Saturated Thermoporoelasticity

Tomáš Ligurský

The Czech Academy of Sciences, Institute of Geonics

The model

- non-stationary non-isothermal saturated water flow in a deformable porous medium
- isotropic elastic skeleton
- negligible inertial effects
- continuum approach, continuity assumption
- the assumption of thermal equilibrium
- the assumption of small perturbations (small transformations, small displacements, small variations of the porosity, water mass density and temperature) + the assumption of small deformation velocity
- compressive-positive pore pressures, tensile-positive stresses
- an extract from [Cou04] with the Lagrangian approach + a connection and adaptation of the Eulerian approach from [LS98]

Notation

t - the time \boldsymbol{u} - the displacement vector of the skeleton
$\boldsymbol{i d}+\boldsymbol{u}$ - the deformation of the skeleton $\quad \boldsymbol{F}=\boldsymbol{I}+\boldsymbol{\nabla} \boldsymbol{u}$ - the deformation gradient
$\varepsilon \equiv \frac{1}{2}\left(\boldsymbol{\nabla} \boldsymbol{u}+(\boldsymbol{\nabla} \boldsymbol{u})^{\top}\right)$ - the linear strain tensor $\quad \varepsilon_{v} \equiv \operatorname{tr} \boldsymbol{\varepsilon}=\operatorname{div} \boldsymbol{u}$ - the volumetric strain
$J=\operatorname{det}(\boldsymbol{I}+\boldsymbol{\nabla} \boldsymbol{u})$ - the Jacobian of the deformation
($\approx 1+\varepsilon_{v}$ under the assumption of small transformations)
n - the Eulerian porosity $\quad \phi=J n$ — the Lagrangian porosity

Balance laws

Skeleton mass balance

The Eulerian form (in the current configuration):

$$
\begin{align*}
& \frac{\partial\left(\rho_{s}(1-n)\right)}{\partial t}+\operatorname{div}\left(\rho_{s}(1-n) \boldsymbol{v}_{s}\right)=0 \tag{1}\\
& \rho_{s}-\text { the matrix mass density } \quad \boldsymbol{v}_{s}-\text { the skeleton velocity }
\end{align*}
$$

or equivalently:

$$
\begin{align*}
\frac{\mathrm{D}_{s}\left(\rho_{s}(1-n)\right)}{\mathrm{D} t}+\rho_{s}(1-n) \operatorname{div} \boldsymbol{v}_{s}=0 \tag{2}\\
\frac{\mathrm{D}_{s}}{\mathrm{D} t}=\frac{\partial}{\partial t}+\boldsymbol{v}_{s} \cdot \nabla — \text { the total time derivative with respect to the skeleton }
\end{align*}
$$

The Lagrangian form (in the initial configuration):

$$
\begin{align*}
\rho_{s}(1-n) J= & \rho_{s 0}\left(1-\phi_{0}\right) \tag{3}\\
& \rho_{s 0}-\text { the initial skeleton mass density } \\
& \phi_{0}\left(=n_{0}\right)-\text { the initial Lagrangian }(=\text { initial Eulerian }) \text { porosity }
\end{align*}
$$

Water mass balance

The Eulerian form:

$$
\begin{align*}
\frac{\partial\left(\rho_{w} n\right)}{\partial t}+ & \operatorname{div}\left(\rho_{w} n \boldsymbol{v}_{w}\right)=0 \tag{4}\\
& \rho_{w}-\text { the water mass density } \\
& \boldsymbol{v}_{w}-\text { the water velocity }
\end{align*}
$$

or equivalently, referring to the skeleton motion:

$$
\begin{align*}
& \frac{\mathrm{D}_{s}\left(\rho_{w} n\right)}{\mathrm{D} t}+\rho_{w} n \operatorname{div} \boldsymbol{v}_{s}+\operatorname{div}\left(\rho_{w} \boldsymbol{q}_{r w}\right)=0 \tag{5}\\
& \boldsymbol{q}_{r w} \equiv n\left(\boldsymbol{v}_{w}-\boldsymbol{v}_{s}\right)- \text { the water specific discharge relative to the skeleton } \\
& \text { (or Darcy velocity or filtration vector) }
\end{align*}
$$

The Lagrangian alternative:

$$
\begin{align*}
& \frac{\mathrm{d}\left(\rho_{w} \phi\right)}{\mathrm{d} t}+\operatorname{div} \boldsymbol{M}=0 \tag{6}\\
& \quad \boldsymbol{M} \equiv J \boldsymbol{F}^{-1}\left(\rho_{w} \boldsymbol{q}_{r w}\right) \text { - the Lagrangian relative flow vector of water mass } \tag{7}
\end{align*}
$$

Balance of momentum

For any current material domain V_{t} :

$$
\begin{aligned}
& \frac{\mathrm{D}_{s}}{\mathrm{D} t} \int_{V_{t}} \rho_{s}(1-n) \boldsymbol{v}_{s} \mathrm{~d} V_{t}+\frac{\mathrm{D}_{w}}{\mathrm{D} t} \int_{V_{t}} \rho_{w} n \boldsymbol{v}_{w} \mathrm{~d} V_{t}=\int_{V_{t}} \rho \boldsymbol{f} \mathrm{~d} V_{t}+\int_{\partial V_{t}} \boldsymbol{T} \mathrm{~d} a \\
& \frac{\mathrm{D}_{w}}{\mathrm{D} t}-\text { the total time derivative with respect to the water } \\
& \rho \equiv \rho_{s}(1-n)+\rho_{w} n-\text { the mass density of the porous medium } \\
& \quad \text { (including both the skeleton and the water) } \\
& \text { - a body force density } \boldsymbol{T}-\text { a surface force density }
\end{aligned}
$$

Applying the transport theorem to each component of the left-hand side of (8) one gets:

$$
\begin{aligned}
& \frac{\mathrm{D}_{s}}{\mathrm{D} t} \int_{V_{t}} \rho_{s}(1-n) v_{s i} \mathrm{~d} V_{t}+\frac{\mathrm{D}_{w}}{\mathrm{D} t} \int_{V_{t}} \rho_{w} n v_{w i} \mathrm{~d} V_{t} \\
& \quad=\int_{V_{t}}\left(\frac{\partial\left(\rho_{s}(1-n) v_{s i}\right)}{\partial t}+\operatorname{div}\left(\rho_{s}(1-n) v_{s i} \boldsymbol{v}_{s}\right)+\frac{\partial\left(\rho_{w} n v_{w i}\right)}{\partial t}+\operatorname{div}\left(\rho_{w} n v_{w i} \boldsymbol{v}_{w}\right)\right) \mathrm{d} V_{t} \quad \forall i
\end{aligned}
$$

which together with the mass balance equations (1) and (4) yields:

$$
\begin{aligned}
\frac{\mathrm{D}_{s}}{\mathrm{D} t} \int_{V_{t}} \rho_{s}(1-n) \boldsymbol{v}_{s} \mathrm{~d} V_{t}+\frac{\mathrm{D}_{w}}{\mathrm{D} t} \int_{V_{t}} \rho_{w} n \boldsymbol{v}_{w} \mathrm{~d} V_{t} & =\int_{V_{t}}\left(\rho_{s}(1-n) \boldsymbol{a}_{s}+\rho_{w} n \boldsymbol{a}_{w}\right) \mathrm{d} V_{t} \\
\boldsymbol{a}_{s} & \equiv \frac{\mathrm{D}_{s} \boldsymbol{v}_{s}}{\mathrm{D} t}
\end{aligned}=\frac{\partial \boldsymbol{v}_{s}}{\partial t}+\left(\boldsymbol{\nabla} \boldsymbol{v}_{s}\right) \boldsymbol{v}_{s}-\text { the skeleton acceleration } 1 \text { ander acceleration }
$$

Use of the Cauchy stress tensor in the surface integral of (8) in connection with the divergence theorem gives:

$$
\begin{aligned}
\int_{\partial V_{t}} \boldsymbol{T} \mathrm{~d} a= & \int_{\partial V_{t}} \boldsymbol{\sigma} \boldsymbol{n} \mathrm{~d} a=\int_{V_{t}} \operatorname{div} \boldsymbol{\sigma} \mathrm{~d} V_{t} \\
& \boldsymbol{\sigma}-\text { the Cauchy stress tensor } \quad \boldsymbol{n} \text { - the outward unit normal to } V_{t}
\end{aligned}
$$

Hence one can rewrite (8) in the form:

$$
\int_{V_{t}}\left(\operatorname{div} \boldsymbol{\sigma}+\rho \boldsymbol{f}-\rho_{s}(1-n) \boldsymbol{a}_{s}-\rho_{w} n \boldsymbol{a}_{w}\right) \mathrm{d} V_{t}=\mathbf{0}
$$

which leads to the local equation of motion:

$$
\begin{equation*}
\operatorname{div} \boldsymbol{\sigma}+\rho \boldsymbol{f}-\rho_{s}(1-n) \boldsymbol{a}_{s}-\rho_{w} n \boldsymbol{a}_{w}=\mathbf{0} \tag{9}
\end{equation*}
$$

By neglecting the inertial forces one arrives at:

Equilibrium equation

The Eulerian form:

$$
\begin{equation*}
\operatorname{div} \boldsymbol{\sigma}+\left(\rho_{s}(1-n)+\rho_{w} n\right) \boldsymbol{f}=\mathbf{0} \tag{10}
\end{equation*}
$$

The Lagrangian counterpart:

$$
\begin{align*}
& \operatorname{div}(\boldsymbol{F} \boldsymbol{\Pi})+\left(\rho_{s 0}\left(1-\phi_{0}\right)+\rho_{w} \phi\right) \boldsymbol{f}=\mathbf{0} \tag{11}\\
& \quad \boldsymbol{\Pi} \equiv J \boldsymbol{F}^{-1} \boldsymbol{\sigma} \boldsymbol{F}^{-\top} \text { - the Piola-Kirchhoff stress tensor } \tag{12}
\end{align*}
$$

Balance of moment of momentum

\Longrightarrow symmetry of the stress tensor $\boldsymbol{\sigma}$

Energy conservation

Partial stress tensors

The stress tensor $\boldsymbol{\sigma}$ can be decomposed as:

$$
\begin{equation*}
\boldsymbol{\sigma}=(1-n) \boldsymbol{\sigma}_{s}+n \boldsymbol{\sigma}_{w} \tag{13}
\end{equation*}
$$

σ_{s}, σ_{w} - the partial stress tensors related to the solid matrix and the water, respectively
so that:

$$
\begin{equation*}
\boldsymbol{T}=\boldsymbol{T}_{s}+\boldsymbol{T}_{w} \quad \boldsymbol{T}_{s}=(1-n) \boldsymbol{\sigma}_{s} \boldsymbol{n}, \quad \boldsymbol{T}_{w}=n \boldsymbol{\sigma}_{w} \boldsymbol{n} \tag{14}
\end{equation*}
$$

Here one can take approximately

$$
\begin{align*}
& \boldsymbol{\sigma}_{w}=-p_{w} \boldsymbol{I} \tag{15}\\
& \quad p_{w}-\text { the water pressure }
\end{align*}
$$

because the water shear stress plays the main role in the interaction force between the water and the skeleton (which does not explicitly appear here).

