Laboratory of Hormonal Regulations in Plants
About us
We are a medium-sized laboratory consisting of five working groups focused on the auxin transport and homeostasis, metabolism and physiological functions of cytokinins, interaction of plant hormones with the environment, modelling of phytohormone-mediated cellular processes and advanced analytics of phytohormones.
On both plant tissue culture and whole plant levels we follow mechanism of action of auxins and cytokinins and their multitude interactions. The spectrum of methods and approaches we use ranges from molecular biology (gene cloning and tagging, gene editing, transcription profiling, RNAseq), reverse and forward genetics, phenotyping on both cellular and whole plant levels, analytics of phytohormones and their metabolism, to advanced methods of fluorescence confocal microscopy. We always cordially welcome motivated students to work on their master and PhD theses, as well as young postdoc researchers from abroad.
Group of auxin transport (Leader: Jan Petrášek)
Our laboratory focuses on the molecular mechanism of polar auxin transport and on the ways of its regulation.
Polar auxin transport (PAT) is the process, in which plant hormone auxin is transported in cell-to-cell manner. The word “polar” refers to the fact that this type of transport is directional, either within the region of particular tissue or among tissues. Directionality of PAT is maintained by the interplay of diffusion and carrier-mediated transport of auxin across plasma membrane. The reason why PAT plays very important role in plant development is that it helps to establish auxin concentration gradients that subsequently regulate gene expression and also many other post-translational processes.
Our recent research is focused on the understanding of how plasma membrane-located and endomembrane auxin transporters contribute to the overall auxin homeostasis within the cells. More…
Group of metabolism and physiological function of cytokinins (Leader: Václav Motyka)
We are engaged in the research of cytokinins – plant hormones that regulate cell division and differentiation.
Cytokinins are naturally occurring phytohormones that act in concert with auxins to regulate cell division and differentiation and thus efficiently control plant growth and development. Transient enhancement of auxin in relation to cytokinin levels induces root formation while the opposite shift results in shoot formation. Re-establishment of the two hormone quantitative ratios (hormonal homeostasis) is essential for further development of induced events.
Our research is focused on the metabolic regulation of intra- and extracellular levels of cytokinins and their cooperation with auxins and other phytohormones to understand cytokinin physiological role in plants. We are especially interested in the study of pathways and mechanisms down-regulating cytokinin concentrations in plant cells. More…
Group of the role of phytohormones in the interaction with environment (Leader: Radka Vaňková)
We focus on the elucidation of plant defence mechanisms, with the aim to contribute to the development of effective strategies to enhance stress tolerance of plants.
Due to their sessile character, plants had to evolve complex systems of defence against and adaption to the variable and often unfavourable environmental conditions. These systems involve mechanisms to sense nutrient abundance or stress conditions and to generate and transduce signals, which result in modulation of transcription and translation profiles and subsequently of metabolism, leading to effective changes in growth and development. Character of the individual responses depends on the type of stress, its strength and duration, as well as on the physiological state of plant, its developmental stage and the strategy to cope with the particular stress.
Our main interest has been the evaluation of hormone functions in abiotic and biotic stress responses, namely their cross-talk, organ specificity and dynamics during stress progression. More…
Group of mathematical modelling (Leader: Klára Hoyerová)
We use mathematical modelling approach to unravel mechanisms regulating the auxin and cytokinins action in plants.
Mathematical modelling and similar computational approaches are getting increasingly popular in various fields of biology as they offer the possibility to combine multiple datasets and assay results in order to probe hypotheses or measure properties that cannot be addressed in a single experimental design. Down below, we show examples of studies where we employed mathematical modelling methods.
Analytical unit (Leader: Petr Dobrev)
We improve the existing and develop the new analytical procedures for purification, quantitation and metabolic profiling of plant hormones and other bioactive substances of plant origin. More…
Workers
head of the laboratorysenior scientist
- RNDr. Jan Petrášek Ph.D.
senior scientist
- Ing. Václav Motyka CSc.
