Measures as Graph Limits

Martin Doležal

Institute of Mathematics of the Czech Academy of Sciences

Winter School in Abstract Analysis Sněžné, 11 January 2022

Martin Doležal (IM CAS)

Measures as Graph Limits

.∋...>

Let $\{G_i\}_{i=1}^{\infty}$ be a sequence of graphs.

- What does it mean that $\{G_i\}_{i=1}^{\infty}$ is convergent?
- What is the limit of the sequence?
- Can we always find a convergent subsequence?

Let $\{G_i\}_{i=1}^{\infty}$ be a sequence of graphs.

- What does it mean that $\{G_i\}_{i=1}^{\infty}$ is convergent?
- What is the limit of the sequence?
- Can we always find a convergent subsequence?

A graph is a pair (V, E) where V is a finite set and E is a family of two-element subsets of V.

Graph convergence

Benjamini-Schramm convergence

(I. Benjamini, O. Schramm, 2001)

Local-global convergence

(B. Bollobás, O. Riordan, 2011;

H. Hatami, L. Lovász, B. Szegedy, 2014)

• Convergence of subgraph densities

(L. Lovász, B. Szegedy, 2006;

C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, K. Vesztergombi, 2008)

Action convergence

(A. Backhausz, B. Szegedy, 2018)

s-convergence

(D. Kunszenti-Kovács, L. Lovász, B. Szegedy, 2019)

• X-convergence

(J. Nešetřil, P. Ossona de Mendez, 2020)

Graph convergence

Benjamini-Schramm convergence ۲ (I. Benjamini, O. Schramm, 2001) Local-global convergence ۲ (B. Bollobás, O. Riordan, 2011; H. Hatami, L. Lovász, B. Szegedy, 2014) Convergence of subgraph densities (L. Lovász, B. Szegedy, 2006; C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, K. Vesztergombi, 2008) Action convergence (A. Backhausz, B. Szegedy, 2018) s-convergence (D. Kunszenti-Kovács, L. Lovász, B. Szegedy, 2019) • X-convergence (J. Nešetřil, P. Ossona de Mendez, 2020) sparse graph sequences dense graph sequences arbitrary sequences Martin Doležal (IM CAS) Measures as Graph Limits 3/15

The limit objects of s-convergent sequences of graphs: s-graphons = symmetric Borel probability measures on $[0, 1]^2$

The limit objects do not remember edge densities. Instead, they remember the structure of the edge sets.

.

< □ > < 凸

The limit objects of s-convergent sequences of graphs: s-graphons = symmetric Borel probability measures on $[0, 1]^2$

The limit objects do not remember edge densities. Instead, they remember the structure of the edge sets.

Examples

• Let G_i be the random graph on *i* vertices with edge density $\frac{1}{2}$. Then, with probability 1, s-lim_{$i\to\infty$} $G_i = \lambda^2$.

The limit objects of s-convergent sequences of graphs: s-graphons = symmetric Borel probability measures on $[0, 1]^2$

The limit objects do not remember edge densities. Instead, they remember the structure of the edge sets.

Examples

- Let G_i be the random graph on *i* vertices with edge density $\frac{1}{2}$. Then, with probability 1, s-lim_{$i\to\infty$} $G_i = \lambda^2$.
- Let G_i be the random graph on *i* vertices with edge density $\frac{1}{3}$. Then, with probability 1, s-lim_{$i\to\infty$} $G_i = \lambda^2$.

The limit objects of s-convergent sequences of graphs: s-graphons = symmetric Borel probability measures on $[0, 1]^2$

The limit objects do not remember edge densities. Instead, they remember the structure of the edge sets.

