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Abstract. We show a new blow up criterion for regular solutions of
the Navier–Stokes–Fourier system in terms of uniform bounds on the
density and integral bounds on the absolute temperature. In comparison
with the existing results, we remove the technical conditions relating the
values of the shear and bulk viscosity coefficients. The result can be seen
as a rigorous justification of Nash’s conjecture concerning the character
of possibly singularities in the equations of fluid dynamics.
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1. Introduction

As pointed out by Nash in his seminal paper [21], mathematical problem-
s arising in continuum fluid dynamics consist in vast majority of systems
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2 COMPRESSIBLE NAVIER-STOKES EQUATIONS

of parabolic/hyperbolic nonlinear equations. Nash also realized that solv-
ability of these problem is intimately related to available a priori bounds.
Standard examples among these models are the Euler and Navier–Stokes
equations describing the motion of an inviscid and viscous fluid, respective-
ly. In this paper, we focus on the Navier–Stokes–Fourier system governing
the time evolution of a general compressible, heat conducting, and linearly
viscous fluid. Here again, it is Nash’s truly pioneering contribution [21],
[22] that represents the very first step in understanding the well posedness
of this problem, see also [8]. Nash also makes a remarkable statement that
might be interpreted as Nash’s conjecture, see [21]:

Probably one should first try to prove a conditional existence
and uniqueness theorem for flow equations. This should give
existence, smoothness, and unique continuation (in time) of
flows, conditional on the non-appearance of certain gross type-
s of singularity, such as infinities of temperature or density.

The results of the present paper can be seen as the ultimate step in the
proof of Nash’s conjecture in the context of compressible, viscous Newtonian
flows. It is interesting to note that possible singularities must first appear at
the level of thermodynamic variables - the density and the temperature - and
not for the fluid velocity as often conjectured in the context of incompressible
fluids, see e.g. Prodi [23], Serrin [24]. Moreover, in view of the recent results
by Merle et al. [20] and Buckmaster et al. [3] on blow up for the isentropic
Navier–Stokes system, the regularity criterion proved below seems sharp.

The time evolution of the density ρ = ρ(x, t), the (bulk) velocity u =
(u1, u2, u3)(x, t) and the total energy E = E(x, t) of a viscous, compress-
ible, and heat conducting fluid is governed by the following system of field
equations: 

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u) = div(T ),

(ρE)t + div(ρEu) = div(T u)− div(q).

(1.1)

For the sake of simplicity, we have deliberately ignored the effect of external
mechanical and heat sources.

For linearly viscous fluids, the Cauchy stress T is given by Newton’s
rheological law

T = µ
(
∇u+ (∇u)′

)
+ λdivuI3 − PI3,

where I3 is a 3 × 3 unit matrix, and P = P (ρ, θ) is the pressure deter-
mined in terms of the density ρ and the (absolute) temperature θ = θ(x, t).
Accordingly, the heat flux q is given by Fourier’s law

q = −κ∇θ.
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The shear viscosity coefficient µ, the bulk viscosity coefficient λ + 2µ
3 , and

the heat conductivity coefficient κ are supposed to be constant satisfying

µ > 0, λ+
2µ

3
≥ 0, κ > 0.(1.2)

Finally, we write the total energy E as the sum of the kinetic and internal
energy,

E = e+
|u|2

2
.

For definiteness, we consider Boyle’s law of a perfect gas,

P = ρθ.

Similarly, the internal energy is a linear function of the temperature,

e = Cνθ,

where Cν is a positive constant representing the specific heat at constant
volume.

There has been a long way in understanding the precise meaning of “cer-
tain gross types of singularity” suggested in Nash’s seminal work. It turns
out that the analysis depends considerably on the type of physical domain
Ω ⊂ R3 occupied by the fluid. There are essentially two types considered
in the literature: (i) Ω = R3 representing a mathematical idealization of
a fluid not influenced by the effects of the kinematic boundary and com-
plying with suitable far field conditions, (ii) a more realistic situation Ω a
bounded/exterior domain supplement with suitable boundary conditions.

• One of the first results due to Cho, Choe, and Kim ([4]) states a
blow up criterion:

lim sup
t↗T ?

(
‖ρ‖W 1,2∩W 1,q + ‖u‖D1

0

)
= 0.

This and several other blow up criteria (see [14, 27] for instance),
however, refer to possible gradient singularity and therefore remain
far from the original Nash statement.
• Fan, Jiang, Ou ([9]) obtained the following blowup criterion for the

strong solution to (1.1) in three dimensions:

lim sup
t↗T ?

(
‖θ‖L∞(0,t;L∞) + ‖∇u‖L1(0,t;L∞)

)
=∞.(1.3)

Obviously, a bound on the amplitude of the velocity gradient implies
boundness of the fluid density as well. The result is conditioned by
a technical but physically irrelevant restriction

7µ > λ.(1.4)

It is worth–noting, however, that (1.4) is still compatible with New-
ton’s hypothesis of vanishing bulk viscosity relevant to the monoatom-
ic gas.
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• Sun, Wang, and Zhang ([26]) obtained a blow up criterion of strong
solutions in terms of the density and the temperature for the initial-
boundary value problem in three dimensions, where u|∂Ω = 0 and
∂θ
∂n |∂Ω = 0:

lim sup
t↗T ?

(
‖θ‖L∞(0,t;L∞) + ‖ρ‖L∞(0,t;L∞) +

∥∥∥1

ρ

∥∥∥
L∞(0,t;L∞)

)
=∞,(1.5)

still under the technical condition (1.4).
• The term ‖1/ρ‖L∞(0,t;L∞) has been removed from (1.5) by Wen, Zhu

([29]) for the Cauchy problem with vanishing far field conditions

ρ̃ = θ̃ = 0 under even more restrictive condition

3µ > λ.

The condition “7µ > λ” in the criterion (1.5) for the initial-
boundary value problem and “3µ > λ” for the Cauchy problem
used in [26] and [29], respectively, are crucial for the bound on∫

Ω ρ|u|
3+σ dx with “σ > 0” necessary for controlling some super-

critical nonlinear terms.

Our main goal in this work is to remove completely any technical as-
sumption relating the two viscosity coefficients and relax slightly the blow
up conditions in terms of the temperature. From this perspective, the re-
sult gives an ultimate affirmative answer to Nash’s conjecture. Besides, it
is interesting to note that the blow up results obtained recently by Merle et
al. [20] and Buckmaster et al. [3] in the context of isentropic flows assert
a simultaneous blow up of the density and the velocity in the L∞-norm for
the Cauchy problem with zero/positive far field density. As the isentropic
flow in the context of viscous fluids seems physically less realistic but still
a widely used approximation, the effect of temperature changes in possibly
blow up mechanism represents a challenging open problem.

Last but not least, removing the hypothesis on smallness of the bulk
viscosity coefficient is not only academic. As observed by Graves and Argrow
[7](cf. also Cramer [6]): “Several fluids, including common diatomic gases,
are seen to have bulk viscosities which are hundreds or thousands of times
larger than their shear viscosities.”

In the context of smooth solutions considered in the present paper, system
(1.1) can be written in the form:

(1.6)



ρt +∇ · (ρu) = 0,

ρut + ρu · ∇u+∇P (ρ, θ) = µ∆u+ (µ+ λ)∇divu,

Cv (ρθt + ρu · ∇θ) + ρθdivu = µ
2 |∇u+ (∇u)′|2 + λ(divu)2

+κ∆θ,
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in Ω× (0,∞), where µ, λ, and κ are constants satisfying (1.2). System (1.6)
is supplemented with the initial conditions:

(ρ, u, θ)|t=0 = (ρ0, u0, θ0), x ∈ Ω,(1.7)

and one of the following boundary/far field conditions:

• Ω ⊂ R3 is a bounded and smooth domain:

u|∂Ω = 0,
∂θ

∂n

∣∣∣∣
∂Ω

= 0 for t ≥ 0,(1.8)

where n denotes the outer normal vector.
• Ω = R3:

(ρ, u, θ)→ (ρ̃, 0, θ̃), as |x| → ∞,(1.9)

with constants ρ̃, θ̃ ≥ 0;

Remark 1.1. Note that the above boundary conditions correspond to an
energetically closed fluid system, where the boundary of the physical space is
both mechanically and thermally insulated. This fact facilitates considerably
the analysis, in particular obtaining the uniform bounds, performed below.
Extension to more complicated boundary conditions would definitely require
a more elaborate treatment notably of the estimates presented in Section 3
below.

Notation:

•
∫
f =

∫
Ω
f dx.

• For 1 ≤ l ≤ ∞, we use the following notation for the standard
Lebesgue and Sobolev spaces:

Ll = Ll(Ω), Dk,l =
{
u ∈ L1

loc(Ω) : ‖∇ku‖Ll <∞
}
,

W k,l = Ll ∩Dk,l, Hk = W k,2, Dk = Dk,2,

D1
0 =

{
u ∈ L6 : ‖∇u‖L2 <∞, u|∂Ω = 0},

‖u‖Dk,l = ‖∇ku‖Ll .

• For 3 × 3 matrices E = (Eij), F = (Fij), we denote the scalar
product of E with F by

E : F =

3∑
i,j=1

EijFij .
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1.1. Main result. Before presenting our main result, we introduce the con-
cept of strong solution to (1.6) used throughout the paper.

Definition 1.2. (Strong solution) Given a time T > 0, a trio (ρ, u, θ) is
called strong solution to the Navier-Stokes-Fourier equations (1.6), (1.7) ,
(1.9), or (1.6), (1.7) (1.8) in Ω× [0, T ] if:

ρ ≥ 0, ρ− ρ̃ ∈ C
(
[0, T ];W 1,q(Ω) ∩H1(Ω)

)
, ρt ∈ C

(
[0, T ];L2(Ω) ∩ Lq(Ω)

)
,

(u, θ − θ̃) ∈ C
(
[0, T ];D2(Ω) ∩D1

0(Ω)
)
∩ L2

(
0, T ;D2,q(Ω)

)
,

(ut, θt) ∈ L2
(
0, T ;D1

0(Ω)
)
, (
√
ρut,
√
ρθt) ∈ L∞

(
0, T ;L2(Ω)

)
,

for some q ∈ (3, 6], and (ρ, u, θ) satisfies (1.6) a.a. in Ω × (0, T ], together
with the associated initial and boundary conditions.

Initial data. In agreement with the regularity class specified in Definition
1.2, the initial data satisfy ρ0 ≥ 0, ρ0 − ρ̃ ∈ W 1,q(Ω) ∩ H1(Ω) for some

q ∈ (3, 6], (u0, θ0 − θ̃) ∈ D2(Ω) ∩D1
0(Ω). In addition, we suppose ρ0|u0|2 +

ρ0|θ0 − θ̃|2 ∈ L1(Ω), and that the following compatibility conditions:

(1.10)

µ∆u0 + (µ+ λ)∇divu0 −∇P (ρ0, θ0) =
√
ρ

0
g1,

κ∆θ0 + µ
2 |∇u0 + (∇u0)′|2 + λ(divu0)2 =

√
ρ0g2, x ∈ Ω

for some gi ∈ L2(Ω), i = 1, 2. Finally, we require (u0, θ0) to satisfy the
relevant boundary condition specified in (1.8) if Ω is bounded.

Remark 1.3. Under the above stated assumption on the initial data, the
local existence of strong solutions was obtained in [5, 31] except for the bound-
ary condition ∂θ

∂n |∂Ω = 0. However, it turns out that the local existence in this
case can be established in a way similar to [5, 31]. In particular, the strong
solution always exists on a non–empty time interval for the initial data be-
longing to the class specified above. Moreover, the life span can be always
extended beyond the existing one as long as uniform bounds are available.
Thus any strong solution is defined up a maximal existence time T ∗ > 0.

Now we are in a position to state our main result:

Theorem 1.4. Let (ρ, u, θ) be a strong solution to the initial-boundary value
problem (1.6), (1.7), (1.8), or to the Cauchy problem (1.6), (1.7), (1.9)
defined on a maximal existence time interval [0, T ∗).

If T ∗ < +∞, then

lim sup
t↗T ∗

(
‖ρ‖

L∞
(

0,t;L∞(Ω)
) + ‖θ − θ̃‖

Ls
(

0,t;Lr(Ω)
)) =∞(1.11)

for any r ∈ (3
2 ,∞] and s ∈ [1,∞] satisfying 2

s + 3
r ≤ 2.
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Remark 1.5. Apparently at odds with the basic physical principles, we do
not require the (absolute) temperature θ to be strictly positive. Similarly,
although the Navier–Stokes–Fourier system is derived as a model of non–
dilute fluids, we allow the density to vanish at some parts of the physical
space. From the pure analysis point of view, however, omitting these phys-
ically grounded hypotheses we obtain a mathematically stronger result. In
addition, it is easy to see that positivity of both the density ρ and the temper-
ature θ is inherited by any strong solution from the initial/boundary data.

Remark 1.6. In combination with a suitable weak–strong uniqueness result
in the spirit of [12], condition (1.11) can be interpreted as a regularity cri-
terion for a weak or even more general dissipative measure valued solution
introduced in [2]. Note, however that the existence of a weak solution for
the present constitutive relations is a largely open problem that persists even
in the larger class of dissipative weak solutions due to the lack of suitable a
priori bounds notably on the entropy flux.

1.2. Main result and Nash’s conjecture.

• In the particular case s = r = ∞, Theorem 1.4 yields the no blow
up criterion

lim sup
t↗T ∗

(
‖ρ(t, ·)‖L∞(Ω) + ‖θ(t, ·)‖L∞(Ω)

)
<∞

that may be interpreted as an affirmative solution of Nash’s conjec-
ture. In contrast with all previously known results, the conclusion
holds without any non–physical restriction imposed on the viscosity
coefficients.

