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(Pre-)history

X stands for an inf.-dim. Banach space; Sx the unit sphere of X.

Riesz’ lemma (1916). For every 6 € (0,1) there exists (x,)52; C Sx with
o—xd =0 (n# K.

In other words: For 6 € (0,1), Sx contains a 0-separated sequence.

Kottman’s theorem (1975). There exists (x,)52; C Sx such that
o —xdl >1 (0 # K.

Let us call this situation: Sx contains an infinite (14)-sequence.

The Elton—Odell theorem (1981). There exists ¢ = ¢(X) > 0 s.t.
Sx contains a (1 + ¢)-separated sequence.
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Diestel's Sequences and series in Banach spaces

An Afterthought to Riesz’s Theorem

(This could have been done by Banach!)

Thanks to Cliff Kottman a substantial improvement of the Riesz lemma
can be stated and proved. In fact, if X is an infinite-dimensional normed
linear space, then there exists a sequence (x,) of norm-one elements of X for
which ||x,, — x,|| > whenever m % n.

" Kottman’s original argument depends on combinatorial features that live
today in any improvements of the cited result. In Chapter XIV we shall see
how this is so; for now, we give a noncombinatorial proof of Kottman’s
result. We were shown this proof by Bob Huff who blames Tom Starbird for
its simplicity. Only the Hahn-Banach theorem is needed.

We proceed by induction. Choose x, € X with ||x,|| =1 and take x € X*
such that ||x?|| =1= x{x,.

Springer-Verlag, all rights reserved.
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Sphere vs ball

Folk lemma. Let x,y € Bx be non-zero vectors in Bx. If || x— y|| > 1, then

x .y
- 2z [Ix =y
I iyl H -
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x .y
- 2z [Ix =y
I iyl H -

In general the problem is reducible to looking at subspaces (obvious) and
quotients:

M C X closed = if (x,) is d-separated in X/M, you can lift it to a (§—)-separated
sequence.
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Symmetric separation in the separable case

Some easy cases:

o u.v.b. of £, for p € [1,00) is symmetrically 2'/P-separated.
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@ in ¢y, take x, = (1,1,1,1,—1,0,0,0,...). Then, (x,)52, is 2-sep.

@ when X contains an isomorphic copy of ¢y or ¢1, by James' non-distortion
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@ /7 arises as the geometric mean of certain averages close to 4.
@ Main ingredient: James’ char. of (non-)reflexivity: VO € (0, 1)3(xn) C Bx3(fn) C By (fo x) = 0 (k < ) & (o)) = 0 (k > )).

Problem (open).
@ Can you prove a symmetric version of this theorem?

@ Can you possibly improve the estimate?
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e Sx contais a symmetrically (1+)-separated sequence.
e If X is a Banach lattice or a separable dual space,
Sx contains a symmetrically (1+<)-separated sequence.

e If X has finite cotype q(X) (e.g., X is super-reflexive),
then Sx contains a (2'/9X) —)_separated sequence.

cotype = inf of g st E|l e prixill2 = a7 2 i 112 for all finite tuples (x;) ;g f in X, where (r;) is a sequence of i.i.d. symmetric Bernoull

random variables.

Theorem (Russo, '19)

Sx contains a symmetrically (1+< )-separated sequence. J
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Sketch

X contains a normalised basic sequence satisfying a lower g-estimate. Then K*(X) > 21/9.

Let (xn)p2;1 be such a seq. WLOG X = span{x;}°;. Then Tx, := e, (n € N) defines an
injection into /.
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Let 4 < v be such that % = 1. Since || T]| > 4, we can find a u.v. yi in span{x;}2; s.t.
| Ty1]| > 4. Having found y1,...,ya in span{x;}2; such that || Ty|| > % and the Tyx
have mutually disjoint supports. Then there is Ns.t. y1,...,ys € span{x,—}fi1 and the
fact that || Txy,, || > 7 allows us to find a u.v. yn1 € span{xi}Zns1 s-t. || Tynsall > 4.
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o yn £ yill = 11 Tyn £ Tyl = (1 Tyall” + 1| Tll )7 = 5 - 21/,
So

K(X) > L .29

S
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Cotype business

If X has finite cotype g(X), then Sx contains a (21/9(X) —)_separated sequence.

