, since otp([γ, δ)) = λ > θ, we may let

i0 := min{i < cf(λ) | otp(Dc
≤i(δ) \ γ) > θ}.

Second, if θ ≤ cf(λ), then, since c is θ-coherent,

i1 := ssup{c(α, γ), c(α, δ) | α < γ, c(α, γ) 6= c(α, δ)}
is an ordinal < cf(λ). If θ > cf(λ), then we instead let i1 := c(γ, δ).

We claim that i := max{i0, i1} is as sought.
I If θ ≤ cf(λ), then for every α ∈ Dc

≤i(γ), either c(α, δ) ≤ i1 ≤ i or c(α, δ) =

c(α, γ) ≤ i. Therefore, Dc
≤i(γ) ⊆ Dc

≤i(δ).

I Otherwise, c is subadditive of the first kind and ii = c(γ, δ). Then, for every
α ∈ Dc

≤i(γ), we have c(α, δ) ≤ max{c(α, γ), c(γ, δ)} ≤ max{c(α, γ), i1} ≤ i, so that

α ∈ Dc
≤i(δ). Thus, again, Dc

≤i(γ) ⊆ Dc
≤i(δ).

Now, set x := Dc
≤i(δ) \ γ, and notice that otp(x) ≥ otp(Dc

≤i0(δ) \ γ) ≥ θ + 1.

Altogether Dc
≤i(γ) ] x ⊆ Dc

≤i(δ) with Dc
≤i(γ) ⊆ min(x), and hence otp(Dc

≤i(γ)) +

θ + 1 ≤ otp(Dc
≤i(δ)). �

By the claim, for each γ < λ+, we may fix iγ < cf(λ) such that otp(Dc
≤iγ (γ)) +

θ < otp(Dc
≤iγ (γ + λ)). Fix a sparse enough stationary subset S ⊆ λ+ along with

i < cf(λ) such that iγ = i for all γ ∈ S, and such that β+λ < γ for all (β, γ) ∈ [S]2.
Define a map f : S → λ via

f(β) := otp(Dc
≤i(β + λ)).

Let (β, γ) ∈ [S]2. As β + λ < γ and c is θ-coherent,

otp(Dc
≤i(β + λ)) < otp(Dc

≤i(γ)) + θ.

Altogether,

f(β) = otp(Dc
≤i(β + λ)) < otp(Dc

≤i(γ)) + θ < otp(Dc
≤i(γ + λ)) = f(γ).

Therefore, f is an injection from a set of size λ+ to λ, which is a contradiction. �

We conclude this subsection by introducing a notion of forcing that adds a sub-
additive coloring c : [κ]2 → θ whose ∂(c) is stationary. This will prove Clause (1)
of Theorem C.

Theorem 3.34. Suppose that θ ∈ Reg(κ). Then:

(1) There exists a θ+-directed closed, κ-strategically closed forcing notion P
that adds a Eκ≥θ-closed, subadditive coloring c : [κ]2 → θ for which ∂(c) is

stationary. In particular, 
P “ Usubadditive(κ, κ, θ, θ)”.
(2) If κ = λ+ and cf(λ) = θ < λ, then there is also a θ+-directed closed,

(λ + 1)-strategically closed (hence (<κ)-distributive) forcing notion P that
adds a coloring as above which is moreover locally small.

Proof. In Case (2), let 〈λi | i < θ〉 be an increasing sequence of regular cardinals
converging to λ, with λi > θ. In Case (1), simply let λi := κ for all i < θ.

We will define a forcing notion P whose generic object will generate a coloring c as
above. Our poset P consists of all subadditive colorings of the form p : [γp+1]2 → θ
such that

• γp < κ;

• p is E
γp+1
≥θ -closed;
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• for all β ≤ γp and all i < θ, we have |Dp
≤i(β)| < λi.

P is ordered by reverse inclusion. We also include the empty set as the unique
maximal condition in P.

Claim 3.34.1. P is θ+-directed closed.

Proof. Note that P is tree-like, i.e., if p, q, r ∈ P and r extends both p and q, then p
and q are ≤P-comparable. It therefore suffices to prove that P is θ+-closed. To this
end, suppose that ξ < θ+ and ~p = 〈pη | η < ξ〉 is a decreasing sequence of conditions
in P. We may assume without loss of generality that ξ is an infinite regular cardinal
and ~p is strictly decreasing, i.e., 〈γη | η < ξ〉 is strictly increasing, where γη denotes
γpη . For all η < ξ, by possibly extending pη to copy some information from pη+1,
we may also assume that γη is a successor ordinal. Let γ∗ := sup{γη | η < ξ}, and
let q∗ :=

⋃
η<ξ pη. Note that q∗ is not a condition in P, since its domain is not the

square of a successor ordinal. We will extend it to a condition q : [γ∗ + 1]2 → θ,
which will then be a lower bound for ~p. To do so, it suffices to specify q(α, γ∗) for
all α < γ∗. There are two cases to consider:
I Assume that ξ < θ. We can then fix an i∗ < θ such that q∗(γη, γη′) ≤ i∗ for

all η < η′ < ξ. Now, given α < γ∗, let ηα < ξ be the least η for which α < γη
and then set q(α, γ∗) := max{i∗, q∗(α, γηα)}. It is straightforward to prove, using
our choice of i∗ and the fact that each pη is subadditive, that the coloring q thus
defined is also subadditive.

Since each pη is E
γη+1
≥θ -closed, in order to show that q is Eγ

∗+1
≥θ -closed, it suffices

to prove that for all A ⊆ γ∗ and all i < θ such that A ⊆ Dq
≤i(γ

∗) and sup(A) ∈ Eγ
∗

≥θ,

we have sup(A) ∈ Dq
≤i(γ

∗). To this end, fix such an A and i. Let β := sup(A). By

our choice of i∗, we know that i ≥ i∗ and q(α, γ∗) = max{i∗, pηβ (α, γηβ )} for all

α ∈ A ∪ {β}. By the fact that pηβ is E
γηβ+1

≥θ -closed, we know that pηβ (β) ≤ i, so

β ∈ Dq
≤i(γ

∗).

To show that q is a condition, it remains only to verify that |Dq
≤i(γ

∗)| < λi
for all i < θ. To this end, fix i < θ. By our construction, we have Dq

≤i(γ
∗) ⊆⋃

η<ξD
pη
≤i(γη). Since ξ < λi and λi is regular, the fact that each pη is a condition

in P then implies that |Dq
≤i(γ

∗)| < λi.

I Assume that ξ = θ. Fix a strictly increasing sequence 〈iη | η < θ〉 of ordi-
nals below θ such that, for all η < η′ < θ, we have q∗(γη, γη′) ≤ iη′ . Now, given
α < γ∗, let ηα < θ be the least η for which α < γη and then set q(α, γ∗) :=
max{iηα , q∗(α, γηα)}. It is again straightforward to prove that the coloring q thus
defined is subadditive. The verification involves a case analysis; to illustrate the
type of argument involved, we go through the proof of one of the required inequal-
ities in one of the cases, leaving the other similar arguments to the reader.

Suppose that α < β < γ∗ and we have γηα < β. We will prove that q(α, γ∗) ≤
max{q(α, β), q(β, γ∗)}. If q(α, γ∗) = iηα , then this is trivial, so assume that
q(α, γ∗) = q∗(α, γηα). Now, since each pη is subadditive (and hence q∗ is sub-
additive), we have

q∗(α, γηα) ≤ max{q∗(α, β), q∗(γηα , β)}
≤ max{q∗(α, β), q∗(γηα , γηβ ), q∗(β, γηβ )}
≤ max{q∗(α, β), iηβ , q

∗(β, γηβ )}
= max{q(α, β), q(β, γ∗)}.
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Note that the final equality above holds because q(α, β) = q∗(α, β) and q(β, γ∗) =
max{iηβ , q∗(β, γηβ )}.

We now verify that q is Eγ
∗+1
≥θ -closed. As in the previous case, we fix an A ⊆ γ∗

and an i < θ such that A ⊆ Dq
≤i(γ

∗) and β := sup(A) is in Eγ
∗

≥θ. It will suffice to

show that β ∈ Dq
≤i(γ

∗). To avoid triviality, assume that β /∈ A. Since β is a limit
ordinal we know that β is not equal to γη for any η < θ. It follows that, by passing
to a tail of A if necessary, we may assume that ηα = ηβ for all α ∈ A. Then, for all
α ∈ A ∪ {β}, we have q(α, γ∗) = max{iηβ , pγβ (α, γηβ ). It follows that i ≥ iηβ and,

since pγβ is E
γβ+1
≥θ -closed, that pηβ (β) ≤ i, so β ∈ Dq

≤i(γ
∗).

The fact that |Dq
≤i(γ

∗)| < λi for all i < θ follows by exactly the same reasoning
as in the previous case. �

Let ċ be the canonical P-name for the union of the generic filter. Then ċ is forced
to be a subadditive function from an initial segment of [κ]2 to θ (we will see shortly
that its domain is forced to be all of [κ]2).

Note that in the ξ = θ case of the above claim, we actually proved something
stronger that will be useful later: if ~p = 〈pη | η < θ〉 is a strictly decreasing sequence
of conditions in P and γ := sup{γpη | η < θ}, then there is a lower bound q for ~p
such that q 
P “γ ∈ ∂(ċ)”.

The next claim will show that P is (<κ)-distributive.

Claim 3.34.2. In Case (1), P is κ-strategically closed. In Case (2), P is (λ+ 1)-
strategically closed.

Proof. In Case (1), denote χ := κ. In Case (2), denote χ := λ. We describe a
winning strategy for Player II in aχ(P). (Note that, if χ = λ, then it appears that
we are just showing that P is λ-strategically closed, but the fact that P is θ+-closed
will then show that P is in fact λ+ 1-strategically closed.) We will arrange so that,
if 〈pη | η < χ〉 is a play of the game in which Player II plays according to their
prescribed strategy, then, letting γη := γpη for all η < χ,

(a) 〈γη | η < χ is a nonzero even ordinal〉 is a continuous, strictly increasing
sequence;

(b) for all even ordinals η < ξ < χ, we have pξ(γη, γξ) = min{i < θ | ξ < λi}.
Now suppose that ξ < χ is an even ordinal and 〈pη | η < ξ〉 is a partial run of aχ(P)
that thus far satisfies requirements (a) and (b) above. We will describe a strategy
for Player II to choose the next play, pξ, while maintaining (a) and (b).
I If ξ = 0, then we are required to set pξ = 1P = ∅.
I If ξ = ξ′ + 1 is a successor ordinal, then, since ξ is even, there is another

even ordinal ξ′′ such that ξ = ξ′′ + 2. Let γ∗ := γξ′ + 1. We will define pξ so that
γξ = γ∗. To do so, we must define pξ(α, γ

∗) for all α < γ∗. We assume that γξ′′ < γξ
(if they are equal, the construction is similar but easier). Let i∗ := min{i < θ |
ξ < λi}. First, to satisfy (b), we must let pξ(γξ′′ , γ

∗) := i∗. Next, for all α < γξ′′ ,
let pξ(α, γ

∗) := max{pξ′′(α, γξ′′), i∗}. Let i∗∗ := max{i∗, pξ′(γξ′′ , γξ′)}, and set
p(γξ′ , γ

∗) := i∗∗. Finally, for all α ∈ (γξ′′ , γξ′), let pξ(α, γ
∗) := max{i∗∗, pξ′(α, γξ′)}.

It is easily verified that pξ thus defined is a condition in P and that we have continued
to satisfy requirements (a) and (b).
I If ξ is a nonzero limit ordinal, then let p∗ :=

⋃
η<ξ pη, and let γ∗ := sup{γη |

η < ξ}. We will define a lower bound pξ for the run of the game so far with γξ = γ∗.
To do so, it suffices to define pξ(α, γ

∗) for all α < γ∗. Let i∗ := min{i < θ | ξ < λi}.
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For all α < γ∗, let ηα < ξ be the least even ordinal η such that α < γη, and then
set pξ(α, γ

∗) := max{i∗, p∗(α, γηα)}. By the fact that the play of the game thus far
satisfied (b), we know that p∗(γη, γη′) ≤ i∗ for all even ordinals η < η′ < ξ, so this
definition does in fact ensure that pξ(γη, γξ) = i∗, so we have satisfied (b). The
fact that the play of the game thus far satisfied (a) and (b) also implies that pξ is

subadditive and E
γξ+1
≥θ -closed and that we have continued to satisfy requirement

(a). Finally, to show that |Dpξ
≤i(γξ)| < λi for all i < θ, note firstly that D

pξ
≤i(γξ) = ∅

for all i < i∗ and, secondly, that for all i ∈ [i∗, θ), we have D
pξ
≤i(γξ) ⊆

⋃
η<ξD

pη
≤i(γη).