Mechanical energy equation

The work rate $\mathcal{P}_{V_{t}}(\boldsymbol{f}, \boldsymbol{T})$ supplied by the external body and surface forces to a material domain V_{t} is given by:

$$
\begin{aligned}
\mathcal{P}_{V_{t}}(\boldsymbol{f}, \boldsymbol{T}) & \equiv \int_{V_{t}}\left(\rho_{s}(1-n) \boldsymbol{f} \cdot \boldsymbol{v}_{s}+\rho_{w} n \boldsymbol{f} \cdot \boldsymbol{v}_{w}\right) \mathrm{d} V_{t}+\int_{\partial V_{t}}\left(\boldsymbol{T}_{s} \cdot \boldsymbol{v}_{s}+\boldsymbol{T}_{w} \cdot \boldsymbol{v}_{w}\right) \mathrm{d} a \\
& =\int_{V_{t}}\left(\rho \boldsymbol{f} \cdot \boldsymbol{v}_{s}+\rho_{w} \boldsymbol{f} \cdot \boldsymbol{q}_{r w}\right) \mathrm{d} V_{t}+\int_{\partial V_{t}}\left(\boldsymbol{T} \cdot \boldsymbol{v}_{s}+\boldsymbol{T}_{w} \cdot\left(\boldsymbol{v}_{w}-\boldsymbol{v}_{s}\right)\right) \mathrm{d} a
\end{aligned}
$$

The divergence theorem and the symmetry of the stress tensor σ yield:

$$
\begin{array}{rl}
\int_{\partial V_{t}} \boldsymbol{T} \cdot \boldsymbol{v}_{s} \mathrm{~d} a=\int_{\partial V_{t}}(\boldsymbol{\sigma} \boldsymbol{n}) \cdot \boldsymbol{v}_{s} \mathrm{~d} & a=\int_{V_{t}}\left((\operatorname{div} \boldsymbol{\sigma}) \cdot \boldsymbol{v}_{s}+\boldsymbol{\sigma}: \boldsymbol{d}_{s}\right) \mathrm{d} a \\
\boldsymbol{d}_{s} & \equiv \frac{1}{2}\left(\boldsymbol{\nabla} \boldsymbol{v}_{s}+\left(\boldsymbol{\nabla} \boldsymbol{v}_{s}\right)^{\top}\right) \text { - the Eulerian strain rate tensor } \tag{16}
\end{array}
$$

Owing to (14) and (15) one gets:

$$
\int_{\partial V_{t}} \boldsymbol{T}_{w} \cdot\left(\boldsymbol{v}_{w}-\boldsymbol{v}_{s}\right) \mathrm{d} a=\int_{\partial V_{t}}\left(\boldsymbol{\sigma}_{w} \boldsymbol{n}\right) \cdot \boldsymbol{q}_{r w} \mathrm{~d} a=\int_{\partial V_{t}}\left(-p_{w} \boldsymbol{q}_{r w}\right) \cdot \boldsymbol{n} \mathrm{d} a=\int_{V_{t}}\left(-\operatorname{div}\left(p_{w} \boldsymbol{q}_{r w}\right)\right) \mathrm{d} V_{t}
$$

The total derivative of the kinetic energy associated with the skeleton and water particles in V_{t} reads:

$$
\begin{aligned}
& \frac{\mathrm{D}_{s}}{\mathrm{D} t} \int_{V_{t}} \frac{1}{2} \rho_{s}(1-n) \boldsymbol{v}_{s} \cdot \boldsymbol{v}_{s} \mathrm{~d} V_{t}+\frac{\mathrm{D}_{w}}{\mathrm{D} t} \int_{V_{t}} \frac{1}{2} \rho_{w} n \boldsymbol{v}_{w} \cdot \boldsymbol{v}_{w} \mathrm{~d} V_{t} \\
& =\int_{V_{t}} \frac{1}{2}\left(\frac{\partial\left(\rho_{s}(1-n) \boldsymbol{v}_{s} \cdot \boldsymbol{v}_{s}\right)}{\partial t}+\operatorname{div}\left(\rho_{s}(1-n)\left(\boldsymbol{v}_{s} \cdot \boldsymbol{v}_{s}\right) \boldsymbol{v}_{s}\right)\right. \\
& \left.\quad+\frac{\partial\left(\rho_{w} n \boldsymbol{v}_{w} \cdot \boldsymbol{v}_{w}\right)}{\partial t}+\operatorname{div}\left(\rho_{w} n\left(\boldsymbol{v}_{w} \cdot \boldsymbol{v}_{w}\right) \boldsymbol{v}_{w}\right)\right) \mathrm{d} V_{t} \\
& \stackrel{(1),(4)}{=} \int_{V_{t}} \frac{1}{2}\left(\rho_{s}(1-n) \frac{\mathrm{D}_{s}\left(\boldsymbol{v}_{s} \cdot \boldsymbol{v}_{s}\right)}{\mathrm{D} t}+\rho_{w} n \frac{\mathrm{D}_{w}\left(\boldsymbol{v}_{w} \cdot \boldsymbol{v}_{w}\right)}{\mathrm{D} t}\right) \mathrm{d} V_{t} \\
& = \\
& \int_{V_{t}}\left(\rho_{s}(1-n) \boldsymbol{a}_{s} \cdot \boldsymbol{v}_{s}+\rho_{w} n \boldsymbol{a}_{w} \cdot \boldsymbol{v}_{w}\right) \mathrm{d} V_{t} \\
& = \\
& \int_{V_{t}}\left(\left(\rho_{s}(1-n) \boldsymbol{a}_{s}+\rho_{w} n \boldsymbol{a}_{w}\right) \cdot \boldsymbol{v}_{s}+\rho_{w} \boldsymbol{a}_{w} \cdot \boldsymbol{q}_{r w}\right) \mathrm{d} V_{t}
\end{aligned}
$$

Use of the equation of motion (9) finally leads to the mechanical energy equation in the form:

$$
\begin{align*}
\mathcal{P}_{V_{t}}(\boldsymbol{f}, \boldsymbol{T})-\frac{\mathrm{D}_{s}}{\mathrm{D} t} \int_{V_{t}} \frac{1}{2} \rho_{s}(1-n) \boldsymbol{v}_{s} \cdot \boldsymbol{v}_{s} \mathrm{~d} V_{t} & -\frac{\mathrm{D}_{w}}{\mathrm{D} t} \int_{V_{t}} \frac{1}{2} \rho_{w} n \boldsymbol{v}_{w} \cdot \boldsymbol{v}_{w} \mathrm{~d} V_{t} \\
=\int_{V_{t}}(& \left(\operatorname{div} \boldsymbol{\sigma}+\rho \boldsymbol{f}-\rho_{s}(1-n) \boldsymbol{a}_{s}-\rho_{w} n \boldsymbol{a}_{w}\right) \cdot \boldsymbol{v}_{s} \\
& \left.+\boldsymbol{\sigma}: \boldsymbol{d}_{s}-\operatorname{div}\left(p_{w} \boldsymbol{q}_{r w}\right)+\rho_{w}\left(\boldsymbol{f}-\boldsymbol{a}_{w}\right) \cdot \boldsymbol{q}_{r w}\right) \mathrm{d} V_{t} \\
= & \int_{V_{t}}\left(\boldsymbol{\sigma}: \boldsymbol{d}_{s}-\operatorname{div}\left(p_{w} \boldsymbol{q}_{r w}\right)+\rho_{w}\left(\boldsymbol{f}-\boldsymbol{a}_{w}\right) \cdot \boldsymbol{q}_{r w}\right) \mathrm{d} V_{t} \tag{17}
\end{align*}
$$

where the right-hand side can be interpreted as the strain work rate related to the porous medium contained in V_{t}.
By neglecting the inertia effects one obtains:

$$
\mathcal{P}_{V_{t}}(\boldsymbol{f}, \boldsymbol{T})=\int_{V_{t}}\left(\boldsymbol{\sigma}: \boldsymbol{d}_{s}-\operatorname{div}\left(p_{w} \boldsymbol{q}_{r w}\right)+\rho_{w} \boldsymbol{f} \cdot \boldsymbol{q}_{r w}\right) \mathrm{d} V_{t}
$$

(which can be alternatively derived by applying the equilibrium equation (10) solely to $\mathcal{P}_{V_{t}}(\boldsymbol{f}, \boldsymbol{T})$ in the procedure above).

Energy balance

The conservation of energy in all its possible forms currently contained in a material volume V_{t} is expressed by:

$$
\begin{align*}
& \frac{\mathrm{D}_{s}}{\mathrm{D} t} \int_{V_{t}} \rho_{s}(1-n)\left(e_{s}+\frac{1}{2} \boldsymbol{v}_{s} \cdot \boldsymbol{v}_{s}\right) \mathrm{d} V_{t}+\frac{\mathrm{D}_{w}}{\mathrm{D} t} \int_{V_{t}} \rho_{w} n\left(e_{w}+\frac{1}{2} \boldsymbol{v}_{w} \cdot \boldsymbol{v}_{w}\right) \mathrm{d} V_{t} \\
&=\mathcal{P}_{V_{t}}(\boldsymbol{f}, \boldsymbol{T})-\int_{\partial V_{t}} \boldsymbol{q} \cdot \boldsymbol{n} \mathrm{~d} a \tag{18}
\end{align*}
$$

e_{s}, e_{w} - the specific internal energies of the solid matrix and the water, respectively \boldsymbol{q} - the heat flux vector

Use of the transport theorem furnishes:

$$
\begin{aligned}
& \frac{\mathrm{D}_{s}}{\mathrm{D} t} \int_{V_{t}} \rho_{s}(1-n) e_{s} \mathrm{~d} V_{t}+\frac{\mathrm{D}_{w}}{\mathrm{D} t} \int_{V_{t}} \rho_{w} n e_{w} \mathrm{~d} V_{t} \\
& =\int_{V_{t}}\left(\frac{\partial\left(\rho_{s}(1-n) e_{s}\right)}{\partial t}+\operatorname{div}\left(\rho_{s}(1-n) e_{s} \boldsymbol{v}_{s}\right)+\frac{\partial\left(\rho_{w} n e_{w}\right)}{\partial t}+\operatorname{div}\left(\rho_{w} n e_{w} \boldsymbol{v}_{w}\right)\right) \mathrm{d} V_{t} \\
& =\int_{V_{t}}\left(\frac{\mathrm{D}_{s}\left(\rho_{s}(1-n) e_{s}\right)}{\mathrm{D} t}+\rho_{s}(1-n) e_{s} \operatorname{div} \boldsymbol{v}_{s}+\frac{\mathrm{D}_{s}\left(\rho_{w} n e_{w}\right)}{\mathrm{D} t}+\rho_{w} n e_{w} \operatorname{div} \boldsymbol{v}_{s}+\operatorname{div}\left(\rho_{w} e_{w} \boldsymbol{q}_{r w}\right)\right) \mathrm{d} V_{t}
\end{aligned}
$$

which together with the mechanical energy equation (17) and the divergence theorem allows us to rewrite (18) as:

$$
\begin{array}{r}
\int_{V_{t}}\left(\frac{\mathrm{D}_{s}\left(\rho_{s}(1-n) e_{s}\right)}{\mathrm{D} t}+\rho_{s}(1-n) e_{s} \operatorname{div} \boldsymbol{v}_{s}+\frac{\mathrm{D}_{s}\left(\rho_{w} n e_{w}\right)}{\mathrm{D} t}+\rho_{w} n e_{w} \operatorname{div} \boldsymbol{v}_{s}+\operatorname{div}\left(\rho_{w} e_{w} \boldsymbol{q}_{r w}\right)\right. \\
\left.-\boldsymbol{\sigma}: \boldsymbol{d}_{s}+\operatorname{div}\left(p_{w} \boldsymbol{q}_{r w}\right)-\rho_{w}\left(\boldsymbol{f}-\boldsymbol{a}_{w}\right) \cdot \boldsymbol{q}_{r w}+\operatorname{div} \boldsymbol{q}\right) \mathrm{d} V_{t}=0 \tag{19}
\end{array}
$$

