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Abstract A new fractional strain tensor ε α�u� of order α (0 ° α ° 1) is in-
troduced for a displacement u of a body occupying the entire three-dimensional
space. For α t 1, the fractional strain tensor approaches the classical infinites-
imal strain tensor of the linear elasticity. It is shown that ε α�u� satisfies Korn’s
inequality (in a general Lp version, 1 ° p ° ð) and the fractional analog of
Saint-Venant’s compatibility condition. The strain ε α�u� is then used to formu-
late a three-dimensional fractional linear elasticity theory. The equilibrium of the
body in an external force f is determined by the Euler-Lagrange equation of the
total energy functional. The solution u is given by Green’s function Gα :

u�x� ¨ �
Rn

Gα�x − y�f�y� d yÙ x X R
3Ø

For an isotropic body the equilibrium equation reads

−µ �−á�αu + �λ + µ�∇α divα u + f ¨ 0

where λÙ µ are the Lamé moduli of the material and �−á�α , ∇α and divα are the
fractional laplacean, gradient and divergence. Green’s function can be determined
explicitly in this case:

Gα�x� ¨ cα
µ @x@3−2α

�1− λ + µ

2α�λ + 2µ� �1 + �2α − 3�@x@−2x � x
�Ù

x X R
3Ù x © 0Ù where 1 is the identity tensor (matrix), and cα a normalization

factor (determined below). For α t 1 the function Gα approaches Green’s func-
tion of the standard linear elasticity. Similar approach applies to the equilibrium
solution.
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1 Introduction

It is well-known that long-range interatomic forces, important in many situations,¡
are not accounted for adequately by the classical local elasticity. The nonlocal theories
are designed to eliminate this undesirable feature: the behavior at a material point is
influenced by the state of all points of the body. The equilibrium displacement is
determined by integral equations, rather than by the differential equations of the local
theories.

The theory of nonlocal elasticity has attracted the attention of many writers; there
are many approaches. The literature is large.¡¡

This paper discusses a particular form of nonlocal elasticity, which is based on the
fractional vector calculus, i.e., the theory of gradients, divergences, etc. of fractional
order. Central to the approach is a novel definition of the fractional strain tensor. For
a body that occupies the entire n-dimensional space (which is assumed throughout),
the value ε α�u��x� of the fractional strain tensor at x X R

n is given by

ε α�u��x� ¨ 1

2
µα �

Rn

�u�x� − u�y�	 � �x − y� + �x − y� � �u�x� − u�y�	
@x − y@n+α+1

d y Û
(1.1)

here
u Ú Rn r R

n (1.2)

is the displacement of the body,
0 ° α ° 1

is a fixed number, called the order of the fractional strain tensor, and

µα Ú¨ 2
α
π
−n¤2

Γ��n + α + 1�¤2	¤Γ��1 − α�¤2	
is a normalization factor; Γ is the gamma function. The field ε α�u� takes the values
in the space of symmetric second-order tensors.

The specific form (1.1) of ε α�u� is motivated below.

¡E. g., in thin film mechanics, fracture mechanics, the theory of dislocations etc.
¡¡ See [25] and [14] for recent reviews.
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The reader is referred to [3–4], [7], [32], [33], [1], [20], [28] and the literature
therein for earlier approaches to elasticity based on the fractional calculus.

The theory based on (1.1) is rotationally invariant, i.e., if u is a displacement as
in (1.2) and if a new displacement � Ú Rn r R

n is given by

��x� ¨ qu�qTx�Ù x X R
n Ù

where q is an orthogonal tensor, then

ε α����x� ¨ qε α�u��qTx�qTØ
(This is easily verified by elementary algebraic rearrangements of the formulas (1.1)
for ε α��� and ε α�u�.)

The satisfaction of the fundamental requirement of rotational invariance distin-
guishes the present work from earlier three-dimensional approaches to fractional elas-
ticity. Indeed, these works use (explicitly or implicitly) the definition of the fractional
gradient that is not rotationally invariant. Specifically, let � be a scalar- or vector-
valued function of x

1
ÙÜ Ùxn . The fractional gradient ∇α� of � is defined in a co-

ordinate way as the n tuple

∇α� ¨ �Dα
x 1
� ÙÜ ÙDα

x n
� 	 (1.3)

of the one-dimensional fractional derivatives Dα
x i
� with respect to the variable xi ,

i ¨ 1ÙÜ Ùn. Clearly, (1.3) is laid down by analogy with the classical gradient

∇� ¨ �Dx 1
� ÙÜ ÙDx n

� 	
where Dx i

� are the partial derivatives with respect to xi Ø The classical gradient is
rotationally invariant, i.e., if a new function r is given by

r�x� ¨ � �qTx�Ù x X R
n Ù

where q is an orthogonal tensor, then

∇r�x� ¨ q∇� �qTx�Ø
In contrast, the definition (1.3) of ∇α� is not rotationally invariant; i.e., it is easy to
find a function � and a point x such that

∇αr�x� © q∇α� �qTx�Ù
see [29; Section 1].¡

The present paper is based on a rotationally invariant fractional gradient ∇α (see
Definition 2.3);¡¡ similar rotationally invariant definitions are given of the fractional
laplacean �−á�α¤2 and fractional divergence divα. In fact, up to a multiple, the op-
erators �−á�α¤2Ù ∇α, and divα used in this paper are the only operators that are
rotationally invariant and have natural scaling properties, as proved in [29].

The operators �−á�α¤2Ù∇α, and divα are defined in two steps. In Section 2 they
are defined as elements of appropriate test function spaces of smooth and (slowly)
decaying scalar- vector- or tensor-valued functions on R

n Ø These initial definitions

¡This negative result is independent of the chosen type of the one-dimensional fractional
derivativeDα

x i
� (Riemann-Liouville, Grünwald-Letnikov,Ü ).

¡¡ See the references in Section 2.
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are then extended in Section 3 to the duals of test function spaces by dual (weak) def-
initions. Thus, e.g.,∇α is the formal adjoint of− divα, etc. The space of test functions
and its dual are described in detail in Sections 2 and 3. Here we only mention that the
space of test functions contains the Schwartz space of rapidly decaying functions and
thus the dual can be interpreted as a subset of the space of tempered distributions.