• Theorem 1.4 provides a general criterion on the life span of strong
solutions. Specifically, if there exist r ∈ (3

2 ,∞] and s ∈ [1,∞] satis-

fying 2
s + 3

r ≤ 2 such that

‖ρ‖
L∞
(

0,t;L∞(Ω)
) + ‖θ − θ̃‖

Ls
(

0,t;Lr(Ω)
)(1.12)

remains bounded for t↗ T , then the life span of the strong solution
can be extended beyond T . In fact, condition (1.12) has been verified
for any positive T in some special cases such as the Cauchy problem
for vacuum solutions with small initial energy or small mass, giving
rise to the global existence results obtained in [16, 30]. However,
validity of (1.12) for the initial-boundary value problem (i.e. (1.8))
with the same smallness assumptions is not known.

• Hypothesis ρ0|u0|2 ∈ L1(Ω) on boundedness of the initial kinetic en-
ergy is relevant only for the Cauchy problem with strictly positive
far field temperature θ̃ > 0 (see Lemma 4.3). If θ̃ = 0, this condition
may be replaced by ρ0|u0|4 ∈ L1(Ω).
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• Theorem 1.4 also holds for classical solution in the sense introduced
in [16, 30]. As we shall see, given the estimates in Sections 3 and 4,
the higher-order estimates for the Cauchy problem can be obtained
following step by step the arguments of [16, 30]. For the initial-
boundary value problem, one may use the decomposition of velocity
introduced in Section 3.

1.3. Main challenges and principal ideas.

Main challenge. The main challenge here is to deduce sufficiently strong a
priori bounds for a (hypothetical) regular solution under the mere assump-
tion that both the temperature and and the density are bounded. This
may be seen as a counterpart of Nash’s celebrated conditional regularity
statement L∞ → Cα in the context of parabolic equations.

The method originally used in [21] is nowadays known as Nash’s iteration.
Nash naturally conjectured that his new method (see [8] for Klainerman’s
comments on Nash’s work [21]) or some suitable extension, would apply to
more complex systems such as the Navier-Stokes equations in fluid dynamic-
s. The problem turned out to be more delicate, however, due to the limited
applicability of De Giorgi-Nash-Moser techniques to general systems of e-
quations. In particular, the compressible Navier–Stokes system is of mixed
type of a transport and parabolic equations. In addition, strict parabolicity
of the momentum and internal energy equations may become degenerate in
the nearly vacuum state of very low density.

Main ideas. Let us explain the principal ideas of the proof of Theorem 1.4
that allow us to remove the technical restrictions imposed on the viscosity
coefficients omnipresent in the existing literature.

On condition that the density and the temperature remain bounded, the
higher order a priori bounds depend in a crucial way on boundedness of the
quantity

∫
Ω ρ|u|

3+σ for σ > 0. In particular, this estimate is necessary to
control certain super-critical quantities arising in the convective terms. The
problem is definitely more delicate than for a simple parabolic equation. To
understand the principal stumbling blocks suppose, for a while, that the
velocity solves a linear parabolic “system” of equations:

∂ui
∂t

= µ∆ui

for i = 1, 2, 3. Multiplying on (3 + σ)|u|1+σui, u = (u1, u2, u3), we get

∂(|u|3+σ)

∂t
=µ∆(|u|3+σ)− (3 + σ)µ|u|1+σ|∇u|2

− (3 + σ)(1 + σ)µ|u|1+σ
∣∣∇|u|∣∣2.(1.13)
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The desired L3+σ estimate can be derived by integrating (1.13) over Ω×(0, t)
using the boundary conditions, specifically,∫

Ω
|u|3+σ dx+D0 =

∫
Ω
|u0|3+σ dx

where u0(x) = u(x, 0) for x ∈ Ω and

D0 = (3 + σ)µ

∫ t

0

∫
Ω
|u|1+σ

[
|∇u|2 + (1 + σ)

∣∣∇|u|∣∣2] dx ds ≥ 0.

The problem becomes more difficult for the linear parabolic system

(1.14)
∂ui
∂t

= µ∆ui + (µ+ λ)∂idivu,

where u = (u1, u2, u3) and ∂i = ∂
∂xi

and the viscosity coefficients satisfy

(1.2). Multiplying (1.14) by (3 + σ)|u|1+σui, and integrating the result over
Ω× (0, t), we obtain∫

Ω
|u|3+σ dx+D1 =

∫
Ω
|u0|3+σ dx(1.15)

where

D1 =(3 + σ)

∫ t

0

∫
Ω
|u|1+σ

[
µ|∇u|2 + (λ+ µ)|divu|2 + (1 + σ)µ

∣∣∇|u|∣∣2] dx ds
+ (3 + σ)(1 + σ)(µ+ λ)

∫
Ω
|u|σu · ∇|u| divudx.

Unlike D0 the integral D1 may not be positive depending on the specific
values of the viscosity coefficients. The simplest solution is imposing the
technical condition 7µ > λ. Accordingly, D1 becomes non-negative and the
desired L3+σ estimate of u can be obtained.

The counterpart of (1.15) in the momentum equation reads∫
Ω
ρ|u|4 dx+D1 =

∫
Ω
ρ0|u0|4 dx+ 4

∫ t

0

∫
Ω

div(|u|2u)P dx ds(1.16)

where we choose σ = 1 for simplicity. To deduce from (1.16) the desired
estimate without imposing any extra restriction on the viscosity coefficients,
it is crucial to control the divu-related terms in D1, see Lemma 3.1. To
achieve this, we introduce a new quantity

ρ|u|4 − 4CCv
λ

ρ|u|2(θ − θ̃),

for λ > 0. It turns out that the integral-in-space of the quantity 4CCv
λ ρ|u|2(θ−

θ̃) satisfies a new inequality containing divu with an enhanced weight via
a nonlinear term containing velocity in the temperature equation, see Lem-
mas 3.2 and 3.3. Such a combination produces the desired cancellation in
the divu-related terms in D1 yielding the estimate of

∫
Ω ρ|u|

4 dx without any
technical restriction on µ and λ. To see this, a series of new associated a pri-
ori estimates need to be derived, see Lemmas 3.4 and 3.5, and Corollary 3.6.
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In the case λ ≤ 0, D1 is non-negative, which can absorb the corresponding
terms on the right-hand side of (1.16) by virtue of Cauchy inequality.

2. Preliminaries

In this section, we recall some useful results used throughout the rest of
the paper.

Lemma 2.1. ([18, 28]) Let Ω ⊂ RN (N = 2, 3) be a bounded domain with
piecewise smooth boundary. Then the following inequality is valid for every
function u ∈W 1,p(Ω):

(2.1) ‖u‖Lp′ (Ω) ≤ C2(‖u‖L1(Ω) + ‖∇u‖αLp(Ω)‖u‖
1−α
Lr′ (Ω)

),

where α = (1/r′ − 1/p′)(1/r′ − 1/p + 1/N)−1. If, moreover, p < N , then
p′ ∈ [r′, pN/(N − p)] for r′ ≤ pN/(N − p), and p′ ∈ [pN/(N − p), r′] for
r′ > pN/(N − p). If p ≥ N , then p′ ∈ [r′,∞) is arbitrary. The positive
constant C2 in inequality (2.1) depends on N , p, r′, α and the geometry of
the domain Ω.

Remark 2.2. The first term on the right-hand side of (2.1), specifically,

‖u‖L1(Ω), can be omitted if u ∈ W 1,p
0 (Ω). In this case, (2.1) is the well-

known Gagliardo-Nirenberg inequality.

Lemma 2.3. ([11]) Let v ∈ W 1,2(Ω), and let ρ be a non-negative function
such that

0 < M ≤
∫

Ω
ρdx,

∫
Ω
ργ dx ≤ E0,

where Ω ⊂ RN is a bounded domain for N ≥ 1 and γ > 1.
Then there exists a constant c depending solely on M, E0 such that

‖v‖2L2(Ω) ≤ c(E0,M)

{
‖∇xv‖2L2(Ω) +

(∫
Ω
ρ|v|dx

)2
}
.

Remark 2.4. For the boundary condition (1.8), the solution in Theorem
1.4 satisfies the mass conservation,∫

ρ =

∫
ρ0 := M0 > 0.(2.2)

Thus under the conditions of Lemma 2.3, the following estimate can be ob-
tained by using the Hölder inequality and (2.2):

‖v‖2L2(Ω) ≤ c(E0,M0)
(
‖∇xv‖2L2(Ω) +

∫
Ω
ρ|v|2 dx

)
.(2.3)
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3. Initial-boundary value problem

Assume that T ∗ < ∞ and that there exist constants r ∈ (3
2 ,∞] and

s ∈ [1,∞] satisfying

2

s
+

3

r
≤ 2.

such that

‖ρ‖
L∞
(

0,T ;L∞(Ω)
) + ‖θ − θ̃‖

Ls
(

0,T ;Lr(Ω)
) ≤M∗ <∞(3.1)

for any T ∈ (0, T ∗). Our aim is to show that under the assumption (3.1)
and the hypotheses of Theorem 1.4, there is a bound C > 0 depending only
on M∗, ρ0, u0, θ0, µ, λ, κ, and T ∗ such that

sup
0≤t<T ∗

(
‖ρ‖W 1,q + ‖(u, θ)‖H2 + ‖ρt‖Lq + ‖(√ρut,

√
ρθt)‖L2

)
+

∫ T ∗

0

(
‖(ut, θt)‖2H1 + ‖(u, θ)‖2W 2,q

)
dt ≤ C.(3.2)

In view of the available local existence results specified in Remark 1.3, it is
easy to check (see for instance [27]) that (3.2) implies the strong solution
can be extended beyond T ∗, meaning T ∗ is not the maximal existence time,
which yields the desired contradiction.

Throughout the rest of the paper, we denote by C a generic constant
that may depend on M∗, ρ0, u0, θ0, ρ̃, θ̃, µ, λ, κ, and T ∗ but independent of
the other parameters ε, ε1 and δ specified below. The symbols Cε and Cδ
denote constants that may depend on ε and δ, respectively.

As in [25], we denote w = u− h, where h is the unique solution to

(3.3)


Lh = ∇P, in Ω× (0, T ],

h|∂Ω = 0, if Ω is bounded,

h→ 0 as |x| → ∞, if Ω = R3,

where Lh = µ∆h+ (µ+ λ)∇divh. Then we have

(3.4)


Lw = ρu̇, in Ω× (0, T ],

w|∂Ω = 0, if Ω is bounded,

w → 0 as |x| → ∞, if Ω = R3,

where u̇ = ut + u · ∇u. Relations (3.3) and (3.4) yield

(3.5)

‖∇h‖L
p ≤ C‖P (ρ, θ)− P (ρ̃, θ̃)‖Lp ,

‖∇2h‖Lp ≤ C‖∇P‖Lp ,
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and

‖∇2w‖Lp ≤ C‖ρu̇‖Lp ,(3.6)

for any p ∈ (1,∞), see for instance [1, 25].

The following results (Lemmas 3.1-3.4) hold for both the initial-boundary
value problem and the Cauchy problem. For the sake of simplicity, we
include the constants ρ̃ and θ̃ even in the context of the initial–boundary
value problem. These results will be used in the next section.

Lemma 3.1. Under the hypotheses of Theorem 1.4 and (3.1), there holds

d

dt

∫
ρ|u|4 + µ

∫
|u|2|∇u|2

≤Cε
∫
|∇θ|2 + Cε

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫ (
ρ|θ − θ̃|2 + ρ|u|4)

+ C

∫
|∇u|2 + C

∫
|divu|2|u|2,(3.7)

for any ρ̃, θ̃ ≥ 0 and any sufficiently small ε > 0 specified in (3.12) below.

Proof. Multiplying (1.6)2 by 4|u|2u, and integrating by parts over Ω, we
have

d

dt

∫
ρ|u|4 +

∫
4|u|2

(
µ|∇u|2 + (λ+ µ)|divu|2 + 2µ|∇|u||2

)
=4

∫
div(|u|2u)P − 8(µ+ λ)

∫
divu|u|u · ∇|u|

≤C
∫
ρ|θ − θ̃||u|2|∇u|+ Cθ̃

∫
ρ|u|2|∇u|+ 2µ

∫
|u|2
∣∣∇|u|∣∣2

+ C

∫
|divu|2|u|2

≤C
∫
ρ2|θ − θ̃|2|u|2 + C

∫
ρ2|u|4 + C

∫
|∇u|2 + 2µ

∫
|u|2
∣∣∇u∣∣2

+ 2µ

∫
|u|2
∣∣∇|u|∣∣2 + C

∫
|divu|2|u|2.(3.8)
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The fourth and the fifth term on the right-hand side of (3.8) can be
absorbed by the integrals on the left–hand side; whence we have

d

dt

∫
ρ|u|4 + 2µ

∫
|u|2

(
|∇u|2 +

∣∣∇|u|∣∣2)
≤C

∫
ρ2|θ − θ̃|2|u|2 + C

∫
ρ2|u|4 + C

∫
|∇u|2 + C

∫
|divu|2|u|2

≤C‖ρ(θ − θ̃)‖Lr‖√ρ(θ − θ̃)‖
L

2r
r−1

∥∥√ρ|u|2∥∥
L

2r
r−1

+ C

∫
ρ|u|4

+ C

∫
|∇u|2 + C

∫
|divu|2|u|2

≤C‖θ − θ̃‖Lr‖√ρ(θ − θ̃)‖2
L

2r
r−1

+ C‖θ − θ̃‖Lr

∥∥√ρ|u|2∥∥2

L
2r
r−1

+ C

∫
ρ|u|4 + C

∫
|∇u|2 + C

∫
|divu|2|u|2,(3.9)

for r ∈ (3
2 ,∞]4, where we have used Hölder inequality, Cauchy inequality

and (3.1).
Using the standard interpolation inequality and (3.1), we have

‖√ρ(θ − θ̃)‖
L

2r
r−1
≤ ‖√ρ(θ − θ̃)‖αL2‖

√
ρ(θ − θ̃)‖1−α

L6

≤ C‖√ρ(θ − θ̃)‖αL2‖(θ − θ̃)‖1−αL6 ,

where α = 1− 3
2r . This yields

‖θ − θ̃‖Lr‖√ρ(θ − θ̃)‖2
L

2r
r−1

≤C‖θ − θ̃‖Lr‖√ρ(θ − θ̃)‖2αL2‖θ − θ̃‖2(1−α)
L6

≤ε‖θ − θ̃‖2L6 + Cε‖θ − θ̃‖
2r

2r−3

Lr ‖
√
ρ(θ − θ̃)‖2L2

≤Cε(
∫
ρ|θ − θ̃|2 +

∫
|∇θ|2) + Cε‖θ − θ̃‖

2r
2r−3

Lr ‖
√
ρ(θ − θ̃)‖2L2 ,(3.10)

for any ε > 0, where we have used Young inequality, the Sobolev inequality,
and (2.3) if Ω is bounded.