Neglecting the inertia force provides the local form:

$$
\begin{aligned}
& \frac{\mathrm{D}_{s}\left(\rho_{s}(1-n) e_{s}\right)}{\mathrm{D} t}+\rho_{s}(1-n) e_{s} \operatorname{div} \boldsymbol{v}_{s}+\frac{\mathrm{D}_{s}\left(\rho_{w} n e_{w}\right)}{\mathrm{D} t}+\rho_{w} n e_{w} \operatorname{div} \boldsymbol{v}_{s}+\operatorname{div}\left(\rho_{w} e_{w} \boldsymbol{q}_{r w}\right) \\
& \quad-\boldsymbol{\sigma}: \boldsymbol{d}_{s}+\operatorname{div}\left(p_{w} \boldsymbol{q}_{r w}\right)-\rho_{w} \boldsymbol{f} \cdot \boldsymbol{q}_{r w}+\operatorname{div} \boldsymbol{q}=0
\end{aligned}
$$

Use of (2) and (5) then yields the Euler energy equation:

$$
\begin{equation*}
\rho_{s}(1-n) \frac{\mathrm{D}_{s} e_{s}}{\mathrm{D} t}+\rho_{w} n \frac{\mathrm{D}_{s} e_{w}}{\mathrm{D} t}=\boldsymbol{\sigma}: \boldsymbol{d}_{s}-\operatorname{div}\left(p_{w} \boldsymbol{q}_{r w}+\boldsymbol{q}\right)-\rho_{w} \boldsymbol{q}_{r w} \cdot \nabla e_{w}+\rho_{w} \boldsymbol{f} \cdot \boldsymbol{q}_{r w} \tag{20}
\end{equation*}
$$

With the aim of transporting equation (19) from the current volume V_{t} to the corresponding volume V_{0} in the skeleton initial configuration, we firstly introduce:

$$
\begin{align*}
& e \equiv \rho_{s}(1-n) e_{s}+\rho_{w} n e_{w}-\text { the overall density of internal energy } \\
& \text { per unit volume of porous medium } \\
& h_{w} \equiv e_{w}+\frac{p_{w}}{\rho_{w}}-\text { the water specific enthalpy } \tag{21}
\end{align*}
$$

and express (19) in the form:

$$
\int_{V_{t}}\left(\frac{\mathrm{D}_{s} e}{\mathrm{D} t}+e \operatorname{div} \boldsymbol{v}_{s}-\boldsymbol{\sigma}: \boldsymbol{d}_{s}+\operatorname{div}\left(\rho_{w} h_{w} \boldsymbol{q}_{r w}+\boldsymbol{q}\right)-\rho_{w}\left(\boldsymbol{f}-\boldsymbol{a}_{w}\right) \cdot \boldsymbol{q}_{r w}\right) \mathrm{d} V_{t}=0
$$

Now use of standard transport formulae provides:

$$
\begin{gather*}
\int_{V_{t}}\left(\frac{\mathrm{D}_{s} e}{\mathrm{D} t}+e \operatorname{div} \boldsymbol{v}_{s}\right) \mathrm{d} V_{t}=\int_{V_{0}}\left(\frac{\partial e}{\partial t}+\boldsymbol{v}_{s} \cdot \nabla e+e \operatorname{div} \boldsymbol{v}_{s}\right) J \mathrm{~d} V_{0}=\int_{V_{0}} \frac{\mathrm{~d}(e J)}{\mathrm{d} t} \mathrm{~d} V_{0}=\int_{V_{0}} \frac{\mathrm{~d} E}{\mathrm{~d} t} \mathrm{~d} V_{0} \\
E \equiv e J-\text { the overall Lagrangian density of internal energy } \\
\quad \begin{array}{l}
\text { per unit of initial porous medium volume }
\end{array} \\
\int_{V_{t}} \operatorname{div} \boldsymbol{q} \mathrm{~d} V_{t}=\int_{V_{0}} \operatorname{div} \boldsymbol{Q} \mathrm{~d} V_{0} \\
\boldsymbol{Q} \equiv J \boldsymbol{F}^{-1} \boldsymbol{q}-\text { the Lagrangian heat flow vector } \\
\int_{V_{t}} \rho_{w}\left(\boldsymbol{f}-\boldsymbol{a}_{w}\right) \cdot \boldsymbol{q}_{r w} \mathrm{~d} V_{t} \stackrel{(7)}{=} \int_{V_{0}}\left(\boldsymbol{f}-\boldsymbol{a}_{w}\right) \cdot(\boldsymbol{F} \boldsymbol{M}) \mathrm{d} V_{0} \tag{22}
\end{gather*}
$$

Moreover, one has for a particle which was initially located by a position vector \boldsymbol{X} and is currently located by a position vector $\boldsymbol{x}=\boldsymbol{X}+\boldsymbol{u}$:

$$
\begin{aligned}
\nabla h_{w}(\boldsymbol{X}) & =(\boldsymbol{F}(\boldsymbol{X}))^{\top} \nabla h_{w}(\boldsymbol{x}) \\
\frac{\mathrm{d} \boldsymbol{F}}{\mathrm{~d} t}(\boldsymbol{X})=\frac{\mathrm{d}(\boldsymbol{\nabla} \boldsymbol{u})}{\mathrm{d} t}(\boldsymbol{X}) & =\left(\boldsymbol{\nabla} \frac{\mathrm{d} \boldsymbol{u}}{\mathrm{~d} t}\right)(\boldsymbol{X})=\boldsymbol{\nabla} \boldsymbol{v}_{s}(\boldsymbol{x}) \boldsymbol{F}(\boldsymbol{X})
\end{aligned}
$$

From here:

$$
\begin{aligned}
\int_{V_{t}} \operatorname{div}\left(\rho_{w} h_{w} \boldsymbol{q}_{r w}\right) \mathrm{d} V_{t} & =\int_{V_{t}}\left(h_{w} \operatorname{div}\left(\rho_{w} \boldsymbol{q}_{r w}\right)+\rho_{w} \boldsymbol{q}_{r w} \cdot \nabla h_{w}\right) \mathrm{d} V_{t} \\
& =\int_{V_{0}}\left(h_{w} \operatorname{div} \boldsymbol{M}+\rho_{w} \boldsymbol{q}_{r w} \cdot\left(\boldsymbol{F}^{-\top} \nabla h_{w}\right) J\right) \mathrm{d} V_{0} \\
& =\int_{V_{0}}\left(h_{w} \operatorname{div} \boldsymbol{M}+\left(J \boldsymbol{F}^{-1}\left(\rho_{w} \boldsymbol{q}_{r w}\right)\right) \cdot \nabla h_{w}\right) \mathrm{d} V_{0}=\int_{V_{0}} \operatorname{div}\left(h_{w} \boldsymbol{M}\right) \mathrm{d} V_{0}
\end{aligned}
$$

and

$$
\begin{aligned}
& \boldsymbol{d}_{s} \stackrel{(16)}{=} \frac{1}{2}\left(\boldsymbol{\nabla} \boldsymbol{v}_{s}+\left(\boldsymbol{\nabla} \boldsymbol{v}_{s}\right)^{\top}\right)=\frac{1}{2}\left(\frac{\mathrm{~d} \boldsymbol{F}}{\mathrm{~d} t} \boldsymbol{F}^{-1}+\boldsymbol{F}^{-\top}\left(\frac{\mathrm{d} \boldsymbol{F}}{\mathrm{~d} t}\right)^{\top}\right) \\
&=\frac{1}{2} \boldsymbol{F}^{-\top}\left(\boldsymbol{F}^{\top} \frac{\mathrm{d} \boldsymbol{F}}{\mathrm{~d} t}+\left(\frac{\mathrm{d} \boldsymbol{F}}{\mathrm{~d} t}\right)^{\top} \boldsymbol{F}\right) \boldsymbol{F}^{-1}=\boldsymbol{F}^{-\top} \frac{\mathrm{d} \boldsymbol{E}}{\mathrm{~d} t} \boldsymbol{F}^{-1} \\
& \boldsymbol{E} \equiv \frac{1}{2}\left(\boldsymbol{F}^{\top} \boldsymbol{F}-\boldsymbol{I}\right)-\text { the Green-Lagrange strain tensor } \\
& \int_{V_{t}} \boldsymbol{\sigma}: \boldsymbol{d}_{s} \mathrm{~d} V_{t}=\int_{V_{0}} \boldsymbol{\sigma}:\left(\boldsymbol{F}^{-\top} \frac{\mathrm{d} \boldsymbol{E}}{\mathrm{~d} t} \boldsymbol{F}^{-1}\right) J \mathrm{~d} V_{0} \\
&=\int_{V_{0}}\left(J \boldsymbol{F}^{-1} \boldsymbol{\sigma} \boldsymbol{F}^{-\top}\right): \frac{\mathrm{d} \boldsymbol{E}}{\mathrm{~d} t} \mathrm{~d} V_{0} \stackrel{(12)}{=} \int_{V_{0}} \boldsymbol{\Pi}: \frac{\mathrm{d} \boldsymbol{E}}{\mathrm{~d} t} \mathrm{~d} V_{0}
\end{aligned}
$$

Altogether, this furnishes:

$$
\int_{V_{0}}\left(\frac{\mathrm{~d} E}{\mathrm{~d} t}-\boldsymbol{\Pi}: \frac{\mathrm{d} \boldsymbol{E}}{\mathrm{~d} t}+\operatorname{div}\left(h_{w} \boldsymbol{M}+\boldsymbol{Q}\right)-\left(\boldsymbol{f}-\boldsymbol{a}_{w}\right) \cdot(\boldsymbol{F} \boldsymbol{M})\right) \mathrm{d} V_{0}=0
$$

Neglecting the inertia force delivers the Lagrangian local energy equation:

$$
\begin{equation*}
\frac{\mathrm{d} E}{\mathrm{~d} t}=\boldsymbol{\Pi}: \frac{\mathrm{d} \boldsymbol{E}}{\mathrm{~d} t}-\operatorname{div}\left(h_{w} \boldsymbol{M}+\boldsymbol{Q}\right)+\boldsymbol{f} \cdot(\boldsymbol{F} \boldsymbol{M}) \tag{23}
\end{equation*}
$$

Finally, we express the energy balance in terms of entropies.
Assumption. The water and the matrix are locally in thermal equilibrium, that is, at the same absolute temperature T (the timescale of the modelled phenomena is substantially larger than the relaxation time required to reach thermal equilibrium locally).

