Intorduction to Interior Point Methods

<u>Jakub Kruzik^{1,2}</u> jakub.kruzik@ugn.cas.cz

16 February 2022 Mathematics and Computer Science Seminar, UGN CAS

¹Institute of Geonics of the Czech Academy of Sciences ²Dept. of Appl. Math., Faculty of Electr. Engin. and CS, VSB - TU Ostrava

$$\underset{\boldsymbol{x}}{\operatorname{argmin}} \begin{array}{l} f(\boldsymbol{x}) \quad \text{s.t.} \quad \boldsymbol{x} \in \Omega \\ \\ \operatorname{argmin}_{\boldsymbol{x}} \frac{1}{2} \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{x}^T \boldsymbol{c} \quad \text{s.t.} \quad \boldsymbol{x} \geq \boldsymbol{o}, \quad \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}, \end{array} \tag{1}$$

where $Q \in \mathbb{R}^{n \times n}$ is SPS, $A \in \mathbb{R}^{m \times n}$ full row rank $m \le n$, $Q = O \rightarrow$ LP.

$$\underset{\boldsymbol{x}}{\operatorname{argmin}} \begin{array}{l} f(\boldsymbol{x}) \quad \text{s.t.} \quad \boldsymbol{x} \in \Omega \\ \\ \operatorname{argmin}_{\boldsymbol{x}} \frac{1}{2} \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{x}^T \boldsymbol{c} \quad \text{s.t.} \quad \boldsymbol{x} \geq \boldsymbol{o}, \quad \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}, \end{array} \tag{1}$$

where $Q \in \mathbb{R}^{n \times n}$ is SPS, $A \in \mathbb{R}^{m \times n}$ full row rank $m \le n$, $Q = O \rightarrow$ LP. Dual:

$$\underset{(\boldsymbol{y},\boldsymbol{s})}{\operatorname{argmax}} - \frac{1}{2} \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{y}^T \boldsymbol{b} \quad \text{s.t.} \quad \boldsymbol{A}^T \boldsymbol{y} + \boldsymbol{s} - \boldsymbol{Q} \boldsymbol{x} = \boldsymbol{c}, \quad \boldsymbol{y} \in \mathbb{R}^m, \quad \boldsymbol{s} \ge \boldsymbol{o}. \tag{1}$$

x, (y, s) is dual-primal pair of QP/LP.

First order optimality conditions

Lagrangian:

$$L(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{s}) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{c}^T \boldsymbol{x} - \boldsymbol{y}^T (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}) - \boldsymbol{s}^T \boldsymbol{x}$$

First order optimality conditions

Lagrangian:

$$L(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{s}) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{c}^T \boldsymbol{x} - \boldsymbol{y}^T (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}) - \boldsymbol{s}^T \boldsymbol{x}$$

KKT:

$$egin{aligned} &oldsymbol{A} oldsymbol{x} = oldsymbol{b}, \ &oldsymbol{A}^T oldsymbol{y} + oldsymbol{s} - oldsymbol{Q} oldsymbol{x} = oldsymbol{c}, \ &oldsymbol{X} oldsymbol{S} oldsymbol{e} = oldsymbol{o}, \ &oldsymbol{x} \geq oldsymbol{o}, \ &oldsymbol{s} \geq oldsymbol{o}, \ &oldsymbol{s} \geq oldsymbol{o}, \end{aligned}$$

where $\mathbf{X} = diag(\mathbf{x})$, $\mathbf{S} = diag(\mathbf{s})$, $\mathbf{e} = (1, 1, \dots, 1)$.

Towards IPM (1) - Logarithmic Barrier

Enforce $x_i \ge 0$ using penalty with $-\ln x_i$

Towards IPM (2) - Logarithmic Barrier Formulation

$$\operatorname{argmin}_{\boldsymbol{x}} \frac{1}{2} \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{x}^T \boldsymbol{c} - \mu \sum_{i=1}^n \ln \boldsymbol{x}_i \quad \text{s.t.} \quad \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b},$$
(2)
$$\operatorname{argmax}_{(\boldsymbol{y}, \boldsymbol{s})} - \frac{1}{2} \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{y}^T \boldsymbol{b} + \mu \sum_{i=1}^n \ln \boldsymbol{s}_i \quad \text{s.t.} \quad \boldsymbol{A}^T \boldsymbol{y} + \boldsymbol{s} - \boldsymbol{Q} \boldsymbol{x} = \boldsymbol{c}, \quad \boldsymbol{y} \in \mathbb{R}^m.$$
(2)

