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Tuğçe Ünver

Preprint No. 8-2022

PRAHA 2022





WEIGHTED INEQUALITIES INVOLVING ITERATION OF TWO
HARDY INTEGRAL OPERATORS

AMIRAN GOGATISHVILI, TUĞÇE ÜNVER

Abstract. Let 0 < p ≤ 1 and 0 < q, r < ∞. We characterize validity of the inequality
for the composition of the Hardy operator,(∫ b

a

(∫ x

a

(∫ t

a

f(s)pv(s)ds

) q
p

u(t)dt

) r
q

w(x)dx

) 1
r

≤ C

∫ b

a

f(x)dx,

for all non-negative measurable functions on (a, b), −∞ ≤ a < b ≤ ∞. We construct a
more straightforward discretization method than those previously presented in the litera-
ture, and we characterize this inequality in both discrete and continuous forms.

1. Introduction and the main results

Let −∞ ≤ a < b ≤ ∞. Denote by M+(a, b) the set of all non-negative measurable
functions on (a, b) and M↑(a, b) is the class of non-decreasing elements of M+(a, b).

In operator theory, weighted inequalities involving operator composition may be found
in a wide range of topics. Let 0 < q, r < ∞ and 1 ≤ p < ∞. The validity of inequalities(∫ ∞

0

(∫ x

0

(∫ ∞

t

h(s)ds

)q

u(t)dt

) r
q

w(x)dx

) 1
r

≤ C

(∫ ∞

0

h(x)pv(x)dx

) 1
p

, (1.1)

and (∫ ∞

0

(∫ x

0

(∫ t

0

h(s)ds

)q

u(t)dt

) r
q

w(x)dx

) 1
r

≤ C

(∫ ∞

0

h(x)pv(x)dx

) 1
p

, (1.2)

for all h ∈ M+(0,∞) are crucial, because many classical inequalities can be reduced
to them. For example, duality techniques reduce the embeddings between Lorentz-type
spaces, Morrey-type spaces and Cesáro-type spaces to the weighted iterated inequalities
(see, e.g. [3, 5, 7, 27]).

Various approaches have been used to handle inequalities (1.1) and (1.2) resulting with
conditions of different nature. Inequality (1.1) is investigated thoroughly. Detailed in-
formation on the development and history of this inequality may be found in the recent
paper [4].
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Our goal in this paper is to characterize (1.2). When q = 1 using Fubini’s Theorem,
inequality (1.2) reduces to the weighted Hardy-type inequality involving kernel, that is,(∫ ∞

0

(∫ x

0

(∫ x

s

u(t)dt

)
h(s)ds

)r

w(x)dx

) 1
r

≤ C

(∫ ∞

0

h(x)pv(x)dx

) 1
p

, h ∈ M+(0,∞)

(1.3)
Inequality (1.3) was completely characterized in [2,19,22,26] when 1 ≤ r, p < ∞. However,
for a long period there was no adequate characterization in the case when 0 < r < 1 ≤ p <
∞. Several attempts have been made to tackle this case (see, e.g. [10, 18, 23, 26]), in some
works necessary and sufficient conditions did not match, while in others characterization
had a discrete form or involved auxiliary functions, hence it was not easily verifiable.
Finally, in [16] the missing integral conditions were provided.

We should also mention that in [9, 10], using reduction techniques, Hardy inequality
involving non-decreasing functions, that is,(∫ ∞

0

(∫ x

0

f(s)u(s)ds

)q

w(x)dx

) 1
q

≤ C

(∫ ∞

0

f(x)pv(x)dx

) 1
p

, f ∈ M↑(0,∞) (1.4)

is reduced to inequality (1.3). However, as we have already mentioned, at that point of
time the characterizations of the reduced inequalities were not known. Combination of
Theorem 3.13, Theorem 3.18 and Corollary 3.2 from [10] provides a characterization of
(1.4) but the result is non-standard and it is hard to extract the characterization from the
theorems. The earlier works on inequality (1.4) can be found in [11,12,14,21].

We would like to point out that the characterization of (1.4) may be obtained directly
from inequality (1.2) without any further work (see, the proof of Theorem 1.2). We can
provide the characterization of inequality (1.4) as a direct outcome of our main theorem
(see, Theorem 1.1); nevertheless, we would like to provide it here to integrate all relevant
parameter choices into a single theorem for the reader’s convenience (see, Theorem 1.2).

In the general cases (1.2) is characterized in [6] but the conditions are in a non-standard
form. It was also considered in [24], but the conditions are not applicable because they
involve auxiliary functions. The special case of the dual version of (1.2) which involves it-
eration of the Copson operators

∫∞
t

h is treated in [20] when p = 1, using a combination of
reduction techniques and discretization. Recently, in [17], a more complicated discretiza-
tion method is used to establish a characterisation of the same inequality that involves
iteration of the Copson operators and is restricted to non-degenerate weights, and the case
p = 1 is presented without a proof. In our approach the case p > 1 is not separated from
p = 1.

As one can see in Theorem 3.1, discretization method transforms the inequality at hand
equivalently to discrete inequalities that involve local characterizations of inequalities hav-
ing low-order iterations. For the very reason our aim in this paper is to revisit inequality
(1.2) on (a, b) where −∞ ≤ a < b ≤ ∞.

Recently, in [4], with a new and simpler discretization technique requires neither pa-
rameter restrictions nor non-degeneracy conditions, characterization of (1.1) is given. We
adapt this approach to the specific demands of the inequality considered in this paper.
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Let −∞ ≤ a < b ≤ ∞ and a weight be a non-negative measurable function on (a, b).
The principal goal of this study is to determine the necessary and sufficient conditions on
weights u, v, w on (a, b) for which(∫ b

a

(∫ x

a

(∫ t

a

fpv

) q
p

u(t)dt

) r
q

w(x)dx

) 1
r

≤ C

∫ b

a

f (1.5)

holds for f ∈ M+(a, b), with exponents 0 < q, r < ∞ and 0 < p ≤ 1. It is worth noting
that if p > 1, inequality (1.5) only holds for trivial functions.

We should note that for a = 0 and b = ∞, first taking v 7→ v−p then replacing f 7→ h
1
pv,

(1.5) provides the characterization of (1.2) with the parameters q = q
p
, r = r

p
, p = 1

p
right

away.
Let us first go through the essential notations and conventions before we present our

main results. The left and right sides of the inequality numbered by (∗) are denoted by
LHS(∗) and RHS(∗), respectively. We put 0.∞ = ∞/∞ = 0/0 = 0. The symbol A ≲ B
means that there exists a constant c > 0 such that A ≤ cB where c depends only on the
parameters p, q, r. If both A ≲ B and B ≲ A, then we write A ≈ B.
For 0 < p ≤ 1, and x, y ∈ [a, b], denote by

Vp(x, y) :=


(∫ y

x
v

1
1−p

) 1−p
p , 0 < p < 1,

ess sup
s∈(x,y)

v(s), p = 1. (1.6)

Now, we are ready to formulate our main result.