Let:
$s_{s}-$ the Eulerian specific entropy of the matrix
$s_{w}-$ the Eulerian water specific entropy
$S \equiv\left(\rho_{s}(1-n) s_{s}+\rho_{w} n s_{w}\right) J$ - the overall Lagrangian density of entropy
per unit of initial porous medium volume
$\Psi \equiv E-T S-$ the overall Lagrangian density of Helmholtz free energy

Then

$$
\begin{aligned}
& T \frac{\mathrm{~d} S}{\mathrm{~d} t}= \frac{\mathrm{d} E}{\mathrm{~d} t}-\frac{\mathrm{d} \Psi}{\mathrm{~d} t}-S \frac{\mathrm{~d} T}{\mathrm{~d} t} \\
& \stackrel{(23)}{=} \boldsymbol{\Pi}: \frac{\mathrm{d} \boldsymbol{E}}{\mathrm{~d} t}-\left(h_{w}-T s_{w}\right) \operatorname{div} \boldsymbol{M}-S \frac{\mathrm{~d} T}{\mathrm{~d} t}-\frac{\mathrm{d} \Psi}{\mathrm{~d} t}-\left(\nabla h_{w}-T \nabla s_{w}\right) \cdot \boldsymbol{M}+\boldsymbol{f} \cdot(\boldsymbol{F} \boldsymbol{M}) \\
&-\operatorname{div} \boldsymbol{Q}-T \operatorname{div}\left(s_{w} \boldsymbol{M}\right)
\end{aligned}
$$

which provides the entropy balance in the form of the Lagrangian thermal equation:

$$
\begin{align*}
& T\left(\frac{\mathrm{~d} S}{\mathrm{~d} t}+\operatorname{div}\left(s_{w} \boldsymbol{M}\right)\right)=-\operatorname{div} \boldsymbol{Q}+\Phi_{s}+\Phi_{w} \tag{26}\\
& \Phi_{s} \equiv \boldsymbol{\Pi}: \frac{\mathrm{d} \boldsymbol{E}}{\mathrm{~d} t}-\left(h_{w}-T s_{w}\right) \operatorname{div} \boldsymbol{M}-S \frac{\mathrm{~d} T}{\mathrm{~d} t}-\frac{\mathrm{d} \Psi}{\mathrm{~d} t}-\begin{array}{c}
\text { the Lagrangian density } \\
\text { of skeleton dissipation }
\end{array} \tag{27}\\
& \Phi_{w} \equiv-\left(\nabla h_{w}-T \nabla s_{w}\right) \cdot \boldsymbol{M}+\boldsymbol{f} \cdot(\boldsymbol{F} \boldsymbol{M})-\text { the Lagrangian density of water dissipation }
\end{align*}
$$

The identification of Φ_{s} and Φ_{w} as the dissipation terms related respectively to the skeleton and water will be done later.

Constitutive relationships

Lagrangian approach

Water

One can obtain the following water state equations by applying the first two laws of thermostatics:

$$
\begin{equation*}
h_{w}=h_{w}\left(p_{w}, s_{w}\right) \quad \frac{1}{\rho_{w}}=\frac{\partial h_{w}}{\partial p_{w}} \quad T=\frac{\partial h_{w}}{\partial s_{w}} \tag{29}
\end{equation*}
$$

These state equations can be inverted with respect to the conjugate sets of thermodynamical state variables $\left(p_{w}, s_{w}\right)$ and $\left(1 / \rho_{w}, T\right)$. Indeed, by introducing:

$$
\begin{equation*}
\psi_{w} \equiv e_{w}-T s_{w} \stackrel{(21)}{=} h_{w}-\frac{p_{w}}{\rho_{w}}-T s_{w}-\text { the water specific Helmholtz free energy } \tag{30}
\end{equation*}
$$

one gets:

$$
\mathrm{d} \psi_{w}=\frac{\partial h_{w}}{\partial p_{w}} \mathrm{~d} p_{w}+\frac{\partial h_{w}}{\partial s_{w}} \mathrm{~d} s_{w}-\frac{\mathrm{d} p_{w}}{\rho_{w}}-p_{w} \mathrm{~d}\left(\frac{1}{\rho_{w}}\right)-T \mathrm{~d} s_{w}-s_{w} \mathrm{~d} T \stackrel{(29)}{=}-p_{w} \mathrm{~d}\left(\frac{1}{\rho_{w}}\right)-s_{w} \mathrm{~d} T
$$

and the state equations take the alternative form:

$$
\begin{equation*}
\psi_{w}=\psi_{w}\left(\frac{1}{\rho_{w}}, T\right) \quad p_{w}=-\frac{\partial \psi_{w}}{\partial\left(1 / \rho_{w}\right)} \quad s_{w}=-\frac{\partial \psi_{w}}{\partial T} \tag{31}
\end{equation*}
$$

Equations (29) can also be only partially inverted with respect to the couple of conjugate variables $\left(s_{w}, T\right)$ by introducing:
$g_{w} \equiv h_{w}-T s_{w}=\psi_{w}+\frac{p_{w}}{\rho_{w}}-$ the water specific free enthalpy (also called the Gibbs potential)
so that:

$$
\mathrm{d} g_{w}=\frac{\partial h_{w}}{\partial p_{w}} \mathrm{~d} p_{w}+\frac{\partial h_{w}}{\partial s_{w}} \mathrm{~d} s_{w}-T \mathrm{~d} s_{w}-s_{w} \mathrm{~d} T \stackrel{(29)}{=} \frac{1}{\rho_{w}} \mathrm{~d} p_{w}-s_{w} \mathrm{~d} T
$$

and one obtains:

$$
\begin{equation*}
g_{w}=g_{w}\left(p_{w}, T\right) \quad \frac{1}{\rho_{w}}=\frac{\partial g_{w}}{\partial p_{w}} \quad s_{w}=-\frac{\partial g_{w}}{\partial T} \tag{32}
\end{equation*}
$$

By differentiating (32) one finally arrives at the constitutive equations:

$$
\begin{align*}
\frac{\mathrm{d} \rho_{w}}{\rho_{w}}= & \frac{\mathrm{d} p_{w}}{K_{w}}-\beta_{w} \mathrm{~d} T \tag{33}\\
& K_{w}-\text { the water bulk modulus } \\
& \beta_{w}-\text { the water volumetric thermal expansion coefficient } \\
\mathrm{d} s_{w}= & -\beta_{w} \frac{\mathrm{~d} p_{w}}{\rho_{w}}+c_{p_{w}} \frac{\mathrm{~d} T}{T} \tag{34}\\
& c_{p_{w}}-\text { the water specific heat capacity at constant pressure }
\end{align*}
$$

Note that considering K_{w} and β_{w} constant (over some ranges of pressures and temperatures), one can integrate (33) into the form:

$$
\begin{aligned}
& \rho_{w}=\rho_{w 0} e^{\left(p_{w}-p_{w 0}\right) / K_{w}-\beta_{w}\left(T-T_{0}\right)} \\
& \rho_{w 0}, p_{w 0}, T_{0}-\text { initial values of the water density, pressure and temperature }
\end{aligned}
$$

Darcy's law

(for negligible inertial forces)

$$
\begin{equation*}
\boldsymbol{q}_{r w}=\frac{\boldsymbol{k}}{\mu_{w}}\left(-\nabla p_{w}+\rho_{w} \boldsymbol{f}\right) \tag{35}
\end{equation*}
$$

\boldsymbol{k} - the (intrinsic) permeability tensor of the porous medium (in a general anisotropic case)
μ_{w} - the dynamic viscosity of water
Let us look at the water dissipation term $\Phi_{w}(28)$ at this point. Employing (29) one has:

$$
\nabla h_{w}-T \nabla s_{w}=\frac{\partial h_{w}}{\partial p_{w}} \nabla p_{w}+\frac{\partial h_{w}}{\partial s_{w}} \nabla s_{w}-T \nabla s_{w}=\frac{1}{\rho_{w}} \nabla p_{w}
$$

so we can rewrite Φ_{w} as:

$$
\Phi_{w}=-\frac{1}{\rho_{w}}\left(\nabla p_{w}\right) \cdot \boldsymbol{M}+\boldsymbol{f} \cdot(\boldsymbol{F} \boldsymbol{M})
$$

This can be expressed more conveniently in the Eulerian form. Let:

$$
\varphi_{w} \equiv \Phi_{w} J^{-1} — \text { the Eulerian density of water dissipation }
$$

From

$$
\begin{aligned}
\int_{V_{0}} \frac{1}{\rho_{w}}\left(\nabla p_{w}\right) \cdot \boldsymbol{M} \mathrm{d} V_{0} & =\int_{V_{t}} \frac{1}{\rho_{w}}\left(\boldsymbol{F}^{\top} \nabla p_{w}\right) \cdot \boldsymbol{M} J^{-1} \mathrm{~d} V_{t} \\
& =\int_{V_{t}}\left(\nabla p_{w}\right) \cdot\left(\frac{1}{\rho_{w}} \boldsymbol{F} \boldsymbol{M} J^{-1}\right) \mathrm{d} V_{t} \stackrel{(7)}{=} \int_{V_{t}}\left(\nabla p_{w}\right) \cdot \boldsymbol{q}_{r w} \mathrm{~d} V_{t}
\end{aligned}
$$

and (22) one gets:

$$
\begin{gather*}
\int_{V_{t}} \varphi_{w} \mathrm{~d} V_{t}=\int_{V_{0}} \Phi_{w} \mathrm{~d} V_{0}=\int_{V_{0}}\left(-\frac{1}{\rho_{w}}\left(\nabla p_{w}\right) \cdot \boldsymbol{M}+\boldsymbol{f} \cdot(\boldsymbol{F} \boldsymbol{M})\right) \mathrm{d} V_{0}=\int_{V_{t}}\left(-\nabla p_{w}+\rho_{w} \boldsymbol{f}\right) \cdot \boldsymbol{q}_{r w} \mathrm{~d} V_{t} \\
\varphi_{w}=\left(-\nabla p_{w}+\rho_{w} \boldsymbol{f}\right) \cdot \boldsymbol{q}_{r w} \tag{36}
\end{gather*}
$$

The non-negativeness of the dissipation associated with the water flow $\varphi_{w} \geq 0$ in combination with Darcy's law (35) then requires:

$$
\left(-\nabla p_{w}+\rho_{w} \boldsymbol{f}\right) \cdot\left(\frac{\boldsymbol{k}}{\mu_{w}}\left(-\nabla p_{w}+\rho_{w} \boldsymbol{f}\right)\right) \geq 0
$$

which implies that \boldsymbol{k} / μ_{w} has to be positive semidefinite.