Towards IPM (2) - Logarithmic Barrier Formulation

$$\operatorname{argmin}_{\boldsymbol{x}} \frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{x}^{T} \boldsymbol{c} - \mu \sum_{i=1}^{n} \ln \boldsymbol{x}_{i} \quad \text{s.t.} \quad \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}, \tag{2}$$

$$\operatorname{argmax}_{(\boldsymbol{y},\boldsymbol{s})} - \frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{y}^{T} \boldsymbol{b} + \mu \sum_{i=1}^{n} \ln \boldsymbol{s}_{i} \quad \text{s.t.} \quad \boldsymbol{A}^{T} \boldsymbol{y} + \boldsymbol{s} - \boldsymbol{Q} \boldsymbol{x} = \boldsymbol{c}, \quad \boldsymbol{y} \in \mathbb{R}^{m}. \tag{2}$$

$$L(\boldsymbol{x}, \boldsymbol{y}, \mu) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{c}^T \boldsymbol{x} - \boldsymbol{y}^T (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}) - \mu \sum_{i=1} \ln \boldsymbol{x}_i$$

Towards IPM (2) - Logarithmic Barrier Formulation

$$\operatorname{argmin}_{\boldsymbol{x}} \frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{x}^{T} \boldsymbol{c} - \mu \sum_{i=1}^{n} \ln \boldsymbol{x}_{i} \quad \text{s.t.} \quad \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}, \tag{2}$$

$$\operatorname{argmax}_{(\boldsymbol{y},\boldsymbol{s})} - \frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{y}^{T} \boldsymbol{b} + \mu \sum_{i=1}^{n} \ln \boldsymbol{s}_{i} \quad \text{s.t.} \quad \boldsymbol{A}^{T} \boldsymbol{y} + \boldsymbol{s} - \boldsymbol{Q} \boldsymbol{x} = \boldsymbol{c}, \quad \boldsymbol{y} \in \mathbb{R}^{m}. \tag{2}$$

$$L(\boldsymbol{x}, \boldsymbol{y}, \mu) = \frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{c}^{T} \boldsymbol{x} - \boldsymbol{y}^{T} (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}) - \mu \sum_{i=1}^{n} \ln \boldsymbol{x}_{i}$$

KKT:

 $egin{aligned} oldsymbol{A} oldsymbol{x} &= oldsymbol{b}, \ oldsymbol{A}^T oldsymbol{y} + oldsymbol{s} - oldsymbol{Q} oldsymbol{x} &= oldsymbol{c}, \ oldsymbol{X} oldsymbol{S} oldsymbol{e} &= \mu oldsymbol{e}, \ oldsymbol{x} &\geq oldsymbol{o}, oldsymbol{s} \geq oldsymbol{o}, \ oldsymbol{x} \geq oldsymbol{o}, oldsymbol{s} \geq oldsymbol{o}. \end{aligned}$

Towards IPM (3) - Solving KKT System

KKT:

$$egin{aligned} oldsymbol{A} oldsymbol{x} &= oldsymbol{b}, \ oldsymbol{A}^T oldsymbol{y} + oldsymbol{s} - oldsymbol{Q} oldsymbol{x} &= oldsymbol{c}, \ oldsymbol{X} oldsymbol{S} oldsymbol{e} &= \mu oldsymbol{e}, \ oldsymbol{X} oldsymbol{S} oldsymbol{e} &= \mu oldsymbol{e}, \ oldsymbol{x} &\geq oldsymbol{o}, oldsymbol{s} \geq oldsymbol{o}. \end{aligned}$$

As $\mu
ightarrow 0$ formulation (2) converges to the solution of (1)

Towards IPM (3) - Solving KKT System

KKT:

$$egin{aligned} oldsymbol{A} oldsymbol{x} &= oldsymbol{b}, \ oldsymbol{A}^T oldsymbol{y} + oldsymbol{s} - oldsymbol{Q} oldsymbol{x} &= oldsymbol{c}, \ oldsymbol{X} oldsymbol{S} oldsymbol{e} &= \mu oldsymbol{e}, \ oldsymbol{x} &\geq oldsymbol{o}, oldsymbol{s} \geq oldsymbol{o}, \ oldsymbol{x} \geq oldsymbol{o}, oldsymbol{s} \geq oldsymbol{o}. \end{aligned}$$