Theorem 1.1. Let 0 < p ≤ 1, 0 < q, r < ∞ and let u, v, w be weights on (a, b). Then
inequality (1.5) holds for all f ∈ M+(a, b) if and only if
(i) 1 ≤ r, 1 ≤ q and

C1 := ess sup
x∈(a,b)

(∫ b

x

w(t)

(∫ t

x

u

) r
q

dt

) 1
r

Vp(a, x) < ∞. (1.7)

Moreover, the best constant C in inequality (1.5) satisfies C ≈ C1.
(ii) r < 1 ≤ q,

C2 :=

(∫ b

a

(∫ b

x

w

) r
1−r

w(x) ess sup
t∈(a,x)

(∫ x

t

u

) r
q(1−r)

Vp(a, t)
r

1−r dx

) 1−r
r

< ∞,

and

C3 :=

(∫ b

a

(∫ b

x

w(s)

(∫ s

x

u

) r
q

ds

) r
1−r

w(x) ess sup
t∈(a,x)

(∫ x

t

u

) r
q

Vp(a, t)
r

1−r dx

) 1−r
r

< ∞.

(1.8)
Moreover, the best constant C in inequality (1.5) satisfies C ≈ C2 + C3.
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(iii) q < 1 ≤ r, C1 < ∞ and

C4 := sup
x∈(a,b)

(∫ b

x

w

) 1
q
(∫ x

a

(∫ x

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

< ∞,

where C1 is defined in (1.7). Moreover, the best constant C in inequality (1.5) satisfies
C ≈ C1 + C4.

(iv) r < 1, q < 1, C3 < ∞ and

C5 :=

(∫ b

a

(∫ b

x

w

) r
1−r

w(x)

(∫ x

a

(∫ x

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) r(1−q)
q(1−r)

dx

) 1−r
r

< ∞,

where C3 is defined in (1.8). Moreover, the best constant C in inequality (1.5) satisfies
C ≈ C3 + C5.

Theorem 1.2. Let 0 < p, q < ∞ and u, v, w be weights on (a, b). Then inequality(∫ b

a

(∫ x

a

f(s)u(s)ds

)q

w(x)dx

) 1
q

≤ C

(∫ b

a

f(x)pv(x)dx

) 1
p

, (1.9)

holds for all f ∈ M↑(a, b) if and only if
(i) p ≤ q, p ≤ 1 and

C1 := ess sup
x∈(a,b)

(∫ b

x

w(t)

(∫ t

x

u

)q

dt

) 1
q
(∫ b

x

v

)− 1
p

< ∞. (1.10)

Moreover, the best constant C in inequality (1.9) satisfies C ≈ C1.
(ii) q < p ≤ 1,

C2 :=

(∫ b

a

(∫ b

x

w

) q
p−q

w(x) ess sup
t∈(a,x)

(∫ x

t

u

) pq
p−q

(∫ b

t

v

)− q
p−q

dx

) p−q
pq

< ∞,

and

C3 :=

(∫ b

a

(∫ b

x

w(s)

(∫ s

x

u

)q

ds

) q
p−q

w(x) ess sup
t∈(a,x)

(∫ x

t

u

)q(∫ b

t

v

)− q
p−q

dx

) p−q
pq

< ∞.

(1.11)
Moreover, the best constant C in inequality (1.9) satisfies C ≈ C2 + C3.
(iii) 1 < p ≤ q, C1 < ∞ and

C4 := sup
x∈(a,b)

(∫ b

x

w

)(∫ x

a

(∫ x

t

u

) 1
p−1

u(t)

(∫ b

t

v

)− 1
p−1

dt

) p−1
p

< ∞,

where C1 is defined in (1.10). Moreover, the best constant C in inequality (1.9) satisfies
C ≈ C1 + C4.

(iv) q < p, 1 < p, C3 < ∞ and

C5 :=

(∫ b

a

(∫ b

x

w

) q
p−q

w(x)

(∫ x

a

(∫ x

t

u

) 1
p−1

u(t)

(∫ b

t

v

)− 1
p−1

dt

) q(p−1)
p−q

dx

) p−q
pq

< ∞,
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where C3 is defined in (1.11). Moreover, the best constant C in inequality (1.9) satisfies
C ≈ C3 + C5.

Proofs of Theorem 1.1 and Theorem 1.2 will be given in Section 4.

2. Preliminary Results

In this section, we cover the foundations of discretization as well as several new results
that will be employed often throughout the proof of the main theorem.

Definition 2.1. Let N ∈ Z∪{−∞}, M ∈ Z∪{+∞}, N < M , and {ak}Mk=N be a sequence
of positive numbers. We say that {ak}Mk=N is geometrically decreasing if

sup

{
ak+1

ak
, N ≤ k ≤ M

}
< 1.

Lemma 2.2. [8] Let α > 0 and n ∈ Z ∪ {−∞}. If {τk}∞k=n is a geometrically decreasing
sequence, then

sup
n≤k<∞

τk

( k∑
i=n

ai

)α

≈ sup
n≤k<∞

τka
α
k (2.1)

∞∑
k=n

τk

( k∑
i=n

ai

)α

≈
∞∑
k=n

τka
α
k , (2.2)

and
∞∑
k=n

τk sup
n≤i≤k

ai ≈
∞∑
k=n

τkak, (2.3)

for all non-negative sequences {ak}∞k=n.

Lemma 2.3. Let α > 0 and n ∈ Z ∪ {−∞}. Assume that {xk}∞k=n is a strictly increasing
sequence. If {τk}∞k=n is a geometrically decreasing sequence, then,

sup
n≤k<∞

τk

(∫ xk

xn−1

g

)α

≈ sup
n≤k<∞

τk

(∫ xk

xk−1

g

)α

, (2.4)

∞∑
k=n

τk

(∫ xk

xn−1

g

)α

≈
∞∑
k=n

τk

(∫ xk

xk−1

g

)α

, (2.5)

and
∞∑
k=n

τk ess sup
s∈(xn−1,xk)

g(s) ≈
∞∑
k=n

τk ess sup
s∈(xk−1,xk)

g(s), (2.6)

for all non-negative measurable g on (xn−1,∞).

Proof. Assume that {xk}∞k=n is a strictly increasing sequence. For each n ∈ Z∪ {−∞}, we
can write ∫ xk

xn−1

g =
k∑

i=n

∫ xi

xi−1

g.
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Then (2.4) and (2.5) are direct consequences of (2.1) and (2.2), respectively.
Similarly, for each n ∈ Z ∪ {−∞}, we have

ess sup
s∈(xn−1,xk)

g(s) = sup
n≤i≤k

ess sup
s∈(xi−1,xi)

g(s),

so that applying (2.3), we obtain (2.6). □

Lemma 2.4. Let α > 0 and and n ∈ Z ∪ {−∞}. Assume that {xk}∞k=n is a strictly in-
creasing sequence, {τk}∞k=n is a geometrically decreasing sequence, and {σk}∞k=n is a positive
non-decreasing sequence. Then

sup
n+1≤k<∞

τk sup
n≤i<k

(∫ xk

xi

g

)α

σi ≈ sup
n+1≤k<∞

τk

(∫ xk

xk−1

g

)α

σk−1. (2.7)

and
∞∑

k=n+1

τk sup
n≤i<k

(∫ xk

xi

g

)α

σi ≈
∞∑

k=n+1

τk

(∫ xk

xk−1

g

)α

σk−1. (2.8)

hold for all non-negative measurable g on (xn,∞).

Proof. Let us start with the equivalency (2.7). Since {τk}∞k=n is a geometrically decreasing
sequence, interchanging supremum and (2.4) give

LHS(2.7) = sup
n≤i<∞

σi sup
i+1≤k<∞

τk

(∫ xk

xi

g

)α

≈ sup
n≤i<∞

σi sup
i+1≤k<∞

τk

(∫ xk

xk−1

g

)α

.