For each i ∈ [i∗, θ), we know that ξ < λi and λi is regular, so the fact that pη is a
condition for all η < ξ implies that |Dpξ

≤i(γξ)| < λi.
This completes the description of Player II’s winning strategy and hence the

proof of the claim. �

By the argument of the proof of the above claim, it follows that, for every α < κ,
the set Eα of p ∈ P for which γp ≥ α is dense in P. Therefore, the domain of ċ
is forced to be [κ]2. The definition of P also immediately implies that ċ is forced
to be Eκ≥θ-closed and, in Case (2), ċ is also forced to be locally small. We now

finish the proof of the theorem by showing that ∂(ċ) is forced to be stationary. (By

Lemma 3.24, this will imply that ċ witnesses Usubadditive(κ, κ, θ, θ).) To this end,

fix a condition p and a P-name Ḋ forced to be a club in κ. We will find q ≤ p and
γ < κ such that q 
P “γ ∈ Ḋ ∩ ∂(ċ)”.

Using the fact that P is θ+-closed and the fact that each Eα as defined above
is dense, fix a decreasing sequence 〈pη | η < θ〉 of conditions in P together with an
increasing sequence 〈αη | η < θ〉 of ordinals below κ such that

(1) p0 = p;

(2) for all η < θ, pη+1 
P “αη ∈ Ḋ”;
(3) for all η < θ, γη < αη < γη+1.

Now let γ := sup{γη | η < θ}, so that γ = sup{αη | η < θ}. By the proof of
Claim 3.34.1, we can find a lower bound q for 〈pη | η < θ〉 such that q 
P “γ ∈ ∂(ċ)”.

For all η < θ, since q extends pη+1, q also forces αη to be in Ḋ. Since γ = sup{αη |
η < θ} and Ḋ is forced to be a club, it follows that q forces γ to be in Ḋ. We then

have q 
P “γ ∈ Ḋ ∩ ∂(ċ)”, as desired. �

3.4. Large cardinals and consistency results. In this subsection, we investi-
gate the effect on Usubadditive(. . .) of certain compactness principles, including sta-
tionary reflection, the existence of highly complete or indecomposable ultrafilters,
and the P-ideal dichotomy

Recall that, for stationary subsets S, T of κ, Refl(θ, S, T ) asserts that, for every
θ-sized collection S of stationary subsets of S, there exists β ∈ T ∩ Eκ>ω such that
S ∩ β is stationary in β for every S ∈ S. We write Refl(θ, S) for Refl(θ, S, κ).

Theorem 3.35. Suppose that Σ is some stationary subset of κ, c : [κ]2 → θ is a
Σ-closed witness to U(κ, 2, θ, 2), and Refl(θ,Σ, κ \ ∂(c)) holds. Then:

(1) If κ is θ-inaccessible, then c is not subadditive of the first kind.
(2) If ∂(c) is stationary, then c is not subadditive.
(3) If c is locally small, then c is not subadditive.
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Proof. Suppose that c is subadditive of the first kind. For each α < κ, pick iα < θ,
for which the following set is stationary:

Siαα := {σ ∈ Σ | α < σ & c(α, σ) ≤ iα}.
Next, using the pigeonhole principle, fix H ∈ [κ]κ and i < θ such that iα = i for all
α ∈ H.

Claim 3.35.1. For every A ∈ [H]θ, there is βA < κ above sup(A) such that
supα∈A c(α, βA) < θ.

Proof. Given A ∈ [H]θ, as Refl(θ,Σ, κ \ ∂(c)) holds, we may pick β ∈ κ \ ∂(c)
such that Siα ∩ β is stationary in β for all α ∈ A. Now, as β /∈ ∂(c), we may
find some j < θ and γ ∈ [β, κ) such that sup(Dc

≤j(γ)) ∩ β = β. As c is Σ-

closed, it follows that there exists a club E in β such that E ∩ Σ ⊆ Dc
≤j(γ).

For every α ∈ A, fix σα ∈ Siα ∩ E. Since c is subadditive of the first kind, we
have c(α, γ) ≤ max{c(α, σα), c(σα, γ)} ≤ max{i, j}. So, setting βA = γ, we have
supα∈A c(α, βA) < θ. �

(1) Using Lemma 2.4(1), fix ε < κ such that, for cofinally many β < κ, {c(α, β) |
α ∈ H ∩ ε} is unbounded in θ. Assuming that κ is θ-inaccessible, we may find
some A ∈ [H ∩ ε]θ such that, for cofinally many β < κ, {c(α, β) | α ∈ A}
is unbounded in θ. In particular, we may find such a β < κ above βA. Set
j := max{supα∈A c(α, βA), c(βA, β)}. Pick α ∈ A such that c(α, β) > j. As c
is subadditive of the first kind, c(α, β) ≤ max{c(α, βA), c(βA, β)} ≤ j. This is a
contradiction.

(2) Suppose that ∂(c) is stationary, and pick β ∈ acc+(H) ∩ ∂(c). Fix a cofinal
subset A of H ∩β of size θ. As β ∈ ∂(c), {c(α, β) | α ∈ A} is unbounded in θ. Note
that βA > sup(A) = β. Set i := supα∈A c(α, βA). If c were weakly subadditive
of the second kind, then we could find j < θ such that Dc

≤i(βA) ∩ β ⊆ Dc
≤j(β),

contradicting the fact that for every j < θ, there exists α ∈ A ⊆ Dc
≤i(βA) ∩ β with

c(α, β) > j.
(3) Suppose that κ = λ+, θ = cf(λ) and c is locally small. Fix the least β < κ

such that otp(H ∩ β) = λ. For all ε < β and i < cf(λ), |H ∩ [ε, β)| = λ > |Dc
≤i(β)|,

and hence there exists a cofinal subset A of H ∩ β of size θ such that {c(α, β) |
α ∈ A} is unbounded in θ. Now, as in the proof of Clause (3), c cannot be weakly
subadditive of the second kind. �

Corollary 3.36. For every θ ∈ Reg(κ) and stationary Σ ⊆ Eκ≥θ, if Refl(θ,Σ)

holds, then there exists no Σ-closed witness to Usubadditive(κ, 2, θ, 2). �

We next show that the existence of subadditive witnesses to U(. . .) is ruled out
by the existence of certain ultrafilters.

Definition 3.37. An ultrafilter U over κ is θ-indecomposable if it is uniform and,
for every sequence of sets 〈Ai | i < θ〉 satisfying

⋃
i<θ Ai ∈ U , there is B ∈ [θ]<θ

such that
⋃
i∈B Ai ∈ U .

Lemma 3.38. Suppose that c : [κ]2 → θ is a witness to U(κ, 2, θ, 2).

(1) If there exists a θ+-complete uniform ultrafilter over κ, then c is not weakly
subadditive;

(2) If there exists a θ+-complete uniform ultrafilter over κ and κ is θ-inaccessible,
then c is not weakly subadditive of the first kind;
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(3) If there exists a θ-indecomposable ultrafilter over κ, then c is not subadditive
of the second kind.

Proof. (1) Suppose that U is a θ+-complete ultrafilter over κ. For all α < κ and
i < θ, let

Aiα := {β < κ | α < β & c(α, β) ≤ i},
so that 〈Aiα | i < θ〉 is a ⊆-increasing sequence, converging to κ \ (α + 1). Since
U is, in particular, a θ-indecomposable ultrafilter over κ, we may find some iα < θ
such that Aiαα ∈ U .

Next, using the pigeonhole principle, let us fix H ∈ [κ]κ and i < θ such that
iα = i for all α ∈ H. As U is closed under intersections of length θ, for every
A ∈ [H]θ, we may let βA := min(

⋂
α∈AA

i
α), so that supα∈A c(α, βA) ≤ i.

By Lemma 2.4(2), fix β ∈ H such that {c(α, β) | α ∈ H ∩ β} is unbounded in
θ. Now, pick A ∈ [H ∩ β]θ such that {c(α, β) | α ∈ A} is unbounded in θ. As c is
weakly subadditive, we may now pick j < θ such that Dc

≤i+1(βA) ∩ β ⊆ Dc
≤j(β).

Then A ⊆ Dc
≤j(β), contradicting the choice of A.

(2) Let H, i and the notation βA be as in the proof of Clause (1). Assuming
that κ is θ-inaccessible, and using Lemma 2.4(1), we may find some A ∈ [H]θ such
that, for cofinally many β < κ, {c(α, β) | α ∈ A} is unbounded in θ. In particular,
we may find such a β < κ above βA. If c were weakly subadditive of the first kind,
then we could find j < θ such that Dc

≤i(βA) ⊆ Dc
≤j(β). However, for every j < θ,

there exists α ∈ A such that c(α, β) > j, so that α ∈ Dc
≤i(βA) \Dc

≤j(β). This is a
contradiction.

(3) Suppose that U is a θ-indecomposable ultrafilter over κ. As in the proof of
Clause (1), we may fix H ∈ [κ]κ and i < θ such that, for all α ∈ H, Aiα := {β < κ |
α < β & c(α, β) ≤ i} is in U . Towards a contradiction, suppose that c is subadditive
of the second kind. Then, for all (α, β) ∈ [H]2, we may pick some γ ∈ Aiα∩Aiβ , and

infer that c(α, β) ≤ max{c(α, γ), c(β, γ)} ≤ i. So, sup(c“[H]2) ≤ i, contradicting
the fact that c witnesses U(κ, 2, θ, 2). �

Corollary 3.39. Under a suitable large cardinal hypothesis, each of the following
propositions is consistent:

(1) For every n < ω and every coloring c : [ℵω+1]2 → ℵn that is weakly subad-
ditive, there exists A ∈ [ℵω+1]ℵω+1 such that c“[A]2 is finite;

(2) For every n < ω and every coloring c : [ℵω+1]2 → ℵn that is subadditive of
the second kind, there exists A ∈ [ℵω+1]ℵω+1 such that c“[A]2 is countable.

Proof. (1) By the proof approach of Corollary 3.6, it suffices to get a model in
which, for every n < ω, any witness to U(ℵω+1, 2,ℵn, 2) is not weakly subadditive.
By [LH17a, Corollary 5.13], relative to the consistency of the existence of infinitely
many supercompact cardinals, it is consistent that, for every n < ω, any witness
to U(ℵω+1, 2,ℵn, 2) is not subadditive. An inspection of [LH17a, Lemma 5.11] on
which [LH17a, Corollary 5.13] relies makes it clear that, furthermore, for every
n < ω, any witness to U(ℵω+1, 2,ℵn, 2) is not weakly subadditive.

(2) Starting from the consistency of the existence of a cardinal κ that is κ+-
supercompact, Ben-David and Magidor produced in [BDM86] a model of ZFC in
which there exists an ultrafilter over ℵω+1 that is ℵn-indecomposable for all positive
n < ω. Now appeal to Lemma 3.38 and the proof approach of Corollary 3.6. �
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Lemma 3.40. Suppose that θ ≤ µ < κ, and c : [κ]2 → θ witnesses U(κ, µ~1, θ, 2).
If there exists a µ+-complete uniform ultrafilter over κ, then c is not µ-coherent.

Proof. As in the proof of Lemma 3.38(1), a µ+-complete uniform ultrafilter over κ
gives rise to H ∈ [κ]κ and i < θ such that, for every A ∈ [H]µ, there exists βA < κ
above sup(A) such that supα∈A c(α, βA) ≤ i. Now, as c witnesses U(κ, µ~ 1, θ, 2),
we may find A ∈ [H]µ and β ∈ H above sup(A) such that c(α, β) > i for all α ∈ A.
So

{α < min{β, βA} | c(α, β) 6= c(α, βA)}
covers A, which is a set of size µ. Thereby, c is not µ-coherent. �

Corollary 3.41 (Todorcevic, [Tod07, Remark 6.2.3]). Suppose that λ is a singular
limit of strongly compact cardinals. Then there exists no locally small coloring
c : [λ+]2 → cf(λ) that is λ-coherent.

Proof. Fix a strictly increasing sequence of strongly compact cardinals 〈λi | i <
cf(λ)〉 converging to λ. Let c : [λ+]2 → cf(λ) be a locally small coloring. Towards
a contradiction, suppose that c is λ-coherent, and then define d : [λ+]2 → cf(λ) via

d(γ, δ) := min{i < cf(λ) | |{α < γ | c(α, γ) 6= c(α, δ)}| ≤ λi}.
It is not hard to see that d is subadditive, and so, by Lemma 3.38(3), d fails to

witness U(λ+, 2, cf(λ), 2). This means that there exist H ∈ [λ+]λ
+

and i < cf(λ)
such that d“[H]2 ⊆ i. Define e : [λ+]2 → cf(λ) via e(α, β) := c(α,min(H \ β)).
Then e is a locally small coloring which is moreover λi-coherent. By Lemma 3.13(1),
e in particular witnesses U(λ+, λi ~ 1, cf(λ), 2), and then Lemma 3.40 implies that
there exists no (λi)

+-complete uniform ultrafilter over λ+, contradicting the facts
that λi < λi+1 < λ+ and λi+1 is strongly compact. �

Complementary to Lemma 3.14, we obtain the following.