As $\mu \to 0$ formulation (2) converges to the solution of (1) Single step of Newton:

$$\begin{pmatrix} \boldsymbol{A} & \boldsymbol{O} & \boldsymbol{O} \\ -\boldsymbol{Q} & \boldsymbol{A}^{T} & \boldsymbol{I} \\ \boldsymbol{S} & \boldsymbol{O} & \boldsymbol{X} \end{pmatrix} \begin{pmatrix} \Delta \boldsymbol{x} \\ \Delta \boldsymbol{y} \\ \Delta \boldsymbol{s} \end{pmatrix} = \begin{pmatrix} \boldsymbol{b} - \boldsymbol{A} \boldsymbol{x} \\ \boldsymbol{x} - \boldsymbol{Q} \boldsymbol{x} - \boldsymbol{A}^{T} \boldsymbol{y} - \boldsymbol{s} \\ \sigma \mu \boldsymbol{e} - \boldsymbol{X} \boldsymbol{S} \boldsymbol{e} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\xi}_{p} \\ \boldsymbol{\xi}_{d} \\ \boldsymbol{\xi}_{\mu} \end{pmatrix}$$
(3)

where $\sigma \in (0,1)$ is barrier reduction parameter.

Infeasible Path-following Primal-dual IPM - Initialization

Parameters

 α_0 = 0.99 a fraction-to-the-boundary stepsize factor;

 $\sigma \in$ (0,1) barrier reduction parameter;

 ε_p , ε_d , ε_o primal feasibility, dual feasibility and optimality tolerances:

IPM stops when
$$\frac{\|\xi_p^k\|}{1+\|b\|} \leq \varepsilon_p, \frac{\|\xi_d^k\|}{1+\|c\|} \leq \varepsilon_d$$
 and $\frac{(x^k)^T s^k/n}{1+|c^T x^k+1/2(x^k)^T Q x^k|} \leq \varepsilon_o.$

Initialize IPM

iteration counter k = 0; primal-dual point $x^0 > 0$, $y^0 = 0$, $s^0 > 0$; barrier parameter $\mu^0 = (x^0)^T s^0/n$; primal and dual infeasibilities $\xi_p^0 = b - Ax^0$ and $\xi_d^0 = c - A^T y^0 - s^0 + Qx^0$.

Infeasible Path-following Primal-dual IPM - Loop

Interior Point Method

while $\left(\frac{\|\xi_p^k\|}{1+\|b\|} > \varepsilon_p \text{ or } \frac{\|\xi_d^k\|}{1+\|c\|} > \varepsilon_d \text{ or } \frac{(\chi^k)^T s^k/n}{1+|c^T x^k+1/2(\chi^k)^T Q x^k|} > \varepsilon_o\right) \mathbf{do}$ Update (reduce) the barrier $\mu^{k+1} = \sigma \mu^k$; Solve the KKT system (7): find the primal-dual Newton direction ($\Delta x, \Delta y, \Delta s$). Find $\alpha_P = \max\{\alpha: x^k + \alpha \Delta x \ge 0\}$ and $\alpha_D = \max\{\alpha: s^k + \alpha \Delta s \ge 0\};$ Set $\alpha_P := \alpha_0 \alpha_P$ and $\alpha_D := \alpha_0 \alpha_D$: Make step $x^{k+1} = x^k + \alpha_P \Delta x;$ $y^{k+1} = y^k + \alpha_D \Delta y;$ $s^{k+1} = s^k + \alpha_D \Lambda s_k$

Compute the infeasibilities: $\xi_p^{k+1} = b - Ax^{k+1}$ and $\xi_d^{k+1} = c - A^T y^{k+1} - s^{k+1} + Qx^{k+1}$;

Update the iteration counter: k = k + 1. end-while Primal dual iterates of feasible IPM belong to

$$\mathcal{F}^{0} = \left\{ (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{s}) | \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}, \boldsymbol{A}^{T} \boldsymbol{y} + \boldsymbol{s} - \boldsymbol{Q} \boldsymbol{x} = c, (\boldsymbol{x}, \boldsymbol{s}) > \boldsymbol{o}
ight\},$$

If iterates are kept in neighbourhood of the central path:

$$\mathsf{N}_{2}(\theta) = \left\{ (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{s}) \in \mathcal{F}^{0} | \| \boldsymbol{X} \boldsymbol{S} \boldsymbol{e} - \mu \boldsymbol{e} \| \leq \theta \mu \right\},\$$

then ε -accurate solution is achieved in $\mathcal{O}(\sqrt{n}\ln(1/\varepsilon))$.

In infeasible IPM the Newton direction in (3) is computed with

$$\begin{pmatrix} \xi_p \\ \xi_d \\ \xi_\mu \end{pmatrix},$$

while feasible IPM uses only

$$\begin{pmatrix} o \\ o \\ \xi_{\mu} \end{pmatrix}$$

as the right-hand side.