Interchanging supremum once again and monotonicity of {σk}∞k=n yield that

LHS(2.7) ≈ sup
n+1≤k<∞

τk

(∫ xk

xk−1

g

)α

sup
n≤i≤k−1

σi = RHS(2.7).

Let us now tackle (2.8). Monotonicity of {σk}∞k=n gives that

LHS(2.8) ≤
∞∑

k=n+1

τk sup
n≤i<k

( k−1∑
j=i

σ
1
α
j

∫ xj+1

xj

g

)α

=
∞∑

k=n+1

τk

( k−1∑
j=n

σ
1
α
j

∫ xj+1

xj

g

)α

.

Then, using (2.2), we have the following upper estimate

LHS(2.8) ≤
∞∑

k=n+1

τk

( k∑
j=n+1

σ
1
α
j−1

∫ xj

xj−1

g

)α

≈ RHS(2.8).

On the other hand, the reverse estimate is clear and the proof is complete. □

Let w be a non-negative neasurable function on (a, b), denote by

W ∗(t) =

∫ b

t

w(s) ds, t ∈ [a, b].
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Definition 2.5. Let w be a non-negative measurable function on (a, b). A strictly in-
creasing sequence {xk}∞k=N ⊂ [a, b] is said to be a discretizing sequence of the function
W ∗, if it satisfies W ∗(xk) ≈ 2−k, N ≤ k < ∞. If N > −∞ then xN := a, otherwise
x−∞ := limk→−∞ xk = a.

It is worth noting that if N = −∞, then N + 1 is also −∞.

Lemma 2.6. Let α ≥ 0 and N ∈ Z ∪ {−∞}. Assume that w is a weight on [a, b] and
{xk}∞k=N is a discretizing sequence of the function W ∗. Then for any n : N ≤ n,∫ b

xn

W ∗(x)αw(x)h(x)dx ≈
∞∑

k=n+1

2−k(α+1)h(xk) (2.9)

and
ess sup
x∈(xn,b)

W ∗(x)αh(x) ≈ sup
n+1≤k

2−kαh(xk) (2.10)

hold for all non-negative and non-decreasing h on (a, b).

Proof. Let {xk}∞k=N be a discretizing sequence of the function W ∗. Monotonicity of h and
properties of the discretizing sequence {xk}∞k=N yield

LHS(2.9) =
∞∑

k=n+1

∫ xk

xk−1

h(x)W ∗(x)αw(x)dx ≲
∞∑

k=n+1

h(xk)

∫ xk

xk−1

d
[
−W ∗(x)α+1

]
≈

∞∑
k=n+1

2−k(α+1)h(xk) = RHS(2.9),

and, conversely

LHS(2.9) ≥
∞∑

k=n+1

∫ xk+1

xk

h(x)W ∗(x)αw(x)dx ≳
∞∑

k=n+1

h(xk)

∫ xk+1

xk

d
[
−W ∗(x)α+1

]
≈

∞∑
k=n+1

2−k(α+1)h(xk) = RHS(2.9).

Thus, (2.9) holds.
On the other hand, similarly,

LHS(2.10) = sup
n+1≤k<∞

ess sup
x∈(xk−1,xk)

W ∗(x)αh(x) ≈ sup
n+1≤k<∞

2−kα ess sup
x∈(xk−1,xk)

h(x) = RHS(2.10)

hold. □

3. Discrete Characterization

We begin this section by observing that inequality (1.5) is equivalent to two other discrete
inequalities, and we present the characterization in discrete form, which is noteworthy on
its own.

Let us start with the discretization of inequality (1.5).
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Theorem 3.1. Let 0 < p ≤ 1, 0 < q, r < ∞ and let u, v, w be weights on (a, b). Assume
that {xk}∞k=N ⊂ [a, b] is a discretizing sequence of the function W ∗. Denote by

B(xk−1, xk) := sup
h∈M+(xk−1,xk)

(∫ xk

xk−1

(∫ t

xk−1
h(s)pv(s)ds

) q
p

u(t)dt

) 1
q

∫ xk

xk−1
h(t)dt

.

Then there exists a positive constant C such that inequality (1.5) holds for all f ∈ M+(a, b)
if and only if there exist positive constants C ′ and C ′′ such that( ∞∑

k=N+1

2−karkB(xk−1, xk)
r

) 1
r

≤ C ′
∞∑

k=N+1

ak, (3.1)

and ( ∞∑
k=N+1

2−k

(∫ xk+1

xk

u

) r
q
( k∑

j=N+1

apj Vp(xj−1, xj)
p

) r
p
) 1

r

≤ C ′′
∞∑

k=N+1

ak, (3.2)

hold for every sequence of non-negative numbers {ak}∞k=N+1. Moreover the best constants
C, C ′ and C ′′, respectively, in (1.5), (3.1) and (3.2) satisfies C ≈ C ′ + C ′′.

Proof. Let {xk}∞k=N be the discretizing sequence of the function W ∗. Applying (2.9) with
α = 0, we have that

LHS(1.5) ≈
( ∞∑

k=N+1

2−k

(∫ xk

a

(∫ t

a

fpv

) q
p

u(t)dt

) r
q
) 1

r

.

Since, {2−k} is geometrically decreasing, using (2.5), we obtain that

LHS(1.5) ≈
( ∞∑

k=N+1

2−k

(∫ xk

xk−1

(∫ t

a

fpv

) q
p

u(t)dt

) r
q
) 1

r

≈
( ∞∑

k=N+1

2−k

(∫ xk

xk−1

(∫ t

xk−1

fpv

) q
p

u(t)dt

) r
q
) 1

r

+

( ∞∑
k=N+2

2−k

(∫ xk−1

a

fpv

) r
p
(∫ xk

xk−1

u

) r
q
) 1

r

.

Then, it is clear that there exists a positive constant C such that inequality (1.5) holds for
all f ∈ M+(a, b) if and only if there exist positive constants C′ and C′′ such that( ∞∑

k=N+1

2−k

(∫ xk

xk−1

(∫ t

xk−1

fpv

) q
p

u(t)dt

) r
q
) 1

r

≤ C′
∞∑

k=N+1

∫ xk

xk−1

f, (3.3)

and ( ∞∑
k=N+1

2−k

(∫ xk

a

fpv

) r
p
(∫ xk+1

xk

u

) r
q
) 1

r

≤ C′′
∞∑

k=N+1

∫ xk

xk−1

f, (3.4)
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hold for all f ∈ M+(a, b). Moreover, C ≈ C′ + C′′.
Next, we will show that (3.3) holds for all f ∈ M+(a, b) if and only if (3.1) holds for

every sequence of non-negative numbers {ak}∞k=N+1.
Assume that (3.3) holds. By the definition of B(xk−1, xk), there exist non-negative

measurable functions hk, N + 1 ≤ k on (a, b) such that

supphk ⊂ [xk−1, xk],

∫ xk

xk−1

hk = 1,

(∫ xk

xk−1

(∫ t

xk−1

hp
kv

) q
p

u(t)dt

) 1
q

≳ B(xk−1, xk).