Similarly to (3.10), for the second term on the right-hand side of (3.9),
we have

‖θ − θ̃‖Lr

∥∥√ρ|u|2∥∥2

L
2r
r−1

≤‖θ − θ̃‖Lr

∥∥√ρ|u|2∥∥2− 3
r

L2 ‖
√
ρ|u|2

∥∥ 3
r

L6

≤Cε‖θ − θ̃‖
2r

2r−3

Lr

∥∥√ρ|u|2∥∥2

L2 + ε‖√ρ|u|2
∥∥2

L6

≤Cε‖θ − θ̃‖
2r

2r−3

Lr

∥∥√ρ|u|2∥∥2

L2 + εC‖u∇|u|
∥∥2

L2 .(3.11)

4Here 2r
r−1

= 2 if r = ∞.
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Substituting (3.10) and (3.11) into (3.9), and choosing ε small enough so
that

ε ≤ µ

C
,(3.12)

we get (3.7). The proof of Lemma 3.1 is complete.
�

Lemma 3.2. Under the hypotheses of Theorem 1.4 and (3.1), we have, for
any given λ > 0,

µ

2

∫ ∣∣∇u+ (∇u)′
∣∣2 |u|2 +

λ

2

∫
(divu)2|u|2

≤ d

dt

∫
Cvρ|u|2(θ − θ̃) + ε

∫
ρ|ut|2 + 2(ε+ δCε)

∫
|u|2|∇u|2

+ CεCδ

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫ [
ρ(θ − θ̃)2 + ρ|u|4

]
+ Cε

∫
|∇θ|2 + C

∫
|∇u|2(3.13)

for any ρ̃, θ̃ ≥ 0, any small δ > 0, and ε > 0 specified in (3.26) below.

Proof. Multiplying (1.6)3 by |u|2, and integrating the resulting equation
over Ω, we have

µ

2

∫ ∣∣∇u+ (∇u)′
∣∣2 |u|2 + λ

∫
(divu)2|u|2

=Cv

∫
ρ|u|2θt + Cv

∫
ρ|u|2u · ∇θ +

∫
ρθdivu|u|2 − κ

∫
∆θ|u|2

=I1 + I2 + I3 + I4.(3.14)

For I1, we have

(3.15) I1 = Cv

∫
ρ|u|2(θ− θ̃)t =

d

dt

∫
Cvρ|u|2(θ− θ̃)−

∫
Cv[ρ|u|2]t(θ− θ̃).

For I2, using integration by parts we have

(3.16) I2 =

∫
Cvρ|u|2u · ∇(θ − θ̃) = −

∫
Cv(θ − θ̃)∇ · [ρ|u|2u].

For I3, using Cauchy inequality and (3.1) we have

I3 =

∫
ρ(θ − θ̃)divu|u|2 + θ̃

∫
ρdivu|u|2

≤ε
∫

(divu)2|u|2 + Cε

∫
ρ2(θ − θ̃)2|u|2

+ C

∫
ρ|u|4 + C

∫
|∇u|2,(3.17)
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where the second term on the right-hand side of (3.17) is estimated by virtue
of (3.9), (3.10) and (3.11) as follows:∫

ρ2(θ − θ̃)2|u|2 ≤C‖θ − θ̃‖Lr‖√ρ(θ − θ̃)‖2
L

2r
r−1

+ C‖θ − θ̃‖Lr

∥∥√ρ|u|2∥∥2

L
2r
r−1

≤δ
(∫
|∇θ|2 +

∫
|u|2
∣∣∇|u|∣∣2)

+ Cδ

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫ [
ρ(θ − θ̃)2 + ρ|u|4

]
(3.18)

for any δ > 0. Hence (3.17) and (3.18) yield

I3 ≤ ε
∫

(divu)2|u|2 + δCε(

∫
|∇θ|2 +

∫
|u|2
∣∣∇u∣∣2)

+ CδCε(‖θ − θ̃‖
2r

2r−3

Lr + 1)

∫ [
ρ(θ − θ̃)2 + ρ|u|4

]
+ C

∫
|∇u|2.(3.19)

For I4, using integration by parts and Cauchy inequality we have

(3.20) I4 = 2κ

∫
∇θ|u|∇|u| ≤ ε

∫
|u|2|∇u|2 + Cε

∫
|∇θ|2.

Inserting (3.15), (3.16), (3.19) and (3.20) in (3.14), we have

µ

2

∫ ∣∣∇u+ (∇u)′
∣∣2 |u|2 + λ

∫
(divu)2|u|2

≤ d

dt

∫
Cvρ|u|2(θ − θ̃)−

∫
Cv(θ − θ̃)

[
(ρ|u|2)t +∇ · (ρ|u|2u)

]
+ ε

∫
(divu)2|u|2 + (ε+ δCε)

∫
|u|2
∣∣∇u∣∣2 + Cε

∫
|∇θ|2

+ C

∫
|∇u|2 + CδCε

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫ [
ρ(θ − θ̃)2 + ρ|u|4

]
.(3.21)

Recalling that ρt +∇ · (ρu) = 0 we have

(ρ|u|2)t +∇ · (ρu|u|2) = ρ(|u|2)t + ρu · ∇(|u|2)

= 2ρu · ut + 2ρ∇u : u⊗ u.(3.22)

Substituting (3.22) for the second term on the right-hand side of (3.21),
and using Cauchy inequality and (3.1), we have

−
∫
Cv(θ − θ̃)

[
(ρ|u|2)t +∇ · (ρ|u|2u)

]
= −2Cv

∫
(θ − θ̃)ρu · ut − 2Cv

∫
(θ − θ̃)ρ∇u : u⊗ u

≤ ε
∫
ρ|ut|2 + ε

∫
|u|2|∇u|2 + Cε

∫
ρ|u|2(θ − θ̃)2(3.23)

for any ε > 0.
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As the density is bounded, relation (3.18) remains valid for ρ2 on the
left-hand side replaced by ρ, and (3.23) yields

−
∫
Cv(θ − θ̃)

[
(ρ|u|2)t +∇ · (ρ|u|2u)

]
≤ε
∫
ρ|ut|2 + (ε+ δCε)

∫
|u|2|∇u|2 + δCε

∫
|∇θ|2

+ CεCδ

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫ [
ρ(θ − θ̃)2 + ρ|u|4

]
,(3.24)

for any ε, δ > 0.
Plugging (3.24) in (3.21) we have

µ

2

∫ ∣∣∇u+ (∇u)′
∣∣2 |u|2 + λ

∫
(divu)2|u|2

≤ d

dt

∫
Cvρ|u|2(θ − θ̃) + ε

∫
ρ|ut|2 + 2(ε+ δCε)

∫
|u|2|∇u|2

+ CεCδ

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫ [
ρ(θ − θ̃)2 + ρ|u|4

]
+ ε

∫
|divu|2|u|2 + Cε

∫
|∇θ|2 + C

∫
|∇u|2.(3.25)

Choosing ε > 0 in (3.25) so that

ε ≤ λ

2
,(3.26)

we get (3.13). The proof of Lemma 3.2 is complete.
�

Lemma 3.3. Under the hypotheses of Theorem 1.4 and (3.1), the following
estimates hold depending on the sign of the bulk viscosity coefficient λ.

1. λ > 0:
d

dt

∫
[ρ|u|4 − 4CCv

λ
ρ|u|2(θ − θ̃)] +

µ

2

∫
|u|2|∇u|2

≤Cε
∫
|∇θ|2 + C

∫
|∇u|2 + εC

∫
ρ|ut|2

+ Cε

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫ (
ρ|θ − θ̃|2 + ρ|u|4),(3.27)

for any ρ̃, θ̃ ≥ 0, and any small ε > 0 satisfying (3.12), (3.26) and (3.30)
below;

2. λ ≤ 0:

d

dt

∫
ρ|u|4 + 2µ

∫
|u|2|∇u|2 ≤C

∫
|∇u|2 + Cε

∫
|∇θ|2

+ Cε

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫ [
ρ(θ − θ̃)2 + ρ|u|4

]
,(3.28)
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for any ρ̃, θ̃ ≥ 0, and any small ε > 0 satisfying (3.34) below.

Proof. For any given λ > 0, multiplying (3.13) by 4C
λ , adding the resulting

equation to (3.7), and noticing that the last term on the right-hand side of
(3.7) can be absorbed by the second term on the left-hand side of the updated
(3.13), we have

d

dt

∫ [
ρ|u|4 − 4CCv

λ
ρ|u|2(θ − θ̃)

]
+ µ

∫
|u|2|∇u|2

+
2Cµ

λ

∫ ∣∣∇u+ (∇u)′
∣∣2 |u|2 + C

∫
(divu)2|u|2

≤
(
Cε+ Cε

4C

λ

)∫
|∇θ|2 +

(
C +

4C2

λ

)∫
|∇u|2

+ ε
4C

λ

∫
ρ|ut|2 +

8C

λ
(ε+ δCε)

∫
|u|2|∇u|2

+

(
Cε +

4C

λ
CεCδ

)(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫ (
ρ|θ − θ̃|2 + ρ|u|4

)
.(3.29)

In addition to the smallness assumptions (3.12) and (3.26), let ε and δ be
chosen small enough so that

8C

λ
(ε+ δCε) ≤

µ

2
.(3.30)

Then the fourth term on the right-hand side of (3.29) can be absorbed by
the second term on the left-hand side. As δ in (3.30) depends, in fact, on ε,
the constant Cδ can be replaced by Cε. This completes the proof of (3.27).

For any given λ ≤ 0, noticing that µ+λ = µ
3 + 2µ

3 +λ > 0 and using (3.8)
and Cauchy inequality, we have

d

dt

∫
ρ|u|4 +

∫
4|u|2

(
µ|∇u|2 + (λ+ µ)|divu|2 + 2µ|∇|u||2

)
=4

∫
div(|u|2u)P − 8(µ+ λ)

∫
divu|u|u · ∇|u|

≤C
∫
ρ|θ| |u|2|∇u|+ 4(µ+ λ)

∫
|divu|2|u|2

+ 4(µ+ λ)

∫
|u|2
∣∣∇|u|∣∣2.(3.31)

The second term on the right-hand side of (3.31) can be absorbed by the
left. Hence we have

d

dt

∫
ρ|u|4 +

∫
|u|2

[
4µ|∇u|2 + 4(µ− λ)|∇|u||2

]
≤ C

∫
ρ|θ| |u|2|∇u|.