The integral in (1.1) converges if the displacement u belongs to the spaceT�Cn�
of slowly decaying test functions on R

n with values in the space C
n of ntuples of

complex numbers.¡ Then ε α�u� belongs to a similar space T�Sn� of symmetric-
tensor-valued test functions. The elements u of the dual spaceT′�Cn� ofT�Cn� are
interpreted as (generalized) displacements. The weak definition (6.2) then determines
ε α�u� as an element of the dual T′�Sn� of T�Sn�.¡¡

The most interesting cases arise when the weak strain tensor ε α�u� is restricted
in some special way. Two particular cases are immediate: when ε α�u� is represented
by an Lp function, 1 ² p ² ð (see Definition 6.1(ii)), and when ε α�u� is represented
by a measure (see Definition 6.1(iii)). The present paper deals with the first case; the
second case will be treated in a future paper.

The particular form (1.1) of ε α�u� is motivated by the analogy with the classical
strain tensor

ε �u� ¨ 1

2
�∇u + ∇uT�Ù

since in terms of the fractional gradient (2.3), (1.1) can be rewritten as

ε α�u� ¨ 1

2
�∇αu + ∇αuT�

if u X T�Cn�. Moreover, we have the following approach to the classical strain
tensor:

ε α�u� r ε �u� as α t 1Ø (1.4)

Equation (1.4) is a consequence of the property ∇αu r ∇u as α t 1 proved (and
stated precisely) in [2; Appendix C].

The fractional strain tensor satisfies Korn’s inequality. Let 1 ° p ° ð and 0 °
α ° 1. For every u X T′�Cn� with ε α�u� X Lp�Sn� we have

@ε α�u�@Lp ³ c @∇αu@Lp

with some positive constant c ¨ c �nÙpÙα� independent of uØHere @ċ@Lp is the usual
norm on the space LpÙ

@ ċ @Lp ¨ � �
Rn

@ ċ @p d x
1¤pØ

We then apply the formalism of fractional strain tensors to treat linearly elastic
fractional bodies. In Section 7 we present the theory for bodies of general symmetry;
in this introduction we consider isotropic bodies for simplicity. (See Example 7.5 and
its proof for details.) The energy is given by

¡We use complex values in view of the future use of the Fourier transformation (starting
from Section 4).

¡¡ Since the domain of definition of functions from various function spaces is always RnÙ
we indicate only the ranges: thus, e.g., the symbol Lp�Cm� denotes the space of Cm -valued
functions on R

n that belong to Lp .
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E �u� ¨ 1

2
�
Rn

�λ�tr ε α�u�	2 + 2µε α�u� ċ ε α�u�� d x − �
Rn

f ċ u d xÙ

where f is the external force and λ Ù µ are the Lamé moduli of the material, subject
to the classical strong ellipticity inequalities (7.13). The equilibrium displacement is
the solution of the corresponding Euler-Lagrange equations

−µ �−á�αu + �λ + µ�∇α divα u + f ¨ 0Ø (1.5)

The solution is given in terms of Green’s function Gα by

u�x� ¨ �
Rn

Gα�x − y�f �y�d y

provided that
f X Lq�Cn� where 1 ° q ° n¤2α Ø

The solution belongs to the space R2αÙq �Cn� of Riesz potentials¡ of order 2α , de-
fined in Section 5. The equilibrium equation (1.5) then has a pointwise meaning al-
most everywhere.

The existence and properties of Green’s function for a body of general symmetry
are established in Section 7. The explicit form is available for isotropic bodies:

Gα�x� ¨ cα
µ @x@n−2α

�1 − λ + µ

2α�λ + 2µ� �1 + �2α − n�@x@−2x � x
� (1.6)

for any x X R
n Ù x © 0Ùwhere 1 is the identity tensor (matrix) and cα a normalization

factor, see (7.15).
Green’s function G1 of classical linear elasticity is obtained by putting α ¨ 1 in

(1.6); thus Gα r G
1
as α t 1 by continuity. Moreover, the displacement u ¨ uα of

fractional elasticity of order α converges for α t 1 to the displacement u
1
given by the

standard linear elasticity. This will be shown elsewhere from a broader perspective.

2 Fractional vector calculus I (smooth case)

In this section we introduce the fractional laplacean �−á�α¤2, fractional gradient∇α

and the fractional divergence divα for smooth test fields. Here the order α can be any
complex number satisfying Re α ± −n, see [29]. However, in (2.2)–(2.5) below, we
give sample formulas only for 0 ° α ° 1ØAt the end of this section, we also recall the
Riesz transformation which will play a crucial role in the proof of fractional Korn’s
inequality. The operators �−á�α¤2, ∇α and divα with Re α ± 0 will be extended to
irregular fields in Section 3.

Throughout the paper,Ln denotes the space of all (complex) second-order tensors
on an n-dimensional space, interpreted as linear transformations fromC

n into itself;
S
n is the subspace of all symmetric tensors. Further, Z denotes a finite-dimensional

complex vector space endowed with a bilinear form which associates with any xÙ
y X Z a complex number x ċ y Ø Below we use the choices Z ¨ CÙCn Ù Ln Ù and S

n Ø
¡The space of Riesz potentials is larger than themore familiar space of Bessel potentials,

see (5.8).
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The tensor product Z � C
n is interpreted as the space of all linear transformations

fromC
n intoZØ If z X Z and x X C

n then z�x X Z�C
n is a linear transformation

given by �z � x�y ¨ z�x ċ y� for every y X C
n , where x ċ y ¨ �n

i¨1
xiyi .

We denote by Lp�Z� the set of all Z-valued functions on Rn integrable with p th
power, 1 ² p ² ðÙ by S�Z� the set of all infinitely differentiable rapidly decaying
Z-valued functions on Rn , and by D�Z� the subset ofS�Z� consisting of functions
with compact support.

2.1 Definition (Cf. [17–18]) We denote by T�Z� the space of all infinitely differ-
entiable maps f Ú Rn r Z whose derivatives∇if of any order i X N

0
Ú¨  0Ù 1ÙÜ(

are bounded and integrable on Rn . As a consequence, one obtains that ∇if �x� r 0

as @x@ r ð for each i X N
0
. We introduce an increasing sequence of norms ñ ċ ñk

on T�Z�, k X N
0
Ù by
ñf ñk ¨ max !@∇ if @L 1Ù @∇ if @Lð Ú 0 ² i ² k)Ø

A sequence !fl )lXN
of elements of T�Z� is said to converge to an element f X

T�Z� if and only if

ñf − flñk r 0 as l r ð for every fixed k X N
0
Ø

Clearly,
S�Z� ⊂ T�Z�Û (2.1)

it turns out that the imbedding is continuous and dense (even D�Z� is dense in
T�Z�), [18].
2.2 Definition Let 0 ° α ° 1Ø The fractional laplacean of f X T�Z� of order α¤2
is a function �−á�α¤2f Ú Rn r Z defined by

