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Motivation

Let {Gi}∞i=1 be a sequence of graphs.
What does it mean that {Gi}∞i=1 is convergent?
What is the limit of the sequence?
Can we always find a convergent subsequence?

A graph is a pair (V ,E) where V is a finite set and E is a family of
two-element subsets of V .
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Graph convergence

Benjamini-Schramm convergence
(I. Benjamini, O. Schramm, 2001)

Local-global convergence
(B. Bollobás, O. Riordan, 2011;
H. Hatami, L. Lovász, B. Szegedy, 2014)

Convergence of subgraph densities
(L. Lovász, B. Szegedy, 2006;
C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, K. Vesztergombi, 2008)

Action convergence
(A. Backhausz, B. Szegedy, 2018)

s-convergence
(D. Kunszenti-Kovács, L. Lovász, B. Szegedy, 2019)

X -convergence
(J. Nešetřil, P. Ossona de Mendez, 2020)

sparse graph sequences dense graph sequences
arbitrary sequences
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s-convergence
The limit objects of s-convergent sequences of graphs:
s-graphons = symmetric Borel probability measures on [0, 1]2

The limit objects do not remember edge densities. Instead, they remember
the structure of the edge sets.

Examples
Let Gi be the random graph on i vertices with edge density 1

2 .
Then, with probability 1, s-limi→∞Gi = λ2.
Let Gi be the random graph on i vertices with edge density 1

3 .
Then, with probability 1, s-limi→∞Gi = λ2.
Let Gi = Ci be the cycle of length i .
Then s-limi→∞Gi = µα (for some α ∈ R \Q), where

µα(Z) =
1
2

∫
x∈[0,1]

(1Z (x , x + α mod 1) + 1Z (x , x − α mod 1)) dλ(x),

Z ⊆ [0, 1]2.
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s-convergence

Let K(k, n) be the set of all nonnegative k × n matrices with
each column sum equal to 1,
each row sum equal to n

k .

Let G be a graph (with non empty edge set) on n vertices.
Let AG be the adjacency matrix of G.
For every k ∈ N we define the k-shape C(G, k) of G by

C(G, k) =
{

1
‖AG‖1

· MAGMT : M ∈ K(k, n)
}
⊆ Rk×k .

Definition
A graph sequence {Gi}∞i=1 is s-convergent if, for every k ∈ N, the sequence
{C(Gi , k)}∞i=1 is convergent in the Vietoris topology of K(Rk×k).

Martin Doležal (IM CAS) Measures as Graph Limits
Winter School in Abstract Analysis Sněžné, 11 January 2022
5 / 15



s-convergence

Let K(k, n) be the set of all nonnegative k × n matrices with
each column sum equal to 1,
each row sum equal to n

k .

Let G be a graph (with non empty edge set) on n vertices.
Let AG be the adjacency matrix of G.
For every k ∈ N we define the k-shape C(G, k) of G by

C(G, k) =
{

1
‖AG‖1

· MAGMT : M ∈ K(k, n)
}
⊆ Rk×k .

Definition
A graph sequence {Gi}∞i=1 is s-convergent if, for every k ∈ N, the sequence
{C(Gi , k)}∞i=1 is convergent in the Vietoris topology of K(Rk×k).

Martin Doležal (IM CAS) Measures as Graph Limits
Winter School in Abstract Analysis Sněžné, 11 January 2022
5 / 15



s-convergence

Let K(k, n) be the set of all nonnegative k × n matrices with
each column sum equal to 1,
each row sum equal to n

k .

Let G be a graph (with non empty edge set) on n vertices.
Let AG be the adjacency matrix of G.
For every k ∈ N we define the k-shape C(G, k) of G by

C(G, k) =
{

1
‖AG‖1

· MAGMT : M ∈ K(k, n)
}
⊆ Rk×k .

Definition
A graph sequence {Gi}∞i=1 is s-convergent if, for every k ∈ N, the sequence
{C(Gi , k)}∞i=1 is convergent in the Vietoris topology of K(Rk×k).

Martin Doležal (IM CAS) Measures as Graph Limits
Winter School in Abstract Analysis Sněžné, 11 January 2022
5 / 15



s-convergence
Recall: K(k, n) is the set of all nonnegative k × n matrices with

each column sum equal to 1,
each row sum equal to n

k .
The k-shape of G (on n vertices) is

C(G, k) =
{

1
‖AG‖1

· MAGMT : M ∈ K(k, n)
}
⊆ Rk×k .

===================================

Let f1, f2, . . . , fk be nonnegative continuous functions on [0, 1] with∑k
j=1 fj ≡ 1,∫

[0,1] fj dλ = 1
k for every j.