Since λ ≤ 0, we have µ− λ ≥ µ > 0 and thus

d

dt

∫
ρ|u|4 + 4µ

∫
|u|2|∇u|2 ≤ C

∫
ρ|θ| |u|2|∇u|.(3.32)
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Applying Cauchy inequality to the term on the right-hand side of (3.32),
and using (3.1) and (3.18), we have

d

dt

∫
ρ|u|4 + 4µ

∫
|u|2|∇u|2

≤C
∫
ρ|θ − θ̃||u|2|∇u|+ Cθ̃

∫
ρ|u|2|∇u|

≤µ
∫
|u|2|∇u|2 + C

∫
ρ2|θ − θ̃|2|u|2 + C

∫
ρ|u|4 + C

∫
|∇u|2

≤µ
∫
|u|2|∇u|2 + C

∫
|∇u|2 + Cε

(∫
|∇θ|2 +

∫
|u|2
∣∣∇|u|∣∣2)

+ Cε

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫ [
ρ(θ − θ̃)2 + ρ|u|4

]
,(3.33)

for any small ε > 0. The second term on the left-hand side of (3.33) can
absorb the corresponding terms on the right-hand side provided ε satisfies

Cε ≤ µ.(3.34)

Thus we have shown (3.28).
�

Lemma 3.4. Under the hypotheses of Theorem 1.4 and (3.1), there holds

d

dt

∫ (
Cvρ|θ − θ̃|2 + |ρ− ρ̃|2

)
+
κ

2

∫
|∇θ|2

≤Cε1
(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)(
‖∇u‖2L2 + ‖√ρ(θ − θ̃)‖2L2 + ‖ρ− ρ̃‖2L2

)
+ ε1

∫
ρ|ut|2 + ε1

∫
|u|2|∇u|2 + C‖θ − θ̃‖Lr ,(3.35)

for any ρ̃, θ̃ ≥ 0, and any small ε1 > 0 satisfying (3.40) below.
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Proof. Multiplying (1.6)3 by θ − θ̃, and integrating by parts over Ω, we
have

1

2

d

dt

∫
Cvρ|θ − θ̃|2 + κ

∫
|∇θ|2

=−
∫
ρ(θ − θ̃)2divu− θ̃

∫
ρ(θ − θ̃)divu

+

∫
µ

2

∣∣∇u+ (∇u)′
∣∣2 (θ − θ̃) +

∫
λ(divu)2(θ − θ̃)

≤C‖θ − θ̃‖Lr‖ρ(θ − θ̃)‖
L

2r
r−1
‖∇u‖

L
2r
r−1

+ C

∫
ρ|θ − θ̃|2

+ C

∫
|∇u|2 + C‖θ − θ̃‖Lr‖∇u‖2

L
2r
r−1

≤C‖θ − θ̃‖Lr‖ρ(θ − θ̃)‖2
L

2r
r−1

+ C‖θ − θ̃‖Lr‖∇u‖2
L

2r
r−1

+ C

∫
ρ|θ − θ̃|2 + C

∫
|∇u|2(3.36)

for r ∈ (3
2 ,∞], where we have used (3.1), Hölder inequality, and Cauchy

inequality.
Recalling u = w + h, where h, w satisfy (3.3), (3.4), respectively, and

using (3.5) and (3.6), we have

‖∇u‖
L

2r
r−1
≤ ‖∇h‖

L
2r
r−1

+ ‖∇w‖
L

2r
r−1

≤ C‖ρθ − ρ̃θ̃‖
L

2r
r−1

+ C‖∇w‖L2 + C‖∇w‖αL2‖∇2w‖1−α
L2

≤ C‖ρ(θ − θ̃)‖
L

2r
r−1

+ C‖θ̃(ρ− ρ̃)‖
L

2r
r−1

+ C‖∇w‖L2 + C‖∇w‖αL2‖ρu̇‖1−αL2 ,(3.37)

where α = 1− 3
2r . In addition, we have the interpolation inequality in terms

of ∇w,

‖∇w‖
L

2r
r−1
≤ C‖∇w‖L2 + C‖∇w‖αL2‖∇2w‖1−α

L2 ,

see Lemma 2.1 if Ω is bounded, or Gagliardo-Nirenberg inequality if Ω = R3.
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Implementing (3.37) in (3.36), and using Young inequality and (3.1), we
have

d

dt

∫
Cvρ|θ − θ̃|2 + κ

∫
|∇θ|2

≤C‖θ − θ̃‖Lr‖ρ(θ − θ̃)‖2
L

2r
r−1

+ C‖θ − θ̃‖Lr‖θ̃(ρ− ρ̃)‖2
L

2r
r−1

+ C‖θ − θ̃‖Lr‖∇w‖2L2 + C‖θ − θ̃‖Lr‖∇w‖2−
3
r

L2 ‖ρu̇‖
3
r

L2

+ C

∫
ρ|θ − θ̃|2 + C

∫
|∇u|2

≤C‖θ − θ̃‖Lr‖ρ(θ − θ̃)‖2
L

2r
r−1

+ C‖θ − θ̃‖Lr‖θ̃(ρ− ρ̃)‖2
L

2r
r−1

+ ε1

∫
ρ|ut|2 + ε1

∫
|u|2|∇u|2 + Cε1

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)
‖∇w‖2L2

+ C

∫
ρ|θ − θ̃|2 + C

∫
|∇u|2,(3.38)

for any ε1 > 0. In view of the fact that r ∈ (3
2 ,∞], we get 2r

r−1 ≥ 2. Then

using (3.1) and Young inequality, we obtain

‖θ̃(ρ− ρ̃)‖2
L

2r
r−1
≤ C(‖ρ− ρ̃‖2L2 + 1).(3.39)

Inserting (3.10) and (3.39) in (3.38), and choosing ε1 small enough such
that

Cε1 ≤
κ

2
,(3.40)

we have

d

dt

∫
Cvρ|θ − θ̃|2 +

κ

2

∫
|∇θ|2

≤Cε1
(
‖θ − θ̃‖

2r
2r−3

Lr + 1
)
‖√ρ(θ − θ̃)‖2L2 + C‖θ − θ̃‖Lr

(
‖ρ− ρ̃‖2L2 + 1

)
+ ε1

∫
ρ|ut|2 + ε1

∫
|u|2|∇u|2 + Cε1

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)
‖∇w‖2L2

+ C

∫
|∇u|2.(3.41)

Recalling that u = w + h again, and using (3.1) and (3.5), we have

‖∇w‖L2 ≤‖∇u‖L2 + ‖∇h‖L2

≤‖∇u‖L2 + C‖ρθ − ρ̃θ̃‖L2

≤‖∇u‖L2 + C‖√ρ(θ − θ̃)‖L2 + C‖θ̃(ρ− ρ̃)‖L2 .(3.42)
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Inserting (3.42) in (3.41), and using Young inequality, we get

d

dt

∫
Cvρ|θ − θ̃|2 +

κ

2

∫
|∇θ|2

≤Cε1
(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)(
‖∇u‖2L2 + ‖√ρ(θ − θ̃)‖2L2 + ‖ρ− ρ̃‖2L2

)
+ ε1

∫
ρ|ut|2 + ε1

∫
|u|2|∇u|2 + C‖θ − θ̃‖Lr ,(3.43)

for any small ε1 > 0 satisfying (3.40).
The term ‖ρ − ρ̃‖L2

5 on the right-hand side of (3.43) does not appear if

θ̃ = 0, see (3.39) and (3.42). To handle this term, we rewrite (1.6)1 as an
equation for ρ− ρ̃, which, multiplied by 2(ρ− ρ̃), yields

(3.44)
[
(ρ− ρ̃)2

]
t
+∇ ·

[
(ρ− ρ̃)2u

]
+ (ρ− ρ̃)2divu+ 2ρ̃(ρ− ρ̃)divu = 0.

Integrating (3.44) over Ω, and using (3.1) and Cauchy inequality, we have

d

dt

∫
|ρ− ρ̃|2 ≤ C

∫
|ρ− ρ̃|2 + C

∫
|∇u|2.(3.45)

Adding (3.45) to (3.43), we get (3.35).
�

The next lemma is not valid if Ω = R3 and θ̃ > 0. Here, we prove the
result for a bounded domain, while its counterpart for Ω = R3 will be shown
in the next section. The generic constant C in Lemma 3.5 may depend on
the size of the domain.

Lemma 3.5. Let Ω ⊂ R3 be a bounded domain with smooth boundary.
Under the hypotheses of Theorem 1.4 and (3.1), we have

d

dt

∫ [
µ
(
|∇u|2 + |∇h|2

)
+ (µ+ λ)

(
|divu|2 + |divh|2

)]
+

∫
ρ|ut|2

≤ d

dt

∫
2(ρθ − ρ̃θ̃)divu+ C

∫
|∇θ|2 + C

∫
|u|2|∇u|2 + C

∫
|∇u|2

+ C

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)
(

∫
ρ(θ − θ̃)2 +

∫
ρ|u|4)

+ C
(
‖θ − θ̃‖

2r
2r−3

Lr + 1
)
.(3.46)

5This term is obviously bounded if the density and Ω are bounded, however, this may
not be true on unbounded domains.
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Proof. Multiplying (1.6)2 by ut, and integrating by parts over Ω, we have∫
ρ|ut|2 +

1

2

d

dt

∫ (
µ|∇u|2 + (µ+ λ)|divu|2

)
=−

∫
∇P · ut −

∫
ρu · ∇u · ut

≤−
∫
∇P · ut + C

∫
|u|2|∇u|2 +

1

4

∫
ρ|ut|2,(3.47)

where we have used Cauchy inequality and (3.1).
For the first term on the right-hand side of (3.47), replacing u by w + h

and applying (3.3) and (3.4), we have

−
∫
∇P · ut =

d

dt

∫
(ρθ − ρ̃θ̃)divu−

∫
Ptdivu

=
d

dt

∫
(ρθ − ρ̃θ̃)divu−

∫
Ptdivw −

∫
Ptdivh

=
d

dt

∫
(ρθ − ρ̃θ̃)divu−

∫
Ptdivw +

∫
Lht · h

=
d

dt

∫
(ρθ − ρ̃θ̃)divu−

∫
Ptdivw

− 1

2

d

dt

∫
[µ|∇h|2 + (µ+ λ)|divh|2].(3.48)

Recalling from (1.6)3 that

Pt =−∇ ·
[
(ρθ − ρ̃θ̃)u

]
− ρ̃θ̃(1 +

1

Cv
)divu− 1

Cv

(
ρθ − ρ̃θ̃

)
divu

+
µ

Cv
∇u ·

[
∇u+ (∇u)′

]
+

λ

Cv
divudivu+

κ

Cv
∆θ,(3.49)

we get

−
∫
Ptdivw =−

∫ [
(ρθ − ρ̃θ̃)u

]
· ∇divw + ρ̃θ̃(1 +

1

Cv
)

∫
divudivw

+
1

Cv

∫ (
ρθ − ρ̃θ̃

)
divu divw − µ

Cv

∫
∇u · [∇u+ (∇u)′]divw

− λ

Cv

∫
divudivudivw +

κ

Cv

∫
∇θ · ∇divw

≤C
(
‖ρ(θ − θ̃)u‖L2 + ‖(ρ− ρ̃)u‖L2 + ‖∇θ‖L2

)
‖∇divw‖L2

+ C‖∇u‖L2‖∇w‖L2 +
1

Cv

∫
(ρθ − ρ̃θ̃)divudivw

− µ

Cv

∫
∇u · [∇u+ (∇u)′]divw − λ

Cv

∫
divudivudivw,(3.50)

where we have used integration by parts and Hölder inequality. Note that
we have used the hypothesis that θ satisfies the homogeneous Neumann
boundary conditions.
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For the last three terms on the right-hand side of (3.50), using integration
by parts and the momentum equation, we have

1

Cv

∫
(ρθ − ρ̃θ̃)divudivw − µ

Cv

∫
∇u ·

[
∇u+ (∇u)′

]
divw − λ

Cv

∫
divudivudivw

=
1

Cv

∫
u · [µ∆u+ (µ+ λ)∇divu−∇P ] divw +

µ

Cv

∫ [
∇u+ (∇u)′

]
: ∇divw ⊗ u

+
λ

Cv

∫
u · ∇divw divu− 1

Cv

∫
(ρθ − ρ̃θ̃)u · ∇divw

=
1

Cv

∫
ρu · u̇divw +

µ

Cv

∫ [
∇u+ (∇u)′

]
: ∇divw ⊗ u

+
λ

Cv

∫
u · ∇divw divu− 1

Cv

∫
(ρθ − ρ̃θ̃)u · ∇divw,

which combined with Cauchy inequality and (3.1), yields

1

Cv

∫
(ρθ − ρ̃θ̃)divudivw − µ

Cv

∫
∇u ·

[
∇u+ (∇u)′

]
divw

− λ

Cv

∫
divudivudivw

≤1

8

∫
ρ|ut|2 + C

∫
ρ|u|2|divw|2 + Cε

∫
|u|2|∇u|2 + ε

∫
|∇divw|2

+ Cε

∫
|ρθ − ρ̃θ̃|2|u|2,(3.51)

for any ε > 0.
By using (3.1), (3.6), (3.42) and Cauchy inequality, (3.50) and (3.51) yield

−
∫
Ptdivw ≤C(‖ρ(θ − θ̃)u‖L2 + ‖(ρ− ρ̃)u‖L2 + ‖∇θ‖L2)‖ρu̇‖L2

+ C

∫
|∇u|2 + C

∫ (
ρ|θ − θ̃|2 + |ρ− ρ̃|2

)
+

1

8

∫
ρ|ut|2 + Cε

∫
|u|2|∇u|2 + εC

∫
ρ|ut|2

+ C

∫
ρ|u|2|divw|2 + Cε

∫
|ρθ − ρ̃θ̃|2|u|2

≤1

4

∫
ρ|ut|2 + C

∫
|∇θ|2 + C

∫
|u|2|∇u|2 + C

∫
ρ|u|2|divw|2

+ C

∫
ρ2|θ − θ̃|2|u|2 + C‖(ρ− ρ̃)u‖2L2

+ C

∫
|∇u|2 + C

∫ (
ρ|θ − θ̃|2 + |ρ− ρ̃|2

)
,(3.52)

for some small ε > 0.
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Noticing that w = u− h, and using Hölder inequality, (3.1) and (3.5), we
have ∫

ρ|u|2|divw|2

≤C
∫
ρ|u|2|divu|2 + C

∫
ρ|u|2|divh|2

≤C
∫
|u|2|∇u|2 + C‖divh‖Lr‖divh‖

L
2r
r−1

∥∥√ρ|u|2∥∥
L

2r
r−1

≤C
∫
|u|2|∇u|2 + C‖ρθ − ρ̃θ̃‖Lr‖ρθ − ρ̃θ̃‖

L
2r
r−1

∥∥√ρ|u|2∥∥
L

2r
r−1

≤C
∫
|u|2|∇u|2 + C‖ρθ − ρ̃θ̃‖Lr‖ρθ − ρ̃θ̃‖2

L
2r
r−1

+ C‖ρθ − ρ̃θ̃‖Lr

∥∥√ρ|u|2∥∥2

L
2r
r−1

:= II1 + II2 + II3.(3.53)