@ If gx = oo, then the assertion follows immediately from the Riesz lemma, so
WLOG gx < o0.

o If Xis a Schur space, then by Rosental’s ¢;-theorem X contains a copy of ¢;
and the James' non-distortion theorem even implies K°(X) = 2.

@ In the other case, there is a weakly null normalised basic sequence in X it is
known (see, Hajek—Johannis) that for every r > gx such a sequence admits a
subsequence with a lower r-estimate, so the result follows from the previous
proposition.
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Separation under renormings

Given X, one may find an equiv. norm X so that Sx contains a 2-sep. sequence.
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Given X, one may find an equiv. norm X so that S5 contains a 2-sep. sequence.
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KAX) = sup{o > 0: YN € N 3(x,)M_; in Bx s.t. ||xy — xml|| = o for n # m}
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for a Banach lattice X, K- (Kottman for disjoint sequences).
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Separation under renormings

Given X, one may find an equiv. norm X so that Sx contains a 2-sep. sequence.

Take a b-o. seq. (xp, fn) € X X X* ((fi> i) = 845 11l = lix;ll = 1) and set

v(X) = supiz [y ) |+ 1{fe 0 | lIxll = max{|Ix]l, v ()}

K(X) = sup{c > 0: Sx contains a o-separated sequence} (Kottman constant)
K(X) = inf{K(X): X = X} (isomorphic Kottman constant).

KAX) = sup{o > 0: YN € N 3(x,)M_; in Bx s.t. ||xy — xml|| = o for n # m}
(finite Kottman constant)

for a Banach lattice X, K- (Kottman for disjoint sequences).

Ks, f(s the symmetric versions.

K(e) =2 = K(c),
K(tp) = 21/P = RS(ZP);
Kryczka—Prus: K(X) > /4 for any non-reflexive X.
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Two words on the paper

T. Russo, A note on symmetric separation in Banach spaces, RACSAM (2019), arXiv:1904.12598.

Theorem (Russo). If Bx contains a weakly null (1 + €)-sep. seq, then Sx
contains a symmetrically v/1 + e-sep. seq.
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T. Russo, A note on symmetric separation in Banach spaces, RACSAM (2019), arXiv:1904.12598.

Theorem (Russo). If Bx contains a weakly null (1 + €)-sep. seq, then Sx
contains a symmetrically v/1 + e-sep. seq.

Theorem (HKR). If X has an ¢;-spreading model, then K*(X) = 2.

Theorem (Russo). It is possible to have a ¢p-spreading model and K(X)
arbitrarily close to 1.

Problem (open). In a complex Banach space, can you prove a ‘toroidal’
version of the Elton—Odell theorem?

x and y are toroidally §-separated, whenever ||x — 8y|| > ¢ for every |6] = 1.
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Preliminary observations

@ For a countably incomplete ultrafilter 7 and a space X, we have
1< K(X) < KdX) = K(X¥) <2,

where X% stands for the ultrapower of X w.rt. % .
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Preliminary observations

@ For a countably incomplete ultrafilter 7 and a space X, we have
1 < K(X) < K{X) = K(X?) < 2,

where X% stands for the ultrapower of X w.rt. % .
@ There exists a space Z for which

K(2) < K(Z7),

and it is easy to check that this space also satisfies Ks(Z) < Ks(Z**). The
said space is a J-sum of £] (n € N) in the sense of Bellenot; it has the

property that K(Z) < 2, yet Z** admits a quotient map onto ¢; so that
K(Z) = 2.
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|
Castillo-Gonzalez—K.—Papini
For every space X, 2 < K(X) - K(X*). J

Based on a simple application of Ramsey's theorem:
Lemma

Let (x,) be a bounded sequence in a Banach space. Then there exists an infinite
subset M of N such that ||x; — x;|| converges as i,j € M, i,j — .

Proof.