Thus, inserting h =
∑∞

m=N+1 amhm, where {am}∞m=N+1 is any sequence of non-negative
numbers, into (3.3), (3.1) follows. Moreover, C ′ ≲ C′

Conversely, (3.3) follows by, inserting ak =
∫ xk

xk−1
h in (3.1) and C′ ≤ C ′. Further, we

have C′ ≈ C ′.
Lastly, we will show that (3.4) holds for all f ∈ M+(a, b) if and only if (3.2) holds for

every sequence of non-negative numbers {ak}∞k=N+1.
Suppose that (3.4) holds. Furthermore, Vp(xk−1, xk), N + 1 ≤ k defined in (1.6) can be

expressed as

sup
g∈M+(xk−1,xk)

(∫ xk

xk−1
g(t)pv(t)dt

) 1
p

∫ xk

xk−1
g(t)dt

= Vp(xk−1, xk).

Then, there exist non-negative measurable functions gk, N + 1 ≤ k on (a, b) such that

supp gk ⊂ [xk−1, xk],

∫ xk

xk−1

gk = 1,

(∫ xk

xk−1

gpkv

) 1
p

≳ Vp(xk−1, xk).

Thus, inserting g =
∑∞

m=N+1 amgm, where {am}∞m=N+1 is any sequence of non-negative
numbers, into (3.4), (3.2) follows. Moreover, C ′′ ≲ C′′ holds.
Conversely, taking ak =

∫ xk

xk−1
f in (3.2) gives (3.4). Additionally, C′′ ≤ C ′′ holds.

Consequently C′′ ≈ C ′′ follows. □

Now, we are in position to formulate the discrete characterization of inequality (1.5).

Theorem 3.2. Let 0 < p ≤ 1, 0 < q, r < ∞ and let u, v, w be weights on (a, b). Let
{xk}∞k=N+1 be the discretizing sequence of W ∗. Then inequality (1.5) holds for all f ∈
M+(a, b) if and only if
(i) 1 ≤ r, 1 ≤ q

A1 := sup
N+1≤k<∞

2−
k
r ess sup
t∈(xk−1,xk)

(∫ xk

t

u

) 1
q

Vp(xk−1, t) < ∞,

and

B1 := sup
N+1≤k<∞

( ∞∑
i=k

2−i

(∫ xi+1

xi

u

) r
q
) 1

r

Vp(a, xk) < ∞. (3.5)

Moreover, the best constant C in inequality (1.5) satisfies C ≈ A1 +B1.
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(ii) r < 1 ≤ q,

A2 :=

( ∞∑
k=N+1

2−
k

1−r ess sup
t∈(xk−1,xk)

(∫ xk

t

u

) r
q(1−r)

Vp(xk−1, t)
r

1−r

) 1−r
r

< ∞

and

B2 :=

( ∞∑
k=N+1

2−k

(∫ xk+1

xk

u

) r
q
( ∞∑

i=k

2−i

(∫ xi+1

xi

u

) r
q
) r

1−r

Vp(a, xk)
r

1−r

) 1−r
r

< ∞. (3.6)

Moreover, the best constant C in inequality (1.5) satisfies C ≈ A2 +B2.
(iii) q < 1 ≤ r, B1 < ∞ and

A3 := sup
N+1≤k<∞

2−
k
r

(∫ xk

xk−1

(∫ xk

t

u

) q
1−q

u(t)Vp(xk−1, t)
q

1−q dt

) 1−q
q

< ∞,

where B1 is defined in (3.5). Moreover, the best constant C in inequality (1.5) satisfies
C ≈ A3 +B1.

(iv) r < 1, q < 1, B2 < ∞ and

A4 :=

( ∞∑
k=N+1

2−
k

1−r

(∫ xk

xk−1

(∫ xk

t

u

) q
1−q

u(t)Vp(xk−1, t)
q

1−q dt

) r(1−q)
q(1−r)

) 1−r
r

< ∞,

where B2 is defined in (3.6). Moreover, the best constant C in inequality (1.5) satisfies
C ≈ A4 +B2.

Proof. According to Theorem 3.1, the best constant C in (1.5) satisfies C ≈ C ′+C ′′, where
C ′ and C ′′ are the best constants in the inequalities (3.1) and (3.2), respectively.

First, combining the embeddings between weighted ℓp sequence spaces (see, [8, Propo-
sition 4.1]) with the best constants in weighted Hardy inequalities (see, [15,25]) we obtain
the characterization of C ′ ≈ A∗

i , i = 1, . . . , 4.
Next, we will find C ′′. Applying [1, Theorem 1, (viii)] if max{r, p} < 1 and [13, Theo-

rem 9.2] if r < p = 1, we obtain that C ′′ ≈ B2. Moreover, using [1, Theorem 1, (v)(b)], we
have C ′′ ≈ B1 when p < 1 ≤ r. Lastly, if p = 1, applying [1, Theorem 1, (iv)], we have

C ′′ ≈ sup
N+1≤k<∞

( ∞∑
i=k

2−i

(∫ xi+1

xi

u

) r
q
) 1

r

Vp(xk−1, xk).

Finally, interchanging supremum yields that

C ′′ ≈ sup
N+1≤k<∞

Vp(xk−1, xk) sup
k≤m<∞

( ∞∑
i=m

2−i

(∫ xi+1

xi

u

) r
q
) 1

r

= sup
N+1≤m<∞

( ∞∑
i=m

2−i

(∫ xi+1

xi

u

) r
q
) 1

r

sup
N+1≤k≤m

Vp(xk−1, xk) = B1.

□
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4. Proofs

Proof of Theorem 1.1
(i) Let p ≤ 1 ≤ min{r, q}. We have from [Theorem 3.2, (i)] that C ≈ A1 +B1. We will

prove that C1 ≈ A1 +B1. First, we will show that A1 +B1 ≈ A1 +B1, where

A1 := sup
N+1≤k

2−
k
r ess sup

t∈(a,xk)

(∫ xk

t

u

) 1
q

Vp(a, t).

It is clear that A1 ≤ A1. On the other hand, observe that

A1 = sup
N+1≤k

2−
k
r sup
N+1≤i≤k

ess sup
t∈(xi−1,xi)

(∫ xk

t

u

) 1
q

Vp(a, t)

≈ sup
N+1≤k

2−
k
r sup
N+1≤i≤k

ess sup
t∈(xi−1,xi)

(∫ xi

t

u

) 1
q

Vp(a, t)

+ sup
N+2≤k

2−
k
r sup
N+1≤i<k

(∫ xk

xi

u

) 1
q

Vp(a, xi).

Then, interchanging the supremum in the first term and applying (2.7) with n = N + 2,
for the second term, we have that

A1 ≈ sup
N+1≤k

2−
k
r ess sup
t∈(xk−1,xk)

(∫ xk

t

u

) 1
q

Vp(a, t) + sup
N+2≤k

2−
k
r

(∫ xk

xk−1

u

) 1
q

Vp(a, xk−1).

Note that, for any k ≥ N + 2, we have

Vp(a, t) ≈ Vp(a, xk−1) + Vp(xk−1, t), for every t ∈ (xk−1, xk). (4.1)

Then, in view of (4.1),

A1 ≈ sup
N+1≤k

2−
k
r ess sup
t∈(xk−1,xk)

(∫ xk

t

u

) 1
q

Vp(xk−1, t) + sup
N+2≤k

2−
k
r

(∫ xk

xk−1

u

) 1
q

Vp(a, xk−1)

≲ A1 +B1.