�−á�α¤2f �x� ¨ να �
Rn

f �x� − f �y�
@x − y@n+α

d y (2.2)

for every x X R
n Ù where

να Ú¨ 2
α
π
−n¤2

Γ��n+ α�¤2	¤Γ�−α¤2�Ø
If α X C and Re α ± 0Ù the operator �−á�α¤2 maps the space T�Z� continu-

ously into itself [18], [29].
The definition (2.2) is standard, I refer, e.g., to [23; Eq. (25.59)],where the authors

use the notation Dα for �−á�α¤2Ø
2.3 Definition Let 0 ° α ° 1Ø The fractional gradient of order α of u X T�Z� is
a function ∇αu Ú Rn r Z � C

n defined by

∇αu�x� ¨ µα �
Rn

�u�x� − u�y�	 � �x − y�
@x − y@n+α+1

d y (2.3)

for any x X R
n Ø In particular, if u X T�Cn�, then (2.3) defines a function ∇αu Ú

R
n r L

n and if f X T�C� then (2.3) simplifies to

∇αf �x� ¨ µα �
Rn

�x − y��f �x� − f �y�	
@x − y@n+α+1

d y (2.4)
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and ∇αu Ú Rn r C
n Ø¡Apparently, the symbol ∇α occurs first in [24; p. 3534]. The

term “fractional gradient” appears first in [26]. However, the origins of this notion are
found in the works of Horváth [12–13]. See also [27], [29] and [5–6].

If α X C and Re α ± 0Ù the operator ∇α maps the space T�Z� continuously
into T�Z �C

n�.
2.4 Definition Let 0 ° α ° 1Ø The fractional divergence of order α of σ X T�Z �
C

n� is a function divα σ Ú Rn r Z defined by

divα σ�x� ¨ µα �
Rn

�σ�x� − σ�y�	�x − y�
@x − y@n+α+1

d y Ù (2.5)

x X R
n Ø In particular, if σ X T�Ln� then (2.5) defines a function divα σ Ú Rn r C

n

and if u X T�Cn� then (2.5) reads

divα u�x� ¨ µα �
Rn

�x − y� ċ �u�x� − u�y�	
@x − y@n+α+1

d y

and defines a function divα u Ú Rn r CØ
If α X C and Re α ± 0Ù the operator divα maps the space T�Z � C

n� into
T�Z�.
2.5 Definition The Riesz transform Rf of f X T�C� is defined by

Rf �x� ¨ µ
0
lim
εs0

�
@x−y@±ε

�x − y�f �y�
@x − y@n+1

d y Ù (2.6)

x X R
n Ø Here µ0 is the particular case of µαØ

2.6 Theorem Let 1 ° p ° ðØ The limit in (2.6) exists for every f X Lp�R�
and for almost every x X R

n Ø This limit defines a continuous linear operator, again

denoted by R , from Lp�R� into Lp�Cn�. We write Rf ¨ �R
1
f ÙÜ ÙRnf �Ùwhere the

components Rif map Lp�R� into itself.

3 Fractional vector calculus II (distributions)

We denote by T′�Z� the topological dual of T�Z�. We write 1f Ùg9 for the value
of f X T′�Z� on g X T�Z�.

In this section we extend the fractional operators �−á�α¤2, ∇α and divα from
the spaces of smooth test functions to their duals by means of weak (distributional)
definitions. Weak definitions have been used in the context of fractional calculus in,
e.g., [23; Section 8.3], [18], [29; Section 6] and [5]. I follow [29].

It follows from the continuity of the imbedding (2.1) that by restricting the do-
main of definition of a functional f X T′�Z� to S�Z�Ù we obtain a Z-valued tem-
pered distribution f

0
X S′�Z�; the density of the imbedding shows that conversely

¡Here I use the form (2.4) given by Comi & Stefani [5; Section 2] which is equivalent to
the formulas for∇α givenelsewhere in the literature.A similar remark applies to the fractional
divergence divα , introduced originally in [29; Section 2] by an equivalent formula.
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f0 completely determines f Ø In view of this, we can consider the elements ofT′�Z�
as a special class of tempered distributions and write

T′�Z� ⊂ S′�Z�Ø (3.1)

Any element f X T�Z� determines a linear functional inT′�Z�, again denoted
by f Ù defined by

1f Ùg9 Ú¨ �
Rn

f ċ g d x (3.2)

for any g X T�Z�. Thus we have the embedding

T�Z� ⊂ T′�Z�Ø
Further, it is not hard to see that any functional represented by a function inLp�Z�

(1 ² p ² ð) belongs toT′�Z�, and any distribution inD ′�Z� with compact support
can be extended to a functional in T′�Z�Ø

3.1 Definition The weak fractional laplacean inT′�Z� is defined as the adjoint of
the original fractional laplacean defined for test functions. Hence the weak fractional
laplacean �−á�α¤2f of f X T′�Z� is an element of T′�Z� satisfying

2�−á�α¤2f Ùg: ¨ 2f Ù �−á�α¤2g: (3.3)

for any g X T�Z�, where �−á�α¤2g is given by (2.2). Equation (3.3) is motivated
by the following easily verifiable identity

�
Rn

�−á�α¤2f ċ g d x ¨ �
Rn

f ċ �−á�α¤2g d x

for any f Ù g X T�Z�Ùwhere the laplaceans are given by (2.2). For elements ofT�Z�
the weak definition (3.3) reduces to the original definition (2.2).

3.2 Definition The weak fractional gradient on T′�Z� is defined as minus the ad-
joint of the fractional divergence on test functions. Thus the weak fractional gradient
∇αu of u X T′�Z� is an element of T′�Z � C

n� satisfying
1∇αuÙσ9 ¨ −1uÙdivα σ9 (3.4)

for everyσ X T�Z�C
n�, where divα σ is given by (2.5). Equation (3.4) is motivated

by the identity

�
Rn

∇αu ċ σ d x ¨ − �
Rn

u ċ divα σ d x

for each u X T�Z�Ù σ X T�Z � C
n�, where ∇αu and divα u are given by (2.3)

and (2.5). Again, for elements of T�Z�, the weak fractional gradient reduces to the
original definition in Section 2.

3.3 Definition The weak fractional divergence on T′�Z � C
n� is defined as mi-

nus the adjoint of the fractional gradient on test functions. Thus the weak fractional
divergence divα σ of σ X T′�Z � C

n� is an element of T′�Z� satisfying (3.4) for
every u X T�Z�, where ∇αu is given by (2.3).
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4 Fourier transformation

This section determines the Fourier transforms of the fractional operators �−á�α¤2,
∇α and divα , see Equations (4.5)–(4.9). These Fourier transformswill play basic roles
in analyzing equations of the fractional approach to continuous media in Sections 6
and 7.