Corollary 3.42. Suppose that c : [κ]2 → θ is a witness to U(κ, 2, θ, 2) and there
exists a strongly compact cardinal in the interval (θ, κ].

(1) c is not weakly subadditive;
(2) If κ is not the successor a singular cardinal of cofinality θ, then c is not

weakly subadditive of the first kind;
(3) c is not subadditive of the second kind.

Proof. The hypothesis entails the existence of a θ+-complete uniform ultrafilter
over κ, and in particular, the existence of a θ-indecomposable uniform ultrafilter
over κ. In addition, if κ is not the successor a singular cardinal of cofinality θ, then
by Solovay’s theorem that SCH holds above a strongly compact cardinal [Sol74], κ
is θ-inaccessible. Now appeal to Lemma 3.38. �

Remark 3.43. A similar statement can consistently hold at small cardinals. By
[Lüc17, Lemma 3.2(v)] and Lemma 3.6, if κ is weakly compact and λ < κ is any
regular uncountable cardinal, then in the forcing extension by Coll(λ,<κ), for every

θ < λ, Usubadditive(λ+, 2, θ, 2) fails.

Lemma 3.15(1) implies that the restriction “θ < λ” in the preceding remark
cannot be waived.

Corollary 3.44. It is consistent that all of the following hold simultaneously:

• GCH;
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• Usubadditive(ω2, ω2, ω1, ω1) holds;

• Usubadditive(ω2, 2, ω, 2) fails.

Proof. By Lemma 3.15(1) and Fact 3.16. �

In [Via08, Definition 8], Viale defined the covering property CP(κ, θ). In [LH17a,
Lemma 5.11], the first author proved that for infinite regular cardinals θ < κ,

CP(κ, θ) implies that Usubadditive(κ, 2, θ, 2) fails. By [Via08, §6], the P-ideal di-
chotomy (PID), which is a consequence of the proper forcing axiom (PFA), implies
that CP(κ, ω) holds for every regular κ ≥ ℵ2 (the relevant result in [Via08] is
only stated for κ > c, but its proof works without any modifications for any reg-
ular κ ≥ ℵ2). Putting this all together shows that the conclusion of Corollary 3.7
already follows from PID.

Here, by combining the arguments of [Tod07, §7],[Via08, §6] and [LH17a, §5], we
provide a self-contained proof of a slightly more informative result:

Theorem 3.45 (Todorcevic, Viale). Suppose that PID holds and c : [κ]2 → ω
witnesses U(κ, 2, ω, 2).

(1) If κ ≥ ℵ2, then c is not weakly subadditive;
(2) If κ > 2ℵ0 is not the successor of a singular cardinal of countable cofinality,

then c is not weakly subadditive of the first kind.

Proof. Suppose not. For all X ∈ [κ]≤ℵ0 and β < κ, define a function fβX : X∩β → ω

by letting fβX(α) := c(α, β). Note that if κ > 2ℵ0 , then for every X ∈ [κ]≤ℵ0 , there
exists some Γ ∈ [κ]κ such that fγX = fδX for all (γ, δ) ∈ [Γ]2. In this case, we shall
denote such a set Γ by ΓX and min(ΓX) by γX .

Now, let I be the collection of all X ∈ [κ]≤ℵ0 such that, for every β < κ, fβX is
finite-to-one. It is clear that I is an ideal.

Claim 3.45.1. Let Z ∈ [κ]<κ. Then there exists an ordinal εZ ∈ [ssup(Z), κ) such
that, for every X ∈ [Z]≤ℵ0 , X ∈ I iff there exists γ ∈ [εZ , κ) for which fγX is
finite-to-one.

Proof. I If c is weakly subadditive, then set εZ := ssup(Z). Towards a contradic-
tion, suppose that there exist X ∈ [Z]≤ℵ0 and γ ∈ [εZ , κ) such that fγX is finite-to-

one, yet X 6∈ I. Fix β < κ such that fβX is not finite-to-one, and then fix i < ω for
which Y := X∩Dc

≤i(β) is infinite. Find j < θ such that Dc
≤i(β)∩γ ⊆ Dc

≤j(γ). Then

X ∩Dc
≤j(γ) covers the infinite set Y , contradicting the fact that fγX is finite-to-one.

I If κ > 2ℵ0 is not the successor of a singular cardinal of countable cofinality, then
by Viale’s theorem [Via08] that PID implies SCH, the fact that |Z| < κ implies that
|Z|ℵ0 < κ. It follows that εZ := sup{γX | X ∈ [Z]≤ℵ0}+1 is < κ. Suppose that c is
weakly subadditive of the first kind, yet, there exist X ∈ [Z]≤ℵ0 \ I and γ ∈ [εZ , κ)
such that fγX is finite-to-one. Fix β < κ and i < ω such that Y := X ∩ Dc

≤i(β)
is infinite. Pick δ ∈ ΓX above β, and use weak subadditivity of the first kind to
find j < θ such that Dc

≤i(β) ⊆ Dc
≤j(δ). As δ ∈ ΓX , X ∩Dc

≤j(δ) = X ∩Dc
≤j(γX),

so that Y ⊆ Dc
≤j(γX). As γX < εZ ≤ γ, we use weak subadditivity of the first

kind to find k < θ such that Dc
≤j(γX) ⊆ Dc

≤k(γ). Altogether, Y ⊆ Dc
≤k(γ), so that

fγX [Y ] ⊆ k + 1, contradicting the fact that fγX is finite-to-one. �

To see that I is a P -ideal, suppose that ~X = 〈Xn | n < ω〉 is a sequence of sets
in I. Set γ := εZ , for Z :=

⋃
n<ωXn. Evidently Y :=

⋃
n<ω(Xn \ Dc

≤n(γ)) is a
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pseudo-union for ~X. In addition, for every i < ω, Y ∩ Dc
≤i(γ) is covered by the

finite set
⋃
n<i(Xn ∩Dc

≤i(γ)), so, by the preceding claim, Y ∈ I.
Finally, by PID, one of the following alternatives must hold:

(1) There exists A ∈ [κ]κ such that [A]ℵ0 ∩ I = ∅, or
(2) There exists B ∈ [κ]ℵ1 such that [B]ℵ0 ⊆ I.

In Case (1), given A ∈ [κ]κ, pick some strictly increasing function g : κ→ A such
that g(α) > εA∩ssup(g[α]) for all α < κ. In effect, A′ := Im(g) is a cofinal subset of
A such that εA′∩γ < γ for every γ ∈ A′. Next, by Lemma 2.4(2), we may fix γ ∈ A′
such that {c(α, γ) | α ∈ A′ ∩ γ} is infinite. So, we may find X ∈ [A′ ∩ γ]ℵ0 such
that fγX is one-to-one. As εA′∩γ < γ, the preceding claim implies that X ∈ I. In
particular, [A]ℵ0 ∩ I 6= ∅.

In Case (2), given B ∈ [κ]ℵ1 , let β := ssup(B). As B ∩
⋃
i<ωD

c
≤i(β) is uncount-

able, we may find some i < ω such that B ∩Dc
≤i(β) is uncountable. In particular,

there exist X ∈ [B]ℵ0 such that X ∩Dc
≤i(β) is infinite. So, [B]ℵ0 * I. �

On the other hand, since MM is preserved by ω2-directed closed set forcings,
Theorem 3.34 implies that MM does not refute Usubadditive(κ, κ, θ, θ) for regular
uncountable cardinals θ < κ.

Corollary 3.46. In the model of [Tod00], for every regular uncountable cardinal
κ, the following are equivalent:

• There is a witness to U(κ, κ, ω, ω) that is subadditive of the first kind;
• There is a witness to U(κ, 2, ω, 2) that is weakly subadditive of the first kind;
• κ is the successor of a cardinal of countable cofinality.

Proof. By Lemma 3.14, if κ = λ+ for an infinite cardinal λ of countable cofinality,
then there exists a witness to U(κ, κ, ω, ω) that is subadditive of the first kind. For
any other κ, since in the model of [Tod00], CH and PID both hold, Theorem 3.45(2)
implies that no witness to U(κ, 2, ω, 2) is weakly subadditive of the first kind. �

We conclude this section by pointing out a corollary to Theorem 3.45 and the
arguments from the proofs of Lemma 3.33 and Corollary 3.41.

Corollary 3.47. Assuming PID, for every singular cardinal λ of countable cofinal-
ity, every locally small coloring c : [λ+]2 → cf(λ) that is subadditive of the first kind
is not λ-coherent. �

4. Indexed square sequences

In this section, we identify a weakening of �ind(κ, θ), denoted by �ind(κ, θ), that
is tightly related to the existence of closed, subadditive witnesses to U(κ, . . .).

Definition 4.1. �ind(κ, θ) asserts the existence of a matrix

〈Cα,i | α ∈ Γ, i(α) ≤ i < θ〉
satisfying the following statements.

(1) (Eκ6=θ ∩ acc(κ)) ⊆ Γ ⊆ acc(κ);

(2) For all α ∈ Γ, we have i(α) < θ, and 〈Cα,i | i(α) ≤ i < θ〉 is a ⊆-increasing
sequence of clubs in α, with Γ ∩ α =

⋃
i<θ acc(Cα,i);

(3) For all α ∈ Γ, i(α) ≤ i < θ, and ᾱ ∈ acc(Cα,i), we have i(ᾱ) ≤ i and
Cᾱ,i = Cα,i ∩ ᾱ;
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(4) For every club D in κ, there exists α ∈ acc(D) ∩ Γ such that, for all i < θ,
D ∩ α 6= Cα,i.

Remark 4.2. The principle�ind(κ, θ) from [LH17b] is the strengthening of�ind(κ, θ)
obtained by requiring that Γ = acc(κ).

We now turn to prove Theorem A.

Theorem 4.3. Suppose that θ ∈ Reg(κ). Then the following are equivalent.

(1) �ind(κ, θ) holds;
(2) There exists a closed, subadditive witness to U(κ, 2, θ, 2);
(3) There exists a closed, subadditive witness to U(κ, κ, θ, sup(Reg(κ));
(4) For every stationary S ⊆ κ, there exists a �ind(κ, θ)-sequence 〈Cα,i | α ∈ Γ,

i(α) ≤ i < θ〉 such that, either S ∩ Γ is nonstationary, or, for all i < θ,
{α ∈ S ∩ Γ | i(α) > i} is stationary.

Proof. (2) ⇐⇒ (3) By Lemma 3.2(3).
(4) =⇒ (1) This is trivial.

(1) =⇒ (2): Fix a �ind(κ, θ)-sequence, ~C = 〈Cα,i | α ∈ Γ, i(α) ≤ i < θ〉. For
each α ∈ κ, let α̃ := min(Γ \ α). Define c : [κ]2 → θ by setting, for all (α, β) ∈ [κ]2,

c(α, β) :=

{
min{i ∈ [i(β̃), θ) | α̃ ∈ acc(Cβ̃,i)} if α̃ < β̃;

0 otherwise.

Claim 4.3.1. c is closed.

Proof. Fix β < κ, i < θ, and A ⊆ Dc
≤i(β) with γ := sup(A) in β \A. To show that

γ ∈ Dc
≤i(β), there are two cases to consider.

I If α̃ < γ for all α ∈ A, then, by our definition of c, it follows that γ ∈ acc(Cβ̃,i),

and hence γ ∈ Γ, γ = γ̃, and c(γ, β) ≤ i.
I Otherwise, there is α ∈ A such that α̃ ≥ γ. But then γ̃ = α̃, and hence

c(γ, β) = c(α, β) ≤ i. �

Claim 4.3.2. c is subadditive.

Proof. Suppose that α < β < γ < κ. To prove subadditivity, there are three cases
to consider.
I If α̃ = β̃, then c(α, β) = 0 and c(α, γ) = c(β, γ).

I If β̃ = γ̃, then c(α, β) = c(α, γ).

I Otherwise, we have |{α̃, β̃, γ̃}| = 3 in which case it is easy to verify that
c(α, β) ≤ max{c(α, γ), c(β, γ)} and c(α, γ) ≤ max{c(α, β), c(β, γ)}. �

To finish the proof, suppose towards a contradiction that c fails to witness
U(κ, 2, θ, 2). Then there exist A ∈ [κ]κ and i < θ such that sup(c“[A]2) ≤ i.
Set S := acc+(A) ∩ Γ, note that S is stationary, and let D :=

⋃
{Cα,i | α ∈ S}.