Fourier's law

$$
\begin{align*}
& \boldsymbol{q}=-\boldsymbol{\kappa} \nabla T \tag{37}\\
& \boldsymbol{\kappa}-\text { a tensor of thermal conductivities (in a general anisotropic case) }
\end{align*}
$$

Skeleton

To derive the constitutive equations for the skeleton, we identify $\Phi_{s}(27)$ with the dissipation related to the sole skeleton first. For this purpose, the use of water mass balance equation (6) allows us to rewrite Φ_{s} in the form:

$$
\Phi_{s}=\boldsymbol{\Pi}: \frac{\mathrm{d} \boldsymbol{E}}{\mathrm{~d} t}+\left(h_{w}-T s_{w}\right) \frac{\mathrm{d}\left(\rho_{w} \phi\right)}{\mathrm{d} t}-S \frac{\mathrm{~d} T}{\mathrm{~d} t}-\frac{\mathrm{d} \Psi}{\mathrm{~d} t}
$$

Due to (24) and the additive character of entropy one has:

$$
\begin{equation*}
S_{s} \equiv \rho_{s}(1-n) s_{s} J=S-\rho_{w} n s_{w} J=S-\rho_{w} \phi s_{w} \tag{38}
\end{equation*}
$$

- the skeleton Lagrangian density of entropy per unit of initial volume
and accordingly for the free energy (25):

$$
\Psi_{s}=\Psi-\rho_{w} \phi \psi_{w} \text { - the skeleton Lagrangian density of free energy per unit of initial volume }
$$

These definitions in combination with (30) and (31) give:

$$
\begin{aligned}
\Phi_{s}= & \boldsymbol{\Pi}: \frac{\mathrm{d} \boldsymbol{E}}{\mathrm{~d} t}+\left(\psi_{w}+\frac{p_{w}}{\rho_{w}}\right) \frac{\mathrm{d}\left(\rho_{w} \phi\right)}{\mathrm{d} t}-\left(S_{s}+\rho_{w} \phi s_{w}\right) \frac{\mathrm{d} T}{\mathrm{~d} t}-\frac{\mathrm{d}\left(\Psi_{s}+\rho_{w} \phi \psi_{w}\right)}{\mathrm{d} t} \\
= & \boldsymbol{\Pi}: \frac{\mathrm{d} \boldsymbol{E}}{\mathrm{~d} t}+\psi_{w} \frac{\mathrm{~d}\left(\rho_{w} \phi\right)}{\mathrm{d} t}+p_{w} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}+\frac{p_{w} \phi}{\rho_{w}} \frac{\mathrm{~d} \rho_{w}}{\mathrm{~d} t}-S_{s} \frac{\mathrm{~d} T}{\mathrm{~d} t}-\rho_{w} \phi s_{w} \frac{\mathrm{~d} T}{\mathrm{~d} t} \\
& -\frac{\mathrm{d} \Psi_{s}}{\mathrm{~d} t}-\psi_{w} \frac{\mathrm{~d}\left(\rho_{w} \phi\right)}{\mathrm{d} t}-\left(\rho_{w} \phi\right)\left(\frac{\partial \psi_{w}}{\partial\left(1 / \rho_{w}\right)} \frac{\mathrm{d}\left(1 / \rho_{w}\right)}{\mathrm{d} t}+\frac{\partial \psi_{w}}{\partial T} \frac{\mathrm{~d} T}{\mathrm{~d} t}\right) \\
= & \boldsymbol{\Pi}: \frac{\mathrm{d} \boldsymbol{E}}{\mathrm{~d} t}+p_{w} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}-S_{s} \frac{\mathrm{~d} T}{\mathrm{~d} t}-\frac{\mathrm{d} \Psi_{s}}{\mathrm{~d} t}
\end{aligned}
$$

Eventually, use of energy G_{s} defined by:

$$
G_{s} \equiv \Psi_{s}-p_{w} \phi
$$

leads to:

$$
\begin{aligned}
\Phi_{s} & =\boldsymbol{\Pi}: \frac{\mathrm{d} \boldsymbol{E}}{\mathrm{~d} t}+p_{w} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}-S_{s} \frac{\mathrm{~d} T}{\mathrm{~d} t}-\frac{\mathrm{d} G_{s}}{\mathrm{~d} t}-p_{w} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}-\phi \frac{\mathrm{d} p_{w}}{\mathrm{~d} t} \\
& =\boldsymbol{\Pi}: \frac{\mathrm{d} \boldsymbol{E}}{\mathrm{~d} t}-\phi \frac{\mathrm{d} p_{w}}{\mathrm{~d} t}-S_{s} \frac{\mathrm{~d} T}{\mathrm{~d} t}-\frac{\mathrm{d} G_{s}}{\mathrm{~d} t}
\end{aligned}
$$

When the assumption of small transformations is fulfilled, $\boldsymbol{\Pi}$ and \boldsymbol{E} can be replaced by $\boldsymbol{\sigma}$ and $\boldsymbol{\varepsilon}$, and one can write:

$$
\Phi_{s}=\boldsymbol{\sigma}: \frac{\mathrm{d} \varepsilon}{\mathrm{~d} t}-\phi \frac{\mathrm{d} p_{w}}{\mathrm{~d} t}-S_{s} \frac{\mathrm{~d} T}{\mathrm{~d} t}-\frac{\mathrm{d} G_{s}}{\mathrm{~d} t}
$$

The skeleton energy G_{s} admits ε, p_{w} and T as natural arguments since their rates explicitly appear in the above expression for the dissipation related to the skeleton. In thermoporoelasticity, G_{s} is therefore considered in the form:

$$
\begin{equation*}
G_{s}=G_{s}\left(\varepsilon, p_{w}, T\right) \tag{39}
\end{equation*}
$$

In addition, the dissipation related to the skeleton is zero, that is:

$$
\begin{array}{r}
\Phi_{s}=\boldsymbol{\sigma}: \frac{\mathrm{d} \varepsilon}{\mathrm{~d} t}-\phi \frac{\mathrm{d} p_{w}}{\mathrm{~d} t}-S_{s} \frac{\mathrm{~d} T}{\mathrm{~d} t}-\frac{\mathrm{d} G_{s}}{\mathrm{~d} t}=0 \tag{40}\\
\left(\boldsymbol{\sigma}-\frac{\partial G_{s}}{\partial \boldsymbol{\varepsilon}}\right): \frac{\mathrm{d} \boldsymbol{\varepsilon}}{\mathrm{~d} t}-\left(\phi+\frac{\partial G_{s}}{\partial p_{w}}\right) \frac{\mathrm{d} p_{w}}{\mathrm{~d} t}-\left(S_{s}+\frac{\partial G_{s}}{\partial T}\right) \frac{\mathrm{d} T}{\mathrm{~d} t}=0
\end{array}
$$

Since variations of any variable among the set of state variables for the skeleton ε, p_{w} and T can occur irrespective of the variations of the other variables, this produces the state equations:

$$
\boldsymbol{\sigma}=\frac{\partial G_{s}}{\partial \boldsymbol{\varepsilon}} \quad \phi=-\frac{\partial G_{s}}{\partial p_{w}} \quad S_{s}=-\frac{\partial G_{s}}{\partial T}
$$

By differentiating these equations while taking into account (39) and Maxwell's symmetry relations (the symmetry of partial derivatives) and restricting ourselves to an isotropic material, we finally obtain the constitutive equations:

$$
\begin{align*}
\mathrm{d} \boldsymbol{\sigma} & =\boldsymbol{D}\left(\mathrm{d} \boldsymbol{\varepsilon}-\frac{\beta}{3} \mathrm{~d} T \boldsymbol{I}\right)-\alpha \mathrm{d} p_{w} \boldsymbol{I} \\
& =\lambda \mathrm{d} \varepsilon_{v} \boldsymbol{I}+2 \mu \mathrm{~d} \boldsymbol{\varepsilon}-\alpha \mathrm{d} p_{w} \boldsymbol{I}-\beta K \mathrm{~d} T \boldsymbol{I} \tag{41}\\
\mathrm{~d} \phi & =\alpha \mathrm{d} \varepsilon_{v}+\frac{\mathrm{d} p_{w}}{N}-\beta_{\phi} \mathrm{d} T \tag{42}\\
\mathrm{~d} S_{s} & =\beta K \mathrm{~d} \varepsilon_{v}-\beta_{\phi} \mathrm{d} p_{w}+C \frac{\mathrm{~d} T}{T} \tag{43}
\end{align*}
$$

\boldsymbol{D} - a tangent elastic stiffness tensor of the skeleton
λ, μ - the Lamé coefficients of the skeleton
$K=(3 \lambda+2 \mu) / 3-$ the skeleton bulk modulus
β - the skeleton volumetric thermal expansion coefficient
α - Biot's coefficient $\quad N$ - Biot's modulus
β_{ϕ} - a volumetric thermal expansion coefficient related to the porosity
C - the skeleton heat capacity at constant strain and pressure

Considering α, N and β_{ϕ} constant (over some ranges of strains, pressures and temperatures), one can integrate (42) into the form:

$$
\begin{equation*}
\phi-\phi_{0}=\alpha \varepsilon_{v}+\frac{p_{w}-p_{w 0}}{N}-\beta_{\phi}\left(T-T_{0}\right) \tag{45}
\end{equation*}
$$

By introducing:

$$
\sigma_{v} \equiv \frac{1}{3} \operatorname{tr} \boldsymbol{\sigma}-\text { the hydrostatic part of the stress tensor } \boldsymbol{\sigma}
$$

and combining (43) and (41), one can express the entropy variation as a function of the volumetric stress σ_{v} instead of the volumetric strain ε_{v} to see that:

$$
\begin{equation*}
C=C_{\sigma_{v}}-\beta^{2} K T \quad C_{\sigma_{v}}-\text { the skeleton heat capacity at constant stress and pressure } \tag{46}
\end{equation*}
$$

Furthermore, let:

$$
K_{s} \text { - the matrix bulk modulus }
$$

Under the assumptions of the constancy of α, N, K and K_{s}, and small variations of the porosity (and small transformations), one can derive:

$$
\begin{equation*}
\alpha=1-\frac{K}{K_{s}} \quad \frac{1}{N}=\frac{\alpha-n_{0}}{K_{s}} \tag{47}
\end{equation*}
$$

Using $n_{0}=\phi_{0}$ one can also show:

$$
\begin{equation*}
\beta=\beta_{s} \quad \beta_{\phi}=\beta_{s}\left(\alpha-\phi_{0}\right) \quad C_{\sigma_{v}}=\left(1-\phi_{0}\right) C_{\sigma_{s v}} \tag{48}
\end{equation*}
$$

β_{s} - the matrix volumetric thermal expansion coefficient
$C_{\sigma_{s v}}$ - the solid matrix heat capacity at constant stress
One takes $\alpha=1$ and $1 / N=0\left(1 / K_{s}=0\right)$ for an incompressible solid matrix (not $\beta_{\phi}=0$ in contrast to [Cou04, §4.1.3], where incompressibility with respect to pressure as well as temperature changes is considered).