Examples

- Let G_i be the random graph on *i* vertices with edge density $\frac{1}{2}$. Then, with probability 1, s-lim_{$i\to\infty$} $G_i = \lambda^2$.
- Let G_i be the random graph on *i* vertices with edge density $\frac{1}{3}$. Then, with probability 1, s-lim_{$i\to\infty$} $G_i = \lambda^2$.
- Let $G_i = C_i$ be the cycle of length *i*. Then s-lim_{$i\to\infty$} $G_i = \mu_{\alpha}$ (for some $\alpha \in \mathbb{R} \setminus \mathbb{Q}$), where

$$\mu_{\alpha}(Z) = \frac{1}{2} \int_{x \in [0,1]} \left(\mathbb{1}_{Z}(x, x + \alpha \text{ mod } 1) + \mathbb{1}_{Z}(x, x - \alpha \text{ mod } 1) \right) \, d\lambda(x),$$

Let K(k, n) be the set of all nonnegative $k \times n$ matrices with

- each column sum equal to 1,
- each row sum equal to $\frac{n}{k}$.

4 3 4 3 4 3 4

Let K(k, n) be the set of all nonnegative $k \times n$ matrices with

- each column sum equal to 1,
- each row sum equal to $\frac{n}{k}$.

Let G be a graph (with non empty edge set) on n vertices. Let A_G be the adjacency matrix of G. For every $k \in \mathbb{N}$ we define the k-shape C(G, k) of G by

$$C(G,k) = \left\{ \frac{1}{\|A_G\|_1} \cdot MA_G M^T : M \in K(k,n) \right\} \subseteq \mathbb{R}^{k \times k}.$$

- E > - E >

Let K(k, n) be the set of all nonnegative $k \times n$ matrices with

- each column sum equal to 1,
- each row sum equal to $\frac{n}{k}$.

Let G be a graph (with non empty edge set) on n vertices. Let A_G be the adjacency matrix of G. For every $k \in \mathbb{N}$ we define the k-shape C(G, k) of G by

$$C(G,k) = \left\{ \frac{1}{\|A_G\|_1} \cdot MA_G M^T : M \in K(k,n) \right\} \subseteq \mathbb{R}^{k \times k}.$$

Definition

A graph sequence $\{G_i\}_{i=1}^{\infty}$ is s-convergent if, for every $k \in \mathbb{N}$, the sequence $\{C(G_i, k)\}_{i=1}^{\infty}$ is convergent in the Vietoris topology of $\mathcal{K}(\mathbb{R}^{k \times k})$.

|御 と 利用 と 利用 と

Recall: K(k, n) is the set of all nonnegative $k \times n$ matrices with

- each column sum equal to 1,
- each row sum equal to $\frac{n}{k}$.

The k-shape of G (on n vertices) is

$$C(G,k) = \left\{ \frac{1}{\|A_G\|_1} \cdot MA_G M^T : M \in K(k,n) \right\} \subseteq \mathbb{R}^{k \times k}.$$

- E - - E -

Recall: K(k, n) is the set of all nonnegative $k \times n$ matrices with

- each column sum equal to 1,
- each row sum equal to $\frac{n}{k}$.

The k-shape of G (on n vertices) is

$$C(G,k) = \left\{ \frac{1}{\|A_G\|_1} \cdot MA_G M^T : M \in K(k,n) \right\} \subseteq \mathbb{R}^{k \times k}$$

Let f_1, f_2, \ldots, f_k be nonnegative continuous functions on [0, 1] with • $\sum_{j=1}^k f_j \equiv 1$,

• $\int_{[0,1]} f_j d\lambda = \frac{1}{k}$ for every *j*.

We define the k-shape $C(\mu, k)$ of an s-graphon μ by

$$C(\mu, k) = \overline{\{M(f_1, f_2, \dots, f_k) : f_1, f_2, \dots, f_k\}} \subseteq \mathbb{R}^{k \times k},$$

where $M(f_1, f_2, \dots, f_k)(i, j) = \int_{(x, y) \in [0, 1]^2} f_i(x) f_j(y) d\mu(x, y)$.