Then D is a club and D∩α = Cα,i for all α ∈ acc(D), contradicting the hypothesis

that ~C is a �ind(κ, θ)-sequence.
(2) =⇒ (4): Fix a closed, subadditive coloring c witnessing U(κ, 2, θ, 2). Set

Γ := acc(κ) \ ∂(c), so that acc(κ) ∩ Eκ6=θ ⊆ Γ ⊆ acc(κ). By Lemma 3.23,

Γ = {α ∈ acc(κ) | for some i < θ, sup(Dc
≤i(α)) = α}.
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Now, let S be a given stationary subset of κ. If S ∩ Γ is stationary, then set
S′ := S ∩Γ; otherwise, set S′ := κ. Using Lemma 2.4(3), let us fix ε < κ such that,
for every i < θ, {β ∈ S′ | ε < β, c(ε, β) > i} is stationary.

Let α ∈ Γ be arbitrary. Let i′(α) be the least i < θ for which sup(Dc
≤i(α)) = α.

Next, if α ≤ ε, then let i(α) := i′(α), and otherwise, let i(α) := max{i′(α), c(ε, α)}.
For all i ∈ [i(α), θ), let Cα,i := Dc

≤i(α). Clearly, 〈Cα,i | i(α) ≤ i < θ〉 is a ⊆-
increasing sequence of clubs in α.

We claim that 〈Cα,i | α ∈ Γ, i(α) ≤ i < θ〉 is a �ind(κ, θ)-sequence.

Claim 4.3.3. Let β ∈ Γ. Then Γ∩β =
⋃
i(β)≤i<θ acc(Cβ,i), and, for all i ∈ [i(β), θ)

and α ∈ acc(Cβ,i), we have i(α) ≤ i and Cα,i = Cβ,i ∩ α.

Proof. To show the forward inclusion, let α ∈ Γ ∩ β be arbitrary. Put i :=
max{i(α), i(β), c(α, β)}. For all γ ∈ Cα,i, we have c(γ, α) ≤ i and c(α, β) ≤ i,
so, by subadditivity, c(γ, β) ≤ i. It follows that α ∈ acc(Cβ,i).

To show the reverse inclusion and the second statement, let i ∈ [i(β), θ) and α ∈
acc(Cβ,i) be arbitrary. For all γ ∈ Cβ,i ∩α, we have c(γ, β) ≤ i and c(α, β) ≤ i, so,
by subadditivity, c(γ, α) ≤ i. It follows that Cβ,i∩α ⊆ Dc

≤i(α), so sup(Dc
≤i(α)) = α,

and hence α ∈ Γ, i′(α) ≤ i, and Cα,i ⊇ Cβ,i ∩ α. To see that i(α) ≤ i, suppose
that α > ε, and we shall show that c(ε, α) ≤ i. We have already observed that
c(α, β) ≤ i. From i ≥ i(β), we infer c(ε, β) ≤ i. So, by subadditivity, c(ε, α) ≤ i.

It remains to show that Cα,i ⊆ Cβ,i∩α. But, if γ ∈ Cα,i, then we have c(γ, α) ≤ i
and c(α, β) ≤ i, so, again by subadditivity, we have c(γ, β) ≤ i, and we are done.

�

Claim 4.3.4. Suppose that D is a club in κ. Then there is α ∈ acc(D) ∩ Γ such
that, for all i ∈ [i(α), θ), D ∩ α 6= Cα,i.

Proof. Suppose not. For all α ∈ acc(D), fix jα ∈ [i(α), θ) such that D ∩α = Cα,jα ,
and find j < θ and A ∈ [acc(D)]κ such that jα = j for all α ∈ A. As c witnesses
U(κ, 2, θ, 2), we can find (α, β) ∈ [A]2 such that c(α, β) > j. But this contradicts
the fact that α ∈ D ∩ β = Cβ,j , and hence c(α, β) ≤ j. �

Finally, by the choice of ε, it is clear that if S∩Γ is stationary, then for all i < θ,
{α ∈ S ∩ Γ | i(α) > i} is stationary. �

The proof of the preceding theorem together with Remark 4.2 makes it clear
that the following holds as well.

Theorem 4.4. For every θ ∈ Reg(κ), the following are equivalent:

(1) �ind(κ, θ) holds;

(2) There exists a closed witness c to Usubadditive(κ, 2, θ, 2) for which ∂(c) is
nonstationary. �

Theorem 4.5. If �ind(κ, ω) holds, then so does �ind(κ, ω).

Proof. Suppose that �ind(κ, ω) holds. By Theorem 4.3, we may fix a closed, sub-
additive coloring c : [κ]2 → ω witnessing U(κ, 2, ω, 2). Let Γ := {α ∈ acc(κ) |
∃i < ω[sup(Dc

≤i(α)) = α]}, so that Γ ⊇ acc(κ) ∩ Eκ6=ω. For all δ ∈ Eκω \ Γ, let

aδ := {max(Dc
≤i(δ)) | i < ω & Dc

≤i(δ) 6= ∅}. Clearly, aδ is a cofinal subset of δ of
order-type ω.
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For all α ∈ Eκω \ Γ, let i(α) := 0. For all α ∈ Γ, let i(α) be the least i < ω for
which sup(Dc

≤i(α)) = α. Then, for all α ∈ acc(κ) and i ∈ [i(α), ω), let

Cα,i := Dc
≤i(α) ∪

⋃
{aδ | δ ∈ (Dc

≤i(α) ∪ {α}) \ Γ}.

Note that Cα,i ⊆ Cα,j for all j ≥ i.

Claim 4.5.1. Let β ∈ acc(κ). Then:

(1) acc(β) =
⋃
i(β)≤i<ω acc(Cβ,i);

(2) for all i ∈ [i(β), ω), Cβ,i is a club in β, and acc(Cβ,i) ⊆ Dc
≤i(β);

(3) for all i ∈ [i(β), ω) and α ∈ acc(Cβ,i), we have i(α) ≤ i and Cα,i = Cβ,i∩α.

Proof. (1) Let α ∈ acc(β) be arbitrary. Fix a large enough i ≥ max{i(α), i(β)}
such that c(α, β) ≤ i. If α 6∈ Γ, then aα ⊆ Cβ,i. If α ∈ Γ, then for all γ ∈ Cα,i, we
have c(γ, α) ≤ i and c(α, β) ≤ i, so, by subadditivity, c(γ, β) ≤ i. Thus, in both
cases, α ∈ acc(Cβ,i).

(2) Let i ∈ [i(β), ω) be arbitrary. Suppose first that β ∈ Γ. Since Dc
≤i(β) is a

club in β, to show that Cβ,i is a club and acc(Cβ,i) ⊆ Dc
≤i(β), it suffices to show

that for any pair γ < δ of successive elements of Dc
≤i(β), if (γ, δ) ∩ Cβ,i 6= ∅, then

δ /∈ Γ and (γ, δ) ∩ Cβ,i ⊆ aδ.
Fix γ, δ as above along with α ∈ (γ, δ)∩Cβ,i. Using the definition of Cβ,i, let us

fix some δ′ ∈ Dc
≤i(β) \ Γ such that α ∈ aδ′ . We have c(δ′, β) ≤ i and c(α, β) > i.

So, by subadditivity, j := c(α, δ′) is greater than i. As α ∈ aδ′ , it follows that
α = max(Dc

≤j(δ
′)).

Notice that if δ < δ′, then from δ, δ′ ∈ Dc
≤i and subadditivity, we have c(δ, δ′) ≤ i,

and so δ ≤ max(Dc
≤i(δ

′)) ≤ max(Dc
≤j(δ

′)) = α, which is a contradiction. So δ = δ′

and α ∈ aδ, as desired.
Next, suppose that β ∈ acc(κ)\Γ. Then the very same argument as before shows

that for any pair γ < δ of successive elements of Dc
≤i(β), if the interval (γ, δ)∩Cβ,i

is nonempty, then it is covered by aδ. Moreover, by the definition of Cβ,i, we have
Cβ,i \max(Dc

≤i) ⊆ aβ . It follows that Cβ,i is a club in β and acc(Cβ,i) ⊆ Dc
≤i(β).

(3) Fix i ∈ [i(β), ω) and α ∈ acc(Cβ,i). In particular, α ∈ Dc
≤i(β), so, by

subadditivity, Dc
≤i(α) = Dc

≤i(β) ∩ α.

I If α ∈ Γ, then α ∈ acc(Dc
≤i(β)), so that i(α) ≤ i, and it is clear from the

definition that Cα,i = Cβ,i ∩ α.
I If α /∈ Γ, then i(α) = 0 ≤ i, and it is clear from the definition that Cα,i =

Cβ,i ∩ α. �

The following claim will now finish our proof.

Claim 4.5.2. Suppose that D is a club in κ. Then there is α ∈ acc(D) such that,
for all i ∈ [i(α), ω), D ∩ α 6= Cα,i.

Proof. Suppose not. Then, for all α ∈ acc(D), for some jα ∈ [i(α), ω), D ∩ α =
Cα,jα . Find j < ω and A ∈ [acc(D)]κ such that jα = j for all α ∈ A. As c
witnesses U(κ, 2, ω, 2), we may pick (α, β) ∈ [A]2 such that c(α, β) > j. However
α ∈ acc(D ∩ β) = acc(Cβ,j) ⊆ Dc

≤j(β), meaning that c(α, β) ≤ j. This is a
contradiction. � �

An analogue of the preceding result holds for uncountable θ under the additional
assumption of stationary reflection.



30 CHRIS LAMBIE-HANSON AND ASSAF RINOT

Corollary 4.6. Suppose that θ ∈ Reg(κ). If every stationary subset of Eκθ reflects,
then �ind(κ, θ) is equivalent to �ind(κ, θ).

Proof. Suppose that �ind(κ, θ) holds. By Theorem 4.3, we may then fix a closed,
subadditive witness c to U(κ, 2, θ, 2). As ∂(c) is a subset of Eκθ and every stationary
subset of Eκθ reflects, it follows from Lemma 3.31 that ∂(c) is nonstationary. So,
by Theorem 4.4, �ind(κ, θ) holds. �

We shall now turn to prove Clause (3) of Theorem C, in particular, establishing
that, in general, for uncountable θ, �ind(κ, θ) is not equivalent to �ind(κ, θ). This
will follow from the following two theorems; these are fairly straightforward modifi-
cations of results of Cummings and Schimmerling [CS02] and Levine and Sinapova
[LS21], respectively, but we provide some details for completeness.

Theorem 4.7. Suppose that V ⊆ W are models of ZFC and θ < λ are regular
cardinals in V such that

(1) λ is inaccessible in V ;
(2) λ is singular and cf(λ) = θ in W ;
(3) (λ+)V = (λ+)W .

Then �ind(λ+, θ) holds in W . Moreover, in W there is a closed, locally small

witness c to Usubadditive(λ+, 2, θ, 2) such that ∂(c) ⊇ (Eλ
+

λ )V .

Proof. Work first in V , and let Γ := Eλ
+

<λ. Recall that a subset X ⊆ λ is (>ω)-club

if there is a club C ⊆ λ such that C ∩ Eλ>ω ⊆ X. By [CS02, Lemma 4.4], we can

fix a matrix ~D = 〈Dα,η | α ∈ Γ, η ∈ Xα〉 such that, for all α ∈ Γ,

(1) Xα is a (>ω)-club subset of λ;
(2) for all η ∈ Xα, Dα,η is a club in α and |Dα,η| < λ;
(3) 〈Dα,η | η ∈ Xα〉 is ⊆-increasing and Γ ∩ α =

⋃
η∈Xα acc(Dα,η);

(4) for all η ∈ Xα and all ᾱ ∈ acc(Dα,η), we have η ∈ Xᾱ and Dᾱ,η = Dα,η ∩ ᾱ.

Now move to W and note that, since cf(λ) = θ, we have (Eλ
+

6=θ ∩ acc(λ+)) ⊆ Γ ⊆
acc(λ+). By assumptions (1)–(3) in the statement of the theorem, [LH18, Corollary
4.2] implies that we can find an increasing sequence of ordinals 〈ηi | i < θ〉 that is
cofinal in λ and such that, for all α ∈ Γ, for all sufficiently large i < θ, we have
δi ∈ Xα. (This fact is also implicit in the earlier [DS95, Theorem 2.0])

For each α ∈ Γ, let i(α) be the least j < θ such that δi ∈ Xα for all i ∈ [j, θ).