4.1 Fourier transformation inL1�Z� andT�Z� The Fourier transform of a func-
tion f X L1�Z� is the function Ff ª é defined by

Ff �ξ� ª é �ξ� ¨ �
Rn

f �x�eix ċξ d xÙ ξ X R
n Û (4.1)

the inverse transform is

F−1é �x� ª f �x� ¨ 1

�2π�n �
Rn

é �ξ�e−ix ċξ d xÙ x X R
n Ù (4.2)

provided é X L1�Z�.
Remark. Definitions (4.1) and (4.2) are identical with those in [9; Chapter II,

Section 1] and [23; p. 484], including the normalization factors (which may vary
from author to author).

We denote by ��Z� the set of Fourier transforms of functions from T�Z� ⊂
L1�Z�:

��Z� ¨ !é Ú f X T�Z�)Ø

4.2 Proposition

(i) Each function� X ��Z� is continuous and rapidly decaying in the sense that
for every non-negative integer i there exists a constant c ¨ c �iÙ� � such that

@� �ξ�@ ² c�1 + @ξ@i	
for each ξ X R

n ;

(ii)We have
S�Z� ⊂ ��Z�Û (4.3)

(iii) If Re α ± 0 and � X ��Z� then
@ξ@α� X ��Z� and @ξ@α−1� � ξ X ��Z � C

n�Ø (4.4)

It follows from (i) and (ii) that the set ��Z� contains non-differentiable functions:
if � X S�Z� does not vanish at the origin in R

n and 0 ° Re α ° 1, then @ξ@α� X
��Z� is not differentiable at the origin.
Proof (i): Since any derivative ∇if of an f X T�Z� is integrable, its Fourier
transform ξ ié �ξ� is bounded and continuous.

(ii): Equation (4.3) follows from (2.1) and FS�Z� ¨ S�Z�Ø
(iii): Equation (4.4)1Ù2 follow from (4.5) and (4.7), below. è
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4.3 Fourier transforms of fractional differential operators In the following ta-
ble, the left column displays the value Oa of a fractional differential operator O on a
functiona, while the right column displays the Fourier transform ofOa on the Fourier
transform ä of a. Let Re α ± 0Ø

�−á�α¤2f @ξ@αé Ù (4.5)

∇αf −iξ@ξ@α−1é Ù (4.6)

∇αu −i@ξ@α−1ö � ξ Ù (4.7)

divα u −i@ξ@α−1ξ ċ öÙ (4.8)

divα σ −i@ξ@α−1Ãξ Ù (4.9)

Rf iξ@ξ@−1é Ù (4.10)
here

(4.5) holds for f fromT�Z�,
(4.6) and (4.10) holds for f fromT�C�,
(4.7) and (4.8) holds for u fromT�Cn� or fromT�Z�,
and (4.9) holds for σ fromT�Ln� or from T�Z � C

n�.
Equation (4.5) is well-known; see e.g., [23; Eq. (25.62)]. Equations (4.6)–(4.8) are
direct consequences of (4.5). For example, to obtain Equation (4.6), we first use (2.2)
and (2.4) to prove that

∇αf ¨ ∇�−á��α−1�¤2f Ù (4.11)

see [29]. Then replace α by α − 1 in (4.5) to obtain the right column entry in the
form @ξ@α−1é �ξ�. Finally,we use thewell-known fact that the Fourier transformation

changes the differentiation into themultiplication by−iξ to convert @ξ@α−1é �ξ� into
the right-entry of (4.6). The reader is referred to [26] for the first occurrence of (4.6)
and a different proof. Formula (4.9) is proved similarly, only (4.11) is replaced by

divα u ¨ div�−á��α−1�¤2uØ
Finally, (4.10) is proved in [8; Eq. (4.8), p. 76] and in [31; Eq. (8), p. 58].

4.4 Fourier transformation in T
′�Z� We define the Fourier transform of f X

T′�Z� as the functional Ff ª é on ��Z� given by
1é Ù�9 ¨ 1f ÙÆ9

for every � X ��Z� where Æ X T�Z� is the (direct) Fourier transform of � Ø We
denote by �′�Z� the image of T′�Z� under the Fourier transform:

�′�Z� ¨ !é Ú f X T′�Z�)Ø
Alternatively, in view of (4.3) we can restrict the domain of any functional Λ X
�′�Z� to obtain a tempered distribution Λ

0
X S′�Z�Ø This allows to interpret

�′�Z� as a special class of Z-valued tempered distributions, i.e.,

�′�Z� ⊂ S′�Z�Ø (4.12)

This is also consistent with the inclusion (3.1), since the Fourier transformationmaps
the space S′�Z� onto itself. The interpretation (4.12) is sometimes convenient.
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LetΛ be a linear functional on ��Z� and Ξ a linear functional on��Z �C
n�Ø

Proposition 4.2(iii) allows to define the products @ξ@αΛ, @ξ@α−1
Λ�ξ and @ξ@α−1

Ξξ

as linear functionals on S�Z�, S�Z � C
n� and S�Z�, respectively, by

1@ξ@αΛÙ�9 ¨ 1ΛÙ @ξ@α�9Ù (4.13)

1@ξ@α−1
Λ� ξ Ùψ9 ¨ 1ΛÙ @ξ@α−1ψξ9 (4.14)

and
1@ξ@α−1

Ξξ Ù�9 ¨ 1ΞÙ @ξ@α−1� � ξ9 (4.15)

for every � X ��Z� and ψ X ��Z � C
n�Ø The definitions (4.13)–(4.15) in par-

ticular apply when Λ or Ξ are identified with the Fourier transforms of the elements
ofT′�Z� orT′�Z �C

n�. With the definitions (4.13)–(4.15), Equations (4.5)–(4.9)
can be extended to the elements f , u and σ of the duals T′�Z�.

5 The space of Riesz potentials

We now introduce the basic space of solutions of the equilibrium problem of the
fractional elasticity (Section 7).

5.1 Definition (Samko [22], Samko, Kilbas &Marichev [23; § 26]) Let 0 ° α ° n

and 1 ° p ° n¤α . We define the space of Z-valued Riesz potentials RαÙp�Z� as the
set of all convolutions

f ¨ Iα   � where � X Lp�Rn ÙZ� (5.1)

where Iα is the Riesz kernel,

Iα�x� ¨ ν−α@x@α−n Ù 0 © x X R
n Ø

We define the norm @ ċ @αÙp on RαÙp�Z� by
@f @αÙp ¨ @� @Lp (5.2)

for any f as in (5.1). This norm renders RαÙp�Z� a Banach space.
We refer to Herz [10], Maz’ya & Havin [19], Johnson [15], Peetre [21] for addi-

tional references on spaces of Riesz potentials.
Recall that in Section 3we defined the fractional laplacean and fractional gradient

of any f X T′�Z� as elements of T′�Z� and T′�Z � C
n�, respectively. We now

consider particular cases when the fractional laplacean and fractional gradient are
represented by integrable functions.