For II2, we have

II2 ≤C‖ρ(θ − θ̃)‖Lr‖ρθ − ρ̃θ̃‖2
L

2r
r−1

+ C‖θ̃(ρ− ρ̃)‖Lr‖ρθ − ρ̃θ̃‖2
L

2r
r−1

≤C‖ρ(θ − θ̃)‖Lr‖ρ(θ − θ̃)‖2
L

2r
r−1

+ C‖ρ(θ − θ̃)‖Lr‖θ̃(ρ− ρ̃)‖2
L

2r
r−1

+ C‖θ̃(ρ− ρ̃)‖Lr‖ρ(θ − θ̃)‖2
L

2r
r−1

+ C‖θ̃(ρ− ρ̃)‖Lr‖θ̃(ρ− ρ̃)‖2
L

2r
r−1

.(3.54)

As Ω is a bounded domain and the density is supposed to be bounded, we
apply the standard interpolation inequality and Young inequality to (3.54)
to get

II2 ≤C
(
‖θ − θ̃‖Lr + 1

)
‖ρ(θ − θ̃)‖2−

3
r

L2 ‖ρ(θ − θ̃)‖
3
r

L6 + C‖θ − θ̃‖Lr + C

≤C
(
‖θ − θ̃‖Lr + 1

)
‖ρ(θ − θ̃)‖2−

3
r

L2 ‖θ − θ̃‖
3
r

L6 + C‖θ − θ̃‖Lr + C

≤C
∫
|∇θ|2 + C

(
‖θ − θ̃‖

2r
2r−3

Lr + 1
)
‖√ρ(θ − θ̃)‖2L2

+ C
(
‖θ − θ̃‖

2r
2r−3

Lr + 1
)
,(3.55)

where we have used (3.1), Sobolev inequality, and (2.3).
For II3, we have

II3 ≤C
(
‖ρ(θ − θ̃)‖Lr + ‖ρ− ρ̃‖Lr

)∥∥√ρ|u|2∥∥2

L
2r
r−1

≤C
(
‖ρ(θ − θ̃)‖Lr + 1

)∥∥√ρ|u|2∥∥2− 3
r

L2 ‖
√
ρ|u|2

∥∥ 3
r

L6

≤C
(
‖θ − θ̃‖

2r
2r−3

Lr + 1
)∥∥√ρ|u|2∥∥2

L2 + C
∥∥|u|∇u∥∥2

L2 .(3.56)
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Inserting (3.55) and (3.56) in (3.53), we have∫
ρ|u|2|divw|2

≤C
∫
|u|2|∇u|2 + C

∫
|∇θ|2 + C

(
‖θ − θ̃‖

2r
2r−3

Lr + 1
)
‖√ρ(θ − θ̃)‖2L2

+ C
(
‖θ − θ̃‖

2r
2r−3

Lr + 1
)

+ C
(
‖θ − θ̃‖

2r
2r−3

Lr + 1
)∥∥√ρ|u|2∥∥2

L2 .(3.57)

In addition, by virtue of Hölder inequality and (3.1), it is easy to get

‖(ρ− ρ̃)u‖2L2 ≤ C‖∇u‖2L2 .(3.58)

The estimates of the fourth, the fifth, and the sixth term on the right-
hand side of (3.52) are similar to (3.57), (3.18), and (3.58), respectively.
Hence (3.52) yields

−
∫
Ptdivw ≤1

4

∫
ρ|ut|2 + C

∫
|∇θ|2 + C

∫
|u|2|∇u|2 + C

∫
|∇u|2

+ C

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)(∫
ρ(θ − θ̃)2 +

∫
ρ|u|4

)
+ C

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)
.(3.59)

Inserting (3.59) and (3.48) in (3.47), we have

1

2

d

dt

∫ [
µ
(
|∇u|2 + |∇h|2

)
+ (µ+ λ)

(
|divu|2 + |divh|2

)]
+

∫
ρ|ut|2

≤ d

dt

∫
(ρθ − ρ̃θ̃)divu+ C

∫
|∇θ|2 + C

∫
|u|2|∇u|2 + C

∫
|∇u|2

+ C

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)(∫
ρ(θ − θ̃)2 +

∫
ρ|u|4

)
+ C

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)
+

1

2

∫
ρ|ut|2.

The last term on the right-hand side can be absorbed by the integrals on
the left–hand side. We have finished the proof.

�

Corollary 3.6. Let Ω be a bounded and smooth domain in R3. Under the
hypotheses of Theorem 1.4 and (3.1), we have

(3.60)

∫
(ρ|u|4 +ρ|θ− θ̃|2 + |∇u|2)+

∫ T

0

∫
[ρ|ut|2 + |u|2|∇u|2 + |∇θ|2] ≤ C,

for any T ∈ (0, T ∗).

Proof. Let λ > 0 be given. Multiplying (3.35) by a sufficiently large
positive constant M , and adding the resulting equation to (3.27), we have
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d

dt

∫
[ρ|u|4 − 4CCv

λ
ρ|u|2(θ − θ̃) +MCvρ|θ − θ̃|2 +M |ρ− ρ̃|2]

+
µ

2

∫
|u|2|∇u|2 +

Mκ

2

∫
|∇θ|2

≤MCε1

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)(
‖∇u‖2L2 + ‖√ρ(θ − θ̃)‖2L2 + ‖ρ− ρ̃‖2L2

)
+ (Mε1 + εC)

∫
ρ|ut|2 +Mε1

∫
|u|2|∇u|2

+MC‖θ − θ̃‖Lr + Cε

∫
|∇θ|2 + C

∫
|∇u|2

+ Cε

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫ (
ρ|θ − θ̃|2 + ρ|u|4

)
.(3.61)

Given ε > 0, we may choose M = M(ε) > 0 big enough and ε1 = ε1(M) >
0 small enough so that

Cε ≤
Mκ

4
, and Mε1 ≤

µ

4
.(3.62)

Consequently, the third term and the fifth term on the right-hand side of
(3.61) can be absorbed by the left–hand side. Hence we have

d

dt

∫
[ρ|u|4 − 4CCv

λ
ρ|u|2(θ − θ̃) +MCvρ|θ − θ̃|2 +M |ρ− ρ̃|2]

+
µ

4

∫
|u|2|∇u|2 +

Mκ

4

∫
|∇θ|2

≤MCε1

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫ (
|∇u|2 + ρ|θ − θ̃|2 + |ρ− ρ̃|2

)
+ (Mε1 + εC)

∫
ρ|ut|2 +MC‖θ − θ̃‖Lr + C

∫
|∇u|2

+ Cε

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫ (
ρ|θ − θ̃|2 + ρ|u|4

)
.(3.63)
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Multiplying (3.63) by a positive constant M1, and then adding the result-
ing equation to (3.46), we have

d

dt

∫
G(ρ, u, θ, h) +

µM1

4

∫
|u|2|∇u|2 +

M1Mκ

4

∫
|∇θ|2 +

∫
ρ|ut|2

≤M1MCε1

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫ (
|∇u|2 + ρ|θ − θ̃|2 + |ρ− ρ̃|2

)
+M1(Mε1 + εC)

∫
ρ|ut|2 + C

∫
|∇θ|2 + C

∫
|u|2|∇u|2

+ (M1Cε + C)

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫ (
ρ|θ − θ̃|2 + ρ|u|4

)
+ C(M1 + 1)

∫
|∇u|2 + C(M1M + 1)

(
‖θ − θ̃‖

2r
2r−3

Lr + 1
)
,(3.64)

where

G(ρ, u, θ, h) =M1

[
ρ|u|4 − 4CCv

λ
ρ|u|2(θ − θ̃) +MCvρ|θ − θ̃|2 +M |ρ− ρ̃|2

]
+ µ

(
|∇u|2 + |∇h|2

)
+ (µ+ λ)

(
|divu|2 + |divh|2

)
− 2(ρθ − ρ̃θ̃)divu

and

G(ρ, u, θ, h) ∼ ρ|u|4 + ρ|θ − θ̃|2 + |∇u|2 + |∇h|2 + |ρ− ρ̃|2

for M big enough.
For M1 > 1 big enough so that

M1µ

8
≥ C,(3.65)

the fourth term on the right-hand side of (3.64) can be absorbed by the
left-hand side. Noticing that M1 and C are independent of ε and ε1, we
choose ε > 0 small enough such that

M1εC ≤
1

4
.(3.66)

Moreover, in view of (3.62), we may choose ε1 > 0 so small that

max{2C,Cε} ≤
Mκ

4
, and Mε1 ≤ min

{
1

4M1
,
µ

4

}
.(3.67)

Note that the order for fixing the corresponding parameters is

M1 → ε→M → ε1.

By virtue of (3.65), (3.66) and (3.67), the second term, the third term
and the fourth term on the right-hand side of (3.64) can be absorbed by the
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left-hand side. Hence we have

d

dt

∫
G(ρ, u, θ, h) +

µM1

8

∫
|u|2|∇u|2

+
M1Mκ

8

∫
|∇θ|2 +

1

2

∫
ρ|ut|2

≤(M1MCε1 +M1Cε + CM1 + C)

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫
G(ρ, u, θ, h)

+ C(M1M + 1)
(
‖θ − θ̃‖

2r
2r−3

Lr + 1
)
.(3.68)

Applying Gronwall inequality to (3.68) yields (3.60).

Suppose now λ ≤ 0. Multiplying (3.28) and (3.35) by N1
µ and 4N2

κ , re-

spectively, and adding the results to (3.46), we have

d

dt

∫
G1(ρ, u, θ, h) + 2N1

∫
|u|2|∇u|2 + 2N2

∫
|∇θ|2 +

∫
ρ|ut|2

≤
(
C +

N1

µ
Cε
) ∫
|∇θ|2 +

(
C +

4N2ε1
κ

) ∫
|u|2|∇u|2+(

C +
CN1

µ

) ∫
|∇u|2+(N1

µ
Cε + C

)(
‖θ − θ̃‖

2r
2r−3

Lr + 1
) ∫ [

ρ(θ − θ̃)2 + ρ|u|4
]
+

4N2Cε1
κ

(
‖θ − θ̃‖

2r
2r−3

Lr + 1
)(
‖∇u‖2L2 + ‖√ρ(θ − θ̃)‖2L2 + ‖ρ− ρ̃‖2L2

)
+(4N2C

κ
+ C

)(
‖θ − θ̃‖

2r
2r−3

Lr + 1
)

+
4N2ε1
κ

∫
ρ|ut|2,(3.69)

where

G1(ρ, u, θ, h) =µ
(
|∇u|2 + |∇h|2

)
+ (µ+ λ)

(
|divu|2 + |divh|2

)
+
N1

µ
ρ|u|4

+
4N2

κ

(
Cvρ|θ − θ̃|2 + |ρ− ρ̃|2

)
− 2(ρθ − ρ̃θ̃)divu

and

G1(ρ, u, θ, h) ∼ ρ|u|4 + ρ|θ − θ̃|2 + |ρ− ρ̃|2 + |∇u|2 + |∇h|2,

for N2 big enough.
By choosing N1, N2 big enough and ε, ε1 small enough such that

N1 ≥ 2C, N2 ≥ 2C,

and

N1

µ
Cε ≤ N2

2
,

4N2

κ
ε1 ≤ min

{
1

2
,
N1

2

}
,
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the first two terms and the last term on the right-hand side of (3.69) can
be absorbed by the left-hand side. Finally, applying Gronwall inequality in
(3.69), we get (3.60).

�

Corollary 3.6 combined with the Sobolev inequality yields∥∥u∥∥2

L4
(

0,T ;L12(Ω)
) =

∥∥|u|2∥∥
L2
(

0,T ;L6(Ω)
) ≤ C∥∥|u|∇u∥∥

L2
(

0,T ;L2(Ω)
) ≤ C,

which together with (3.1) gives

‖ρ‖
L∞
(

0,T ;L∞(Ω)
) + ‖u‖

L4
(

0,T ;L12(Ω)
) ≤ C.(3.70)

Since

2

4
+

3

12
=

3

4
< 1

is compatible with Serrin’s condition, the rest of the estimates in (3.2) for
the initial-boundary value problem (1.6), (1.7), and (1.8) can be performed
exactly as in [15]. The proof of Theorem 1.4 in the case of a bounded domain
is complete.

4. Cauchy problem

Assume that Ω = R3 and T ∗ < ∞ and that there exist constants r ∈
(3

2 ,∞] and s ∈ [1,∞] satisfying

2

s
+

3

r
≤ 2,

such that (3.1) holds. Our aim is to show that under the assumption (3.1)
and the hypotheses of Theorem 1.4, there is a constant C > 0 depending
only on M∗, ρ0, u0, θ0, ρ̃, θ̃, µ, λ, κ, and T ∗ such that

max
l=2,q

(‖ρ− ρ̃‖W 1,l + ‖ρt‖Ll) + ‖(√ρut,
√
ρθt)‖L2

+ ‖(u, θ − θ̃)‖D1
0∩D2 +

∫ T ∗

0

(
‖(ut, θt)‖2D1 + ‖(u, θ)‖2D2,q

)
dt ≤ C.(4.1)

Relation (4.1), together with the available local existence results, implies
the desired contradiction.

The proofs of the next two lemmas are the same as their counterparts
stated in Lemmas 3.3 and 3.4.