Now define a matrix ~C = 〈Cα,i | α ∈ Γ, i(α) ≤ i < θ〉 by setting Cα,i := Dα,δi

for all α ∈ Γ and all i ∈ [i(α), θ). Notice that, for all α ∈ Γ, i ∈ [i(α), θ), and

ᾱ ∈ acc(Cα,i), the properties of ~D imply that Xα \ i ⊆ Xᾱ, and therefore, since
i ≥ i(α) we also have i ≥ i(ᾱ) and Cᾱ,i = Cα,i ∩ ᾱ. It is then straightforward to

verify that ~C satisfies Clauses (1)–(3) of Definition 4.1. To verify that ~C satisfies
Clause (4) of Definition 4.1, fix a club D ⊆ λ+, and let α ∈ acc(D) ∩ Γ be such
that |D ∩ α| = λ. Then, for all i ∈ [i(α), θ), the fact that |Cα,i| < λ implies that

D ∩ α 6= Cα,i. It follows that ~C is an �ind(λ+, θ)-sequence in W .
To prove the “moreover” statement, let c : [λ+]2 → θ be the closed witness to

Usubadditive(λ+, 2, θ, 2) derived from ~C as in the proof of (1) =⇒ (2) of Theo-

rem 4.3. The fact that ∂(c) ⊇ (Eλ
+

λ )V follows immediately from our definition of Γ,
and the fact that c is locally small follows immediately from the fact that |Cα,i| < λ
for all α ∈ Γ and i ∈ [i(α), θ). �
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Theorem 4.8. Suppose that θ < λ < κ are regular uncountable cardinals such that
λ is supercompact and κ is weakly compact. Then there is a forcing extension in
which λ is a singular strong limit of cofinality θ, κ = λ+, �ind(κ, θ) holds, and
�(κ, τ) fails for all τ < λ.

Proof. By forcing with the Laver preparation forcing if necessary, we may assume
that the supercompactness of λ is indestructible under λ-directed closed forcing.
Following [LS21, §4], let C := Coll(λ,<κ), and let Ṁ be a C-name for the Magidor
forcing that turns λ into a singular cardinal of cofinality θ.

For every inaccessible δ < κ above λ, let Cδ := Coll(λ,<δ). By [LS21, Proposi-

tion 4.3], there is a club C ⊆ κ such that, for every inaccessible δ ∈ C, Ṁδ := Ṁ∩Vδ
is a Cδ-name for a Magidor forcing to turn λ into a singular cardinal of cofinality
θ such that there is a complete embedding of Cδ ∗ Ṁδ into C ∗ Ṁ.

In V C, M has the λ+-cc and therefore preserves λ+. Therefore, applying The-

orem 4.7 to the models V C and V C∗Ṁ shows that �ind(κ, θ) holds in V C∗Ṁ. It

remains to show that �(κ, θ) fails in V C∗Ṁ. In fact, we will show that �(κ, τ) fails
for every τ < λ.

Suppose for sake of contradiction that τ < λ and Ḋ = 〈Ḋα | α ∈ acc(κ)〉 is a

C ∗ Ṁ-name for a �(κ, τ)-sequence. This is a Π1
1 statement about the structure

(Vκ,∈,C∗Ṁ, Ḋ) (the sole universal quantification over subsets of Vκ is the assertion

that there exists no C ∗ Ṁ-name for a thread through Ḋ). Therefore, by the weak

compactness of κ, we can find an inaccessible δ ∈ C such that Ḋ∗ := Ḋ ∩ Vδ is a
Cδ ∗ Ṁδ-name for a �(δ, τ)-sequence.

Note that δ = λ+ in V Cδ∗Ṁδ . In V C∗Ṁ, we have cf(δ) = θ > ω. Therefore, in

V C∗Ṁ, any element of Dδ is a thread through D∗. However, the proof of [LS21,

Lemma 4.7] shows that forcing over V Cδ∗Ṁδ with (C ∗ Ṁ)/(Cδ ∗ Ṁδ) cannot add a
thread to a �(δ, τ)-sequence. ([LS21, Lemma 4.7] is about �λ,τ -sequences, but the
exact same proof still works for �(δ, τ)-sequences.) This is a contradiction, thus
completing the proof. �

Remark 4.9. Suppose that θ ∈ Reg(κ) is such that there exists a closed subadditive
witness to U(κ, 2, θ, 2). By the proof Lemma 3.11, if κ is (<θ)-inaccessible, then
there exists a κ-Aronszajn tree with a θ-ascent path. In particular, such a tree
exists in the model of Theorem 4.8. We note that by a combination of Theorem 4.3,
[BR21, Theorem 6.11] and a minor variation of [BR21, Theorem 4.44], if κ = κ<κ is
a successor cardinal which is θ-inaccessible, then there moreover exists a κ-Souslin
tree with a θ-ascent path.

The Mapping Reflection Principle (MRP), introduced by Moore in [Moo05], is a
useful consequence of PFA.

Corollary 4.10. MRP implies that for every regular cardinal κ ≥ ℵ2, there exists
no closed, subadditive witness to U(κ, 2, ω, 2).

Proof. By Theorems 4.3 and 4.5, if there exists a closed subadditive witness to
U(κ, 2, ω, 2), then �ind(κ, ω) holds. In particular, �(κ, ω) holds. However, by
[Str11, Theorem 1.8], for every regular cardinal κ ≥ ℵ2, �(κ, ω) is refuted by MRP.
This is also implicit in [Via08, §7]. �

In [Str11], Strullu proves that MRP+MAω1 refutes�(κ, ω1) for all regular κ ≥ ℵ2.
In light of this fact and Theorem 3.45, it is natural to raise the following question.
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Question 4.11. Does MRP + MAω1
refute �ind(κ, ω1)? How about PFA or MM?4

By [LHL18, Theorem 3.4], for every θ ∈ Reg(κ), �(κ) implies �ind(κ, θ). Es-
sentially the same proof of that theorem establishes that for every θ ∈ Reg(κ),
�(κ,vθ) implies �ind(κ, θ).5 Here, we shall prove a generalization that also yields
the second part of Theorem A.

Theorem 4.12. Suppose that κ ≥ ℵ2, θ ∈ Reg(κ), T ⊆ Eκθ and there is a �(κ,vθ)-
sequence that avoids T . Then:

(1) There is a �ind(κ, θ)-sequence 〈Cα,i | α ∈ Γ, i(α) ≤ i < θ〉 such that
Γ ∩ T = ∅;

(2) There is a closed witness c to Usubadditive(κ, 2, θ, 2) such that T ⊆ ∂(c).

Proof. The proof of Theorem 4.3 makes it clear that (1) =⇒ (2), so we focus

on proving Clause (1). Fix a �(κ,vθ)-sequence ~C = 〈Cβ | β < κ〉 that avoids
T , i.e., for all β < κ, we have acc(Cβ) ∩ T = ∅. Set ∆ := {δ ∈ acc(κ) | ∀δ̄ ∈
acc(Cδ)[Cδ̄ = Cδ ∩ δ̄]}. By the vθ-coherence of ~C, we have Eκ≥θ ⊆ ∆. Set Ω :=

Eκ>θ ∪
⋃
{acc(Cδ) | δ ∈ ∆}, and note that Ω ⊆ ∆ \ T . As κ ≥ ℵ2, Ω is stationary.

So, by [BR19, Lemma 1.23 and Lemma 1.7], we may fix ζ < κ such that {β ∈ Ω |
otp(Cβ) > ζ and Cβ(ζ) ≥ τ} is stationary for all τ < κ. By successive applications
of Fodor’s Lemma, we may then recursively construct a strictly increasing sequence
of ordinals 〈τi | i < θ〉 such that τ0 > min(Ω) and such that, for every i < θ,
{β ∈ Ω | otp(Cβ) > ζ and Cβ(ζ) = τi} is stationary.

Next, define ~D = 〈Dβ | β < κ〉, as follows:

• Let D0 := ∅;
• For every β < κ, let Dβ+1 := {β};
• For every β ∈ ∆ such that otp(Cβ) ≤ ζ, let Dβ := Cβ ;
• For every β ∈ ∆ such that otp(Cβ) > ζ, let Dβ := Cβ \ Cβ(ζ);
• For every β ∈ acc(κ) \∆, pick a club Dβ in β of order-type cf(β) such that
Dβ ∩ T = ∅.

For every ordinal β < κ, let

j(β) :=

{
i, if min(Dβ) = δi;

0, otherwise.

For every i < θ, set Γi := {β ∈ Ω | j(β) = i}. Then set Γ := Ω∪ (acc(κ)∩Eκ<θ).

Claim 4.12.1. (1) (Eκ6=θ ∩ acc(κ)) ⊆ Γ ⊆ acc(κ) and Γ ∩ T = ∅.
(2) For all β ∈ ∆ and α ∈ acc(Dβ), we have:

• α ∈ Ω,
• Dα = Dβ ∩ α, and
• j(α) = j(β).

(3) For every β ∈ Γ \ acc+(Γ), we have otp(Dβ \ sup(Γ ∩ β)) = ω.
(4) For every i < θ, Γi is stationary.
(5) min(Ω) ∈ Γ0.

4Recall that, by Theorem 3.34 and the discussion after Theorem 3.45, MM does not refute

Usubadditive(κ, κ, ω1, ω1).
5�(κ,vθ) is a weakening of �(κ); its definition may be found as Definition 1.4 of [LHR19].
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Proof. (1) This follows directly from the definition of Γ.
(2) Let β ∈ ∆ and α ∈ acc(Dβ) be arbitrary. There two cases to consider:

I If otp(Cβ) ≤ ζ, then α ∈ acc(Dβ) = acc(Cβ), so Cα = Cβ∩α and otp(Cα) <
ζ. Since β ∈ ∆ and α ∈ acc(Cβ), the definition of Ω implies that α ∈ Ω ⊆
∆. We therefore have Dα = Cα = Cβ ∩ α = Dβ ∩ α. In particular,
min(Dα) = min(Dβ), so j(α) = j(β).

I If otp(Cβ) > ζ, then α ∈ acc(Dβ) = acc(Cβ \ Cβ(ζ)), so Cα = Cβ ∩ α and
otp(Cα) > ζ. As in the previous case, we have α ∈ Ω ⊆ ∆, and therefore
Dα = Cα \Cα(ζ) = (Cβ \Cβ(ζ))∩α = Dβ ∩α. In particular, j(α) = j(β).

(3) Let β ∈ Γ. Note the following:

I If ω < cf(β) ≤ θ, then Eβω ⊆ acc(κ) ∩ Eκ<θ ⊆ Γ, and hence β ∈ acc+(Γ).
I If cf(β) > θ, then acc(Cβ) ⊆ Ω ⊆ Γ, so again β ∈ acc+(Γ).

Therefore, if β ∈ Γ \ acc+(Γ), then cf(β) = ω. So, if otp(Dβ) > ω, then β ∈ ∆,
and then acc(Cβ) ⊆ Ω ⊆ Γ. As we assume that β /∈ acc+(Γ), it in particular follows
that sup(acc(Cβ)) < β, and otp(Cβ \ sup(Γ ∩ β)) = ω. As Dβ is a final segment of
Cβ , it also follows that otp(Dβ \ sup(Γ ∩ β)) = ω.

(4) This follows directly from the choice of 〈τi | i < θ〉.
(5) For every i < θ, we have τi ≥ τ0 > min(Ω), so it is impossible for j(min(Ω))

to be greater than 0. �

We now construct a �ind(κ, θ)-sequence 〈Cα,i | α ∈ Γ, i(α) ≤ i < θ〉. We will
maintain the requirement that, for all α ∈ Ω, we have i(α) = j(α) and acc(Dα) ⊆
acc(Cα,i(α)).

As a base case, if β = min(Γ), then by Claim 4.12.1(3), we have otp(Dβ) = ω.
Set i(β) := 0, and let Cβ,i := Dβ for all i < θ. Note that if β ∈ Ω, then by
Claim 4.12.1(5), indeed i(β) = j(β).

Suppose now that β ∈ Γ\{min(Γ)} and we have defined 〈Cα,i | α ∈ Γ∩β, i(α) ≤
i < θ〉 satisfying all relevant instances of Clauses (2) and (3) of Definition 4.1 as well
as our recursive requirement. The construction breaks into a number of different
cases based on the identity of β. In all cases, the verification that our sequence
satisfies our recursive requirement and Clauses (2) and (3) of Definition 4.1 at β is
routine and therefore largely left to the reader.

Case 1: β ∈ Γ \ Ω. In particular, we have cf(β) < θ. We now split into
subcases depending on the behavior of Γ ∩ β.

Case 1a: sup(Γ ∩ β) < β and max(Γ ∩ β) exists. Let α := max(Γ ∩ β).
By Claim 4.12.1(3), we know that D−β := Dβ \ α has order type ω. Let

i(β) := i(α) and, for all i ∈ [i(β), θ), let Cβ,i = Cα,i ∪ {α} ∪D−β .