X contains a basic seq. with basis constant at most 1 +¢&: (x,)52; in X and

(X5)52y in X* with [[x,]| = 1 and ||x}|| < 14¢ (ne N) s.t. (xf,x;) = d;. Fori# ],
2= (G = x5 xi=x) < I =il - [ = ]l

Let us set y; = (1+¢)~'x;. (Passing to a subsequence) ||y} — y7|| and ||x; — xj|
converge to k* and to k, resp. in the sense of the Lemma. Then

2(1+¢)7 <K k< K(XT) - K(X),

hence 2 < K(X) - K(X*).
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Twisted sums

Theorem (Castillo-Gonzalez—K.—Papini). For a short exact sequence of Banach
spaces

0—-Y—=>X—=>272—0,

we have

K(X) = max{K(Y), K(2)}.
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Theorem (Castillo-Gonzalez—K.—Papini). For a short exact sequence of Banach
spaces

0—-Y—=>X—=>272—0,

we have

K(X) = max{K(Y), K(2)}.

First idea: The Kottman constant is cts w.r.t the Banach—Mazur distance:
K(X) < K(Y) - dgm (X, Y)2. This is not sufficient, though.
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Twisted sums

Theorem (Castillo-Gonzalez—K.—Papini). For a short exact sequence of Banach
spaces

0—-Y—=>X—=>272—0,

we have

K(X) = max{K(Y), K(2)}.

First idea: The Kottman constant is cts w.r.t the Banach—Mazur distance:
K(X) < K(Y) - dgm (X, Y)2. This is not sufficient, though.
Main idea: the constant is cts w.r.t. to the Kadets metric

dx(M, N) = infmax{ sup dist(x, jBy), sup dist(y, iBM)},
XEiBym YE€jBn

where the inf is taken w.r.t all isometric embeddings i, j of M, N into common
spaces.
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Kadets metric

di(M, N) = infmax { supxgig,, dist(x,jBy), supye gy dist(y; iBp)}

Claim. Let M, N C Z Then |K(M) — K(N)| <2 - g(M, N).
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Kadets metric

di(M, N) = inf max { subxeigy, dist(x jBy), supye;g,, dist(y, iBpg) }
Claim. Let M, N C Z Then |K(M) — K(N)| <2 - g(M, N).

Sketch. Say K(M) is attained. Take (a,)52; in By s.t. K(M) = ||an — am||-
For a, pick b, in By so that ||a, — ba|| < g(M, N).
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Kadets metric

(M, N) = infmax { subye g, dist(x,jBy), supye g, dist (v, iBp)}
Claim. Let M, N C Z. Then |K(M) — K(N)| < 2- g(M, N).
Sketch. Say K(M) is attained. Take (a,)52; in By s.t. K(M) = ||an — am||-
For a, pick by in By so that ||a, — bn|| < g(M, N).Then
[[bn = bml| = K(M) — 2 - g(M, N).
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Kadets metric

di(M, N) = inf max { subxeigy, dist(x jBy), supye;g,, dist(y, iBpg) }
Claim. Let M, N C Z Then |K(M) — K(N)| <2 - g(M, N).
Sketch. Say K(M) is attained. Take (a,)52; in By s.t. K(M) = ||an — am||-
For a, pick by in By so that ||a, — bn|| < g(M, N).Then
[[bn = bml| = K(M) — 2 - g(M, N).
K(N) > K(M) — 2 - g(M, N), so
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Kadets metric

di(M, N) = inf max { subxeigy, dist(x jBy), supye;g,, dist(y, iBpg) }
Claim. Let M, N C Z Then |K(M) — K(N)| <2 - g(M, N).
Sketch. Say K(M) is attained. Take (a,)52; in By s.t. K(M) = ||an — am||-
For a, pick by in By so that ||a, — bn|| < g(M, N).Then
[[bn = bml| = K(M) — 2 - g(M, N).
K(N) > K(M) — 2 - g(M, N), so
K(M) — K(N) < 2 g(M, N).
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Kadets metric