Eulerian approach

The constitutive equations (33) and (41) for ρ_{w} and $\boldsymbol{\sigma}$ and Darcy's and Fourier's laws (35) and (37) are considered in the same form as in the Lagrangian approach.

Matrix density

- an alternative to (42) for the Lagrangian porosity ϕ.

Introducing:

$$
\sigma_{s v} \equiv \frac{1}{3} \operatorname{tr} \boldsymbol{\sigma}_{s}-\text { the hydrostatic part of the partial stress tensor } \boldsymbol{\sigma}_{s}
$$

and considering $\rho_{s}=\rho_{s}\left(\sigma_{s v}, T\right)$ in analogy with the constitutive relationship for the water density ρ_{w} (33) furnishes:

$$
\begin{equation*}
\frac{\mathrm{d} \rho_{s}}{\rho_{s}}=-\frac{\mathrm{d} \sigma_{s v}}{K_{s}}-\beta_{s} \mathrm{~d} T \tag{49}
\end{equation*}
$$

The stress partition (13) with (15) yields:

$$
\begin{aligned}
& \sigma_{v}=(1-n) \sigma_{s v}-n p_{w} \\
&(1-n) \sigma_{s v}=\sigma_{v}+n p_{w}= \frac{1}{3} \operatorname{tr} \boldsymbol{\sigma}^{\prime}-(1-n) p_{w} \\
& \boldsymbol{\sigma}^{\prime} \equiv \boldsymbol{\sigma}+p_{w} \boldsymbol{I}-\text { Terzaghi's effective stress }
\end{aligned}
$$

which under the assumption of small variations of the porosity leads to:

$$
\begin{aligned}
& \mathrm{d} \sigma_{s v}=\frac{\mathrm{d}\left(\operatorname{tr} \boldsymbol{\sigma}^{\prime}\right)}{3(1-n)}-\mathrm{d} p_{w} \\
& \frac{\mathrm{~d} \rho_{s}}{\rho_{s}} \stackrel{(49)}{=} \frac{\mathrm{d} p_{w}}{K_{s}}-\frac{\mathrm{d}\left(\operatorname{tr} \boldsymbol{\sigma}^{\prime}\right)}{3(1-n) K_{s}}-\beta_{s} \mathrm{~d} T
\end{aligned}
$$

Further, one gets from (41) and the expression for α in (47):

$$
\begin{aligned}
\mathrm{d} \boldsymbol{\sigma}^{\prime} & =\lambda \mathrm{d} \varepsilon_{v} \boldsymbol{I}+2 \mu \mathrm{~d} \boldsymbol{\varepsilon}+\frac{K}{K_{s}} \mathrm{~d} p_{w} \boldsymbol{I}-\beta K \mathrm{~d} T \boldsymbol{I} \\
\mathrm{~d}\left(\operatorname{tr} \boldsymbol{\sigma}^{\prime}\right) & =\operatorname{tr}\left(\lambda \mathrm{d} \varepsilon_{v} \boldsymbol{I}+2 \mu \mathrm{~d} \boldsymbol{\varepsilon}+\frac{K}{K_{s}} \mathrm{~d} p_{w} \boldsymbol{I}-\beta K \mathrm{~d} T \boldsymbol{I}\right) \stackrel{(44)}{=} 3 K\left(\mathrm{~d} \varepsilon_{v}+\frac{\mathrm{d} p_{w}}{K_{s}}-\beta \mathrm{d} T\right)
\end{aligned}
$$

and using α from (47) again, one finally arrives at:

$$
\begin{equation*}
\frac{\mathrm{d} \rho_{s}}{\rho_{s}}=\frac{1}{1-n}\left(\frac{\alpha-n}{K_{s}} \mathrm{~d} p_{w}-(1-\alpha) \mathrm{d} \varepsilon_{v}-\left(\beta_{s}(1-n)-\beta(1-\alpha)\right) \mathrm{d} T\right) \tag{50}
\end{equation*}
$$

Enthalpies

The Euler energy equation will be expressed by means of enthalpies instead of entropies s_{w} and S_{s} from the Lagrangian approach. Taking into account our sign convention of pressures and stresses, we define in analogy (correctly?) with the water specific enthalpy $h_{w}(21)$:

$$
\begin{equation*}
h_{s} \equiv e_{s}-\frac{\sigma_{s v}}{\rho_{s}} — \text { the specific enthalpy of the solid matrix } \tag{51}
\end{equation*}
$$

In view of (29) and (32):

$$
\mathrm{d} h_{w}=\frac{\partial h_{w}}{\partial p_{w}} \mathrm{~d} p_{w}+\frac{\partial h_{w}}{\partial s_{w}} \mathrm{~d} s_{w}=\frac{1}{\rho_{w}} \mathrm{~d} p_{w}+T\left[\left(\frac{\partial s_{w}}{\partial p_{w}}\right)_{T} \mathrm{~d} p_{w}+\left(\frac{\partial s_{w}}{\partial T}\right)_{p_{w}} \mathrm{~d} T\right]
$$

where T or p_{w} in the subindices mean that the partial derivatives are taken at T or p_{w} held constant, respectively. Now one can see from (34) and (33) that:

$$
\left(\frac{\partial s_{w}}{\partial p_{w}}\right)_{T}=-\frac{\beta_{w}}{\rho_{w}}=-\left(\frac{\partial\left(1 / \rho_{w}\right)}{\partial T}\right)_{p_{w}} \quad\left(\frac{\partial s_{w}}{\partial T}\right)_{p_{w}}=\frac{c_{p_{w}}}{T}
$$

which yields:

$$
\begin{equation*}
\mathrm{d} h_{w}=c_{p_{w}} \mathrm{~d} T+\left[\frac{1}{\rho_{w}}-T\left(\frac{\partial\left(1 / \rho_{w}\right)}{\partial T}\right)_{p_{w}}\right] \mathrm{d} p_{w}=c_{p_{w}} \mathrm{~d} T+\frac{1}{\rho_{w}}\left[1+\frac{T}{\rho_{w}}\left(\frac{\partial \rho_{w}}{\partial T}\right)_{p_{w}}\right] \mathrm{d} p_{w} \tag{52}
\end{equation*}
$$

Accordingly (?)

$$
\left.\begin{array}{rl}
\mathrm{d} h_{s}= & c_{\sigma_{s v}} \mathrm{~d} T \tag{53}
\end{array}\right)\left[\frac{1}{\rho_{s}}-T\left(\frac{\partial\left(1 / \rho_{s}\right)}{\partial T}\right)_{\sigma_{s v}}\right] \mathrm{d} \sigma_{s v}=c_{\sigma_{s v}} \mathrm{~d} T-\frac{1}{\rho_{s}}\left[1+\frac{T}{\rho_{s}}\left(\frac{\partial \rho_{s}}{\partial T}\right)_{\sigma_{s v}}\right] \mathrm{d} \sigma_{s v} .
$$

Since entropy is an extensive quantity, one has:

$$
\begin{align*}
\left(1-\phi_{0}\right) \mathfrak{S}_{s} & =S_{s} \stackrel{(24)}{=} \rho_{s}(1-n) s_{s} J \stackrel{(3)}{=} \rho_{s 0}\left(1-\phi_{0}\right) s_{s} \\
& \mathfrak{S}_{s}-\text { the Lagrangian solid matrix entropy } \\
\rho_{s 0} c_{\sigma_{s v}}= & \rho_{s 0} T\left(\frac{\partial s_{s}}{\partial T}\right)_{\sigma_{s v}}=T\left(\frac{\partial \mathfrak{S}_{s}}{\partial T}\right)_{\sigma_{s v}}=C_{\sigma_{s v}} \tag{54}
\end{align*}
$$

Complete equations

Lagrangian approach

Continuity equation

When adopting the small perturbation assumption,

$$
\begin{aligned}
& \frac{\partial\left(\rho_{w} \phi\right)}{\partial t}=\rho_{w} \frac{\partial \phi}{\partial t}+\phi \frac{\partial \rho_{w}}{\partial t} \stackrel{(42),(33)}{=} \rho_{w}\left(\alpha \frac{\partial \varepsilon_{v}}{\partial t}+\frac{1}{N} \frac{\partial p_{w}}{\partial t}-\beta_{\phi} \frac{\partial T}{\partial t}\right)+\phi\left(\frac{\rho_{w}}{K_{w}} \frac{\partial p_{w}}{\partial t}-\beta_{w} \rho_{w} \frac{\partial T}{\partial t}\right) \\
& \approx \rho_{w 0} \alpha \frac{\partial \varepsilon_{v}}{\partial t}+\rho_{w 0}\left(\frac{1}{N}+\frac{\phi_{0}}{K_{w}}\right) \frac{\partial p_{w}}{\partial t}-\rho_{w 0}\left(\beta_{\phi}+\phi_{0} \beta_{w}\right) \frac{\partial T}{\partial t} \\
& \operatorname{div} \boldsymbol{M} \approx \operatorname{div}\left(\rho_{w} \boldsymbol{q}_{r w}\right) \stackrel{(35)}{=} \operatorname{div}\left(\rho_{w} \frac{\boldsymbol{k}}{\mu_{w}}\left(-\nabla p_{w}+\rho_{w} \boldsymbol{f}\right)\right) \approx \operatorname{div}\left(\rho_{w 0} \frac{\boldsymbol{k}}{\mu_{w}}\left(-\nabla p_{w}+\rho_{w 0} \boldsymbol{f}\right)\right)
\end{aligned}
$$

and the Lagrangian water mass balance equation (6) yields:

$$
\begin{align*}
\rho_{w 0} \alpha \frac{\partial \varepsilon_{v}}{\partial t}+\rho_{w 0}\left(\frac{1}{N}+\frac{\phi_{0}}{K_{w}}\right) \frac{\partial p_{w}}{\partial t}-\rho_{w 0}\left(\beta_{\phi}+\phi_{0} \beta_{w}\right) \frac{\partial T}{\partial t} & \\
& =-\operatorname{div}\left(\rho_{w 0} \frac{\boldsymbol{k}}{\mu_{w}}\left(-\nabla p_{w}+\rho_{w 0} \boldsymbol{f}\right)\right) \tag{55}
\end{align*}
$$

Equilibrium equation

In the Lagrangian equilibrium equation (11) one can take:

$$
\operatorname{div}(\boldsymbol{F} \boldsymbol{\Pi}) \approx \operatorname{div} \boldsymbol{\sigma} \quad \rho_{w} \phi \approx \rho_{w 0} \phi_{0}
$$

which furnishes:

$$
\begin{equation*}
\operatorname{div} \boldsymbol{\sigma}+\left(\rho_{s 0}\left(1-\phi_{0}\right)+\rho_{w 0} \phi_{0}\right) \boldsymbol{f}=\mathbf{0} \tag{56}
\end{equation*}
$$