Case 1b: sup(Γ∩β) < β but max(Γ∩β) does not exist. Let α := sup(Γ∩
β). As in Case (1a), we know that D−β := Dβ \ α has order type ω. Since

α /∈ Γ, it follows that α ∈ Eκθ . Since cf(β) < θ, we know that θ > ω, and
hence acc(Dα) is unbounded in α. Let 〈αi | i < θ〉 be a strictly increasing
sequence of elements of acc(Dα) converging to α. As α ∈ Eκθ ⊆ ∆, it follows
from Claim 4.12.1(2) that, for all i < θ, αi ∈ Ω ⊆ Γ and j(αi) = j(α). So,
by the fact that our construction thus far satisfies all of our requirements,
we know that, for all i < θ, we have i(αi) = j(α) and acc(Dα) ∩ αi =
acc(Dαi) ⊆ acc(Cαi,j(α)). Set i(β) := j(α) and Cβ,i := Cαi,i ∪ {αi} ∪D−β
for all i ∈ [i(β), θ).
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Case 1c: sup(Γ ∩ β) = β. In this case, let 〈αη | η < cf(β)〉 be an increasing
sequence of elements of Γ converging to β. Let i(β) be the least ordinal
i < θ such that, for all η < ξ < cf(β), we have i(αη), i(αξ) ≤ i and αη ∈
acc(Cαξ,i). Such an ordinal exists because cf(β) < θ and our sequence so
far satisfies Clauses (2) and (3) of Definition 4.1. Then, for all i ∈ [i(β), θ),
let Cβ,i =

⋃
η<cf(β) Cαη,i.

Case 2: β ∈ Ω. In this case, we are required to set i(β) := j(β). We again
split into subcases depending on the behavior of Γ ∩ β and acc(Dβ).

Case 2a: sup(Γ ∩ β) < β and max(Γ ∩ β) exists. Let α := max(Γ ∩ β). As
in Case (1a), we know that D−β := Dβ \ α has order type ω.

I If α ∈ acc(Dβ), then i(α) = j(α) = j(β) = i(β), so we let Cβ,i :=
Cα,i ∪ {α} ∪D−β for all i ∈ [i(β), θ). Note that

acc(Dβ) = acc(Dα) ∪ {α} ⊆ acc(Cα,i(α)) ∪ {α} ⊆ acc(Cβ,i(β)),

so we have satisfied our recursive hypothesis.
I If acc(Dβ) 6= ∅ but α > max(acc(Dβ)), then let α∗ := max(acc(Dβ))

and let i∗ ∈ [i(α), θ) be least such that α∗ ∈ acc(Cα,i∗). Note that i(β) =
i(α∗) ≤ i∗. Let Cβ,i := Cα∗,i ∪ {α∗} ∪ D−β for all i ∈ [i(β), i∗), and let

Cβ,i := Cα,i ∪ {α} ∪D−β for all i ∈ [i∗, θ).
Note that we have satisfied our recursive hypothesis.
I If acc(Dβ) = ∅, then let Cβ,i := D−β for all i ∈ [i(β), i(α)), and let

Cβ,i := Cα,i ∪ {α} ∪D−β for all i ∈ [max{i(β), i(α)}, θ).
Case 2b: sup(Γ∩β) < β but max(Γ∩β) does not exist. Let α := sup(Γ∩
β). Once again, it follows that D−β := Dβ \ α has order type ω. As in

Case (1b), we have α ∈ Eκθ , and, for all ᾱ ∈ acc(Dα), we have ᾱ ∈ Ω and
j(ᾱ) = j(α). Let α∗ := max(acc(Dβ)) if acc(Dβ) 6= ∅, and α∗ := min(Γ)
otherwise. In either case, note that α∗ < α and i(α∗) ≤ i(β).

Our construction now depends on whether or not θ = ω.
I If θ = ω, then let 〈αn | n < ω〉 be a strictly increasing sequence of

elements of Γ ∩ α converging to α such that α0 = α∗. Let 〈in | n < ω〉 be
a strictly increasing sequence of natural numbers such that, for all n < ω,
max{i(αm) | m ≤ n} ≤ in and {αm | m < n} ⊆ acc(Cαn,in).

Finally, for all i ∈ [i(β), ω), let n < ω be such that in ≤ i < in+1, and
set Cβ,i := Cαn,i ∪ {αn} ∪D−β .

I If θ > ω, then let 〈αi | i < θ〉 be a strictly increasing sequence of
elements of acc(Dα) converging to α such that α0 > α∗. As noted earlier,
we have i(αi) = j(α). Let i∗ ∈ [j(α), θ) be least such that α∗ ∈ acc(Cα0,i∗).
In particular, for all i ∈ [i∗, θ), we have α∗ ∈ acc(Cαi,i), so that acc(Dβ) ⊆
acc(Cαi,i).

Now, let Cβ,i := Cα∗,i ∪ {α∗} ∪D−β for all i ∈ [i(β), i∗), and let Cβ,i :=

Cαi,i ∪ {αi} ∪D−β for all i ∈ [i∗, θ).

Case 2c: sup(Γ ∩ β) = β but sup(acc(Dβ)) < β. In this case, otp(Dβ \
sup(acc(Dβ))) = ω. Let α∗ := max(acc(Dβ)) if acc(Dβ) 6= ∅, and α∗ :=
min(Γ) otherwise. In either case, α∗ < α and i(α∗) ≤ i(β). Let 〈αn | n < ω〉
be an increasing sequence of elements of Γ converging to β with α0 := α∗.
Fix an increasing sequence 〈in | n < ω〉 of ordinals below θ such that for
all n < ω, max{i(αm) | m ≤ n} ≤ in and {αm | m < n} ⊆ acc(Cαn,in).
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Finally, fix i ∈ [i(β), θ). If there is k < ω such that ik ≤ i < ik+1, then
set Cβ,i := Cαk,i ∪ {αn | k ≤ n < ω} for this unique k. Otherwise, set
Cβ,i :=

⋃
n<ω Cαn,i.

Case 2d: sup(acc(Dβ)) = β. Note that, for all α ∈ acc(Dβ), we have α ∈ Ω,
i(α) = i(β) and acc(Dβ) ∩ α = acc(Dα) ⊆ Cα,i(α). Therefore, for all
i ∈ [i(β), θ), we can simply set Cβ,i :=

⋃
α∈acc(Dβ) Cα,i.

Our construction has yielded a matrix satisfying clauses (1)–(3) of Definition 4.1
and such that Γ∩T = ∅. It remains to verify clause (4) of Definition 4.1. Towards a
contradiction, suppose that D is a club in κ satisfying that, for every α ∈ acc(D)∩Γ,
there exists i < θ such that D∩α 6= Cα,i. Fix i < θ for which G := {γ ∈ Γ | D∩γ =
Cγ,i} is stationary. Recalling Clause 4.12.1(4), let us now fix β ∈ Γi+1 ∩ acc(D).
Pick γ ∈ G above β. Then β ∈ acc(D ∩ γ) = acc(Cγ,i), so i(β) ≤ i, contradicting
the fact that i(β) = j(β) = i+ 1. �

Corollary 4.13. (ℵω+1,ℵω)� (ℵ1,ℵ0) is compatible with Usubadditive(ℵω+1,ℵω+1,
θ,ℵω) holding for every infinite cardinal θ < ℵω.

Proof. Starting with a ground model in which (ℵω+1,ℵω)� (ℵ1,ℵ0) holds, one can
add a �(ℵω+1)-sequence via an ℵω+1-strategically closed forcing, hence preserving
the principle (ℵω+1,ℵω) � (ℵ1,ℵ0). By Theorems 4.3 and 4.12, in the extension,

Usubadditive(ℵω+1,ℵω+1, θ,ℵω) holds for every infinite cardinal θ < ℵω. �

By Theorem 3.34, for any θ ∈ Reg(κ), there exists a θ+-directed closed, κ-
strategically closed forcing notion that introduces a somewhere-closed witness to
Usubadditive(κ, κ, θ, θ). In order to force a fully closed witness, it seems that we must
decrease the degree of closure of the poset by one cardinal. The next theorem forms
Clause (2) of Theorem C.

Theorem 4.14. Suppose that θ ∈ Reg(κ). Then there exists a θ-directed closed,
κ-strategically closed forcing notion that introduces a closed witness c : [κ]2 → θ to

Usubadditive(κ, κ, θ, θ) for which ∂(c) is stationary.

Proof. By [LH17b, §7], there is a θ-directed closed, κ-strategically closed forcing
notion that adds an �ind(κ, θ)-sequence and therefore, by Theorem 4.3, it adds

a closed witness c to Usubadditive(κ, κ, θ, θ). However, unless θ = ω, it is unclear
whether ∂(c) can be made to be stationary in this case. Thus, instead, we appeal to
the forcing P(κ, θ) from [LHR19, §3.3]. This is a θ-directed closed, κ-strategically

closed forcing notion that introduces a witness ~C = 〈Cα | α < κ〉 to P−(κ, 2,
vθ, 1, {κ}, 2, σ) for every σ < κ. Now, utilizing the instance σ := θ, the proof of
[LH17a, Theorem 4.1] makes it clear that the set {α ∈ Eκθ | ∃η < α[otp(Cα\η) = θ]}
is stationary. Fix some η < κ for which T := {α ∈ Eκθ | otp(Cα \ η) = θ} is

stationary. Note that, by the vθ-coherence of ~C, the set Γ := {α ∈ acc(κ) |
∀ᾱ ∈ acc(Cα)[Cᾱ v Cα]} covers Eκ≥θ. Now, define a C-sequence ~D = 〈Dα | α < κ〉
as follows:

• Let D0 := ∅.
• For every α < κ, let Dα+1 := {α}.
• For every α ∈ acc(κ) \Γ, let Dα be some club in α of order-type cf(α) such

that nacc(Dα) ⊆ nacc(α).
• For every α ∈ Γ such that otp(Cα \ η) ≤ θ, let Dα := Cα.
• For any other α, let Dα := {β ∈ Cα | otp((Cα \ η) ∩ β) > θ}.
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Note that, for every α ∈ κ \ Γ, otp(Dα) = cf(α) < θ, so acc(Dα) ∩ T = ∅.

Claim 4.14.1. ~D is a �(κ,vθ)-sequence that avoids T .

Proof. As any vθ-coherent C-sequence that avoids a stationary set is a �(κ,vθ)-
sequence, we shall focus on verifying that ~D is vθ-coherent and avoids T . By the

definition of ~D, it suffices to verify that for all α ∈ Γ and ᾱ ∈ acc(Dα), Dᾱ v Dα

and ᾱ /∈ T . Now, given such a pair ᾱ < α, since α ∈ Γ, we infer that Cᾱ v Cα and
ᾱ ∈ Γ. We shall verify that Dᾱ v Dα and that ᾱ /∈ T .
I If otp(Cα \ η) ≤ θ, then otp(Cᾱ \ η) < θ, so Dᾱ = Cᾱ v Cα = Dα and ᾱ /∈ T .
I If otp(Cα \ η) > θ, then Dα = {β ∈ Cα | otp((Cα \ η) ∩ β) > θ}, and so, from

ᾱ ∈ acc(Dα) and Cᾱ = Cα ∩ ᾱ, it follows that otp(Cᾱ \ η) > θ, so again Dᾱ v Dα

and ᾱ /∈ T . �

Now, by Theorem 4.12(2) and Lemma 3.2(3), there is a closed witness c to

Usubadditive(κ, κ, θ, θ) such that T ⊆ ∂(c). �

It follows that there can be dramatic failures of monotonicity in the third coor-
dinate of Usubadditive(. . .).

Corollary 4.15. Suppose that θ is an indestructible supercompact cardinal below
κ. Then there is a forcing extension in which all cofinalities ≤ κ are preserved and
all of the following hold:

• Usubadditive(κ, κ, θ, θ) holds and is witnessed by a closed coloring;
• for all θ′ < θ, no witness to U(κ, 2, θ′, 2) is subadditive of the second kind;
• for all θ′ < θ such that κ is not the successor of a singular cardinal of

cofinality θ’, no witness to U(κ, 2, θ′, 2) is weakly subadditive of the first
kind.

Proof. By Theorem 4.14, there is a θ-directed closed, κ-strategically closed forcing
notion P that adds a closed witness to Usubadditive(κ, κ, θ, θ). Since P is θ-directed
closed, θ remains supercompact, so, we may appeal to Corollary 3.42. �

5. Successors of singular cardinals

Definition 5.1. Suppose that ~λ = 〈λj | j < ν〉 is a sequence of infinite cardinals,

each greater than ν. The principle ♦(~λ) asserts the existence of a sequence 〈Xα |
α < sup(~λ)〉, and, for all j < ν, a sequence ~Cj = 〈Cjα | α < λ+

j 〉 such that

• for all j < ν and α ∈ acc(λ+
j ), Cjα is a club in α, and for all ᾱ ∈ acc(Cjα),

– Cjᾱ = Cjα ∩ ᾱ;
– Xᾱ = Xα ∩ ᾱ, provided that α > λj .