5.2 Definitions Let α ± 0 and 1 ² p ² ðØ
(i) We say that an element f of T′�Z� has a weak fractional laplacean of order

α¤2 in Lp if there exists an element �−á�α¤2f X Lp�Z� such that
1f Ù �−á�α¤2g9 ¨ �

Rn

�−á�α¤2f ċ g d x

for every g X T�Z�Ø If this is the case, we write �−á�α¤2f X Lp�Z�.
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(ii) We say that an element f of T′�Z� has a weak fractional gradient of order
α in Lp if there exists an element ∇αf X Lp�Z �C

n� such that
1f Ùdivα g9 ¨ − �

Rn

∇αf ċ g d x

for every g X T�Z � C
n�Ø If this is the case, we write ∇αf X Lp�Z � C

n�.
Definitions of the type 5.2(i) and (ii) occur in [5; Sections 2 and 3].

5.3 Proposition If 1 ° p ° ð, α ± 0 and f X T′�Z� then
�−á�α¤2f X Lp�Z� h ∇αf X Lp�Z � C

n�Ø

Cf. [26–27] and [5].

Proof We deduce from (4.5), (4.6) and (4.10) that

∇αf ¨ R�−á�α¤2f (5.3)

for any f X T�Z�Ø By the weak definitions 5.2(i), (ii), Equation (5.3) extends to
f X T′�Z� as in the statement of the proposition. è

5.4 Theorem (Characterization of Riesz potentials) We have

RαÙp�Z� ¨ !f X Lp �Z� Ú �−á�α¤2f X Lp�Z�)
¨  f X Lp �Z� Ú ∇αf X Lp�Z � C

n�(
(5.4)

for any 0 ° α ° n and 1 ° p ° n¤α , where
p  ¨ np¤�n − αp�Ø

Moreover, the operator �−á�α¤2 is the left inverse of the operator Iα on Lp�Z�, i.e.,
�−á�α¤2�Iα   � � ¨ � for every � X Lp�Z�Ø (5.5)

In view of (5.5), Equation (5.1) can be rewritten formally as

f ¨ �−á�−α¤2� Ø

Proof The reader is referred to [23; Theorem 26.8] for the proof of (5.4)
1
; Equation

(5.4)
2
is then a consequence of Proposition 5.3. For the proof of (5.5), see [23; The-

orem 26.3]. è

5.5 Remark (Embedding of RαÙp with respect to α ) If 0 ° α ° n, 0 ° p ° n¤α ,
and 0 ² β ² α then

RαÙp�Z� ⊂ RβÙq�Z� where q ¨ np

n − �α − β�p Ø

See [22; Theorem 6].

The space of Riesz potentials can be compared with the more familiar space of
Bessel potentials.
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5.6 Definition Let α ± 0 and 1 ° p ° ðØ We define the space of Z-valued Bessel
potentials LαÙp�Z� as the set of all convolutions

f ¨ Gα   � where � X Lp�Rn ÙZ� (5.6)

where Gα is the Bessel kernel, i.e., the inverse Fourier transform (in the sense of
distributions) of the function Ðα�ξ� Ú¨ �1 + @ξ@2�−α¤2. We define the norm @ ċ @′αÙp
on LαÙp�Z� by

@f @′αÙp ¨ @� @Lp

for any f as in (5.6). This norm renders LαÙp�Z� a Banach space. We refer, e.g., to
[23; Subsection 27.1] for the basic information about spaces Bessel potentials.

5.7 Theorem (Characterization of Bessel potentials) We have

LαÙp�Z� ¨ !f X Lp�Z� Ú �−á�α¤2f X Lp�Z�)
¨  f X Lp�Z� Ú ∇αf X Lp�Z � C

n�( (5.7)

for any α ± 0 and 1 ° p ° ðØ Consequently, if 0 ° α ° n and 1 ° p ° n¤α , then
LαÙp�Z� ¨ RαÙp�Z� P Lp�Z�Ø (5.8)

Proof For the proof of (5.7)
1
, see [30] for 0 ° α ° 2 and [23; Theorem 27.3] for

the general case. Equation (5.7)2 is then a consequence of Proposition 5.3. è

6 Weak fractional strain tensor. Fractional Korn’s inequality

The fractional gradient (see (2.3)) allows to rewrite the definition (1.1) of the frac-
tional strain tensor as

ε α�u� ¨ 1

2
�∇αu + ∇αuT� (6.1)

for every u X T�Cn�, in analogy to the relation

ε �u� ¨ 1

2
�∇u + ∇uT�

for the classical strain tensor.
We now give the weak definition of the fractional strain tensor and two particular

cases.

6.1 Definitions Let 0 ° α ° 1Ø
(i) If u X T′�Cn�Ù we define the weak fractional strain tensor ε α�u� of u as an

element of T′�Sn� given by
1ε α�u�Ùσ9 ¨ −1uÙdivα σ9 (6.2)

for any σ X T�Sn�Ø
(ii) Let 1 ² p ² ðØ A deformation u X T′�Cn� is said to have the weak

strain tensor of order α in Lp if there exists ε α�u� X Lp�Sn� satisfying (6.2) for any
σ X T�Sn�Ø If this is the case, we write ε α�u� X Lp�Sn�.
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(iii) We say that u X L1�Rn ÙRn� is a displacement of bounded fractional de-
formation if the weak fractional strain tensor ε α�u� is represented by a S

n -valued
measure on Rn , again denoted by ε α�u�. Equation (6.2) then reads

�
Rn

σ ċ d ε α�u� ¨ − �
Rn

u ċ divα σ dLn

for every σ X T�Sn�Ø If this is the case, we write ε α�u� X M�Sn�Ø
We often omit the modifier “weak” and speak of “fractional strain tensor.” With

Definition 6.1(i), Equation (6.1) continues to hold provided that ∇α is interpreted as
the weak fractional gradient.