Methora Predictor-corrector

Ignore centrality by setting $\sigma = 0$ in (3) and compute Δ^{pred} . I.e., new RHS is

$$egin{pmatrix} \xi_p \ \xi_d \ - oldsymbol{XSe} \end{pmatrix}.$$

If full step in Δ^{pred} is taken, the complementarity product would be

$$(\mathbf{X} + \Delta \mathbf{X}) (\mathbf{S} + \Delta \mathbf{S}) \mathbf{e} = \cdots = \Delta \mathbf{X} \Delta \mathbf{S} \mathbf{e} \neq \sigma \mu \mathbf{e}.$$

To correct this, we compute Δ^{corr} solving (3) with RHS

$$egin{pmatrix} oldsymbol{o} & \ oldsymbol{o} & \ \sigma\mu oldsymbol{e} - \Delta X \Delta S oldsymbol{e} \end{pmatrix}$$

Do Newton step in $\Delta = \Delta^{pred} + \Delta^{corr}$.

Methora Predictor-corrector Illustration

Solving Linear System in Newton

$$egin{pmatrix} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

is usually reduced by elliminating

$$\Delta \boldsymbol{s} = \boldsymbol{X}^{-1} (\xi_{\mu} - \boldsymbol{S} \Delta \boldsymbol{x})$$

into symmetric indefinite system

$$egin{pmatrix} -oldsymbol{Q} - oldsymbol{\Theta} - oldsymbol{A} & oldsymbol{A}^T \ oldsymbol{A} & oldsymbol{O} \end{pmatrix} egin{pmatrix} \Delta oldsymbol{x} \ \Delta oldsymbol{y} \end{pmatrix} = egin{pmatrix} \xi_d - oldsymbol{X}^{-1} \xi_\mu \ \xi_p \end{pmatrix},$$

where $\Theta^{-1} = XS^{-1}$.

Preliminary Numerical Experiments

String Displacement with Lower Bound

Finited difference discretization of

$$-u''(x) = -15, \quad x \in [0,1]$$
 s.t. $u(x) \ge \frac{\sin(4\pi x - \frac{\pi}{6})}{2} - 2,$

Method	n	Iterations	Hessian Multiplications
MPRGP	100	-	216
IPM	100	12	-
IPM CG	100	12	993
MPRGP	1,000	-	3,205
IPM	1,000	17	-
IPM CG	1,000	17	12,142
MPRGP	5,000	-	36,941
IPM	5,000	20	-
IPM CG	5,000	12	63,894

Iter	Infeas	mu	PCG Iter
1	4.16E+03	2.47E-02	24
2	2.08E+01	6.97E-04	376
3	1.04E-01	1.23E-04	2500
4	5.25E-03	2.39E-05	4897
5	2.61E-03	5.36E-06	4906
6	1.31E-03	1.33E-06	4764
7	3.79E+01	3.60E-07	4528
8	1.89E-01	8.94E-08	4423
9	1.64E+01	2.43E-08	4325
10	1.70E+01	7.05E-09	3539

11	7.20E+00	2.00E-09	3579
12	3.49E+00	5.71E-10	3514
13	1.71E+00	1.65E-10	3522
14	7.49E-01	4.69E-11	3344
15	3.11E-01	1.31E-11	3285
16	1.50E-01	3.64E-12	3230
17	5.75E-02	9.90E-13	2693
18	2.88E-04	2.52E-13	2507
19	1.56E-06	6.36E-14	2211
20	7.05E-07	1.61E-14	1727
			63894

Method	Grid	Iterations	Hessian Multiplications
MPRGP	50x50	-	212
IPM	50x50	16	-
IPM CG	50x50	17	1,642
MPRGP	100x100	-	430
IPM CG	100x100	20	3,535
MPRGP	200x50	-	824
IPM CG	200x50	22	6,918
MPRGP	400x25	-	2,193
IPM CG	400x25	24	14,253

Method	Outer Iterations	Inner Iterations
MPRGP	7	75
IPM SMALXE	11	90
IPM	30	-
IPM SMALXE PC	10	37
IPM PC	8	-

- Very good (polynomial) convergence
- Good numerical scalability (outer iterations)
- Predictor-corrector schemes improve convergence
- · Preconditioning is difficult

Continued collaboration with Jacek Gondzio's group on IPM for contact problems.

Thank you for your attention! Any questions?

Jakub Kruzik^{1,2}

jakub.kruzik@ugn.cas.cz

¹Institute of Geonics of the Czech Academy of Sciences ²Dept. of Appl. Math., Faculty of Electr. Engin. and CS, VSB - TU Ostrava