di(M, N) = inf max { subxeigy, dist(x jBy), supye;g,, dist(y, iBpg) }
Claim. Let M, N C Z Then |K(M) — K(N)| <2 - g(M, N).
Sketch. Say K(M) is attained. Take (a,)52; in By s.t. K(M) = ||an — am||-
For a, pick by in By so that ||a, — bn|| < g(M, N).Then
b0 — bnll > K(M) — 2 g(M, N).
K(N) > K(M) — 2 - g(M, N), so
K(M) — K(N) < 2 - g(M, N).
Exchanging the réles of M and N one finally gets |K(N) — K(M)| < 2 g(M, N).
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Kadets metric

di(M, N) = inf max { subxeigy, dist(x jBy), supye;g,, dist(y, iBpg) }
Claim. Let M, N C Z Then |K(M) — K(N)| <2 - g(M, N).
Sketch. Say K(M) is attained. Take (a,)52; in By s.t. K(M) = ||an — am||-
For a, pick by in By so that ||a, — bn|| < g(M, N).Then
b0 — bnll > K(M) — 2 g(M, N).
K(N) > K(M) — 2 - g(M, N), so
K(M) — K(N) < 2 - g(M, N).
Exchanging the réles of M and N one finally gets |K(N) — K(M)| < 2 g(M, N).

Theorem. The Kottman constant is continuous with respect to the Kadets
metric. More precisely,

[K(X) = K(Y)| <2 dk(X,Y).

The same is true for both symmetric and finite Kottman constants.
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Kadets metric

di(M, N) = inf max { subxeigy, dist(x jBy), supye;g,, dist(y, iBpg) }
Claim. Let M, N C Z Then |K(M) — K(N)| <2 - g(M, N).

Sketch. Say K(M) is attained. Take (a,)52; in By s.t. K(M) = ||an — am||-
For a, pick by in By so that ||a, — bn|| < g(M, N).Then

16y — bl > K(M) — 2 g(M, N).
K(N) > K(M) — 2 - g(M, N), so
K(M) — K(N) < 2 g(M, N)
Exchanging the réles of M and N one finally gets |K(N) — K(M)| < 2 g(M, N).

Theorem. The Kottman constant is continuous with respect to the Kadets
metric. More precisely,

IK(X) — K(Y)| < 2 dhe(X, V).
The same is true for both symmetric and finite Kottman constants.

Sketch. For isometric embeddings i, j, we have K(X) = K(iX) and K(Y) = K(jY). Thus,
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Kadets metric

di(M, N) = inf max { subxeigy, dist(x jBy), supye;g,, dist(y, iBpg) }
Claim. Let M, N C Z Then |K(M) — K(N)| <2 - g(M, N).

Sketch. Say K(M) is attained. Take (a,)52; in By s.t. K(M) = ||an — am||-
For a, pick by in By so that ||a, — bn|| < g(M, N).Then

bn = bml| = K(M) — 2 - g(M, N).
K(N) > K(M) — 2 - g(M, N), so
K(M) — K(N) < 2 g(M, N).
Exchanging the réles of M and N one finally gets |K(N) — K(M)| < 2 g(M, N).
Theorem. The Kottman constant is continuous with respect to the Kadets
metric. More precisely,
IK(X) — K(Y)| < 2 dhe(X, V).

The same is true for both symmetric and finite Kottman constants.

Sketch. For isometric embeddings i, j, we have K(X) = K(iX) and K(Y) = K(jY). Thus,
IK(iX) — KGY)| < 28(X, ¥), s0
IK(iX) — KGY)| < 2dk(X, Y).
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Twisted sums

Kalton—Peck: 0 — ¢5 — Zo — ¢2 — 0 that does not split.

For Qx = (xlog (Ixa|/[|X]|2))n (x € £2), [[(y; )] = Ily = ©xl|2 + [[xl[2 ((y,x) € Z2)
is a quasi-norm. Kalton: the convex hull of the unit ball of the preceding quasi-norm

provides an equivalent Banach-space topology.
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Kalton—Peck: 0 — ¢5 — Zo — ¢2 — 0 that does not split.

