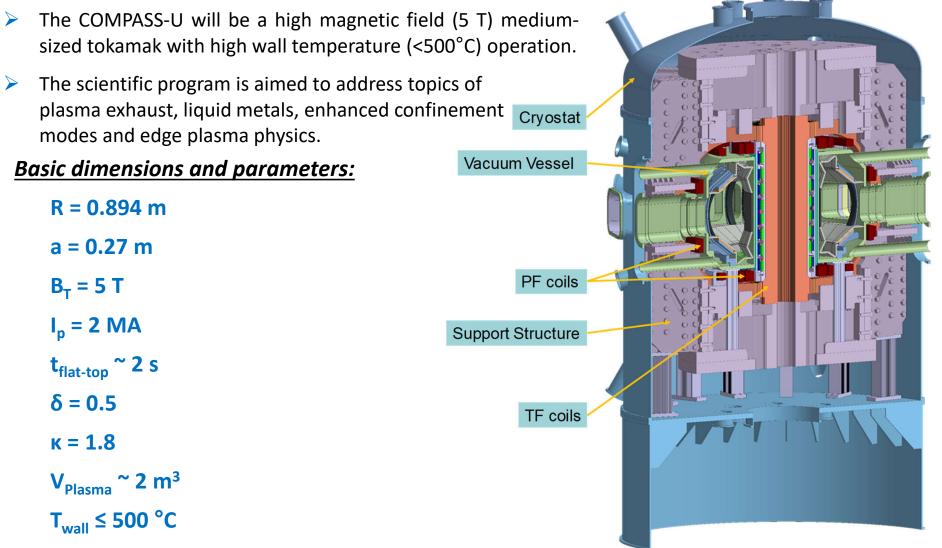


Vacuum Vessel of the COMPASS-U tokamak

N. Patel, J. Havlicek, and the COMPASS-U team


This document is intended for the companies who shown interest in the Preliminary Market Consultation for COMPASS-U Vacuum Vessel system to initiate discussion have feedback on fabrication viability of the system.

It will provide very basic information about the system which is in the Design Phase.

 \geq

Basic parameters of COMPASS-U

High capability to address the key Plasma Exhaust Physics challenges

Design Requirement

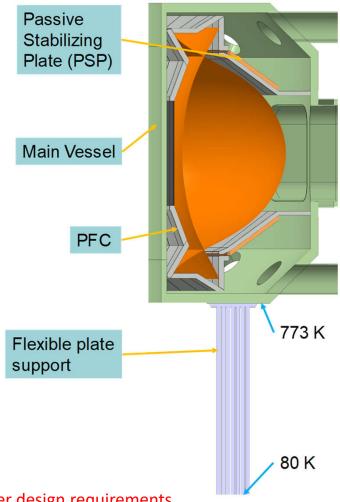
- Provide high vacuum boundary for plasma experiments
- Provide access ports for external diagnostic systems, Heating and Current Drive systems and in-vessel components maintenance.
- Provide structural support for the in-vessel components e.g. PFC, divertor, passive stabilizing plates.
- Provide support to Multi-layer insulation thermal shield?
- Provide required toroidal electrical resistance to allow plasma break down.
- Provide Plasma vertical stability

Design constraints

- Provide a reliable structural boundary for life time of the tokamak
 - It shall withstand all possible load combinations from external pressure, component weight, electromagnetic loads and seismic load.
- It should be compatible with high temperature (500 °C) operations.
- Material of VV should have high electrical resistance
- High toroidal electrical resistance to allow plasma break down
- It should remove decay heat by Passive/Active cooling system
- Geometrical space limitation with coils outside and PFC position inside
- Price
- Manufacturability

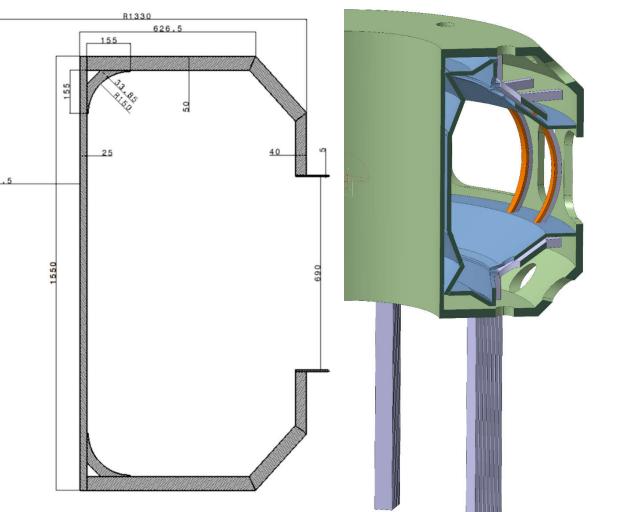
Choice	of the	material
Gildice		inaccitat