Definition

A graph sequence $\{G_i\}_{i=1}^{\infty}$ is s-convergent to an s-graphon μ if, for every $k \in \mathbb{N}$, the sequence $\{C(G_i, k)\}_{i=1}^{\infty}$ is convergent to $C(\mu, k)$ in the Vietoris topology of $\mathcal{K}(\mathbb{R}^{k \times k})$.

- E > - E >

Fact

Every sequence of graphs has an s-convergent subsequence.

Theorem (Kunszenti-Kovács, Lovász, Szegedy, 2019)

If $\{G_i\}_{i=1}^{\infty}$ is an s-convergent sequence of graphs then there is an s-graphon μ such that $\{G_i\}_{i=1}^{\infty}$ s-converges to μ .

Theorem (Kunszenti-Kovács, Lovász, Szegedy, 2019)

For every s-graphon μ there is a sequence of graphs which s-converges to $\mu.$

イロト イ理ト イヨト イヨト

Let \mathfrak{sG} be the space of all s-graphons, equipped with the weak topology (inherited from the space of all Borel probability measures on $[0,1]^2$).

∃ ► < ∃ ►

Let \mathfrak{sG} be the space of all s-graphons, equipped with the weak topology (inherited from the space of all Borel probability measures on $[0,1]^2$).

A non-negative continuous function $f: [0,1]^2 \rightarrow [0,\infty)$ is called fairly distributed (wrt λ) if for every $x, y \in [0,1]$ it holds

$$\int_{v\in[0,1]} f(x,v) \, d\lambda(v) = \int_{u\in[0,1]} f(u,y) \, d\lambda(u) = 1.$$

Let \mathcal{FDC} denote the set of all fairly distributed functions on $[0,1]^2$.

For every $\mu \in \mathfrak{sG}$ and every $f \in \mathcal{FDC}$ we define a function $\varphi(f,\mu) \in L^1([0,1]^2,\lambda^2)$ by

$$\varphi(f,\mu)(u,v) = \int_{(x,y)\in[0,1]^2} f(x,u)f(y,v)\,d\mu(x,y), \qquad u,v\in[0,1].$$

Let $\Phi(f,\mu)$ be the absolutely continuous (wrt λ^2) measure on $[0,1]^2$ with the Radon-Nikodym derivative $\varphi(f,\mu)$.

- E > - E >

For every $\mu \in \mathfrak{sG}$ and every $f \in \mathcal{FDC}$ we define a function $\varphi(f,\mu) \in L^1([0,1]^2,\lambda^2)$ by

$$\varphi(f,\mu)(u,v) = \int_{(x,y)\in[0,1]^2} f(x,u)f(y,v)\,d\mu(x,y), \qquad u,v\in[0,1].$$

Let $\Phi(f,\mu)$ be the absolutely continuous (wrt λ^2) measure on $[0,1]^2$ with the Radon-Nikodym derivative $\varphi(f,\mu)$.

For every $\mu \in \mathfrak{sG}$ we define the shape $C(\mu)$ of μ by

$$\mathcal{C}(\mu) = \overline{\{\Phi(f,\mu) : f \in \mathcal{FDC}\}} \subseteq \mathfrak{sG}.$$

• • = • • = •

Theorem

Convergence of k-shapes is equivalent to convergence of shapes.

э

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Theorem

Convergence of k-shapes is equivalent to convergence of shapes.

That is, for s-graphons μ and μ_i , $i \in \mathbb{N}$, the following conditions are equivalent:

- $\forall_{k \in \mathbb{N}}$: $\lim_{i \to \infty} C(\mu_i, k) = C(\mu, k)$ in the Vietoris topology of $\mathcal{K}(\mathbb{R}^{k \times k})$,
- $\lim_{i\to\infty} C(\mu_i) = C(\mu)$ in the Vietoris topology of $\mathcal{K}(\mathfrak{sG})$.

