IOCB Prague

Iva Pichová Group

Viral and Microbial Proteins
Research Group
Senior
BIO cluster

About our group

The research of our laboratory focuses mainly on functional and structural studies of key proteins from Hepatitis B virus and Mycobacteria spp and their interactions with cellular proteins. We also study proteins from pathogenic yeasts and cooperate with chemical ecologists on insect pheromone biosynthetic enzymes.

Research projects involve protein engineering, protein purification, protein characterization, enzymology, NMR and X-ray protein structure solution, isolation and analysis of complexes of cellular and pathogenic proteins, various molecular biological methods, and electron microscopy analysis. Our close cooperation with organic chemists facilitates multidisciplinary research focused on identification and characterization of enzymes involved in drug metabolism and testing of potential inhibitors.

The group is a member of the Gilead Sciences & IOCB Research Centre, NPU 1 and OPVVV projects.

image

Publications

All publications
Biogenesis of hepatitis B virus e antigen is driven by translocon-associated protein complex and regulated by conserved cysteine residues within its signal peptide sequence
Biogenesis of hepatitis B virus e antigen is driven by translocon-associated protein complex and regulated by conserved cysteine residues within its signal peptide sequence
FEBS Journal 2022: Early View
Hepatitis B virus uses e antigen (HBe), which is dispensable for virus infectivity, to modulate host immune responses and achieve viral persistence in human hepatocytes. The HBe precursor (p25) is directed to the endoplasmic reticulum (ER), where cleavage of the signal peptide (sp) gives rise to the first processing product, p22. P22 can be retro-translocated back to the cytosol or enter the secretory pathway and undergo a second cleavage event, resulting in secreted p17 (HBe). Here, we report that translocation of p25 to the ER is promoted by translocon-associated protein complex. We have found that p25 is not completely translocated into the ER; a fraction of p25 is phosphorylated and remains in the cytoplasm and nucleus. Within the p25 sp sequence, we have identified three cysteine residues that control the efficiency of sp cleavage and contribute to proper subcellular distribution of the precore pool.
ATM-Dependent Phosphorylation of Hepatitis B Core Protein in Response to Genotoxic Stress
Viruses 13 (12): 2438 (2021)
Structural determinants for subnanomolar inhibition of the secreted aspartic protease Sapp1p from Candida parapsilosis
Journal of Enzyme Inhibition and Medicinal Chemistry 36 (1): 914-921 (2021)
Phosphofructokinases A and B from Mycobacterium tuberculosis Display Different Catalytic Properties and Allosteric Regulation
International Journal of Molecular Sciences 22 (3): 1483 (2021)