6.2 Theorem (Fractional Korn’s inequality) If 0 ° α ° 1 and 1 ° p ° ð,

there exists a positive constant c ¨ c �nÙpÙα� such that for every u X T′�Cn�
with ε α�u� X Lp�Sn� we have ∇αu X Lp�Ln� and

@ε α�u�@Lp ³ c @∇αu@Lp Ø (6.3)

Proof Prove preliminarily that any u X T′�Cn� with ε α�u� X Lp�Sn� satisfies
�−á�α¤2u X Lp�Cn� and

�−á�α¤2ui ¨ Rk �2ε αik + RiRlε
α
k l	 (6.4)

1 ² i ² n, where we use the summation convention and denote byRi the components
of the Riesz transformation (Theorem 2.6). To prove (6.4), we denote by ö and ¶α

the Fourier transforms of u and ε α�u�Ø By (4.7), the Fourier transform of ∇αu is the
function ξ w −i@ξ@α−1ö � ξ and hence (6.1) gives

¶α ¨ − i

2
�@ξ@α−1ö � ξ + @ξ@α−1ξ � ö	 (6.5)

or in components

¶αik ¨ − i

2
�@ξ@α−1ö iξk + @ξ@α−1ξiök 	Ø (6.6)

By (4.10), the Fourier transform of Rk f is the function ξ w iξk @ξ@−1é and thus by
(6.6),

Û iÛkÛ l¶
α
k l ¨ −@ξ@α−2ξi�ö ċ ξ�

and

Ûk ¶
α
ik ¨ 1

2
�@ξ@αö i + @ξ@α−2ξi�ö ċ ξ�	Ø

Hence
@ξ@αö i ¨ 2Ûk ¶

α
ik + Û iÛkÛ l¶

α
k l

and (6.4) follows. As a consequence,

∇αuij ¨ −2RkRj ε
α
ik �u� − RiRjRkRlε

α
k l�u�Ù (6.7)

1 ² iÙ j ² n.
By Theorem 2.6, every component Ri of the Riesz transformation maps Lp�R�

continuously into itself if p ± 1Ø One can thus estimate each term in (6.7) to obtain
(6.3) for each u X T�Cn� with some constant c ¨ c �nÙpÙα� that is determined by
the norm of the Riesz transformation. è
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6.3 Proposition (Compatibility conditions) If 0 ° α ° 1 and 1 ° p ° ð then for

any u X T′�Cn� with ε α�u� X Lp�Sn� and for any collection of integers iÙ j ÙkÙ l X
 1ÙÜÙn( we have

∇α
l ∇α

j ε αik + ∇α
k ∇α

i ε αj l − ∇α
l ∇α

i ε αj k − ∇α
k ∇α

j ε αil ¨ 0 (6.8)

in the weak sense, i.e.,

1ε αik Ù∇α
j ∇α

l �9+ 1ε αj l Ù∇α
i ∇α

k �9− 1ε αj k Ù∇α
i ∇α

l �9− 1ε αil Ù∇α
j ∇α

k �9 ¨ 0 (6.9)

for every � X T�C�Ù where we use the notation (3.2).
Proof We first prove (6.8) for any u X T�Cn�Ø Passing to the Fourier transforms,
we observe that (6.6) gives

ξlξj ¶
α
ik ¨ − i

2
�@ξ@α−1ö iξk ξlξj + @ξ@α−1ξiök ξlξj 	Ø

Making the permutations indicated in (6.8), and summing as suggested there, one
obtains

−ξlξj @ξ@2α−2¶αik − ξk ξi@ξ@2α−2¶αj l + ξlξi@ξ@2α−2¶αj k + ξk ξj @ξ@2α−2¶αil ¨ 0

The left-hand side of this equation is the Fourier transform of the left-hand side of
(6.8). A multiplication by � X T�C� and an integration by parts establishes (6.9)
for every u X T�Cn�Ø This is extended to all u from RαÙp�Cn� by density ([22;
Theorem 9]). è

7 Fractional linear elasticity

We consider a fractional elastic body of order α which occupies the whole n-
dimensional space Rn Ø The body is described by the strain tensor ε α�u�. Throughout
the section we assume that n ³ 2 and 0 ° α ° 1.

7.1 Energy The behavior of the body is determined by the fourth-order tensor of
elastic constants C, which we interpret as a linear transformation from S

n into Sn . We
enclose the argument of C in square brackets, i.e., C�a� is the value of C on a X S

n Ø
We assume that C has the major symmetry

C�a� ċ b ¨ C�b� ċ a for every aÙ b X S
n Ù

where ċ denotes the scalar product on Sn Ù given by a ċb ¨ tr�ab� for every aÙ b X S
n Ø

Throughout the section we assume that C is strongly elliptic, i.e.,

1

2
C�v� w + w � v�w ċ v ± 0 (7.1)

for every vÙ w X R
n Ù v © 0 © wØ Since C�v�w +w � v� is symmetric, (7.1) can be

restated equivalently as

C�sym�v� w�� ċ sym�v� w� ± 0 (7.2)

where sym�a� ¨ �a + aT�¤2 for any a X L
n Ø
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If the body is subjected to the body force f Ú Rn r R
n Ù the total energy is given

by

E �u� ¨ 1

2
�
Rn

C�ε α�u�� ċ ε α�u�d x − �
Rn

f ċ u d xØ (7.3)

The corresponding Euler-Lagrange equations (7.8) and (7.12) are used to define equi-
librium displacements.

7.2 Fractional Green’s function The acoustic tensor of the material is the function
A Ú Rn r S

n satisfying

b ċ A�ξ�a ¨ 1

2
C�a � ξ + ξ � a�ξ ċ b

for every ξ X R
n and everyaÙb X R

n ØThe strong ellipticity ofC implies the existence
of a positive constant c1 such that

a ċ A�ξ�a ³ c
1
@ξ@2@a@2

for all ξ and a in Rn Ø Consequently, A�ξ� is invertible for every ξ © 0Ø The inverse
B�ξ� satisfies

@B�ξ�@ ² c2@ξ@−2 (7.4)

for some c2 and all ξ © 0Û moreover, since A�ξ� is quadratic in ξ , the function B is
infinitely differentiable on Rn «  0( and positively homogeneous of degree −2Ø

Let Ðα Ú Rn «  0( r S
n be given by

Ðα�ξ� ¨ @ξ@2−2αB�ξ�Ù (7.5)

0 © ξ X R
n Ø By (7.4) we have @Ðα�ξ�@ ² c ′@ξ@−2α, which shows Ð determines a

tempered distribution. Fractional Green’s function Gα of the material is the inverse
Fourier transform of the distribution Ðα:

Gα ¨ F−1ÐαØ (7.6)

Since B is positively homogeneous of degree −2Ù Equation (7.5) shows that Ðα is
positively homogeneous degree −2α . Elementary scaling properties of the Fourier
transformation show that thenGα is positively homogeneous degree 2α−n and hence
of the form