For Qx = (xlog (Ixa|/[|X]|2))n (x € £2), [[(y; )] = Ily = ©xl|2 + [[xl[2 ((y,x) € Z2)
is a quasi-norm. Kalton: the convex hull of the unit ball of the preceding quasi-norm

provides an equivalent Banach-space topology.

Theorem. Let 0 - Y — X — Z — 0 be an exact sequence of Banach spaces.

Then ~ ~ ~
K(X) = max{K(¥), K(2)}.

Analogous inequalities hold for Ki(-) and K¢(-) too.
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Twisted sums
Kalton—Peck: 0 — ¢5 — Zo — ¢2 — 0 that does not split.

For Qx = (xlog (|xn|/[Ixl[2))n (x € £2), [|(y: )l = lly — Q|2 + [Ixl|2 ((y; %) € Z2)
is a quasi-norm. Kalton: the convex hull of the unit ball of the preceding quasi-norm
provides an equivalent Banach-space topology.

Theorem. Let 0 - Y — X — Z — 0 be an exact sequence of Banach spaces.

Then ~ ~ ~
K(X) = max{K(¥), K(2)}.
Analogous inequalities hold for Ki(-) and K¢(-) too.
Sketch. Again, there is no loss of generality in assuming that K(X) = K(X). Thus
|K(A) — K(B)| = |K(A) ~ K(B)| < 2- g(A, B).

The space Y®; Zis a subspace of X@®; Z. For each positive ¢, the subspace
Xe = {(ex,qx)) : x € X} of X®, Z is isomorphic to X. Both equalities follow from
lim. 0 g(Xe, Y®1 Z2) = 0, which follows from a lemma due to M. Ostrovskii.
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Complex interpolation

Kalton and Ostrovskii proved that the Kadets metric is continuous with respect to
the interpolation parameter, by showing that

sin (7(t—s)/2)

dic (Xe, Xs) < 2 W

, O0<s t< 1.
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Complex interpolation

Kalton and Ostrovskii proved that the Kadets metric is continuous with respect to
the interpolation parameter, by showing that

sin (7(t—s)/2)

dic (Xe, Xs) < 2 m

, O0<s t< 1.

Corollary. Let (Xp, X1) be an interpolation couple. Then the (symmetric, finite)

Kottman constant is continuous with respect to the interpolation parameter;

precisely
sin (7(t —s)/2)

[K(Xe) = K(Xs)| < 4 sin (7(t+s)/2)

, O0<s t< 1.
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Complex interpolation

Kalton and Ostrovskii proved that the Kadets metric is continuous with respect to
the interpolation parameter, by showing that

sin (7(t—s)/2)

dic (Xe, Xs) < 2 m

, O0<s t< 1.

Corollary. Let (Xp, X1) be an interpolation couple. Then the (symmetric, finite)

Kottman constant is continuous with respect to the interpolation parameter;

precisely
sin (7(t —s)/2)

[K(Xe) = K(Xs)| < 4 sin (7(t+s)/2)

, O0<s t< 1.

An interpolation couple (X, X1 ) is called regular, whenever X5 M X7 is dense in both Xy and X7 .

T. Kania (AV CR) Quantifying Kottman's constant May 21, 2020 17/18



Complex interpolation

Kalton and Ostrovskii proved that the Kadets metric is continuous with respect to
the interpolation parameter, by showing that

sin (7(t—s)/2)

dic (Xe, Xs) < 2 m

, O0<s t< 1.

Corollary. Let (Xp, X1) be an interpolation couple. Then the (symmetric, finite)

Kottman constant is continuous with respect to the interpolation parameter;

precisely
sin (7(t —s)/2)

[K(Xe) = K(Xs)| < 4 sin (7(t+s)/2)

, O0<s t< 1.

An interpolation couple (X, X1 ) is called regular, whenever X5 M X7 is dense in both Xy and X7 .

Theorem. Let (X, X1) be regular interpolation pair of Banach spaces with Xj
reflexive and let 0 < a < b< 1. Then

K(X(1—p)aton) < K(Xa)' "K(Xp)" (0 € (0,1)).

The inequality is valid for Ks(-) and Kg(-) as well.
Quantifying Kottman'’s constant May 21, 2020 17/18
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