• for all X ⊆ sup(~λ) and p ∈ HΥ, there exists N ≺ HΥ such that
– p ∈ N ;

– |N | < sup(~λ);
– N is internally approachable of length ν+;
– for all j < ν, we have X ∩ sup(N ∩ λ+

j ) = Xsup(N∩λ+
j ).

Remark 5.2. Note that, if ♦(~λ) holds for a sequence ~λ = 〈λj | j < ν〉, then 2µ ≤ λ
for all µ < λ, and �(λ+

j ) holds for each j < ν, as witnessed by the sequence ~Cj

from the above definition.
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We will soon show that ♦(~λ) entails certain instances of Usubadditive(λ+, . . .).
We first need the following lemma.

Lemma 5.3. Suppose that 〈Cα | α < κ〉 is a �(κ)-sequence, θ ∈ Reg(κ), and
h : κ→ θ is any function such that

(1) for all i < θ, h−1{i} is stationary;
(2) for all α < κ and all ᾱ ∈ acc(Cα), we have h(ᾱ) = h(α).

Then there is a closed, subadditive witness c to U(κ, κ, θ, sup(Reg(κ))) such that,
for all (α, β) ∈ [κ]2 with α ∈ acc(κ), we have c(α, β) ≥ h(α).

Proof. By the proof of [LHL18, Theorem 3.4], the hypotheses of the lemma entail
the existence of a �ind(κ, θ)-sequence 〈Cα,i | α ∈ acc(κ), i(α) ≤ i < θ〉 such that
i(α) = h(α) for all α ∈ acc(κ). The construction in the proof of the implication
(1) =⇒ (2) of Theorem 4.3 then yields a closed subadditive function c : [κ]2 → θ
witnessing U(κ, 2, θ, 2) such that, for all (α, β) ∈ [κ]2, if α ∈ acc(κ), then c(α, β) ≥
i(α) = h(α). By Fact 3.2, c is moreover a witness to U(κ, κ, θ, sup(Reg(κ))). �

Our next result is Theorem B. It is very much in the spirit of [CFM04, Corol-
lary 3.10]; both results take instances of incompactness below a singular cardinal λ
and use them together with a scale of length λ+ to produce an instance of incom-
pactness at λ+.

Theorem 5.4. Suppose that λ is a singular cardinal, θ ∈ Reg(λ) \ (cf(λ) + 1), and
~λ = 〈λj | j < cf(λ)〉 is an increasing sequence of cardinals, converging to λ, such
that

• ♦(~λ) holds;

•
∏
j<cf(λ) λ

+
j carries a scale ~f of length λ+.

Then there is a Σ-closed, subadditive witness to U(λ+, λ+, θ, λ), where Σ ⊆ Eλ+

6=cf(λ)

denotes the set of good points for ~f .

Proof. Without loss of generality, assume that λ0 > θ. Fix sequences 〈Xα | α < λ〉
and ~Cj = 〈Cjα | α < λ+

j 〉 for j < cf(λ) witnessing ♦(~λ).

Let j < cf(λ) be arbitrary. It is clear from the definition of ♦(~λ) that we
may assume that min(Cjα) ≥ λj whenever α ∈ (λj , λ

+
j ). Now, define a function

hj : λ+
j → θ by letting, for all α < λ+

j ,

hj(α) :=

{
Xα if α > λj & Xα ∈ θ;
0 otherwise.

Recalling the definition of ♦(~λ) and Remark 5.2, it is evident that ~Cj and hj
satisfy the hypotheses of Lemma 5.3, so we may fix a closed, subadditive witness
cj : [λ+

j ]2 → θ to U(λ+
j , λ

+
j , θ, λj) such that cj(α, β) ≥ hj(α) for all (α, β) ∈ [λ+

j ]2

with α ∈ acc(λ+
j ).

Next, let ~f = 〈fβ | β < λ+〉 be a continuous scale in
∏
j<cf(λ) λ

+
j , and let

Σ ⊆ Eλ+

6=cf(λ) denote the set of good points for ~f . Define a coloring c : [λ+]2 → θ by

setting, for all β < γ < λ+,

c(β, γ) := lim sup
j→cf(λ)

cj(fβ(j), fγ(j)).
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Note that, for all (β, γ) ∈ [λ+]2 and all sufficiently large j < cf(λ), we have
fβ(j) < fγ(j), so the above expression is well-defined. We claim that c is a Σ-closed,
subadditive witness to U(λ+, λ+, θ, λ). Let us verify each of these requirements in
turn.

Claim 5.4.1. c is Σ-closed.

Proof. Suppose that γ < λ+, i < θ, and B ⊆ Dc
≤i(γ), with β := sup(B) in

(γ ∩ Σ) \B. We will show that β ∈ Dc
≤i(γ).

Since β ∈ Σ, we can assume, by thinning out B if necessary, that there is j0 <

cf(λ) such that, for all (α, α′) ∈ [B]2, we have fα <j0 fα′ . Since ~f is continuous,
there is j1 ∈ [j0, cf(λ)) such that, for all j ∈ [j1, cf(λ)), we have fβ(j) = sup{fα(j) |
α ∈ B}. Finally, since B ⊆ Dc

≤i(γ), we can assume, by thinning out B again if

necessary, that there is j2 with j1 ≤ j2 < cf(λ) such that, for all j ∈ [j2, cf(λ)),

• fβ(j) < fγ(j);
• for all α ∈ B, cj(fα(j), fγ(j)) ≤ i.

Since each cj is closed, it follows that, for all j ∈ [j2, cf(λ)), we have sup{fα(j) |
α ∈ B} = fβ(j) and cj(fβ(j), fγ(j)) ≤ i, and hence c(β, γ) ≤ i. �

Claim 5.4.2. c is subadditive.

Proof. Let α < β < γ < λ+ be arbitrary. For all sufficiently large j < cf(λ), we
have fα(j) < fβ(j) < fγ(j) and hence, since each cj is subadditive, we have

• cj(fα(j), fγ(j)) ≤ max{cj(fα(j), fβ(j)), cj(fβ(j), fγ(j))}; and
• cj(fα(j), fβ(j)) ≤ max{cj(fα(j), fγ(j)), cj(fβ(j), fγ(j))}.

It follows immediately from the definition of c that c(α, γ) ≤ max{c(α, β), c(β, γ)}
and c(α, β) ≤ max{c(α, γ), c(β, γ)}. �

Claim 5.4.3. c witnesses U(λ+, λ+, θ, λ).

Proof. By a theorem of Shelah, Σ ∩ Eλ+

≥χ is stationary for all χ < λ. So, since c

is Σ-closed and subadditive, Lemma 3.2(3) implies that it suffices to verify that c

witnesses U(λ+, 2, θ, 2). To this end, fix A ∈ [λ+]λ
+

and a color i < θ. We will find
(α, γ) ∈ [A]2 such that c(α, γ) > i.

Apply ♦(~λ) with X := i+ 1 and p := {~λ, ~f,A} to find N ≺ HΥ such that

• p ∈ N ;
• |N | < λ;
• N is internally approachable of length cf(λ)+;
• for all j < cf(λ), we have Xsup(N∩λ+

j ) = i+ 1.

As |N | < λ and ~λ ∈ N , there exists a function χN ∈
∏
j<cf(λ) acc(λ+

j ) such that

χN (j) = sup(N ∩ λ+
j ) for all sufficiently large j < cf(λ). Let β := sup(N ∩ λ+).

As N is internally approachable of length cf(λ)+, we know that β ∈ Σ ∩ Eλ+

cf(λ)+ .

Since ~f ∈ N , ~f is continuous, and N is internally approachable, we know that
fβ(j) = χN (j) for all sufficiently large j < cf(λ). Thus, for all sufficiently large
j < cf(λ) and all η ∈ (fβ(j), λ+

j ),

cj(fβ(j), η) ≥ hj(fβ(j)) = hj(χN (j)) = Xsup(N∩λ+
j ) = i+ 1.

Consequently, c(β, γ) > i for all γ > β.
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Fix γ ∈ A \ (β + 1). Since β ∈ Σ and c is Σ-closed, there is ε < β such that
c(α, γ) > i for all α ∈ (ε, β). As A ∈ N , the elementarity of N entails that
sup(A ∩ β) = β, so we may fix α ∈ A ∩ (ε, β). Then c(α, γ) > i, as desired. � �

We now connect the above finding with the notion of the C-sequence spectrum,
introduced in Part II of this series.

Definition 5.5 ([LHR21]). (1) For every C-sequence ~C = 〈Cβ | β < κ〉, χ(~C)
is the least cardinal χ ≤ κ such that there exist ∆ ∈ [κ]κ and b : κ → [κ]χ

with ∆ ∩ α ⊆
⋃
β∈b(α) Cβ for every α < κ.

(2) Cspec(κ) := {χ(~C) | ~C is a C-sequence over κ} \ ω.

The next result yields the “In particular” part of Theorem B.

Corollary 5.6. Suppose that λ is a singular cardinal, ~λ is an increasing cf(λ)-

sequence of cardinals, converging to λ, such that ♦(~λ) holds, and tcf(
∏~λ,<∗) =

λ+. Then Reg(λ) ⊆ Cspec(λ+).

Proof. I By Remark 5.2, 2cf(λ) < λ. So, by [LHR21, Theorem 5.29(1)], Reg(cf(λ)) ⊆
Cspec(λ+).
I By [LHR21, Lemma 4.11], cf(λ) ∈ Cspec(λ+).
I By Theorem 5.4 and [LHR21, Corollary 5.21], Reg(λ)\(cf(λ)+1) ⊆ Cspec(λ+).

�

Our next goal is to improve the following fact from Part II, and present a weaker
sufficient condition for Cspec(λ+) to cover Reg(cf(λ)).

Fact 5.7 ([LHR21, Theorem 5.29(2)]). Suppose that λ is a singular cardinal of
successor cofinality µ+. Then:

• Reg(µ) ⊆ Cspec(λ+);
• If 2µ ≤ λ, then Reg(cf(λ)) ⊆ Cspec(λ+).

Theorem 5.8. Suppose that λ is a singular cardinal whose cofinality ν is not greatly
Mahlo. Then, for every infinite regular θ ≤ cf(ν), there exists a closed witness to
U(λ+, λ+, θ, cf(λ)).

Proof. By [LHR18, Corollary 4.17], there exists a closed witness to U(λ+, λ+, cf(λ),
cf(λ)), so assume that λ has uncountable cofinality. Recalling Claim 4.21.3 from
the proof of [LHR18, Theorem 4.21], it suffices to prove that the ideal I defined
there in “Case 1: Uncountable cofinality” is not weakly ν-saturated.

Let us first remind the reader that the definition of the ideal I goes through first

fixing a stationary subset ∆ ⊆ Eλ+

cf(λ) and a sequence ~e = 〈eδ | δ ∈ ∆〉 such that

• for every δ ∈ ∆, eδ is a club in δ of order type cf(λ);
• for every δ ∈ ∆, 〈cf(γ) | γ ∈ nacc(eδ)〉 is strictly increasing and converging

to λ;
• for every club D in λ+, there exists δ ∈ ∆ such that eδ ⊆ D.

Then, the ideal I consists of all subsets Γ ⊆ λ+ for which there exists a club D ⊆ λ+

such that sup(nacc(eδ) ∩D ∩ Γ) < δ for every δ ∈ ∆ ∩D.
Now, since ν is not a greatly Mahlo cardinal, by a theorem from [IR21], we may

fix a coloring c : [ν]2 → ν satisfying that, for every cofinal B ⊆ ν, there exist
(η, T ) ∈ (ν, [ν]ν) such that, for all τ ∈ T , sup{β ∈ B | c(η, β) = τ} = ν.
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Fix a club Λ in λ of order-type ν. For every η < ν and τ < ν, let

Γτη := {γ < λ+ | c(η, otp(Λ ∩ cf(γ)) = τ}.

Claim 5.8.1. There exists η < ν such that |{τ < ν | Γτη ∈ I+}| = ν.