Then we have that A1 +B1 ≤ A1 +B1 ≲ A1 +B1.
It remains to show that A1 +B1 ≈ C1. Applying (2.10) with α = 1

r
,

A1 ≈ ess sup
x∈(a,b)

(∫ b

x

w

) 1
r

ess sup
t∈(a,x)

(∫ x

t

u

) 1
q

Vp(a, t)

holds, and interchanging supremum gives that

A1 ≈ ess sup
t∈(a,b)

Vp(a, t) ess sup
x∈(t,b)

(∫ b

x

w

) 1
r
(∫ x

t

u

) 1
q

≤ ess sup
t∈(a,b)

Vp(a, t)

(∫ b

t

w(s)

(∫ s

t

u

) r
q

ds

) 1
r

= C1. (4.2)
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On the other hand, applying (2.9) with α = 0, then using (2.5) with n = k + 1, we obtain
for any k ≥ N that∫ b

xk

w(s)

(∫ s

xk

u

) r
q

ds ≈
∞∑

i=k+1

2−i

(∫ xi

xk

u

) r
q

ds ≈
∞∑
i=k

2−i

(∫ xi+1

xi

u

) r
q

. (4.3)

Therefore, in view of (4.3),

B1 ≈ sup
N+1≤k

(∫ b

xk

w(s)

(∫ s

xk

u

) r
q

ds

) 1
r

Vp(a, xk)

≤ sup
N+1≤k

ess sup
t∈(xk−1 xk)

(∫ b

t

w(s)

(∫ s

t

u

) r
q

ds

) 1
r

Vp(a, t) = C1. (4.4)

Thus, combining (4.2) with (4.4), we have that A1 +B1 ≲ C1.
Conversely, using (4.1), we have

C1 ≈ sup
N+1≤k

(∫ b

xk

w(s)

(∫ s

xk

u

) r
q

ds

) 1
r

Vp(xk−1, xk)

+ sup
N+1≤k

2−
k
r ess sup
t∈(xk−1,xk)

(∫ xk

t

u

) 1
q

Vp(xk−1, t)

+ sup
N+1≤k

ess sup
t∈(xk−1,xk)

(∫ xk

t

w(s)

(∫ s

t

u

) r
q

ds

) 1
r

Vp(xk−1, t)

+ sup
N+2≤k

(∫ b

xk−1

w(s)

(∫ s

xk−1

u

) r
q

ds

) 1
r

Vp(a, xk−1).

Then, using (4.3), we arrive at

C1 ≲ sup
N+1≤k

2−
k
r ess sup
t∈(xk−1,xk)

(∫ xk

t

u

) 1
q

Vp(a, t)

+ sup
N+1≤k

( ∞∑
i=k

2−i

(∫ xi+1

xi

u

) r
q
) 1

r

Vp(a, xk)

≤ A1 +B1. (4.5)

As a result, we arrive at the conclusion that the best constant C in (1.5) satisfies C ≈ C1.
(ii) Let r < 1 ≤ q. Then, we have from [Theorem 3.2, (ii)] that the best constant in

(1.5) satisfies C ≈ A2 +B2. We will start by showing that A2 +B2 ≈ A2 +B2, where

A2 :=

( ∞∑
k=N+1

2−
k

1−r ess sup
t∈(a,xk)

(∫ xk

t

u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r
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and

B2 :=

( ∞∑
k=N+1

2−k

(∫ xk+1

xk

u

) r
q
( ∞∑

i=k+2

2−i

(∫ xi+1

xi

u

) r
q
) r

1−r

Vp(a, xk)
r

1−r

) 1−r
r

. (4.6)

We have A2 ≤ A2 by the definitions of A2 and A2. On the other hand,

B2 ≈ B2 +

( ∞∑
k=N+1

2−
k

1−r

(∫ xk+1

xk

u

) r
q(1−r)

Vp(a, xk)
r

1−r

) 1−r
r

+

( ∞∑
k=N+1

2−
k

1−r

(∫ xk+1

xk

u

) r
q
(∫ xk+2

xk+1

u

) r2

q(1−r)

Vp(a, xk)
r

1−r

) 1−r
r

≲ B2 +

( ∞∑
k=N+1

2−
k

1−r

(∫ xk+2

xk

u

) r
q(1−r)

Vp(a, xk)
r

1−r

) 1−r
r

≲ B2 +

( ∞∑
k=N+1

2−
k

1−r ess sup
t∈(a,xk)

(∫ xk+2

t

u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

≲ B2 + A2 (4.7)

holds, hence A2 +B2 ≲ A2 +B2.
Next, we will show that A2 ≲ A2 +B2. Observe that,

A2 =

( ∞∑
k=N+1

2−
k

1−r sup
N+1≤i≤k

ess sup
t∈(xi−1,xi)

(∫ xk

t

u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

≈
( ∞∑

k=N+1

2−
k

1−r sup
N+1≤i≤k

ess sup
t∈(xi−1,xi)

(∫ xi

t

u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

+

( ∞∑
k=N+2

2−
k

1−r sup
N+1≤i<k

(∫ xk

xi

u

) r
q(1−r)

Vp(a, xi)
r

1−r

) 1−r
r

.

Applying (2.3) for the first term and (2.8) for the second term, we obtain that

A2 ≈
( ∞∑

k=N+1

2−
k

1−r ess sup
t∈(xk−1,xk)

(∫ xk

t

u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

+

( ∞∑
k=N+2

2−
k

1−r

(∫ xk

xk−1

u

) r
q(1−r)

Vp(a, xk−1)
r

1−r

) 1−r
r

.

Using (4.1) we arrive at

A2 ≲ A2 +

( ∞∑
k=N+1

2−
k

1−r

(∫ xk+1

xk

u

) r
q(1−r)

Vp(a, xk)
r

1−r

) 1−r
r

≲ A2 +B2.
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Furthermore, it is clear from the definitions of B2 and B2 that B2 ≤ B2. Then, we have
A2 +B2 ≲ A2 +B2, as well. Consequently, C ≈ A2 +B2 holds.
Next, we will prove that A2 + B2 ≈ C2 + C3. First of all, applying (2.9) with α = r

1−r

and

h(x) = ess sup
t∈(a,x)

(∫ x

t

u

) r
q(1−r)

Vp(a, t)
r

1−r , x ∈ (a, b),

it is clear that

A2 ≈
(∫ b

a

(∫ b

x

w

) r
1−r

w(x) ess sup
t∈(a,x)

(∫ x

t

u

) r
q(1−r)

Vp(a, t)
r

1−r dx

) 1−r
r

= C2 (4.8)

On the other hand, using (4.3),

B2 ≈
( ∞∑

k=N+1

2−k

(∫ b

xk+2

w(s)

(∫ s

xk+2

u

) r
q

ds

) r
1−r

(∫ xk+1

xk

u

) r
q

Vp(a, xk)
r

1−r

) 1−r
r

≤
( ∞∑

k=N+1

2−k

(∫ b

xk+2

w(s)

(∫ s

xk+2

u

) r
q

ds

) r
1−r

× ess sup
t∈(a,xk+1)

(∫ xk+1

t

u

) r
q

Vp(a, t)
r

1−r

) 1−r
r

≈
( ∞∑

k=N+1

∫ xk+2

xk+1

w(x)dx

(∫ b

xk+2

w(s)

(∫ s

xk+2

u

) r
q

ds

) r
1−r

× ess sup
t∈(a,xk+1)

(∫ xk+1

t

u

) r
q

Vp(a, t)
r

1−r

) 1−r
r

≤
( ∞∑

k=N+1

∫ xk+2

xk+1

w(x)

(∫ b

x

w(s)

(∫ s

x

u

) r
q

ds

) r
1−r

× ess sup
t∈(a,x)