Thermal equation

The small perturbation assumption is now extended by the following:
Assumption. Small variations of the temperature:

$$
\left|\frac{T-T_{0}}{T_{0}}\right| \ll 1
$$

Under this assumption one can take $T \approx T_{0}$, which together with the remaining small perturbation assumptions allows us to write:

$$
\begin{aligned}
& \frac{\mathrm{d} S}{\mathrm{~d} t} \stackrel{(38)}{=} \frac{\mathrm{d} S_{s}}{\mathrm{~d} t}+\rho_{w} \phi \frac{\mathrm{~d} s_{w}}{\mathrm{~d} t}+s_{w} \frac{\mathrm{~d}\left(\rho_{w} \phi\right)}{\mathrm{d} t} \quad \operatorname{div}\left(s_{w} \boldsymbol{M}\right) \stackrel{(6)}{=} \boldsymbol{M} \cdot \nabla s_{w}-s_{w} \frac{\mathrm{~d}\left(\rho_{w} \phi\right)}{\mathrm{d} t} \\
& T\left(\frac{\mathrm{~d} S}{\mathrm{~d} t}+\operatorname{div}\left(s_{w} \boldsymbol{M}\right)\right) \approx T\left(\frac{\partial S_{s}}{\partial t}+\rho_{w} \phi \frac{\partial s_{w}}{\partial t}+\left(\rho_{w} \boldsymbol{q}_{r w}\right) \cdot \nabla s_{w}\right) \\
& \stackrel{(43),(34)}{\approx} \beta K T_{0} \frac{\partial \varepsilon_{v}}{\partial t}-\beta_{\phi} T_{0} \frac{\partial p_{w}}{\partial t}+C \frac{\partial T}{\partial t}-\phi_{0} \beta_{w} T_{0} \frac{\partial p_{w}}{\partial t}+\rho_{w 0} \phi_{0} c_{p_{w}} \frac{\partial T}{\partial t} \\
& +\boldsymbol{q}_{r w} \cdot\left(-\beta_{w} T_{0} \nabla p_{w}+\rho_{w 0} c_{p_{w}} \nabla T\right) \\
& -\operatorname{div} \boldsymbol{Q} \approx-\operatorname{div} \boldsymbol{q} \stackrel{(37)}{=} \operatorname{div}(\boldsymbol{\kappa} \nabla T) \\
& \Phi_{s} \stackrel{(40)}{=} 0 \quad \Phi_{w} \approx \varphi_{w} \stackrel{(36)}{\approx}\left(-\nabla p_{w}+\rho_{w 0} \boldsymbol{f}\right) \cdot \boldsymbol{q}_{r w}
\end{aligned}
$$

and the Lagrangian thermal equation (26) becomes:

$$
\begin{align*}
\beta K T_{0} \frac{\partial \varepsilon_{v}}{\partial t}-T_{0}\left(\beta_{\phi}+\phi_{0} \beta_{w}\right) & \frac{\partial p_{w}}{\partial t}+\left(C+\rho_{w 0} \phi_{0} c_{p_{w}}\right) \frac{\partial T}{\partial t} \\
& =\operatorname{div}(\boldsymbol{\kappa} \nabla T)+\left(-\rho_{w 0} c_{p_{w}} \nabla T-\left(1-\beta_{w} T_{0}\right) \nabla p_{w}+\rho_{w 0} \boldsymbol{f}\right) \cdot \boldsymbol{q}_{r w} \tag{57}
\end{align*}
$$

where $\boldsymbol{q}_{r w}$ is given by Darcy's law (35).

Eulerian approach

Continuity equation

When adopting the assumptions of small perturbations and small deformation velocity,

$$
\begin{aligned}
\rho_{w} & \approx \rho_{w 0} \quad n \approx n_{0} \quad \rho_{s} \approx \rho_{s 0} \\
\frac{\mathrm{D}_{s}}{\mathrm{D} t}=\frac{\partial}{\partial t}+\boldsymbol{v}_{s} \cdot \nabla \approx \frac{\partial}{\partial t} & \operatorname{div} \boldsymbol{v}_{s}=\operatorname{div} \frac{\mathrm{D}_{s} \boldsymbol{u}}{\mathrm{D} t} \approx \operatorname{div} \frac{\partial \boldsymbol{u}}{\partial t}=\frac{\partial \varepsilon_{v}}{\partial t}
\end{aligned}
$$

and one can rewrite the Eulerian mass balance equations (2) and (5) and the constitutive equation for $\rho_{s}(50)$ as:

$$
\begin{align*}
\frac{\partial(1-n)}{\partial t}+ & \frac{1-n_{0}}{\rho_{s 0}} \frac{\partial \rho_{s}}{\partial t}+\left(1-n_{0}\right) \frac{\partial \varepsilon_{v}}{\partial t}
\end{aligned}=0 \quad \begin{aligned}
\rho_{w 0} \frac{\partial n}{\partial t}+n_{0} \frac{\partial \rho_{w}}{\partial t}+\rho_{w 0} n_{0} \frac{\partial \varepsilon_{v}}{\partial t} & =-\operatorname{div}\left(\rho_{w 0} \boldsymbol{q}_{r w}\right) \tag{58}\\
& \frac{1-n_{0}}{\rho_{s 0}} \frac{\partial \rho_{s}}{\partial t}=\frac{\alpha-n_{0}}{K_{s}} \frac{\partial p_{w}}{\partial t}-(1-\alpha) \frac{\partial \varepsilon_{v}}{\partial t}-\left(\beta_{s}\left(1-n_{0}\right)-\beta(1-\alpha)\right) \frac{\partial T}{\partial t} \tag{59}
\end{align*}
$$

Elimination of $\partial \rho_{s} / \partial t$ from (58) by (60) gives:

$$
\begin{equation*}
\frac{\partial n}{\partial t}=\frac{\alpha-n_{0}}{K_{s}} \frac{\partial p_{w}}{\partial t}+\left(\alpha-n_{0}\right) \frac{\partial \varepsilon_{v}}{\partial t}-\left(\beta_{s}\left(1-n_{0}\right)-\beta(1-\alpha)\right) \frac{\partial T}{\partial t} \tag{61}
\end{equation*}
$$

which inserted together with (33) and (35) into (59) yields:

$$
\begin{align*}
\rho_{w 0} \alpha \frac{\partial \varepsilon_{v}}{\partial t}+\rho_{w 0}\left(\frac{\alpha-n_{0}}{K_{s}}+\frac{n_{0}}{K_{w}}\right) \frac{\partial p_{w}}{\partial t}-\rho_{w 0}\left(\beta_{s}\left(1-n_{0}\right)\right. & \left.-\beta(1-\alpha)+n_{0} \beta_{w}\right) \frac{\partial T}{\partial t} \\
& =-\operatorname{div}\left(\rho_{w 0} \frac{\boldsymbol{k}}{\mu_{w}}\left(-\nabla p_{w}+\rho_{w 0} \boldsymbol{f}\right)\right) \tag{62}
\end{align*}
$$

Expressions for ρ_{s} and n

Taking α, K_{s}, β_{s} and β constant, one can integrate (60) and (61) into:

$$
\begin{align*}
\rho_{s} & =\rho_{s 0}\left(1+\frac{1}{1-n_{0}}\left(\frac{\alpha-n_{0}}{K_{s}}\left(p_{w}-p_{w 0}\right)-(1-\alpha) \varepsilon_{v}-\left(\beta_{s}\left(1-n_{0}\right)-\beta(1-\alpha)\right)\left(T-T_{0}\right)\right)\right) \\
n & =n_{0}+\frac{\alpha-n_{0}}{K_{s}}\left(p_{w}-p_{w 0}\right)+\left(\alpha-n_{0}\right) \varepsilon_{v}-\left(\beta_{s}\left(1-n_{0}\right)-\beta(1-\alpha)\right)\left(T-T_{0}\right) \tag{63}
\end{align*}
$$

Equilibrium equation

In the Eulerian equilibrium equation (10) one can take:

$$
\rho_{s}(1-n) \approx \rho_{s 0}\left(1-n_{0}\right) \quad \rho_{w} n \approx \rho_{w 0} n_{0}
$$

which leads to:

$$
\begin{equation*}
\operatorname{div} \boldsymbol{\sigma}+\left(\rho_{s 0}\left(1-n_{0}\right)+\rho_{w 0} n_{0}\right) \boldsymbol{f}=\mathbf{0} \tag{64}
\end{equation*}
$$

Thermal equation

By (21), (51), (52) and (53), we switch from internal energies to enthalpies to get:

$$
\begin{aligned}
\rho_{s} \frac{\mathrm{D}_{s} e_{s}}{\mathrm{D} t} & =\rho_{s} \frac{\mathrm{D}_{s} h_{s}}{\mathrm{D} t}-\frac{\sigma_{s v}}{\rho_{s}} \frac{\mathrm{D}_{s} \rho_{s}}{\mathrm{D} t}+\frac{\mathrm{D}_{s} \sigma_{s v}}{\mathrm{D} t}=\rho_{s} c_{\sigma_{s v}} \frac{\mathrm{D}_{s} T}{\mathrm{D} t}-\frac{T}{\rho_{s}}\left(\frac{\partial \rho_{s}}{\partial T}\right)_{\sigma_{s v}} \frac{\mathrm{D}_{s} \sigma_{s v}}{\mathrm{D} t}-\frac{\sigma_{s v}}{\rho_{s}} \frac{\mathrm{D}_{s} \rho_{s}}{\mathrm{D} t} \\
\rho_{w} \frac{\mathrm{D}_{s} e_{w}}{\mathrm{D} t} & =\rho_{w} \frac{\mathrm{D}_{s} h_{w}}{\mathrm{D} t}+\frac{p_{w}}{\rho_{w}} \frac{\mathrm{D}_{s} \rho_{w}}{\mathrm{D} t}-\frac{\mathrm{D}_{s} p_{w}}{\mathrm{D} t}=\rho_{w} c_{p_{w}} \frac{\mathrm{D}_{s} T}{\mathrm{D} t}+\frac{T}{\rho_{w}}\left(\frac{\partial \rho_{w}}{\partial T}\right)_{p_{w}} \frac{\mathrm{D}_{s} p_{w}}{\mathrm{D} t}+\frac{p_{w}}{\rho_{w}} \frac{\mathrm{D}_{s} \rho_{w}}{\mathrm{D} t}
\end{aligned}
$$

and the energy equation (20) becomes:

$$
\begin{align*}
& \left(\rho_{s}(1-n) c_{\sigma_{s v}}+\rho_{w} n c_{p_{w}}\right) \frac{\mathrm{D}_{s} T}{\mathrm{D} t}-\frac{(1-n) T}{\rho_{s}}\left(\frac{\partial \rho_{s}}{\partial T}\right)_{\sigma_{s v}} \frac{\mathrm{D}_{s} \sigma_{s v}}{\mathrm{D} t}+\frac{n T}{\rho_{w}}\left(\frac{\partial \rho_{w}}{\partial T}\right)_{p_{w}} \frac{\mathrm{D}_{s} p_{w}}{\mathrm{D} t} \\
& \quad-\frac{(1-n) \sigma_{s v}}{\rho_{s}} \frac{\mathrm{D}_{s} \rho_{s}}{\mathrm{D} t}+\frac{n p_{w}}{\rho_{w}} \frac{\mathrm{D}_{s} \rho_{w}}{\mathrm{D} t}=\boldsymbol{\sigma}: \boldsymbol{d}_{s}-\operatorname{div}\left(p_{w} \boldsymbol{q}_{r w}+\boldsymbol{q}\right)-\rho_{w} \boldsymbol{q}_{r w} \cdot \nabla e_{w}+\rho_{w} \boldsymbol{f} \cdot \boldsymbol{q}_{r w} \tag{65}
\end{align*}
$$