Lemma 4.1. Under the hypotheses of Theorem 1.4 and (3.1), the following
estimates depending on the sign of the viscosity coefficient λ hold:
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1. λ > 0:

d

dt

∫ [
ρ|u|4 − 4CCv

λ
ρ|u|2(θ − θ̃)

]
+
µ

2

∫
|u|2|∇u|2

≤Cε
∫
|∇θ|2 + C

∫
|∇u|2 + εC

∫
ρ|ut|2

+ Cε

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫ (
ρ|θ − θ̃|2 + ρ|u|4

)
,(4.2)

for any small ε > 0 satisfying (3.12), (3.26) and (3.30);

2. λ ≤ 0:

d

dt

∫
ρ|u|4 + 2µ

∫
|u|2|∇u|2

≤C
∫
|∇u|2 + Cε

∫
|∇θ|2

+ Cε

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫ [
ρ(θ − θ̃)2 + ρ|u|4

]
,(4.3)

for any small ε > 0 satisfying (3.34).

Lemma 4.2. Under the conditions of Theorem 1.4 and (3.1), it holds that

d

dt

∫ (
Cvρ|θ − θ̃|2 + |ρ− ρ̃|2

)
+
κ

2

∫
|∇θ|2

≤Cε1
(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)(
‖∇u‖2L2 + ‖√ρ(θ − θ̃)‖2L2 + ‖ρ− ρ̃‖2L2

)
+ ε1

∫
ρ|ut|2 + ε1

∫
|u|2|∇u|2 + C‖θ − θ̃‖Lr ,(4.4)

for any small ε1 > 0 satisfying (3.40).

Lemma 4.3. Under the hypotheses of Theorem 1.4 and (3.1), there holds

d

dt

∫ (
µ|∇u|2 + (µ+ λ)|divu|2 − 2(ρθ − ρ̃θ̃)divu+

|ρθ − ρ̃θ̃|2

2µ+ λ

)
+

∫
ρ|ut|2

≤ C
(
‖θ − θ̃‖

2r
2r−3

Lr + 1
) ∫

Ḡ1 + C

∫
|∇θ|2 + C

∫
|u|2|∇u|2,(4.5)

where

Ḡ1 = |∇u|2 + ρ|θ − θ̃|2 + |ρ− ρ̃|2 + ρ|u|4 + ρ|u|2.(4.6)
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Proof. Similarly to (3.47), we have∫
ρ|ut|2 +

1

2

d

dt

∫ (
µ|∇u|2 + (µ+ λ)|divu|2

)
≤−

∫
∇P · ut + C

∫
|u|2|∇u|2 +

1

4

∫
ρ|ut|2,(4.7)

where the first term on the right-hand side of (4.7) reads

−
∫
∇P · ut =

d

dt

∫
(ρθ − ρ̃θ̃)divu−

∫
Ptdivu

=
d

dt

∫
(ρθ − ρ̃θ̃)divu− 1

2µ+ λ

∫
(ρθ)tF

− 1

2(2µ+ λ)

d

dt

∫
|ρθ − ρ̃θ̃|2,(4.8)

with F = (2µ+ λ)divu− ρθ + ρ̃θ̃.
Exactly as in (3.49),

Pt =−∇ ·
[
(ρθ − ρ̃θ̃)u

]
− ρ̃θ̃(1 +

1

Cv
)divu− 1

Cv

(
ρθ − ρ̃θ̃

)
divu

+
µ

Cv
∇u ·

[
∇u+ (∇u)′

]
+

λ

Cv
divudivu+

κ

Cv
∆θ;

whence we get

− 1

2µ+ λ

∫
(ρθ)tF

=− 1

2µ+ λ

∫ [
(ρθ − ρ̃θ̃)u

]
· ∇F +

ρ̃θ̃(1 + 1
Cv

)

2µ+ λ

∫
divuF+

1

(2µ+ λ)Cv

∫ (
ρθ − ρ̃θ̃

)
divuF − µ

(2µ+ λ)Cv

∫
∇u · [∇u+ (∇u)′]F

− λ

(2µ+ λ)Cv

∫
divudivuF +

κ

(2µ+ λ)Cv

∫
∇θ · ∇F,

where we have used integration by parts. This combined with Hölder in-
equality yields

− 1

2µ+ λ

∫
(ρθ)tF

≤C
(
‖ρ(θ − θ̃)u‖L2 + ‖∇θ‖L2

)
‖∇F‖L2 + C‖∇u‖L2‖F‖L2

− 1

2µ+ λ

∫
θ̃(ρu− ρ̃u) · ∇F +

1

(2µ+ λ)Cv

∫
(ρθ − ρ̃θ̃)divuF

− µ

(2µ+ λ)Cv

∫
∇u · [∇u+ (∇u)′]F − λ

(2µ+ λ)Cv

∫
divudivuF.(4.9)
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The first three terms on the right-hand side of (4.9) can be handled as

C
(
‖ρ(θ − θ̃)u‖L2 + ‖∇θ‖L2

)
‖∇F‖L2 + C‖∇u‖L2‖F‖L2

− 1

2µ+ λ

∫
θ̃(ρu− ρ̃u) · ∇F

≤C
∫
|ρ(θ − θ̃)u|2 + C

∫
|∇θ|2 + C

∫
ρ|u|2 +

1

8

∫
ρ|ut|2

+ C

∫
|u|2|∇u|2 + C

∫ (
|∇u|2 + ρ|θ − θ̃|2 + |ρ− ρ̃|2

)
≤C
(
‖θ − θ̃‖

2r
2r−3

Lr + 1
) ∫

Ḡ1 + C

∫
|∇θ|2

+ C

∫
|u|2|∇u|2 +

1

8

∫
ρ|ut|2,(4.10)

where Ḡ1 is given by (4.6), and we have used integration by parts, Cauchy
inequality, Hölder inequality, (3.1), (3.18), and the standard elliptic esti-
mate:

‖∇F‖L2 ≤ C‖ρu̇‖L2 ≤ C‖√ρu̇‖L2 ,(4.11)

as

∆F = div(ρu̇).

For the last three terms on the right-hand side of (4.9), we have

1

(2µ+ λ)Cv

∫
(ρθ − ρ̃θ̃)divuF − µ

(2µ+ λ)Cv

∫
∇u · [∇u+ (∇u)′]F

− λ

(2µ+ λ)Cv

∫
divudivuF

=
1

(2µ+ λ)Cv

∫
u · [µ∆u+ (µ+ λ)∇divu−∇P ]F

+
µ

(2µ+ λ)Cv

∫ [
∇u+ (∇u)′

]
: ∇F ⊗ u

+
λ

(2µ+ λ)Cv

∫
u · ∇F divu− 1

(2µ+ λ)Cv

∫
(ρθ − ρ̃θ̃)u · ∇F,(4.12)
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where we have used integration by parts. Plugging the momentum equation
in the first term on the right-hand side of (4.12), we have

1

(2µ+ λ)Cv

∫
(ρθ − ρ̃θ̃)divuF − µ

(2µ+ λ)Cv

∫
∇u · [∇u+ (∇u)′]F

− λ

(2µ+ λ)Cv

∫
divudivuF

=
1

(2µ+ λ)Cv

∫
ρu̇ · uF +

µ

(2µ+ λ)Cv

∫ [
∇u+ (∇u)′

]
: ∇F ⊗ u

+
λ

(2µ+ λ)Cv

∫
u · ∇Fdivu− 1

(2µ+ λ)Cv

∫
ρ(θ − θ̃)u · ∇F

− θ̃

(2µ+ λ)Cv

∫
(ρ− ρ̃)u · ∇F.

This, combined with Cauchy inequality and (3.1), yields

1

(2µ+ λ)Cv

∫
(ρθ − ρ̃θ̃)divuF − µ

(2µ+ λ)Cv

∫
∇u · [∇u+ (∇u)′]F

− λ

(2µ+ λ)Cv

∫
divudivuF

≤1

8

∫
ρ|ut|2 + C

∫
|u|2|∇u|2 + C

∫
ρ|u|2|F |2

+ C

∫
ρ2(θ − θ̃)2|u|2 + C

∫
ρ|u|2 − ρ̃θ̃

(2µ+ λ)Cv

∫
Fdivu

≤1

8

∫
ρ|ut|2 + C

∫
|u|2|∇u|2 + C

∫
ρ|u|2|ρ− ρ̃|2

+ C

∫
ρ2(θ − θ̃)2|u|2 + C

∫ [
ρ|u|2 + ρ(θ − θ̃)2 + |∇u|2 + |ρ− ρ̃|2

]
.(4.13)

Inserting (3.18) in (4.13), we have

1

(2µ+ λ)Cv

∫
(ρθ − ρ̃θ̃)divuF − µ

(2µ+ λ)Cv

∫
∇u · [∇u+ (∇u)′]F

− λ

(2µ+ λ)Cv

∫
divudivuF

≤1

8

∫
ρ|ut|2 + C

∫
|u|2|∇u|2 + C

∫
|∇θ|2

+ C(‖θ − θ̃‖
2r

2r−3

Lr + 1)

∫
Ḡ1.(4.14)
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Relations (4.8), (4.9), (4.10), together with (4.14), (4.7), give rise to

∫
ρ|ut|2 +

1

2

d

dt

∫ (
µ|∇u|2 + (µ+ λ)|divu|2

)
≤ d

dt

∫
(ρθ − ρ̃θ̃)divu− 1

2(2µ+ λ)

d

dt

∫
|ρθ − ρ̃θ̃|2

+ C

∫
|∇θ|2 + C

∫
|u|2|∇u|2 +

1

2

∫
ρ|ut|2 + C

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫
Ḡ1.

Seeing that the fifth term on the right-hand side can be absorbed by the
left-hand side, we have finished the proof of Lemma 4.3.

�

Lemma 4.4. Under the hypotheses of Theorem 1.4 and (3.1), there holds

d

dt

∫
ρ|u|2 + µ

∫
|∇u|2 ≤ C

∫ (
ρ|θ − θ̃|2 + |ρ− ρ̃|2

)
.(4.15)

Proof. Multiplying (1.6)2 by 2u, integrating by parts over R3, and using
Cauchy inequality and (3.1), we have

d

dt

∫
ρ|u|2 + 2

∫ [
µ|∇u|2 + (µ+ λ)|divu|2

]
=2

∫
(ρθ − ρ̃θ̃)divu

≤µ
∫
|∇u|2 + C

∫
ρ|θ − θ̃|2 + C

∫
|ρ− ρ̃|2.

As the first term on the right-hand side can be absorbed by the integral on
the left-hand side, the proof of Lemma 4.4 is complete.

�

Corollary 4.5. Under the hypotheses of Theorem 1.4 and (3.1), there holds

sup
0≤t≤T

∫ (
|∇u|2 + ρ|θ − θ̃|2 + |ρ− ρ̃|2 + ρ|u|4 + ρ|u|2

)
+

∫ T

0

∫ (
ρ|ut|2 + |u|2|∇u|2 + |∇θ|2

)
≤ C,(4.16)

for any T ∈ (0, T ∗).
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Proof. Let λ > 0 be given. Multiplying (4.4) by a large positive constant
M̄ , and adding the resulting inequality to (4.2), we have

d

dt

∫ [
ρ|u|4 − 4CCv

λ
ρ|u|2(θ − θ̃) + M̄

(
Cvρ|θ − θ̃|2 + |ρ− ρ̃|2

)]
+
µ

2

∫
|u|2|∇u|2 +

M̄κ

2

∫
|∇θ|2

≤Cε
∫
|∇θ|2 + C

∫
|∇u|2 + (εC + M̄ε1)

∫
ρ|ut|2

+ (Cε + M̄Cε1)

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫
Ḡ1

+ M̄ε1

∫
|u|2|∇u|2 + M̄C‖θ − θ̃‖Lr ,(4.17)

where Ḡ1 is given by (4.6).
Given ε > 0, we may choose M̄ = M̄(ε) > 0 big enough and ε1 = ε1(M̄) >

0 small enough so that

Cε ≤
M̄κ

4
, and M̄ε1 ≤

µ

4
.(4.18)

Consequently, the first term and the fifth term on the right-hand side of
(4.17) can be absorbed by the left-hand side. Hence we have

d

dt

∫ [
ρ|u|4 − 4CCv

λ
ρ|u|2(θ − θ̃) + M̄

(
Cvρ|θ − θ̃|2 + |ρ− ρ̃|2

)]
+
µ

4

∫
|u|2|∇u|2 +

M̄κ

4

∫
|∇θ|2

≤C
∫
|∇u|2 + (εC + M̄ε1)

∫
ρ|ut|2 + M̄C‖θ − θ̃‖Lr

+ (Cε + M̄Cε1)

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫
Ḡ1.(4.19)

Multiplying (4.19) by a positive constant M̄1, and then adding the resulting
equation to (4.5) and (4.15), we have

d

dt

∫
Ḡ+

∫
ρ|ut|2 +

µM̄1

4

∫
|u|2|∇u|2 +

M̄M̄1κ

4

∫
|∇θ|2

≤CM̄1

∫
|∇u|2 + M̄1(εC + M̄ε1)

∫
ρ|ut|2 + C

∫
|∇θ|2

+ C

∫
|u|2|∇u|2 + M̄M̄1C‖θ − θ̃‖Lr

+ (M̄M̄1Cε1 + CεM̄1 + C)

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫
Ḡ1,(4.20)
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where

Ḡ =M̄1

[
ρ|u|4 − 4CCv

λ
ρ|u|2(θ − θ̃) + M̄

(
Cvρ|θ − θ̃|2 + |ρ− ρ̃|2

)]
+ µ|∇u|2 + (µ+ λ)|divu|2 − 2(ρθ − ρ̃θ̃)divu+

|ρθ − ρ̃θ̃|2

2µ+ λ
+ ρ|u|2.