(∫ x

t

u

) r
q

Vp(a, t)
r

1−r dx

) 1−r
r

≤ C3. (4.9)

Combination of (4.8) and (4.9) yield that A2 +B2 ≲ C2 + C3.
Conversely,

C3 =

( ∞∑
k=N+1

∫ xk

xk−1

(∫ b

x

w(s)

(∫ s

x

u

) r
q

ds

) r
1−r

w(x) ess sup
t∈(a,x)

(∫ x

t

u

) r
q

Vp(a, t)
r

1−r dx

) 1−r
r

≈
( ∞∑

k=N+1

∫ xk

xk−1

(∫ xk

x

w(s)

(∫ s

x

u

) r
q

ds

) r
1−r

w(x) ess sup
t∈(a,x)

(∫ x

t

u

) r
q

Vp(a, t)
r

1−r dx

) 1−r
r
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+

( ∞∑
k=N+1

∫ xk

xk−1

(∫ b

xk

w(s)

(∫ s

x

u

) r
q

ds

) r
1−r

w(x) ess sup
t∈(a,x)

(∫ x

t

u

) r
q

Vp(a, t)
r

1−r dx

) 1−r
r

≈
( ∞∑

k=N+1

∫ xk

xk−1

(∫ xk

x

w(s)

(∫ s

x

u

) r
q

ds

) r
1−r

w(x) ess sup
t∈(a,x)

(∫ x

t

u

) r
q

Vp(a, t)
r

1−r dx

) 1−r
r

+

( ∞∑
k=N+1

2−k r
1−r

∫ xk

xk−1

(∫ xk

x

u

) r2

q(1−r)

w(x) ess sup
t∈(a,x)

(∫ x

t

u

) r
q

Vp(a, t)
r

1−r dx

) 1−r
r

+

( ∞∑
k=N+1

(∫ b

xk

w(s)

(∫ s

xk

u

) r
q

ds

) r
1−r

∫ xk

xk−1

w(x) ess sup
t∈(a,x)

(∫ x

t

u

) r
q

Vp(a, t)
r

1−r dx

) 1−r
r

=: C3,1 + C3,2 + C3,3.

It is easy to see that

C3,1 ≤
( ∞∑

k=N+1

∫ xk

xk−1

(∫ xk

x

w

) r
1−r

w(x) ess sup
t∈(a,x)

(∫ xk

t

u

) r
q(1−r)

Vp(a, t)
r

1−r dx

) 1−r
r

≤
( ∞∑

k=N+1

∫ xk

xk−1

(∫ xk

x

w

) r
1−r

w(x)dx ess sup
t∈(a,xk)

(∫ xk

t

u

) r
q(1−r)

Vp(a, t)
r

1−r

) 1−r
r

≈ A2,

and

C3,2 ≤
( ∞∑

k=N+1

2−k r
1−r

∫ xk

xk−1

w(x) ess sup
t∈(a,x)

(∫ xk

t

u

) r
q(1−r)

Vp(a, t)
r

1−r dx

) 1−r
r

≤ A2

hold. Furthermore,

C3,3 ≲

( ∞∑
k=N+1

2−k

(∫ b

xk

w(s)

(∫ s

xk

u

) r
q

ds

) r
1−r

ess sup
t∈(a,xk)

(∫ xk

t

u

) r
q

Vp(a, t)
r

1−r

) 1−r
r

=

( ∞∑
k=N+1

2−k

(∫ b

xk

w(s)

(∫ s

xk

u

) r
q

ds

) r
1−r

× sup
N+1≤i≤k

ess sup
t∈(xi−1,xi)

(∫ xk

t

u

) r
q

Vp(a, t)
r

1−r

) 1−r
r

≈
( ∞∑

k=N+1

2−k

(∫ b

xk

w(s)

(∫ s

xk

u

) r
q

ds

) r
1−r

× sup
N+1≤i≤k

ess sup
t∈(xi−1,xi)

(∫ xi

t

u

) r
q

Vp(a, t)
r

1−r

) 1−r
r
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+

( ∞∑
k=N+2

2−k

(∫ b

xk

w(s)

(∫ s

xk

u

) r
q

ds

) r
1−r

sup
N+1≤i<k

(∫ xk

xi

u

) r
q

Vp(a, xi)
r

1−r

) 1−r
r

=: I + II.

Since, the sequence {ak}∞k=N+1, with

ak =: 2−k

(∫ b

xk

w(s)

(∫ s

xk

u

) r
q

ds

) r
1−r

is geometrically decreasing, (2.3) yields that

I ≈
( ∞∑

k=N+1

2−k

(∫ b

xk

w(s)

(∫ s

xk

u

) r
q

ds

) r
1−r

ess sup
t∈(xk−1,xk)

(∫ xk

t

u

) r
q

Vp(a, t)
r

1−r

) 1−r
r

.

Let yk ∈ [xk−1, xk], N ≤ k be such that

ess sup
t∈(xk−1,xk)

(∫ xk

t

u

) r
q

Vp(a, t)
r

1−r ≲

(∫ xk

yk

u

) r
q

Vp(a, yk)
r

1−r . (4.10)

Then, we have

I ≲

( ∞∑
k=N+1

2−k

(∫ b

xk

w(s)

(∫ s

xk

u

) r
q

ds

) r
1−r

(∫ xk

yk

u

) r
q

Vp(a, yk)
r

1−r

) 1−r
r

Thus, (4.3) ensures that

I ≲

( ∞∑
k=N+1

2−k

( ∞∑
i=k

2−i

(∫ xi+1

xi

u

) r
q
) r

1−r
(∫ xk

yk

u

) r
q

Vp(a, yk)
r

1−r

) 1−r
r

≤
( ∞∑

k=N+1

2−k

( ∞∑
i=k

2−i

(∫ yi+2

yi

u

) r
q
) r

1−r
(∫ yk+1

yk

u

) r
q

Vp(a, yk)
r

1−r

) 1−r
r

.

Moreover,

2−k ≈
∫ b

xk

w ≤
∫ b

yk

w ≤
∫ b

xk−1

w ≈ 2−(k−1), N + 1 ≤ k.

As a result, {yk}∞k=N+1 is a discretizing sequence of W ∗, as well. This fact together with
(4.7) yield I ≲ B2 ≲ A2 +B2.
On the other hand, applying (2.8) with

τk = 2−k

(∫ b

xk

w(s)

(∫ s

xk

u

) r
q

ds

) r
1−r

, σk = Vp(a, xk)
r

1−r , α =
r

q
,

gives

II ≈
( ∞∑

k=N+2

2−k

(∫ b

xk

w(s)

(∫ s

xk

u

) r
q

ds

) r
1−r

(∫ xk

xk−1

u

) r
q

Vp(a, xk−1)
r

1−r

) 1−r
r

.
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Finally, using (4.3) and (4.7), we obtain that

II ≈
( ∞∑

k=N+2

2−k

( ∞∑
i=k

2−i

(∫ xi+1

xi

u

) r
q
) r

1−r
(∫ xk

xk−1

u

) r
q

Vp(a, xk−1)
r

1−r

) 1−r
r

≤ A2 +B2.

Therefore,

C3 ≲ A2 +B2. (4.11)

Finally, combination of (4.8) and (4.11) yield, C2+C3 ≈ A2+B2. Accordingly, the best
constant C in (1.5) satisfies C ≈ C2 + C3.
(iii) Let q < 1 ≤ r. According to [Theorem 3.2, (iii)], the best constant in (1.5) satisfies

C ≈ A3 +B1. We will begin our proof by showing that A3 +B1 ≈ A3 +B1, where

A3 := sup
N+1≤k<∞

2−
k
r

(∫ xk

a

(∫ xk

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

.