Now one obtains from (2) and (5):

$$
\frac{1-n}{\rho_{s}} \frac{\mathrm{D}_{s} \rho_{s}}{\mathrm{D} t}=\frac{\mathrm{D}_{s} n}{\mathrm{D} t}-(1-n) \operatorname{div} \boldsymbol{v}_{s}, \quad \frac{n}{\rho_{w}} \frac{\mathrm{D}_{s} \rho_{w}}{\mathrm{D} t}=-\frac{\mathrm{D}_{s} n}{\mathrm{D} t}-n \operatorname{div} \boldsymbol{v}_{s}-\frac{1}{\rho_{w}} \operatorname{div}\left(\rho_{w} \boldsymbol{q}_{r w}\right)
$$

The stress partition (13) with (15) yields:

$$
\begin{aligned}
\sigma_{v} & =(1-n) \sigma_{s v}-n p_{w} \\
(1-n) \frac{\mathrm{D}_{s} \sigma_{s v}}{\mathrm{D} t} & =\frac{\mathrm{D}_{s} \sigma_{v}}{\mathrm{D} t}+n \frac{\mathrm{D}_{s} p_{w}}{\mathrm{D} t}+\left(\sigma_{s v}+p_{w}\right) \frac{\mathrm{D}_{s} n}{\mathrm{D} t}
\end{aligned}
$$

Besides, taking into account also the symmetry of $\boldsymbol{\sigma}$ and the decomposition:

$$
\begin{equation*}
\boldsymbol{\sigma}_{s}=\boldsymbol{s}_{s}+\sigma_{s v} \boldsymbol{I} \quad \boldsymbol{s}_{s} \text { - the deviatoric part of } \boldsymbol{\sigma}_{s} \tag{66}
\end{equation*}
$$

one may write:

$$
\boldsymbol{\sigma}: \boldsymbol{d}_{s}=\left((1-n) \boldsymbol{\sigma}_{s}+n \boldsymbol{\sigma}_{w}\right): \boldsymbol{\nabla} \boldsymbol{v}_{s}=(1-n) \boldsymbol{s}_{s}: \boldsymbol{\nabla} \boldsymbol{v}_{s}+(1-n) \sigma_{s v} \operatorname{div} \boldsymbol{v}_{s}-n p_{w} \operatorname{div} \boldsymbol{v}_{s}
$$

Hence, with the aid of the identity:

$$
-\operatorname{div}\left(\frac{p_{w}}{\rho_{w}} \rho_{w} \boldsymbol{q}_{r w}\right)+\frac{p_{w}}{\rho_{w}} \operatorname{div}\left(\rho_{w} \boldsymbol{q}_{r w}\right)-\rho_{w} \boldsymbol{q}_{r w} \cdot \nabla e_{w}=-\rho_{w} \boldsymbol{q}_{r w} \cdot \nabla h_{w}
$$

equation (65) takes the form:

$$
\begin{aligned}
\left(\rho_{s}(1-\right. & \left.n) c_{\sigma_{s v}}+\rho_{w} n c_{p_{w}}\right) \frac{\mathrm{D}_{s} T}{\mathrm{D} t}-\frac{T}{\rho_{s}}\left(\frac{\partial \rho_{s}}{\partial T}\right)_{\sigma_{s v}} \frac{\mathrm{D}_{s} \sigma_{v}}{\mathrm{D} t}+\left[\frac{n T}{\rho_{w}}\left(\frac{\partial \rho_{w}}{\partial T}\right)_{p_{w}}-\frac{n T}{\rho_{s}}\left(\frac{\partial \rho_{s}}{\partial T}\right)_{\sigma_{s v}}\right] \frac{\mathrm{D}_{s} p_{w}}{\mathrm{D} t} \\
& =\left(\sigma_{s v}+p_{w}\right)\left[1+\frac{T}{\rho_{s}}\left(\frac{\partial \rho_{s}}{\partial T}\right)_{\sigma_{s v}}\right] \frac{\mathrm{D}_{s} n}{\mathrm{D} t}+(1-n) \boldsymbol{s}_{s}: \boldsymbol{\nabla} \boldsymbol{v}_{s}-\operatorname{div} \boldsymbol{q}+\rho_{w}\left(-\nabla h_{w}+\boldsymbol{f}\right) \cdot \boldsymbol{q}_{r w}
\end{aligned}
$$

Under the extended small perturbation assumption and the assumption of small deformation velocity, this can be rewritten in the form:

$$
\begin{align*}
& \left(\rho_{s 0}\left(1-n_{0}\right) c_{\sigma_{s v}}+\rho_{w 0} n_{0} c_{p_{w}}\right) \frac{\partial T}{\partial t}-\frac{T_{0}}{\rho_{s}}\left(\frac{\partial \rho_{s}}{\partial T}\right)_{\sigma_{s v}} \frac{\partial \sigma_{v}}{\partial t}+\left[\frac{n_{0} T_{0}}{\rho_{w}}\left(\frac{\partial \rho_{w}}{\partial T}\right)_{p_{w}}-\frac{n_{0} T_{0}}{\rho_{s}}\left(\frac{\partial \rho_{s}}{\partial T}\right)_{\sigma_{s v}}\right] \frac{\partial p_{w}}{\partial t} \\
& =\left(\sigma_{s v}+p_{w}\right)\left[1+\frac{T_{0}}{\rho_{s}}\left(\frac{\partial \rho_{s}}{\partial T}\right)_{\sigma_{s v}}\right] \frac{\partial n}{\partial t}+\left(1-n_{0}\right) \boldsymbol{s}_{s}: \nabla \frac{\partial \boldsymbol{u}}{\partial t}-\operatorname{div} \boldsymbol{q}+\rho_{w 0}\left(-\nabla h_{w}+\boldsymbol{f}\right) \cdot \boldsymbol{q}_{r w} \tag{67}
\end{align*}
$$

According to (33), (49), (41) and (52):

$$
\begin{gathered}
\frac{1}{\rho_{w}}\left(\frac{\partial \rho_{w}}{\partial T}\right)_{p_{w}}=-\beta_{w} \quad \frac{1}{\rho_{s}}\left(\frac{\partial \rho_{s}}{\partial T}\right)_{\sigma_{s v}}=-\beta_{s} \\
\frac{\partial \sigma_{v}}{\partial t}=\frac{1}{3} \operatorname{tr} \frac{\partial \boldsymbol{\sigma}}{\partial t}=\frac{1}{3} \operatorname{tr}\left(\lambda \frac{\partial \varepsilon_{v}}{\partial t} \boldsymbol{I}+2 \mu \frac{\partial \varepsilon}{\partial t}-\alpha \frac{\partial p_{w}}{\partial t} \boldsymbol{I}-\beta K \frac{\partial T}{\partial t} \boldsymbol{I}\right) \stackrel{(44)}{=} K \frac{\partial \varepsilon_{v}}{\partial t}-\alpha \frac{\partial p_{w}}{\partial t}-\beta K \frac{\partial T}{\partial t} \\
\rho_{w 0} \nabla h_{w}=\rho_{w 0} c_{p_{w}} \nabla T+\frac{\rho_{w 0}}{\rho_{w}}\left[1+\frac{T}{\rho_{w}}\left(\frac{\partial \rho_{w}}{\partial T}\right)_{p_{w}}\right] \nabla p_{w} \approx \rho_{w 0} c_{p_{w}} \nabla T+\left(1-\beta_{w} T_{0}\right) \nabla p_{w}
\end{gathered}
$$

which together with (37) substituted into (67) yields:

$$
\begin{array}{r}
\beta_{s} K T_{0} \frac{\partial \varepsilon_{v}}{\partial t}-T_{0}\left(\beta_{s}\left(\alpha-n_{0}\right)+n_{0} \beta_{w}\right) \frac{\partial p_{w}}{\partial t}+\left(\rho_{s 0}\left(1-n_{0}\right) c_{\sigma_{s v}}-\beta_{s} \beta K T_{0}+\rho_{w 0} n_{0} c_{p_{w}}\right) \frac{\partial T}{\partial t} \\
=\left(1-\beta_{s} T_{0}\right)\left(\sigma_{s v}+p_{w}\right) \frac{\partial n}{\partial t}+\left(1-n_{0}\right) \boldsymbol{s}_{s}: \nabla \frac{\partial \boldsymbol{u}}{\partial t}+\operatorname{div}(\boldsymbol{\kappa} \nabla T) \\
+\left(-\rho_{w 0} c_{p_{w}} \nabla T-\left(1-\beta_{w} T_{0}\right) \nabla p_{w}+\rho_{w 0} \boldsymbol{f}\right) \cdot \boldsymbol{q}_{r w} \tag{68}
\end{array}
$$

where $\boldsymbol{q}_{r w}$ is given by Darcy's law (35).

- Eventually, $\partial n / \partial t$ can be substituted from (61). (The term related to mechanical work caused by porosity changes can usually be neglected according to [LS98].)
- An expression for \boldsymbol{s}_{s} can be obtained from $\boldsymbol{\sigma}_{s}$ by (66), and the stress partition (13) with (15) and the stress-strain relationship (41). (The term related to viscous dissipation of the skeleton is usually neglected in literature.)

Summary

One can see that the Lagrangian system (55)-(57) coincides with the Eulerian one (62)\&(64)\&(68) if:

- $\phi_{0}=n_{0}$ (they are equal to their original values from the initial configuration);
- the expressions (46) and (54) for C and $C_{\sigma_{s v}}$ are taken into account (with $T \approx T_{0}$);
- the expressions for $\alpha, 1 / N, \beta, \beta_{\phi}$ and $C_{\sigma_{v}}$ from (47) and (48) are valid;
- one omits

$$
\left(1-\beta_{s} T_{0}\right)\left(\sigma_{s v}+p_{w}\right) \frac{\partial n}{\partial t}+\left(1-n_{0}\right) \boldsymbol{s}_{s}: \nabla \frac{\partial \boldsymbol{u}}{\partial t}
$$

from the Eulerian thermal equation. (The first term seems to be negligible under the assumption of small variations of the porosity, but is the second term also negligible under our assumptions?)

One can also show that equations (45) and (63) for current values of the Lagrangian porosity ϕ and Eulerian porosity n are then approximately related by:

$$
\phi=J n \approx\left(1+\varepsilon_{v}\right) n
$$

when $\varepsilon_{v}, p_{w}-p_{w 0}$ and $T-T_{0}$ are small.

References

[Cou04] O. Coussy. Poromechanics. John Wiley \& Sons, 2004.
[LS98] R. W. Lewis and B. A. Schrefler. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. John Wiley, 2nd edition, 1998.