Gα�x� ¨ @x@2α−nFα�x�Ù 0 © x X R
n Ù 0 ° α ² 1Ù

where Fα is a positively homogeneous degree 0 function on Rn « 0(. It follows from
the theorem of Lemoine (see TheoremA.3) that Fα is bounded and infinitely differen-
tiable. Indeed, the infinite differentiability of B on Rn « 0( and Equation (7.5) show
that Ðα is a homogeneous distribution of degree 2α that is locally in the space of
Bessel potentials LsÙ2�Sn� for all s ± 0 (see Definition A.2). By Theorem A.3 then
Fourier transformGα is locally in the space Ls−n¤2+2αÙ2�Sn�Ø It follows that Gα is
locally in LtÙ2�Sn� for all t ± 0. Hence Gα is infinitely differentiable on R

n «  0(
and consequently Fα is bounded and infinitely differentiable. As a consequence, we
have

@Gα�x�@ ² c3@x@2α−n (7.7)

for some constant c3 and all x © 0Ø
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7.3 Theorem Let 1 ° q ° n¤2α Ø For each f X Lq�Cn� there exists a unique

u X R2αÙq�Cn� which satisfies the equilibrium equation

divα C�ε α�u�� + f ¨ 0 (7.8)

at almost every point of Rn Ø The function u is given by

u�x� ¨ �
Rn

Gα�x − y�f �y�d y Ù (7.9)

where Gα is fractional Green’s function of the material.

7.4 Remarks

(i) Inequality (7.7) shows that Gα is majorized by Riesz kernel of order 2α Û thus
the assumption f X Lq�Cn� and Sobolev’s inequality imply that the integral in (7.9)

converges at almost every x X R
n and defines a function that belongs to Lq �Cn�Ù

where
q  ¨ qn¤�n− 2αq�Ø

(ii) Remark 5.5 shows that

R2αÙq �Cn� ⊂ RαÙp�Cn� ⊂ Lq �Cn� (7.10)

where
p ¨ nq¤�n − αq�Ø (7.11)

(iii) Under the assumptions f X Lq�Cn� and u X R2αÙq �Cn�, the pointwise
form (7.8) of the equilibrium equation is equivalent to the weak form, i.e.,

�
Rn

C�ε α�u�� ċ ∇αvd x − �
Rn

f ċ vd x ¨ 0 (7.12)

for every infinitely differentiable function v Ú Rn r R
n with compact support.

7.5 Example (Fractional Green’s function of an isotropic body) For an isotropic
body the tensor C takes the form

C�a� ¨ λ�tr a�1 + 2µaÙ a X S
n Ù

where λ Ù µ are Lamé’s moduli of the material. The tensor C is strongly elliptic if and
only if

λ + 2µ ± 0Ù µ ± 0Ø (7.13)

Fractional Green’s function is given by

Gα�x� ¨ cα
µ @x@n−2α

�1 − λ + µ

2α�λ + 2µ� �1 + �2α − n�@x@−2x � x
� (7.14)

for any x X R
n Ù x © 0Ù where

cα Ú¨ 2
−2α

π
−n¤2

Γ�n¤2− α�¤Γ�α�Ø (7.15)

Proof of Theorem 7.3 We shall first show that any solution of (7.8) must be given
by (7.9). Then we shall reverse the arguments and show, with some care, that any
displacement u given by (7.9) satisfies (7.8).

We employ the notation of Subsection 7.2.
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Thus assume that u X T′�Cn� satisfies (7.8). Passing to the Fourier transforms
of u and f and using (4.7) and (4.9) to calculate divα C�ε α�u��, one finds that (7.8)
reads

@ξ@2α−2A�ξ�ö�ξ� ¨ é �ξ�Ù (7.16)

for every ξ X R
n Ø The invertibility of the acoustic tensor then yields

ö�ξ� ¨ Ðα�ξ�é �ξ� (7.17)

where Ðα is given by (7.5). The inverse Fourier transform and the definition (7.6)
then give (7.9).

Let us show that if u is given by (7.9) with f X Lq�Cn�, then u belongs to
R2αÙq�Cn� and satisfies the equilibrium equation (7.8). It has already been shown

in Remark 7.4(i) that u belongs to Lq �Cn�Ø We note first that generally the Fourier
transform é of a general f X Lq�Cn� is not represented by a function if q ± 2Û i.e.,
é is generally only a tempered distribution, as explained in [11; Section 7.9].

Therefore, to avoid this complication, assume fist that

f X U�Cn�Ù (7.18)

where the space U�Cn� defined by (B.1) with Z ¨ C
n Ø Since U�Cn� is a subset

of S�Cn�Ù we have é X S�Cn�Ø Then the Fourier transform of the right-hand side
of (7.9) is the right-hand side of (7.17). Since é vanishes in some neighborhood of
the origin in R

n Ù by (7.17), also ö vanishes in the same neighborhood. Since Ðα is
infinitely differentiable on Rn «  0(Ùwe see that ö is infinitely differentiable on Rn ;
hence u X U�Cn�. As U�Cn� ⊂ T�Cn�, we deduce that ε α�u� X T�Sn� and
C�ε α�u�� X T�Sn� and hence divα C�ε α�u�� X T�Cn�Ø Thus we have (7.8).

Let us show that there exists a constant c such that

@u@
2αÙq ² c @f @Lq (7.19)

provided that f satisfies (7.18). Indeed, by (4.5), the Fourier transform of �−á�2αu
is

F ��−á�2αu	 ¨ @ξ@2αö�ξ� ¨ @ξ@2αÐα�ξ�é �ξ� ¨ @ξ@2B�ξ�é �ξ� (7.20)

by (7.5). By Subsection 7.2, the function ξ w m�ξ� ¨ @ξ@2B�ξ� is a bounded
and infinitely differentiable positively homogeneous degree 0Ø Thus it satisfies the
hypothesis of Mikhlin’s multiplier theorem (see, e.g., [8; Example 8.12(2)]). By
Mikhlin’s multiplier theorem then the map f w F−1mFf maps Lq�Cn� contin-
uously into itself for any q X �1Ùð�Û hence (7.20) gives

@u@
2αÙq ¨ @�−á�2αu@Lq ² c @f @Lq Ø

Thus (5.2) and (5.5) give (7.19).
This completes the proof of Theorem 7.3 under the assumption (7.18). The gen-

eral case of f X Lq�Cn� follows by the density of U�Cn� in Lq�Cn�Ù as asserted
by Proposition B.1. è
Proof of Example 7.5 One finds that for an isotropic material the acoustic tensor is
given by

A�ξ� ¨ µ @ξ@21 + �λ + µ�ξ � ξ
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for any ξ X R
n . The Fourier transform of the equilibrium equation (7.16) then takes

the form
@ξ@2αö�ξ� + @ξ@2α−2ξ�ξ ċ ö�ξ�	 ¨ é �ξ�Ø

Using (4.5), (4.8), and (4.6) to return to the variable xÙ one obtains the equilibrium
equation (1.5).