Proof. Suppose not. Then, for every η < ν, the set Tη := {τ < ν | Γτη ∈ I+}
is bounded in ν. For each η < ν and τ ∈ ν \ Tη, fix a club Dτ

η ⊆ λ+ such
that sup(nacc(eδ) ∩ Dτ

η ∩ Γτη) < δ for every δ ∈ ∆ ∩ Dη
τ . Let D :=

⋂
{Dτ

η |
η < ν, τ ∈ ν \ Tη}. Now, using the choice of ~e, let us fix δ ∈ ∆ such that eδ ⊆ D.
In particular, δ ∈ D. As 〈cf(γ) | γ ∈ nacc(eδ)〉 is strictly increasing and converging
to λ, it follows that B := {otp(Λ ∩ cf(γ)) | γ ∈ nacc(eδ)} is cofinal in ν. Thus,
by the choice of c, we may now find (η, T ) ∈ (ν, [ν]ν) such that, for all τ ∈ T ,
sup{β ∈ B | c(η, β) = τ} = ν. Pick τ ∈ T \ Tη. As δ ∈ ∆ ∩ D ⊆ ∆ ∩ Dτ

η ,
we infer that sup(nacc(eδ) ∩ Dτ

η ∩ Γτη) < δ. In particular, A := {otp(Λ ∩ cf(γ)) |
γ ∈ nacc(eδ) ∩Dτ

η ∩ Γτη} is bounded in ν. Pick β ∈ B above sup(A ∪ (η + 1)) such
that c(η, β) = τ . Then, find γ ∈ nacc(eδ) such that β = otp(Λ∩ cf(γ)). Altogether:

• γ ∈ nacc(eδ);
• γ ∈ eδ, so that γ ∈ D ⊆ Dτ

η ;
• c(η, otp(Λ ∩ cf(γ)) = c(η, β) = τ , so that γ ∈ Γτη ;
• otp(Λ ∩ cf(γ)) = β > sup(A), so that γ /∈ nacc(eδ) ∩Dτ

η ∩ Γτη .

This is a contradiction. �

It follows that I is indeed not weakly ν-saturated, so we are done. �

As successor cardinals are non-Mahlo, the following indeed improves Fact 5.7.

Corollary 5.9. Suppose that λ is a singular cardinal of cofinality ν. If ν is not
greatly Mahlo, then Reg(cf(λ)) ⊆ Cspec(λ+).

Proof. By [LHR21, Corollary 5.21], to show that an infinite regular cardinal θ is in
Cspec(λ+), it suffices to prove that there exists a closed witness to U(λ+, λ+, θ, θ).
This is the content of the preceding theorem. �

6. Stationarily layered posets

In Part I of this project [LHR18], we motivated the study of U(κ, µ, θ, χ) by
showing that it places limits on the infinite productivity of the κ-Knaster condi-
tion. Here, we present an analogous result, indicating that closed witnesses to
Usubadditive(κ, 2, θ, 2) place limits on the infinite productivity of the property of
being κ-stationarily layered, which is a strengthening of the κ-Knaster condition.

Definition 6.1 ([Cox18]). A partial order P is κ-stationarily layered if the collec-
tion of regular suborders of P of size less than κ is stationary in Pκ(P).

By [CL17, Lemma 1.5], any κ-stationarily layered poset is also κ-Knaster. We
now recall a useful equivalence.

Fact 6.2 ([CL17, Lemma 2.3]). Given a poset P, the following are equivalent.

(1) P is κ-stationarily layered.
(2) There is a regular cardinal Υ with Pκ(P) ∈ HΥ and an elementary sub-

structure M ≺ HΥ such that
(a) κ,P ∈M ;
(b) κ ∩M ∈ κ;
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(c) P ∩M is a regular suborder of P.

The following is Theorem D:

Theorem 6.3. Suppose that θ ≤ χ < κ are infinite, regular cardinals, κ is (<χ)-
inaccessible, and there exists a closed witness c to U(κ, 2, θ, 2) that is subadditive of
the second kind. Then:

• There is a sequence of posets 〈Pi | i < θ〉 such that:
(1) for all i < θ, Pi is well-met and χ-directed closed with greatest lower

bounds;
(2) for all j < θ,

∏
i<j Pi is κ-stationarily layered;

(3)
∏
i<θ Pi is not κ-cc.

• If ∂(c) ∩ Eκχ is stationary, then there is a poset P such that:
(1) P is well-met and χ-directed closed with greatest lower bounds;
(2) for all j < θ, Pj is κ-stationarily layered;
(3) Pθ is not κ-cc.

Proof. Using Lemma 2.4(3) (with S := Eκχ), let us fix ε < κ such that, for every
j < θ, {β ∈ Eκχ | c(ε, β) > j} is stationary. For every i < θ, let

• Γi := {γ < κ | ε < γ and c(ε, γ) ≤ i},
• Pi denote the collection of all pairs (i, f) where f : κ → 2 is a partial

function of size less than χ.

Set P := {∅} ∪
⊎
i<θ Pi. Define an ordering ≤ of P as follows:

(1) ∅ is the top element of (P,≤).
(2) For all (i, f), (j, g) ∈ P \ {∅}, we let (j, g) ≤ (i, f) iff

• i = j,
• g ⊇ f , and
• for all γ ∈ dom(f) ∩ Γi and α ∈ γ ∩ dom(g) \ dom(f), if c(α, γ) ≤ i,

then g(α) = 0.

We then let P := (P,≤) and Pi := ({∅} ∪ Pi,≤) for all i < θ.

Claim 6.3.1. ≤ is transitive.

Proof. Suppose (i, h) ≤ (i, g) and (i, g) ≤ (i, f). It is clear that h ⊇ f . Let γ ∈
dom(f)∩Γi and α ∈ γ∩dom(h)\dom(f) with c(α, γ) ≤ i. Clearly, γ ∈ dom(g)∩Γi.
I If α /∈ dom(g), then from (i, h) ≤ (i, g), it follows that h(α) = 0, as sought.
I If α ∈ dom(g), then from (i, g) ≤ (i, f), it follows that h(α) = g(α) = 0, as

sought. �

Clearly, P and each of the Pi’s is a well-met poset which is χ-directed closed with
greatest lower bounds.

Claim 6.3.2. (1)
∏
i<θ Pi does not satisfy the κ-cc;

(2) Pθ does not satisfy the κ-cc.

Proof. (1) For every α < κ, define pα ∈
∏
i<θ Pi by setting pα(i) := (i, {(α, 1)})

for all i < θ. To see that {pα | α < κ} is an antichain (of size κ) in
∏
i<θ Pi, fix

arbitrary (α, γ) ∈ [κ]2. Let i := max{c(ε, γ), c(α, γ)}. Then pα(i) and pγ(i) are
incompatible in Pi, so pα and pγ are incompatible in

∏
i<θ Pi.

(2) This follows from Clause (1). �

Claim 6.3.3. Let j < θ.
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(1)
∏
i<j Pi is κ-stationarily layered;

(2) If ∂(c) ∩ Eκχ is stationary, then Pj is κ-stationarily layered.

Proof. Let Q denote
∏
i<j Pi (resp. Pj). Let Υ be a regular cardinal with Pκ(Q) ∈

HΥ. Using the fact that κ is (<χ)-inaccessible, construct an ∈-increasing, contin-

uous sequence ~M = 〈Mβ | β < κ〉 such that, for all β < κ,

• Mβ ≺ HΥ;
• |Mβ | < κ;
• κ,Q ∈Mβ ;
• <χMβ ⊆Mβ+1.

I If Q =
∏
i<j Pi, then, using our choice of ε, we fix β ∈ Eκχ with κ∩Mβ = β > ε

such that c(ε, β) > j.
I If ∂(c) ∩ Eκχ is stationary, then we fix β ∈ ∂(c) ∩ Eκχ with κ ∩Mβ = β > ε.

Note that by the continuity of the sequence ~M , <χMβ ⊆Mβ . Now, by Fact 6.2,
it suffices to prove that Q ∩Mβ is a regular suborder of Q. To this end, we will
define, for each p ∈ Q, a reduction of p to Mβ , i.e., a condition p|Mβ ∈ Q ∩Mβ

such that, for all q ≤Q p|Mβ with q ∈Mβ , q is compatible with p.
Fix p ∈ Q. For every η < j, write p(η) as (iη, fη), and set xη := dom(fη)∩Γiη \β.

Subclaim 6.3.3.1. Let η < j and γ ∈ xη. Then Dc
≤iη (γ) ∩ β is a closed bounded

subset of β.

Proof. As c is closed, it suffices to prove that sup(Dc
≤iη (γ) ∩ β) < β. To avoid

trivialities, suppose that β /∈ ∂(c). So, Q =
∏
i<j Pi and iη = η. Now, as c is

subadditive of the second kind,

j < c(ε, β) ≤ max{c(ε, γ), c(β, γ)}.

So, since c(ε, γ) ≤ iη = η < j, it follows that c(β, γ) ≥ j > iη. As c is closed, it
thus follows that {α < β | c(α, γ) ≤ iη} is bounded below β. �

For every η < j, by the subclaim and since |xη| < χ,

yη := {max(Dc
≤iη (γ) ∩ β) | γ ∈ xη & Dc

≤iη (γ) ∩ β 6= ∅}

is a well-defined element of [β]<χ.
For each η < j, define a partial function gη : β → 2 by letting

gη := (fη � β) ∪ ((yη \ dom(fη))× {0}).

Clearly, gη has size less than χ, so as <χMβ ⊆Mβ , we have (iη, gη) ∈Mβ ∩ Piη .
Define a condition p|Mβ in Q by letting (p|Mβ)(η) := (iη, gη) for all η < j.

As <θMβ ⊆ Mβ , we have p|Mβ ∈ Mβ ∩ Q. To see that p|Mβ is a reduction of
p to Mβ , fix q ≤Q p|Mβ in Mβ . The only way that q can fail to be compatible
with p is if, for some η < j, there are γ ∈ xη and α ∈ dom(q(η)) \ dom(fη) such
that c(α, γ) ≤ iη, but q(η)(α) = 1. So suppose η, α and γ are as described. In
particular, α is smaller than γη := max(Dc

≤iη (γ) ∩ β). As γη ∈ dom(gη), it thus

follows that either γη /∈ Γiη or c(α, γη) > iη. But c is subadditive of the second kind,
so c(ε, γη) ≤ max{c(ε, γ), c(γη, γ)} ≤ iη and c(α, γη) ≤ max{c(α, γ), c(γη, γ)} ≤ iη.
This is a contradiction. � �

Corollary 6.4. Suppose that κ is (<θ)-inaccessible and any one of the following
six statements holds.
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(1) κ = λ+ and �λ holds.
(2) V = L and κ is not weakly compact.
(3) �(κ) holds after being added generically.
(4) There exists a �(κ)-sequence that avoids a stationary subset of Eκθ .
(5) κ = λ+ where λ is a former inaccessible that changed its cofinality to θ via

Prikry/Magidor forcing.
(6) θ = ω and �ind(κ, ω) holds after being added generically.

Then there is a poset P such that:

• P is well-met and θ-directed closed with greatest lower bounds;
• for all j < θ, Pj is κ-stationarily layered;
• Pθ is not κ-cc.

Proof. We will show that any one of the assumptions entails the existence of a
closed witness c to Usubadditive(κ, 2, θ, 2) such that ∂(c) is stationary. Then the
second bullet point of Theorem 6.3 will furnish the desired poset P.

Note first that (1) =⇒ (4) and (2) =⇒ (4) (cf. [Jen72, Theorem 6.1] or
[Dev84, Theorem VII.1.2’]). In addition, as established in the proof of Theo-
rem 4.14, (3) =⇒ (4). Next, by Theorem 4.12(2), if (4) holds, then there is

a closed witness c to Usubadditive(κ, 2, θ, 2) for which ∂(c) is stationary.
The fact that Clause (5) implies the desired conclusion is a consequence of The-

orem 4.7 and the fact that Prikry forcing and Magidor forcing do not kill the

stationarity of the ground model’s Eλ
+

λ .

It remains to deal with (6). To this end, suppose that ~C = 〈Cα,i | α ∈
acc(κ), i(α) ≤ i < ω〉 is a generically-added �ind(κ, ω)-sequence, i.e., V is an ex-
tension of some ground model by the forcing from [LH17b, §7] to add a �ind(κ, ω)-

sequence, and ~C is the sequence generated by the generic filter. Let

S := {α ∈ Eκω | ∀i ∈ [i(α), ω)[sup(acc(Cα, i)) < α]}.

By [LHR21, Claim 3.4.1], S is stationary. Let Γ := acc(κ) \ S. We now define

an �ind(κ, ω)-sequence ~D := 〈Dα,i | α ∈ Γ, j(α) ≤ i < ω〉 as follows. For each
α ∈ S, let j(α) be the least j ∈ [i(α), ω) such that sup(acc(Cα, i)) = α and, for

all j ∈ [j(α), ω), let Dα,j := acc(Cα,j). Using our choice of S and the fact that ~C

is an �ind(κ, ω) sequence, it is straightforward to verify that ~D is an �ind(κ, ω)-
sequence. By the proof of Theorem 4.3 (cf. also Theorem 4.12) and the fact that

Γ ∩ S = ∅, it follows that there is a closed witness c to Usubadditive(κ, 2, ω, 2) such
that S ⊆ ∂(c). �
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