- RNDr. Radomíra Vanková CSc.
- Prof. RNDr. Eva Zažímalová CSc.
scientist
- Ing. Petre I. Dobrev CSc.
- Bc. Ing. Klára Hoyerová PhD.
- Ing. Kateřina Malínská PhD.
- Ing. Karel Müller PhD.
- Dr.rer.nat. Kamil Růžička
scientific assistant
- Mgr. Sylva Přerostová Ph.D.
graduated technical assistant
- Mgr. Nikola Drážná
- Ing. Roberta Filepová
- Mgr. Markéta Fílová
- RNDr. Alena Gaudinová
- Bc. Vojtěch Knirsch
- Eva Kobzová
- Marie Korecká
- Mgr. Roman Skokan
- ing. Alena Trávníčková
- Mgr. Zuzana Vondrakova
assistant
postdoc
- Ing. Milada Čovanová PhD.
- RNDr. Nikoleta Dupľáková Ph.D.
- Mgr. Tomáš Hluska PhD.
- RNDr. Adriana Jelínková PhD.
- Mgr. Petr Klíma Ph.D.
- RNDr. Martina Laňková PhD.
- Dr.nat.techn. Katarzyna Retzer
postgraduate student
- Petr Hošek Ph.D.
- Ing Jozef Lacek
- Ing. Eva Pokorná Ph.D.
technician
Research projects
- Physiological, biochemical, molecular and phylogenic characterization of metabolic pathways and mechanisms of cytokinin down-regulation in plants , GA ČR , Václav Motyka
- Anatomical and physiological constraints as key factors governing plant vegetative regeneration from roots , GA ČR , Václav Motyka
- Inactivation of cytokinin-type phytohormones via N- and O-glucosylation – phylogeny and significance in evolution of hormonal homeostatic mechanisms , GA ČR , Václav Motyka
- The role of auxin binding protein 1-mediated signaling in the control of vesicle trafficking in plant cells , GA ČR , Milada Čovanová
- Auxin transport and cytoskeleton in the morphogenesis of plant cells , GA ČR , Jan Petrášek
- Integrating proteomic and genomic tools to contribute evolutionary processes across the plant kingdom with emphasis to the family of cytokinins , GA ČR , Václav Motyka
- Propojení proteomických a genomických přístupů při objasňování evolučních procesů napříč rostlinnou říší s důrazem na rodinu cytokininů , GA ČR , Václav Motyka
- The role of cytokinins and polyamines in heat stress response and thermotolerance in tobacco and Arabidopsis plants , GA ČR , Radomíra Vanková
- Alternative ways regulating intra- and extracellular concentrations and activities of isoprenoid cytokinins in plants , GA AV , Václav Motyka
- The role of members of AUX/LAX gene family in auxin influx into plant cell. , GA AV , Klára Hoyerová
Publications
2020
- EUROPEAN FOOD RESEARCH AND TECHNOLOGY 246 1783-1794 2020
- RESEARCH IN MICROBIOLOGY 171 174-184 2020
- ANNALS OF BOTANY 125 775-784 2020
2019
- Plant Cell Morphogenesis. Methods in Molecular Biology 1992 367-376 2019 (External fulltext)
- INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 20 909 2019 Fulltext: PDF link on intranet only
-
Transcription of specific auxin efflux and influx carriers drives auxin homeostasis in tobacco cellsPLANT JOURNAL 100 627-640 2019 (External fulltext)
- PLANT GROWTH REGULATION 88 113-128 2019
- PLANT SIGNALLING & BEHAVIOR 14 e1592641/1-3 2019 Fulltext: PDF link on intranet only
- HORTICULTURAE 5 9 2019 Fulltext: PDF link on intranet only
- FRONTIERS IN PLANT SCIENCE 10 118 2019 Fulltext: PDF link on intranet only