For M̄1 > 1 large enough so that

M̄1µ

8
≥ C,(4.21)

the fourth term on the right-hand side of (4.20) can be absorbed by the
left-hand side. Noticing that M̄1 and C are independent of ε and ε1, we
choose ε > 0 small enough so that

M̄1εC ≤
1

4
.(4.22)

Moreover, in view of (4.18), ε1 > 0 can be chosen so small that

max{2C,Cε} ≤
M̄κ

4
, and M̄ε1 ≤ min{ 1

4M̄1
,
µ

4
}.(4.23)

By virtue of (4.22) and (4.23), the second and the third term on the
right-hand side of (4.20) can be absorbed by the left-hand side. Hence we
have

d

dt

∫
Ḡ+

1

2

∫
ρ|ut|2 +

µM̄1

8

∫
|u|2|∇u|2 +

M̄M̄1κ

8

∫
|∇θ|2

≤CM̄1

∫
|∇u|2 + M̄M̄1C‖θ − θ̃‖Lr

+ (M̄M̄1Cε1 + CεM̄1 + C)

(
‖θ − θ̃‖

2r
2r−3

Lr + 1

)∫
Ḡ1,(4.24)

where

Ḡ(ρ, u, θ, h) ∼ |∇u|2 + ρ|θ − θ̃|2 + |ρ− ρ̃|2 + ρ|u|4 + ρ|u|2 = Ḡ1,

for M̄ big enough. Applying Gronwall inequality to (4.24) yields (4.16).

Similarly to the case λ > 0, relation (4.3) combined with (4.4), (4.5) and
(4.15) yields (4.16) for λ ≤ 0.

�

If ρ̃ = θ̃ = 0, Corollary 4.5, together with (3.1), and the standard inter-
polation inequality, gives rise to∫ T

0
‖ρθ‖4

L
12
5 (R3)

dt ≤ C
∫ T

0
‖ρθ‖3L2(R3)‖ρθ‖L6(R3) dt

≤ C
∫ T

0
‖∇θ‖L2(R3) dt

≤ C.
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This together with (3.1) and (4.16) yields

‖ρ‖L∞(0,T ;L∞) + ‖ρθ‖
L4(0,T ;L

12
5 )

+ ‖ρ
1
4u‖L∞(0,T ;L4)

+
∥∥|u||∇u|∥∥

L2(0,T ;L2)
≤ C,(4.25)

for any T ∈ (0, T ∗). By virtue of Remark 2.4 in [30], we obtain (4.1).

In the case ρ̃ > 0 and θ̃ = 0, the remaining estimates in (4.1) may be
obtained following step by step [15]. The proof for the last two cases ρ̃ = 0,

θ̃ > 0, and ρ̃ > 0, θ̃ > 0 is sketched in Appendix modifying the relevant
estimates in [29].

5. Appendix

The estimates presented below lean on the results obtained in Section 4,
assumption (3.1), and the hypotheses of Theorem 1.4.

Lemma 5.1. Under the hypotheses of Theorem 1.4 and (3.1), there holds

sup
0≤t≤T

∫
(|∇θ|2 + ρ|u̇|2) +

∫ T

0

∫
(ρ|θ̇|2 + |∇u̇|2) ≤ C.(5.1)

Proof. From (4.35) in [29], we have

1

2

d

dt

∫
ρ|u̇|2 +

∫ (
µ|∇u̇|2 + (µ+ λ)|div u̇|2

)
=

∫
(Ptdiv u̇+ u⊗∇P : ∇u̇) + µ

∫ (
div (∆u⊗ u)−∆(u · ∇u)

)
· u̇

+ (µ+ λ)

∫ (
div (∇divu⊗ u)−∇div (u · ∇u)

)
· u̇ =

3∑
i=1

IIIi.(5.2)

For III1, using (1.6)3 and integration by parts (see also (4.36) in [29]), we
have

III1 =

∫ (
ρθ̇div u̇− ρθ(∇u)′ : ∇u̇

)
,

where θ̇ = θt+u·∇θ. Then by virtue of Hölder inequality, Sobolev inequality,
(3.1), and Corollary 4.5, we have

III1 ≤C‖
√
ρθ̇‖L2‖div u̇‖L2 −

∫
ρ(θ − θ̃)(∇u)′ : ∇u̇−

∫
ρθ̃(∇u)′ : ∇u̇

≤C‖√ρθ̇‖L2‖div u̇‖L2 + C‖θ − θ̃‖L6‖∇u‖L3‖∇u̇‖L2

+ C‖∇u‖L2‖∇u̇‖L2

≤C‖√ρθ̇‖L2‖div u̇‖L2 + C‖∇θ‖L2‖∇u‖L3‖∇u̇‖L2 + C‖∇u̇‖L2 .(5.3)

Taking curl on both side of (1.6)2, we get

µ∆(curlu) = curl(ρu̇).(5.4)
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In addition, one has

−∆u = ∇× (curlu)−∇divu.(5.5)

Then using the standard elliptic estimates, the interpolation inequality,
Sobolev inequality, (3.1), (4.11), and Corollary 4.5, we get

‖∇u‖L3 ≤C‖curlu‖L3 + C‖divu‖L3

≤C‖curlu‖
1
2

L2‖curlu‖
1
2

L6 + C‖divu‖
1
2

L2‖divu‖
1
2

L6

≤C‖∇curlu‖
1
2

L2 + C‖∇F‖
1
2

L2 + C‖ρθ − ρ̃θ̃‖
1
2

L6

≤C‖√ρu̇‖
1
2

L2 + C‖∇θ‖
1
2

L2 + C.(5.6)

Inserting (5.6) in (5.3), and using Cauchy inequality, we have

III1 ≤
µ

4
‖∇u̇‖2L2 + C‖√ρθ̇‖2L2

+ C(‖√ρu̇‖2L2 + ‖∇θ‖2L2)‖∇θ‖2L2 + C.(5.7)

For III2 and III3, we obtain (see for instance [25, 26])

III2 + III3 ≤ C‖∇u̇‖L2‖∇u‖2L4 ≤
µ

4
‖∇u̇‖2L2 + C‖∇u‖4L4 .(5.8)

Similarly to (5.6), we have

‖∇u‖4L4 ≤C‖curlu‖4L4 + C‖divu‖4L4

≤C‖curlu‖L2‖curlu‖3L6 + C‖divu‖L2‖divu‖3L6

≤C‖√ρu̇‖3L2 + C‖∇θ‖3L2 + C.(5.9)

Relation (5.8), combined with (5.9) and Young inequality, yields

III2 + III3 ≤
µ

4
‖∇u̇‖2L2 + C‖√ρu̇‖4L2 + C‖∇θ‖4L2 + C.(5.10)

Substituting (5.7) and (5.10) into (5.2), and using Cauchy inequality and
(3.1), we have

d

dt

∫
ρ|u̇|2 +

∫ (
µ|∇u̇|2 + (µ+ λ)|div u̇|2

)
≤C‖√ρθ̇‖2L2 + C(‖√ρu̇‖2L2 + ‖∇θ‖2L2)2 + C.(5.11)
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Multiplying (1.6)3 by θ̇, and integrating by parts over R3 (see also (4.41)
in [29]), we have∫

Cvρ|θ̇|2 +
κ

2

d

dt

∫
|∇θ|2

=−
∫
ρ θ divu θ̇ +

∫ [µ
2

∣∣∇u+ (∇u)′
∣∣2 + λ(divu)2

]
θt

+

∫ [µ
2

∣∣∇u+ (∇u)′
∣∣2 + λ(divu)2

]
u · ∇θ + κ

∫
∆θu · ∇θ

=

4∑
i=1

IVi.(5.12)

For IV1, using Cauchy inequality, Hölder inequality, Sobolev inequality,
(3.1), Corollary 4.5, and (5.6), we have

IV1 ≤
Cv
4

∫
ρ|θ̇|2 + C‖θ − θ̃‖2L6‖divu‖2L3 + C‖∇u‖2L2

≤Cv
4

∫
ρ|θ̇|2 + C‖∇θ‖2L2(‖√ρu̇‖2L2 + ‖∇θ‖2L2) + C.(5.13)

As in [29], using integration by parts, we have

IV2 =
d

dt

∫ [µ
2

∣∣∇u+ (∇u)′
∣∣2 + λ(divu)2

]
θ − µ

∫ [
∇u+ (∇u)′

]
:
[
∇u̇+ (∇u̇)′

]
θ

+ µ

∫ [
∇u+ (∇u)′

]
:
[
∇u · ∇u+ (∇u · ∇u)′

]
θ − 2λ

∫
divudivu̇θ

+ 2λ

∫
divu(∇u)′ : ∇uθ − µ

∫
|∇u+ (∇u)′|2

2
divu θ − λ

∫
(divu)3θ

− µ
∫
|∇u+ (∇u)′|2

2
u · ∇θ − λ

∫
|divu|2u · ∇θ.

This together with Hölder inequality, Sobolev inequality, and Corollary 4.5
yields

IV2 + IV3 ≤
d

dt

∫ [µ
2

∣∣∇u+ (∇u)′
∣∣2 + λ(divu)2

]
θ + C

∫
|∇u| |∇u̇| |θ|

+ C

∫
|∇u|3 |θ|

≤ d

dt

∫ [µ
2

∣∣∇u+ (∇u)′
∣∣2 + λ(divu)2

]
θ + C‖∇u‖L3‖∇u̇‖L2‖θ − θ̃‖L6

+ C‖∇u‖L2‖∇u̇‖L2 + C‖∇u‖3
L

18
5
‖θ − θ̃‖L6 + C‖∇u‖3L3

≤ d

dt

∫ [µ
2

∣∣∇u+ (∇u)′
∣∣2 + λ(divu)2

]
θ + C‖∇u‖L3‖∇u̇‖L2‖∇θ‖L2

+ C‖∇u̇‖L2 + C‖∇u‖3
L

18
5
‖∇θ‖L2 + C‖∇u‖3L3 .
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Using the interpolation inequality, and (4.16), we have

‖∇u‖
L

18
5
≤ C‖∇u‖

1
9

L2‖∇u‖
8
9

L4 ≤ C‖∇u‖
8
9

L4 .(5.14)

Inserting (5.14) to the estimate of IV2 + IV3, and using Young inequality,
we have

IV2 + IV3 ≤
d

dt

∫ [µ
2

∣∣∇u+ (∇u)′
∣∣2 + λ(divu)2

]
θ + C‖∇u‖L3‖∇u̇‖L2‖∇θ‖L2

+ C‖∇u̇‖L2 + C‖∇u‖
8
3

L4 ‖∇θ‖L2 + C‖∇u‖3L3

≤ d

dt

∫ [µ
2

∣∣∇u+ (∇u)′
∣∣2 + λ(divu)2

]
θ + δ‖∇u̇‖2L2 + Cδ‖∇u‖2L3‖∇θ‖2L2

+ Cδ + C‖∇u‖4L4 + C‖∇θ‖4L2 + C‖∇u‖3L3 .

Since the estimates of ‖∇u‖L3 and ‖∇u‖L4 have already been obtained in
(5.6) and (5.9), respectively, we proceed to evaluate IV2 + IV3 and get

IV2 + IV3 ≤
d

dt

∫ [µ
2

∣∣∇u+ (∇u)′
∣∣2 + λ(divu)2

]
θ + δ‖∇u̇‖2L2

+ Cδ + C‖√ρu̇‖4L2 + Cδ‖∇θ‖4L2 .(5.15)

For IV4, using the interpolation inequality, the standard elliptic estimate
for (1.6)3, (3.1), (4.16), and Sobolev inequality, we have

‖∇θ‖L3 ≤‖∇θ‖
1
2

L2‖∇2θ‖
1
2

L2

≤C‖∇θ‖
1
2

L2

[
‖√ρθ̇‖L2 + ‖θ − θ̃‖L6‖divu‖L3 + ‖∇u‖2L4 + 1

] 1
2

≤C‖∇θ‖
1
2

L2

[
‖√ρθ̇‖L2 + ‖∇θ‖L2‖divu‖L3 + ‖∇u‖2L4 + 1

] 1
2
,(5.16)

and thus

IV4 ≤C‖∆θ‖L2‖u‖L6‖∇θ‖L3

≤C‖∇θ‖
1
2

L2

[
‖√ρθ̇‖L2 + ‖∇θ‖L2‖divu‖L3 + ‖∇u‖2L4 + 1

] 3
2

≤Cv
4
‖√ρθ̇‖2L2 + C‖∇θ‖2L2 + C‖∇θ‖2L2‖divu‖2L3 + C‖∇u‖4L4 + C

≤Cv
4
‖√ρθ̇‖2L2 + C‖√ρu̇‖4L2 + C‖∇θ‖4L2 + C,(5.17)

where we have used (5.6), (5.9), and Young inequality.
Plugging (5.13), (5.15), and (5.17) into (5.12), we have∫

Cvρ|θ̇|2 +
d

dt

∫ [
κ|∇θ|2 −

(
µ
∣∣∇u+ (∇u)′

∣∣2 + 2λ(divu)2
)
θ
]

≤C(‖√ρu̇‖2L2 + ‖∇θ‖2L2)2 + 2δ‖∇u̇‖2L2 + Cδ.(5.18)
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Multiplying (5.18) by 2C
Cv

, and plugging the result in (5.11), we have

d

dt

∫ [
ρ|u̇|2 +

2Cκ

Cv
|∇θ|2 − 2C

Cv

(
µ
∣∣∇u+ (∇u)′

∣∣2 + 2λ(divu)2
)
θ
]