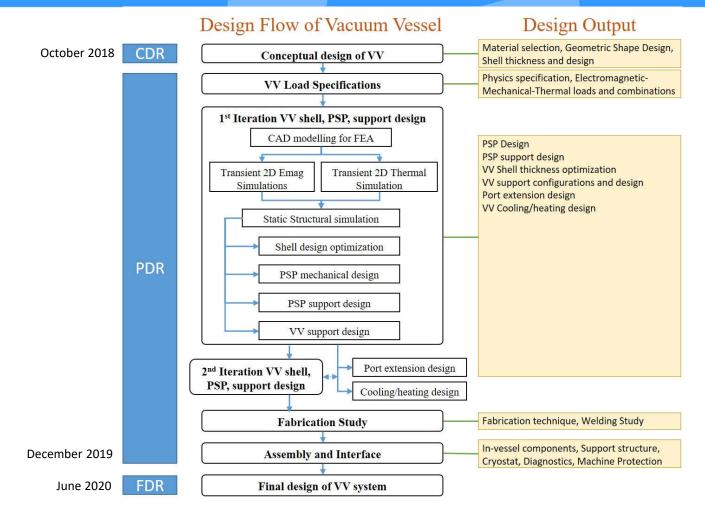
				Nitronic 50		
Property	Unit	Inconel 625	SS316L	(XM-19)		
Density	(kg/m3)	8440	7960	7880		
Poisson's ratio		0.28	0.3	0.312		
Melting Temp.	°C	1290	1375	1415		
Electrical Resistivity	Ωm	1.3E-06	7.7E-07	8.2E-07		
Specific heat	J/kg K	410	494			
Mechanical properties at room temperature (21 °C)						
Youngs modulus	(GPa)	207	195	199		
Yield Strength	(MPa)	454	173	538		
Tensile Strength	(MPa)	910	483	855		
Coefficient of thermal expansion	(µm/m/k)	12.8	15.3	16.2		
Thermal conductivity	(W/m * K)	9.8	14.18	15.6		
Mechanical properties at cryo-temperature (300 °C)						
Youngs modulus	(GPa)	192	175	170		
Yield Strength	(MPa)	410	109	372		
Tensile Strength	(MPa)	866	387	676		
Coefficient of thermal expansion	(µm/m/k)	13.3	17.64	17.3		
Thermal conductivity	(W/m * K)	14.1	18.34	17.9		
Mechanical properties at cryo-temperature (500 °C)						
Youngs modulus	(GPa)	180	160			
Yield Strength	(MPa)	405	94	331		
Tensile Strength	(MPa)	827	363	614		
Coefficient of thermal expansion	(µm/m/k)	14	18.54	18.4		
Thermal conductivity	(W/m * K)	17	21.2	20.3		


- **Price:** Inconel ~ 10x more expensive
- Mechanical properties: Inconel significantly better at high temperatures
- Electrical conductivity: Inconel about ~50% more resistive
- Material activation: Inconel ~4x more active than SS

COMPASS-U Vacuum vessel

- The COMPASS-U Vacuum vessel system includes;
 - Main vessel,
 - ✓ Port extensions
 - ✓ Vacuum vessel support
- It has to provide first confinement barrier, a high quality vacuum, specific toroidal resistance a reliable structural boundary for the lifetime of the machine, and remove heat from in-vessel component.
- The vessel is 1.55 m in height, the inner radius of 0.52 m and the outer radius of 1.33 m. The thickness of the shell is varying from 25 to 50 mm for 1st iteration of design concept.
- The vessel is single wall structure with "D"-shaped cross-section and flat top and bottom.
 - \checkmark The design kept simple to reduce the fabrication complexity and to lower cost
- > VV will be vertically supported by Flexible plates support
 - ✓ To support about 11 MN vertical force against fast transient events
 - To accommodate movement during thermal expansion, 6.5 mm @ 500
 °C @ Radius 0.89 m
 - 8 supports toroidally, each contains 7 flexible plates, 100x20 mm c/s, 1.24 m length


Vacuum vessel system are under design process and can be modified later as per design requirements


Present design of Vacuum Vessel

Main VV parameters				
Mechanical parameters				
Surface	23.6 m ²			
Volume	6.0 m ³			
Material	Inconel 625			
Mass	8 tons			
Shell thicknesss	25 – 50 mm			
Rib thickness	20 mm			
Operating temperature	300 – 500 °C			
Electrical parameters				
Toroidal				
• resistance	45.3 μΩ			
• inductance	0.61 µH			
• time constant	13.4 ms			
Poloidal				
• resistance	36.9 μΩ			
 inductance 	0.25 μΗ			
• time constant	6.8 ms			

Design flow of Vacuum Vessel

>The vacuum vessel is based on high normal and off-normal electromagnetic forces and thermal loads.

>Tight spatial constraints are applicable on total shell thickness and maximum outer dimensions of VV design

- What are the possible options for the fabrication of 1st iteration of vacuum vessel design
- Possibility of forming of 50mm thick Inconel 625 plate, Ribs or Formed corners?
- Fabrication challenges with Inconel 625 comparison with other materials
- Confirmation on material properties of Inconel 625 at 500 °C
- Weldability of Inconel 625, challenges and precautions required, Post weld treatments or limitations
- Weld efficiency of materials and joints
- Costing effect: Forming, Bending, Machining, welding
- Possible options for vessel cooling considering fabrications: cooling pipe, half pipe or Dimple jacket