We define the k-shape C(µ, k) of an s-graphon µ by

C(µ, k) = {M(f1, f2, . . . , fk) : f1, f2, . . . , fk} ⊆ Rk×k ,

where M(f1, f2, . . . , fk)(i , j) =
∫
(x ,y)∈[0,1]2 fi(x)fj(y) dµ(x , y).
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s-convergence

Definition
A graph sequence {Gi}∞i=1 is s-convergent to an s-graphon µ if, for every
k ∈ N, the sequence {C(Gi , k)}∞i=1 is convergent to C(µ, k) in the Vietoris
topology of K(Rk×k).
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Basic facts

Fact
Every sequence of graphs has an s-convergent subsequence.

Theorem (Kunszenti-Kovács, Lovász, Szegedy, 2019)
If {Gi}∞i=1 is an s-convergent sequence of graphs then there is an
s-graphon µ such that {Gi}∞i=1 s-converges to µ.

Theorem (Kunszenti-Kovács, Lovász, Szegedy, 2019)
For every s-graphon µ there is a sequence of graphs which s-converges
to µ.
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Alternative approach

Let sG be the space of all s-graphons, equipped with the weak topology
(inherited from the space of all Borel probability measures on [0, 1]2).

A non-negative continuous function f : [0, 1]2 → [0,∞) is called fairly
distributed (wrt λ) if for every x , y ∈ [0, 1] it holds∫

v∈[0,1]
f (x , v) dλ(v) =

∫
u∈[0,1]

f (u, y) dλ(u) = 1.

Let FDC denote the set of all fairly distributed functions on [0, 1]2.
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Alternative approach

For every µ ∈ sG and every f ∈ FDC we define a function
ϕ(f , µ) ∈ L1([0, 1]2, λ2) by

ϕ(f , µ)(u, v) =
∫
(x ,y)∈[0,1]2

f (x , u)f (y , v) dµ(x , y), u, v ∈ [0, 1].

Let Φ(f , µ) be the absolutely continuous (wrt λ2) measure on [0, 1]2 with
the Radon-Nikodym derivative ϕ(f , µ).

For every µ ∈ sG we define the shape C(µ) of µ by

C(µ) = {Φ(f , µ) : f ∈ FDC} ⊆ sG.

Martin Doležal (IM CAS) Measures as Graph Limits
Winter School in Abstract Analysis Sněžné, 11 January 2022
10 / 15



Alternative approach

For every µ ∈ sG and every f ∈ FDC we define a function
ϕ(f , µ) ∈ L1([0, 1]2, λ2) by

ϕ(f , µ)(u, v) =
∫
(x ,y)∈[0,1]2

f (x , u)f (y , v) dµ(x , y), u, v ∈ [0, 1].

Let Φ(f , µ) be the absolutely continuous (wrt λ2) measure on [0, 1]2 with
the Radon-Nikodym derivative ϕ(f , µ).

For every µ ∈ sG we define the shape C(µ) of µ by

C(µ) = {Φ(f , µ) : f ∈ FDC} ⊆ sG.

Martin Doležal (IM CAS) Measures as Graph Limits
Winter School in Abstract Analysis Sněžné, 11 January 2022
10 / 15



Main result

Theorem
Convergence of k-shapes is equivalent to convergence of shapes.

That is, for s-graphons µ and µi , i ∈ N, the following conditions are
equivalent:

∀k∈N : limi→∞ C(µi , k) = C(µ, k) in the Vietoris topology of
K(Rk×k),
limi→∞ C(µi) = C(µ) in the Vietoris topology of K(sG).

Similarly, for an s-graphon µ and graphs Gi , i ∈ N, the following
conditions are equivalent:

∀k∈N : limi→∞ C(Gi , k) = C(µ, k) in the Vietoris topology of
K(Rk×k),
limi→∞ C(Gi) = C(µ) in the Vietoris topology of K(sG).
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Key steps of the proof

The k-shape C(µ, k) of an s-graphon µ is a subset of Rk×k .
But each M ∈ C(µ, k) can be naturally represented by an s-graphon µM .
So C(µ, k) can be represented by a subset C̃(µ, k) of sG.

Convergence of shapes =⇒ convergence of k-shapes:

Lemma
For every s-graphon µ and every k ∈ N we have

C̃(µ, k) = C(µ) ∩
{
µM : M ∈ Rk×k

}
.
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Key steps of the proof

Convergence of k-shapes =⇒ convergence of shapes:

Lemma
For every s-graphon µ we have

C(µ) =
⋃
k∈N

C̃(µ, k).

Lemma
Let ρ be an arbitrary compatible metric on sG. Then for every ε > 0 there
is K ∈ N such that for every µ ∈ sG we have

dρ
H

(
C(µ), C̃(µ,K)

)
≤ ε,

where dρ
H is the Hausdorff distance on sG obtained from ρ.
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Final remarks

Two s-graphons µ1 and µ2 are isomorphic if C(µ1, k) = C(µ2, k) for every
k ∈ N.

Question (Kunszenti-Kovács, Lovász, Szegedy, 2019)
Is there a more simple analytic characterization of isomorphism between
s-graphons?

Corollary
Two s-graphons µ1 and µ2 are isomorphic if and only if C(µ1) = C(µ2).
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