イロト 不得 トイヨト イヨト

Theorem

Convergence of k-shapes is equivalent to convergence of shapes.

That is, for s-graphons μ and μ_i , $i \in \mathbb{N}$, the following conditions are equivalent:

- $\forall_{k \in \mathbb{N}}$: $\lim_{i \to \infty} C(\mu_i, k) = C(\mu, k)$ in the Vietoris topology of $\mathcal{K}(\mathbb{R}^{k \times k})$,
- $\lim_{i\to\infty} C(\mu_i) = C(\mu)$ in the Vietoris topology of $\mathcal{K}(\mathfrak{sG})$.

Similarly, for an s-graphon μ and graphs G_i , $i \in \mathbb{N}$, the following conditions are equivalent:

- $\forall_{k \in \mathbb{N}}$: $\lim_{i \to \infty} C(G_i, k) = C(\mu, k)$ in the Vietoris topology of $\mathcal{K}(\mathbb{R}^{k \times k})$,
- $\lim_{i\to\infty} C(G_i) = C(\mu)$ in the Vietoris topology of $\mathcal{K}(\mathfrak{sG})$.

・ロト ・ 同 ト ・ 国 ト ・ 国 ト …

3

The k-shape $C(\mu, k)$ of an s-graphon μ is a subset of $\mathbb{R}^{k \times k}$. But each $M \in C(\mu, k)$ can be naturally represented by an s-graphon μ_M . So $C(\mu, k)$ can be represented by a subset $\widetilde{C}(\mu, k)$ of \mathfrak{sG} . The k-shape $C(\mu, k)$ of an s-graphon μ is a subset of $\mathbb{R}^{k \times k}$. But each $M \in C(\mu, k)$ can be naturally represented by an s-graphon μ_M . So $C(\mu, k)$ can be represented by a subset $\widetilde{C}(\mu, k)$ of \mathfrak{sG} .

Convergence of shapes \implies **convergence of** *k*-shapes:

Lemma

For every s-graphon μ and every $k \in \mathbb{N}$ we have

$$\widetilde{C}(\mu,k) = C(\mu) \cap \left\{ \mu_M : M \in \mathbb{R}^{k imes k}
ight\}.$$

Martin Doležal (IM CAS)

Key steps of the proof

Convergence of k-shapes \implies convergence of shapes:

Lemma

For every s-graphon μ we have

$$\mathcal{C}(\mu) = \overline{\bigcup_{k \in \mathbb{N}} \widetilde{\mathcal{C}}(\mu, k)}.$$

Lemma

Let ρ be an arbitrary compatible metric on \mathfrak{sG} . Then for every $\varepsilon > 0$ there is $K \in \mathbb{N}$ such that for every $\mu \in \mathfrak{sG}$ we have

$$d_{H}^{\rho}\left(\mathcal{C}(\mu),\widetilde{\mathcal{C}}(\mu,\mathcal{K})\right)\leq \varepsilon,$$

where d_{H}^{ρ} is the Hausdorff distance on \mathfrak{sG} obtained from ρ .

Martin Doležal (IM CAS)

イロト 不得 トイヨト イヨト

э

Two s-graphons μ_1 and μ_2 are isomorphic if $C(\mu_1, k) = C(\mu_2, k)$ for every $k \in \mathbb{N}$.

Question (Kunszenti-Kovács, Lovász, Szegedy, 2019)

Is there a more simple analytic characterization of isomorphism between s-graphons?

Corollary

Two s-graphons μ_1 and μ_2 are isomorphic if and only if $C(\mu_1) = C(\mu_2)$.

<日

<</p>

Doležal, Martin. *Graph limits: An alternative approach to s-graphons.* J. Graph Theory 99 (2022), 90–106

Kunszenti-Kovács, Dávid; Lovász, László; Szegedy, Balázs. Measures on the square as sparse graph limits. J. Combin. Theory Ser. B 138 (2019), 1–40.

3 1 4 3 1