It is clear that A3 ≤ A3, the proof of this part is complete if we show that A3 ≲ A3 +B1.
Assume that max{A3,B1} < ∞. Then,(∫ xk

xk−1

(∫ xk

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

< ∞, k ≥ N + 1

holds. Thus, for each t ∈ [xk−1, xk], k ≥ N + 1, we have(∫ xk

t

u

) 1
q

Vp(a, t) ≲

(∫ xk

t

(∫ xk

s

u

) q
1−q

u(s)Vp(a, s)
q

1−q ds

) 1−q
q

.

Therefore, we have

lim
t→xk−

(∫ xk

t

u

) 1
q

Vp(a, t) = 0. (4.12)

In that case, integration by parts gives(∫ xk

a

(∫ xk

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

≈
(∫ xk

a

(∫ xk

t

u

) 1
1−q

d
[
Vp(a, t)

q
1−q

]) 1−q
q

+ lim
t→a+

(∫ xk

t

u

) 1
q

Vp(a, t)

≈
( k∑

i=N+1

∫ xi

xi−1

(∫ xi

t

u

) 1
1−q

d
[
Vp(a, t)

q
1−q

]) 1−q
q

+

( k−1∑
i=N+1

(∫ xk

xi

u

) 1
1−q

∫ xi

xi−1

d
[
Vp(a, t)

q
1−q

]) 1−q
q

+ lim
t→a+

(∫ xk

t

u

) 1
q

Vp(a, t).
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Moreover, Minkowski’s inequality with 1
1−q

> 1 yields that( k−1∑
i=N+1

(∫ xk

xi

u

) 1
1−q

∫ xi

xi−1

d
[
Vp(a, t)

q
1−q

]) 1−q
q

=

( k−1∑
i=N+1

( k−1∑
j=i

∫ xj+1

xj

u

) 1
1−q

∫ xi

xi−1

d
[
Vp(a, t)

q
1−q

]) 1−q
q

≤
( k−1∑

j=N+1

(∫ xj+1

xj

u

)( j∑
i=N+1

∫ xi

xi−1

d
[
Vp(a, t)

q
1−q

])1−q) 1
q

=

( k−1∑
j=N+1

(∫ xj+1

xj

u

)(∫ xj

a

d
[
Vp(a, t)

q
1−q

])1−q) 1
q

.

Then, we arrive at(∫ xk

a

(∫ xk

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

≲

( k∑
i=N+1

∫ xi

xi−1

(∫ xi

t

u

) 1
1−q

d
[
Vp(a, t)

q
1−q

]) 1−q
q

+

( k−1∑
j=N+1

(∫ xj+1

xj

u

)(∫ xj

a

d
[
Vp(a, t)

q
1−q

])1−q) 1
q

+ lim
t→a+

(∫ xk

t

u

) 1
q

Vp(a, t). (4.13)

Now, we are in position to find the upper estimate for A3. Using (4.13), we have that

A3 ≲ sup
N+1≤k<∞

2−
k
r

( k∑
i=N+1

∫ xi

xi−1

(∫ xi

t

u

) 1
1−q

d
[
Vp(a, t)

q
1−q

]) 1−q
q

+ sup
N+2≤k<∞

2−
k
r

( k−1∑
j=N+1

(∫ xj+1

xj

u

)(∫ xj

a

d
[
Vp(a, t)

q
1−q

])1−q) 1
q

+ sup
N+1≤k<∞

2−
k
r lim
t→a+

(∫ xk

t

u

) 1
q

Vp(a, t)

Further, (2.1) yields,

A3 ≲ sup
N+1≤k<∞

2−
k
r

(∫ xk

xk−1

(∫ xk

t

u

) 1
1−q

d
[
Vp(a, t)

q
1−q

]) 1−q
q
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+ sup
N+1≤k<∞

2−
k
r

(∫ xk+1

xk

u

) 1
q
(∫ xk

a

d
[
Vp(a, t)

q
1−q

]) 1−q
q

+ sup
N+1≤k<∞

2−
k
r lim
t→a+

(∫ xk

t

u

) 1
q

Vp(a, t)

=: A3,1 + A3,2 + A3,3.

Integrating by parts again, we have that

A3,1 ≲ sup
N+1≤k<∞

2−
k
r

(∫ xk

xk−1

(∫ xk

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

.

Thus, (4.1) gives,

A3,1 ≲ sup
N+1≤k<∞

2−
k
r

(∫ xk

xk−1

(∫ xk

t

u

) q
1−q

u(t)Vp(xk−1, t)
q

1−q dt

) 1−q
q

+ sup
N+2≤k<∞

2−
k
r

(∫ xk

xk−1

u

) 1
q

Vp(a, xk−1)

≲ A3 +B1. (4.14)

Additionally,

A3,2 ≲ sup
N+1≤k<∞

2−
k
r

(∫ xk+1

xk

u

) 1
q

Vp(a, xk) ≤ B1. (4.15)

Lastly, we will find a suitable upper estimate for A3,3. To this end, we will treat the cases
N = −∞ and N < ∞, separately. Observe that, if N = −∞, since xi → a if i → −∞, we
have for any k,

lim
t→a+

(∫ xk

t

u

) 1
q

Vp(a, t) = lim
i→−∞

(∫ xk

xi

u

) 1
q

Vp(a, xi) ≤ sup
i<k

(∫ xk

xi

u

) 1
q

Vp(a, xi). (4.16)

Then, then using (4.16) together with (2.7), we get

A3,3 ≲ sup
k∈Z

2−
k
r sup

i<k

(∫ xk

xi

u

) 1
q

Vp(a, xi)

≈ sup
k∈Z

2−
k
r

(∫ xk

xk−1

u

) 1
q

Vp(a, xk−1) ≲ B1.

On the other hand, if, N > −∞

lim
t→a+

(∫ xk

t

u

) 1
q

Vp(a, t) ≤ ess sup
t∈(a,xN+1)

(∫ xk

t

u

) 1
q

Vp(a, t)
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≈ ess sup
t∈(a,xN+1)

(∫ xN+1

t

u

) 1
q

Vp(a, t) +

(∫ xk

xN+1

u

) 1
q

Vp(a, xN+1).

(4.17)

Additionally, it is easy to see that

ess sup
τ∈(x,y)

(∫ y

τ

u

) 1
q

Vp(x, τ) ≤
(∫ y

x

(∫ y

t

u

) q
1−q

u(t)Vp(x, t)
q

1−q dt

) 1−q
q

. (4.18)

First, using (4.17), we get

A3,3 ≲ sup
N+1≤k<∞

2−
k
r ess sup
t∈(a,xN+1)

(∫ xN+1

t

u

) 1
q

Vp(a, t)

+ sup
N+2≤k<∞

2−
k
r sup
N+1≤i<k

(∫ xk

xi

u

) 1
q

Vp(a, xi).

Then, using (4.18) for the first term and applying (2.7) for the second term, we get

A3,3 ≲ sup
N+1≤k<∞

2−
k
r

(∫ xk

xk−1

(∫ xk

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

+ sup
N+2≤k<∞

2−
k
r

(∫ xk

xk−1

u

) 1
q

Vp(a, xk−1).