The inverse of the acoustic tensor is given by

B�ξ� ¨ µ−1@ξ@−4�@ξ@21 − cξ � ξ	
for any 0 © ξ X R

n Ùwhere c ¨ �λ + µ�¤�λ + 2µ�Ø Hence
Ðα�ξ� ¨ µ−1@ξ@−2−2α�@ξ@21 − cξ � ξ	

by (7.5). Using Formulas (4.5), (4.8), and (4.6) again, one finds that the inverse
Fourier transform of Ðα satisfies

Gα�x� ¨ µ−1ν−2α−2
�−á + c∇2	@x@2+2α−n Ø (7.21)

To obtain the explicit form, we use the formulas

á@x@2+2α−n ¨ 2α�2 + 2α − n�@x@−n+2αÙ (7.22)

∇2@x@2+2α−n ¨ �2 + 2α − n�@x@−n+2α�1 + �2α − n�x � x¤@x@2	Ù (7.23)

and simplify the expression

ν−2α−2 Ú¨ 2
−2α−2

π
−n¤2

Γ�n¤2 − α − 1�¤Γ�α + 1�
to

ν−2α−2
¨ cα¤�2α�n − 2α − 2�	 (7.24)

by using

αΓ�α� ¨ Γ�α + 1�Ù �n¤2 − α − 1�Γ�n¤2 − α − 1� ¨ Γ�n¤2 − α�Ø
Formulas (7.21)–(7.24) provide (7.14). è
7.6 Proposition The value q ¨ 2n¤�n + 2α� satisfies the hypothesis of Theorem

7.3. The unique solution u of (7.8) corresponding to f X Lq�Cn� belongs to the

space RαÙ2�Cn� and minimizes the energy on RαÙ2�Cn�, i.e.,
E �v� ³ E �u� for every v X RαÙ2�Cn�Ø

Proof One finds that for q ¨ 2n¤�n + 2α�, the value of p from (7.11) is equal to
2 and thus the inclusion u X RαÙ2�Cn� follows from (7.10)

1
Ø We express the func-

tional E �u� from (7.3) as the sum E
0
�u� + E

1
�u� of the quadratic and linear terms,

respectively. Clearly, E
0
and E

1
are continuous functionals on RαÙ2�Cn�. The conti-

nuity of E0 follows from @ε α�u�@ ² @∇αu@, while the continuity of E1 follows from

the embedding (7.10)
2
and the duality between the spaces Lq �Cn� and Lq�Cn�.

Parseval’s equality gives

E0�u� ¨ �2π�n
2

�
Rn

C�¶α�ξ�� ċ ¶̄α�ξ�d ξ
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for every u X T�Cn�Ù where ¶α is the Fourier transform of ε α�u� and ¶̄α is the
matrix of complex conjugates of the components of ¶α. Since by (6.5),

C�¶α� ċ ¶̄α ¨ @ξ@2α−2
C�sym�ö � ξ�� ċ sym�ȫ � ξ�

where ö is the Fourier transform of uÙ the strong ellipticity (7.2) implies

C�¶α� ċ ¶̄α ³ 0Ø
Thus E

0
and hence E is a positive semidefinite quadratic functional on T�Cn� and

hence onRαÙ2�Cn� by density ([22; Theorem 9]). Equation (7.12) is then a necessary
and sufficient condition for the minimum of E . è
7.7 Remark The strict version of the strong ellipticity condition (7.2) actually gives
that E

0
is coercive on RαÙ2�Cn� in the sense that

E0�u� ³ c @u@2αÙ2
for some c ± 0 and every u X RαÙ2�Cn�. Thus the existence and uniqueness of a
minimizer of E follows directly from the Lax-Milgram theorem without a recourse
to Theorem 7.3.

AppendixA: Fourier transformationof homogeneous distributions

A.1 Definition A distribution f fromS′�Z� is said to be homogeneous of degree
λ X C if

1f Ùg � ηt9 ¨ t−λ−n1f Ùg9
for every t ± 0 and every g X S�Z�, where ηt Ú Rn r R

n is given by

ηt �x� ¨ txÙ x X R
n Ø

A.2 Definition ([16; Definition 3.2.5]) A distribution f X S�Z� is said to be
locally in the space of Bessel potentials LsÙ2�Z� if gf belongs to LsÙ2�Z� for every
infinitely differentiable function g Ú Rn r C with compact support that is contained
in Rn «  0(.
A.3 Theorem ([16; Corollary 3.2.6]) The Fourier transform of a homogeneous dis-

tribution f of degree λ X C that is locally in LsÙ2�Z� is a homogeneous distribution
é of degree −λ − n that is locally in Ls−Reλ−n¤2Ù2�Z�.

Appendix B: The space U�Z�

This appendix introduces the space of test functions whose Fourier transforms can be
safely divided by @ξ@ and its positive powers, as needed in the proof of Theorem 7.3.
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B.1 Proposition The set

U�Z� Ú¨ !f X S�Z� Ú é ¨ 0 in some neighborhood of 0) (B.1)

is dense in Lp�Z� for every p X �1Ùð�.
Proof It suffices to prove that any f X S�Z� can be approximated by a sequence
fk X U�Z� in the Lp norm. Let ψ Ú R r C be a function whose Fourier transformÈ
is infinitely differentiable and satisfies È ¨ 1 on B�0Ù 1� and È ¨ 0 on Rn «B�0Ù2�Ø
Let ψt �x� ¨ tnψ�tx�Ù x X R

n Ù t ± 0Ø One has
@ψt @pLp ¨ tnp �

Rn

@ψ�tx�@p d x ¨ tn�p−1� �
Rn

@ψ�y�@p d y

and thus if 1 ° p ° ðÙ @ψt @Lp r 0 for t r 0Ø Since every f X S is integrable,
Young’s convolution inequality implies that @f   ψt @Lp r 0 for t r 0Ù i.e., the
function ft Ú¨ f − f   ψt satisfies

@f − ft @Lp r 0 for t r 0Ø
To show that ft X U�Z�Ù we note that the well-known rules for the Fourier transfor-
mation under scaling and convolution give

�ft�Ð¨ é − é Èt

whereÈt�ξ� ¨ È�ξ¤t� for every ξ X R
n and t ± 0ØOne finds thatÈt ¨ 1 onB�0Ù t�

and hence �ft�Ð¨ 0 on B�0Ù t�Ø è
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