+

∫ (
Cρ|θ̇|2 + µ|∇u̇|2 + (µ+ λ)|div u̇|2

)
≤ C(‖√ρu̇‖2L2 + ‖∇θ‖2L2)2 + 4δC‖∇u̇‖2L2 + Cδ.(5.19)

For δ = µ
8C , we have

d

dt

∫ [
ρ|u̇|2 +

2Cκ

Cv
|∇θ|2 − 2C

Cv

(
µ
∣∣∇u+ (∇u)′

∣∣2 + 2λ(divu)2
)
θ
]

+

∫ (
Cρ|θ̇|2 +

µ

2
|∇u̇|2

)
≤ C(‖√ρu̇‖2L2 + ‖∇θ‖2L2)2 + C.(5.20)

Denoting

Ḡ2(ρ, u, θ) =

∫
ρ|u̇|2 +

2Cκ

Cv

∫
|∇θ|2 − 2C

Cv

∫ (
µ
∣∣∇u+ (∇u)′

∣∣2 + 2λ(divu)2
)
θ,

and noticing

‖∇u‖2
L

12
5
≤C(‖curlu‖2

L
12
5

+ ‖divu‖2
L

12
5

)

≤C‖curlu‖
3
2

L2‖∇curlu‖
1
2

L2 + C‖F‖
3
2

L2‖∇F‖
1
2

L2 + C‖ρ(θ − θ̃)‖
3
2

L2‖ρ(θ − θ̃)‖
1
2

L6

+ C‖θ̃(ρ− ρ̃)‖
3
2

L2‖θ̃(ρ− ρ̃)‖
1
2

L6

≤C‖√ρu̇‖
1
2

L2 + C‖∇θ‖
1
2

L2 + C,

we have∫ (
µ
∣∣∇u+ (∇u)′

∣∣2 + 2λ(divu)2
)
θ

=

∫ (
µ
∣∣∇u+ (∇u)′

∣∣2 + 2λ(divu)2
)

(θ − θ̃) + θ̃

∫ (
µ
∣∣∇u+ (∇u)′

∣∣2 + 2λ(divu)2
)

≤C‖∇u‖2
L

12
5
‖θ − θ̃‖L6 + C

≤C‖√ρu̇‖
1
2

L2‖∇θ‖L2 + C‖∇θ‖
1
2

L2‖∇θ‖L2 + C‖∇θ‖L2 + C.

This implies

1

M̄3

∫
(ρ|u̇|2 + |∇θ|2) ≤ Ḡ2(ρ, u, θ) + M̄2 ≤ M̄3 + M̄3

∫
(ρ|u̇|2 + |∇θ|2),

for some positive constants M̄2 and M̄3. This relation, together with (5.20)
and Gronwall inequality, yields (5.1). �
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Corollary 5.2. Under the hypotheses of Theorem 1.4 and (3.1), there holds

sup
0≤t≤T

(‖∇F‖L2 + ‖∇curlu‖L2 + ‖∇u‖L6 + ‖u‖L∞)

+

∫ T

0
(‖divu‖2L∞ + ‖∇2θ‖2L2) ≤ C.(5.21)

Proof. It follows from (4.11) and (5.4) that

‖∇F‖L2 ≤ C‖ρu̇‖L2 ≤ C,

‖∇curlu‖L2 ≤ C‖ρu̇‖L2 ≤ C,
and ∫ T

0
‖divu‖2L∞

≤C
∫ T

0
‖F‖2L∞ + C

∫ T

0
‖θ − θ̃‖2L∞ + C

≤C
∫ T

0
‖F‖2L6 +

∫ T

0
‖∇F‖2L6 + C

∫ T

0
‖θ − θ̃‖2L6 +

∫ T

0
‖∇θ‖2L6 + C

≤C
∫ T

0
‖∇F‖2L2 +

∫ T

0
‖ρu̇‖2L6 + C

∫ T

0
‖∇θ‖2L2 +

∫ T

0
‖∇2θ‖2L2 + C

≤C
∫ T

0
‖√ρu̇‖2L2 + C

∫ T

0
‖∇u̇‖2L2 + C

∫ T

0
‖∇2θ‖2L2 + C ≤ C,

where we have used (3.1), (5.1), Sobolev inequality, and the following elliptic
estimate:

‖∇2θ‖L2 ≤C‖√ρθ̇‖L2 + C‖θ − θ̃‖L6‖divu‖L3 + C‖∇u‖2L4 + C

≤C‖√ρθ̇‖L2 + C‖∇θ‖L2‖divu‖L3 + C‖∇u‖2L4 + C

≤C‖√ρθ̇‖L2 + C.(5.22)

Therefore we have ∫ T

0
‖∇2θ‖2L2 ≤ C.

By (5.5), we have

‖∇u‖L6 ≤C‖divu‖L6 + C‖curlu‖L6

≤C‖F‖L6 + C‖curlu‖L6 + C‖θ − θ̃‖L6 + C

≤C‖∇F‖L2 + C‖∇curlu‖L2 + C‖∇θ‖L2 + C

≤C.(5.23)

By (4.16), (5.23), and Sobolev inequality, we have

‖u‖L∞ ≤ C‖u‖L6 + C‖∇u‖L6 ≤ C‖∇u‖L2 + C‖∇u‖L6 ≤ C.
�
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Lemma 5.3. Under the hypotheses of Theorem 1.4 and (3.1), there holds

sup
0≤t≤T

∫
ρ|θt|2 +

∫ T

0

∫
|∇θt|2 ≤ C.(5.24)

Proof. As in [29], differentiating (1.6)3 with respect to t, multiplying the
result by θt, and using integration by parts, we have

1

2

d

dt

∫
Cvρ|θt|2 + κ

∫
|∇θt|2

=−
∫
ρt (Cvθt + Cvu · ∇θ + θdivu) θt −

∫
ρ(Cvut · ∇θ + θt divu) θt

−
∫
ρθ divut θt + µ

∫ (
∇u+ (∇u)′

)
:
(
∇ut + (∇ut)′

)
θt

+ 2λ

∫
divudivut θt =

5∑
i=1

Vi.(5.25)

For V1, using (1.6)1 and integration by parts, we have

V1 =−
∫
ρu · ∇θt (2Cvθt + Cvu · ∇θ + θdivu)

−
∫
Cvρu · (∇u · ∇θ + u · ∇∇θ) θt

−
∫
ρu · (∇θdivu+ θ∇divu) θt

=
3∑
i=1

V1,i.(5.26)

For V1,1, using Cauchy inequality, (3.1), (4.16), (5.1), (5.6), and (5.21),
we have

V1,1 ≤
κ

12

∫
|∇θt|2 + C

∫
ρ|θt|2 + C

∫
ρ2|u|2|θ − θ̃|2|divu|2

+ C

∫
ρ2|u|2|divu|2 + C

≤ κ

12

∫
|∇θt|2 + C

∫
ρ|θt|2 + C‖θ − θ̃‖2L6‖divu‖2L3 + C

≤ κ

12

∫
|∇θt|2 + C

∫
ρ|θt|2 + C.(5.27)

For V1,2 and V1,3, similarly to [29], we have

V1,2 ≤ C
∫
ρ|θt|2 + C

∫
|∇2θ|2 + C.(5.28)
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and

V1,3 ≤C
∫
ρ|θt|2 + C‖∇θ‖2L3‖divu‖2L6 −

1

2µ+ λ
C

∫
ρ(θ − θ̃)u · ∇Fθt

− 1

2µ+ λ
Cθ̃

∫
ρu · ∇Fθt +

1

2(2µ+ λ)
C

∫
ρ2θ2u · ∇θt

+
1

2(2µ+ λ)
C

∫
ρ2θ2divu θt

≤C
∫
ρ|θt|2 + C‖∇2θ‖L2 + C‖θ − θ̃‖L6‖u‖L6‖θt‖L6‖∇F‖L2 + C

+ C‖θ − θ̃‖2L6‖u‖L6‖∇θt‖L2 + C‖ρu‖L2‖∇θt‖L2

+ C‖θ − θ̃‖2L6‖divu‖L2‖θt‖L6

≤ κ

12

∫
|∇θt|2 + C

∫
ρ|θt|2 + C‖∇2θ‖L2 + C,(5.29)

where we have used Cauchy inequality, Hölder inequality, the interpolation
inequality, integration by parts, and the relations (3.1), (4.16), (5.1), and
(5.21).

Substituting (5.27), (5.28), and (5.29) into (5.26), we have

V1 ≤
κ

6

∫
|∇θt|2 + C

∫
ρ|θt|2 + C

∫
|∇2θ|2 + C.(5.30)

For V2 and V3, using Cauchy inequality, Hölder inequality, (3.1), (4.16),
(5.1), and (5.21) again, we have

V2 ≤C‖
√
ρθt‖L2‖∇u̇‖L2‖∇θ‖

1
2

L2‖∇2θ‖
1
2

L2 + C‖√ρθt‖L2‖∇θ‖
1
2

L2‖∇2θ‖
1
2

L2

+ C‖divu‖L∞
∫
ρ|θt|2

≤C
(
‖divu‖L∞ + ‖∇u̇‖2L2 + 1

) ∫
ρ|θt|2 + C‖∇2θ‖2L2 + C,(5.31)

and

|V3| ≤C‖θ − θ̃‖L6‖divu̇‖L2‖ρθt‖L3 + C‖divu̇‖L2‖ρθt‖L2

+ C

∫
ρ|θ||∇u|2|θt|+ |

∫
ρθθtu · ∇divu|

≤C
∫
ρ|θt|2 + C

∫
|divu̇|2 +

κ

64

∫
|∇θt|2 + C‖θ − θ̃‖L6‖ρθt‖L2‖∇u‖2L6

+ C

∫
|∇u|4 +

1

2µ+ λ
|
∫
ρθθtu · ∇F |+

1

2(2µ+ λ)
|
∫
θtu · ∇(ρθ)2|

≤C
∫
ρ|θt|2 + C

∫
|divu̇|2 +

κ

64

∫
|∇θt|2 + C‖θ − θ̃‖L6‖θt‖L6‖u‖L6‖∇F‖L2

+ C +
1

2(2µ+ λ)
|
∫
θtdivu (ρθ)2|+ 1

2(2µ+ λ)
|
∫

(ρθ)2u · ∇θt|.
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For the last two terms on the right-hand side of V3, we have

1

2(2µ+ λ)
|
∫
θtdivu (ρθ)2|+ 1

2(2µ+ λ)
|
∫

(ρθ)2u · ∇θt|

≤C‖θt‖L6‖divu‖L2‖θ − θ̃‖2L6 + C‖ρθt‖L2‖divu‖L2

+ C‖θ − θ̃‖2L6‖u‖L6‖∇θt‖L2 + C‖ρu‖L2‖∇θt‖L2

≤ κ

64

∫
|∇θt|2 + C‖√ρθt‖2L2 + C,

which yields

|V3| ≤C
∫
ρ|θt|2 + C

∫
|divu̇|2 +

κ

24

∫
|∇θt|2 + C.(5.32)

For V4 and V5, using integration by parts, we have

V4 =µ

∫ (
∇u+ (∇u)′

)
: ∇ut θt + µ

∫ (
∇u+ (∇u)′

)
: (∇ut)′ θt

=− µ
∫ (
∇u+ (∇u)′

)
: ∇θt ⊗ ut − 2µ

∫
(∆u+∇divu) · ut θt

− µ
∫ (
∇u+ (∇u)′

)
: ut ⊗∇θt,

and

V5 =− 2λ

∫
∇divu · ut θt − 2λ

∫
divuut · ∇θt.

Hence we have

V4 + V5 ≤C
∫
|∇u| |∇θt| |ut|+ C

∫
ρ|u̇| |ut| |θt|+ 2|V3|+ 2

∫
ρθut · ∇θt

≤C‖∇u‖L3‖∇θt‖L2‖ut‖L6 + C‖√ρu̇‖L2‖ut‖L6‖√ρθt‖L3 + 2|V3|

+ C‖ρ(θ − θ̃)‖L3‖ut‖L6‖∇θt‖L2 + C‖ρut‖L2‖∇θt‖L2

≤C
∫
ρ|θt|2 + C

∫
|∇u̇|2 +

κ

6

∫
|∇θt|2 + C,(5.33)

where we have used (5.1), (5.21), and (5.32).
Putting (5.30), (5.31), (5.32) and (5.33) into (5.25), we have

d

dt

∫
Cvρ|θt|2 + κ

∫
|∇θt|2 ≤C

(
‖divu‖L∞ + ‖∇u̇‖2L2 + 1

) ∫
ρ|θt|2

+ C

∫
(|∇u̇|2 + |∇2θ|2) + C.(5.34)

By virtue of (5.1), (5.21), (5.34) and Gronwall inequality, the proof of Lemma
5.3 is complete. �

Corollary 5.4. Under the hypotheses of Theorem 1.4 and (3.1), there holds

sup
0≤t≤T

∫
|∇2θ|2 ≤ C.(5.35)
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Proof. Relation (5.22), together with (3.1), (5.1), (5.21), and (5.24), yields
(5.35).

�
The remaining estimates in (4.1) can be obtained in the same way as in

[29]:

Lemma 5.5. Under the hypotheses of Theorem 1.4 and (3.1), there holds

sup
0≤t≤T

(
‖∇ρ‖Ll + ‖ρt‖Ll + ‖√ρut‖L2 + ‖∇2u‖L2

)
+

∫ T

0

(
‖ut‖2D1 + ‖(u, θ)‖2D2,q

)
≤ C,

for l = 2, q.

The proof of Theorem 1.4 is complete. �
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