Finally, using (4.1), we arrive at

A3,3 ≲ A3 + sup
N+2≤k<∞

2−
k
r

(∫ xk

xk−1

u

) 1
q

Vp(a, xk−1) ≲ A3 +B1.

Consequently, we have for any N ∈ Z ∪ {−∞}, A3,3 ≲ A3 + B1. Combining the last
estimate with (4.14) and (4.15), we arrive at A3 ≲ A3 +B1, hence, C ≈ A3 +B1.
Let us now continue the proof by showing A3 +B1 ≈ C1 + C4.
To this end, taking α = 1/r and

h(x) =

(∫ x

a

(∫ x

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) 1−q
q

, x ∈ (a, b)

in (2.10), we have that A3 ≈ C4. Moreover, we have already shown in (4.4) and (4.5) that
B1 ≲ C1 ≲ A1 + B1. Furthermore, (4.18) yields that A1 ≲ A3. Consequently, we have
A3 +B1 ≲ C4 + C1 ≲ A3 +B1, which is the desired estimate.
(iv) Let max{r, q} < 1. Then, using [Theorem 3.2, (iv)], we have that C ≈ B2 + A4.

First of all, We will show that B2 +A4 ≈ B2 + A4, where

A4 :=

( ∞∑
k=N+1

2−
k

1−r

(∫ xk

a

(∫ xk

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) r(1−q)
q(1−r)

) 1−r
r

,

and B2 is defined in (4.6).
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It is clear that A4 ≤ A4. We have already shown in (4.7) that B2 ≲ A2 +B2. Moreover,
analogously as in the previous proof, using (4.18), one can easily see that A2 ≲ A4. Thus,
B2 +A4 ≲ B2 + A4 follows.

It remains to prove that B2 + A4 ≲ B2 + A4. Assume that max{A4,B2} < ∞. Then,
using the same steps as in the previous case, we can see that (4.12) holds, therefore (4.13)
is true in this case, as well.

Applying (4.13) combined with (2.5), we obtain that

A4 ≲

( ∞∑
k=N+1

2−
k

1−r

(∫ xk

xk−1

(∫ xk

t

u

) 1
1−q

d

[
Vp(a, t)

q
1−q

]) r(1−q)
q(1−r)

) 1−r
r

+

( ∞∑
k=N+2

2−
k

1−r

(∫ xk

xk−1

u

) r
q(1−r)

(∫ xk−1

a

d

[
Vp(a, t)

q
1−q

]) r(1−q)
q(1−r)

) 1−r
r

+

( ∞∑
k=N+1

2−
k

1−r

[
lim
t→a+

(∫ xk

t

u

) 1
q

Vp(a, t)

] r
1−r

) 1−r
r

=: A4,1 + A4,2 + A4,3.

holds.
As in the proof of the previous case, using integration by parts in combination with

(4.1), we have that

A4,1 ≲

( ∞∑
k=N+1

2−
k

1−r

(∫ xk

xk−1

(∫ xk

t

u

) q
1−q

u(t)Vp(a, t)

) r(1−q)
q(1−r)

) 1−r
r

≈ A4 +

( ∞∑
k=N+2

2−
k

1−r

(∫ xk

xk−1

u

) r
q(1−r)

Vp(a, xk−1)
r

1−r

) 1−r
r

≲ A4 +B2. (4.19)

On the other hand, it is clear that

A4,2 ≲

( ∞∑
k=N+2

2−
k

1−r

(∫ xk

xk−1

u

) r
q(1−r)

Vp(a, xk−1)
r

1−r

) 1−r
r

≲ B2. (4.20)

Furthermore, if N = −∞, using (4.16), and then applying (2.8), we get

A4,3 ≲

( ∞∑
k=−∞

2−
k

1−r sup
−∞<i<k

(∫ xk

xi

u

) r
q(1−r)

Vp(a, xi)
r

1−r

) 1−r
r

≈
( ∞∑

k=−∞

2−
k

1−r

(∫ xk

xk−1

u

) r
q(1−r)

Vp(a, xk−1)
r

1−r

) 1−r
r

≲ B2.
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If N > −∞, (4.17) together with (4.18) yields,

A4,3 ≲

( ∞∑
k=N+1

2−
k

1−r

(∫ xk

xk−1

(∫ xk

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) r(1−q)
q(1−r)

) 1−r
r

+

( ∞∑
k=N+2

2−
k

1−r sup
N+1≤i<k

(∫ xk

xi

u

) r
q(1−r)

Vp(a, xi)
r

1−r

) 1−r
r

.

Applying (4.1) to the first term and (2.8) to the second term, we have

A4,3 ≲ A4 +

( ∞∑
k=N+2

2−
k

1−r

(∫ xk

xk−1

u

) r
q(1−r)

Vp(a, xk−1)
r

1−r

) 1−r
r

≲ A4 +B2.

Thus, for any N ∈ Z ∪ {−∞}, we arrive at A4,3 ≲ A4 + B2. This fact, combined with
(4.19) and (4.20) yields A4 ≲ A4 + B2. Since B2 ≤ B2, we have A4 + B2 ≲ A4 + B2 and
consequently, C ≈ B2 + A4.
Now, we will show that B2 + A4 ≈ C3 + C5. Applying (2.9) with α = r

1−r
and

h(x) =

(∫ x

a

(∫ x

t

u

) q
1−q

u(t)Vp(a, t)
q

1−q dt

) r(1−q)
q(1−r)

, x ∈ (a, b),

it is clear that A4 ≈ C5. We have also shown in (4.9) that B2 ≲ C3. Hence, it remains to
show that C3 ≲ A4 + B2. To this end, we can use (4.18), and obtain A2 ≲ A4. Moreover,
we know from (4.11) that C3 ≲ A2 +B2. Consequently, C3 ≲ A4 +B2 holds and the proof
is complete. □

Proof of Theorem 1.2 We will prove that inequality (1.9) holds for all f ∈ M↑(a, b)
if and only if inequality(∫ b

a

(∫ x

a

(∫ t

a

h(τ)dτ

) 1
p

u(t)dt

)q

w(x)dx

) p
q

≤ Cp

∫ b

a

h(x)

(∫ b

x

v

)
dx (4.21)

holds for all h ∈ M+(a, b).

Assume that (1.9) holds for all f ∈ M↑(a, b). Substituting f(x) =
( ∫ x

a
h
) 1

p , x ∈ (a, b)
for h ∈ M+(a, b) in (1.9) and applying Fubini on the right-hand side, (4.21) follows.
Conversely, assume that (4.21) holds for all h ∈ M+(a, b). Since any f ∈ M↑(a, b),

even if f(0) > 0, can be approximated pointwise from below by a function of the form
f(x)p =

∫ x

a
h, x ∈ (a, b), then the validity of (4.21) yields (1.9).

Next, in (4.21), transferring the weight
∫ b

x
v to the left-hand side, we get that (1.9) holds

for all f ∈ M↑(a, b) if and only(∫ b

a

(∫ x

a

(∫ t

a

h(τ)

(∫ b

τ

v

)−1

dτ

) 1
p

u(t)dt

)q

w(x)dx

) p
q

≤ Cp

∫ b

a

h(x)dx

holds for all h ∈ M+(a, b). Therefore, the result follows from Theorem 1.1.
□
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for a superposition of the copson operator and the hardy operator, arXiv preprint arXiv:2109.03095,
(2021).

[5] A. Gogatishvili, R. Mustafayev, and T. Ünver, Embeddings between weighted Cop-
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