Quantifying Kottman's constant

Tomasz Kania

Matematický ústav AV ČR, Praha

Banach spaces webinars, May 21, 2020

- The isomorphic Kottman constant of a Banach space, with J. M. F. Castillo, M. González, and P. L. Papini, PAMS 2020+ arXiv:1910.01626
- Symmetrically separated sequences in the unit sphere of a Banach space, with P. Hájek and T. Russo, JFA 2018, 3148-3168 arXiv:1711.05149

X stands for an **inf.-dim.** Banach space; S_X the unit sphere of X.

X stands for an **inf.-dim.** Banach space; S_X the unit sphere of X.

Riesz' lemma (1916).

X stands for an **inf.-dim.** Banach space; S_X the unit sphere of X.

Riesz' lemma (1916). For every $\theta \in (0,1)$ there exists $(x_n)_{n=1}^{\infty} \subset S_X$ with

$$||x_n - x_k|| \geqslant \theta$$
 $(n \neq k)$.

X stands for an **inf.-dim.** Banach space; S_X the unit sphere of X.

Riesz' lemma (1916). For every $\theta \in (0,1)$ there exists $(x_n)_{n=1}^\infty \subset S_X$ with

$$||x_n-x_k|| \geqslant \theta \qquad (n \neq k).$$

In other words: For $\theta \in (0,1)$, S_X contains a θ -separated sequence.

X stands for an **inf.-dim.** Banach space; S_X the unit sphere of X.

Riesz' lemma (1916). For every $\theta \in (0,1)$ there exists $(x_n)_{n=1}^{\infty} \subset S_X$ with

$$||x_n - x_k|| \geqslant \theta$$
 $(n \neq k)$.

In other words: For $\theta \in (0,1)$, S_X contains a θ -separated sequence.

Kottman's theorem (1975). There exists $(x_n)_{n=1}^{\infty} \subset S_X$ such that

$$||x_n-x_k||>1 \qquad (n\neq k).$$

X stands for an **inf.-dim.** Banach space; S_X the unit sphere of X.

Riesz' lemma (1916). For every $\theta \in (0,1)$ there exists $(x_n)_{n=1}^{\infty} \subset S_X$ with

$$||x_n - x_k|| \geqslant \theta$$
 $(n \neq k)$.

In other words: For $\theta \in (0,1)$, S_X contains a θ -separated sequence.

Kottman's theorem (1975). There exists $(x_n)_{n=1}^{\infty} \subset S_X$ such that

$$||x_n-x_k||>1 \qquad (n\neq k).$$

Let us call this situation: S_X contains an infinite (1+)-sequence.

X stands for an **inf.-dim.** Banach space; S_X the unit sphere of X.

Riesz' lemma (1916). For every $\theta \in (0,1)$ there exists $(x_n)_{n=1}^{\infty} \subset S_X$ with

$$||x_n-x_k|| \geqslant \theta \qquad (n \neq k).$$

In other words: For $\theta \in (0,1)$, S_X contains a θ -separated sequence.

Kottman's theorem (1975). There exists $(x_n)_{n=1}^{\infty} \subset S_X$ such that

$$||x_n-x_k||>1 \qquad (n\neq k).$$

Let us call this situation: S_X contains an infinite (1+)-sequence.

The Elton–Odell theorem (1981). There exists $\varepsilon = \varepsilon(X) > 0$ s.t. S_X contains a $(1 + \varepsilon)$ -separated sequence.

Diestel's Sequences and series in Banach spaces

An Afterthought to Riesz's Theorem

(This could have been done by Banach!)

Thanks to Cliff Kottman a substantial improvement of the Riesz lemma can be stated and proved. In fact, if X is an infinite-dimensional normed linear space, then there exists a sequence (x_n) of norm-one elements of X for which $||x_m - x_n|| > 1$ whenever $m \neq n$.

Kottman's original argument depends on combinatorial features that live today in any improvements of the cited result. In Chapter XIV we shall see how this is so; for now, we give a noncombinatorial proof of Kottman's result. We were shown this proof by Bob Huff who blames Tom Starbird for its simplicity. Only the Hahn-Banach theorem is needed.

We proceed by induction. Choose $x_1 \in X$ with $||x_1|| = 1$ and take $x_1^* \in X^*$ such that $||x_4^*|| = 1 = x_1^*x_1$.

Springer-Verlag, all rights reserved.

Folk lemma. Let $x, y \in B_X$ be non-zero vectors in B_X . If $||x - y|| \ge 1$, then

$$\left\|\frac{x}{\|x\|} - \frac{y}{\|y\|}\right\| \geqslant \|x - y\|.$$

Folk lemma. Let $x, y \in B_X$ be non-zero vectors in B_X . If $||x - y|| \ge 1$, then

$$\left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\| \geqslant \|x - y\|.$$

Idea: WLOG $\|x\|\geqslant \|y\|$. $g(t)=\|x-ty\|$ is convex. $g(0)\leqslant 1$, $g(1)\geqslant 1$. Thus $\left\|\frac{x}{\|x\|}-\frac{y}{\|y\|}\right\|\geqslant g(\|x\|/\|y\|)\geqslant g(1)$.

Folk lemma. Let $x, y \in B_X$ be non-zero vectors in B_X . If $||x - y|| \ge 1$, then

$$\left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\| \geqslant \|x - y\|.$$

Idea: WLOG $\|x\|\geqslant \|y\|$. $g(t)=\|x-ty\|$ is convex. $g(0)\leqslant 1$, $g(1)\geqslant 1$. Thus $\left\|\frac{x}{\|x\|}-\frac{y}{\|y\|}\right\|\geqslant g(\|x\|/\|y\|)\geqslant g(1)$.

Uncountable sets of unit vectors that are separated by more than 1, with T. Kochanek, Studia Mathematica 232 (2016), 19-44. arXiv:1503.08166

In general the problem is reducible to looking at subspaces (obvious) and quotients:

Folk lemma. Let $x, y \in B_X$ be non-zero vectors in B_X . If $||x - y|| \ge 1$, then

$$\left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\| \geqslant \|x - y\|.$$

Idea: WLOG $\|x\|\geqslant \|y\|$. $g(t)=\|x-ty\|$ is convex. $g(0)\leqslant 1$, $g(1)\geqslant 1$. Thus $\left\|\frac{x}{\|x\|}-\frac{y}{\|y\|}\right\|\geqslant g(\|x\|/\|y\|)\geqslant g(1)$.

Uncountable sets of unit vectors that are separated by more than 1, with T. Kochanek, Studia Mathematica 232 (2016), 19-44. arXiv:1503.08166

In general the problem is reducible to looking at subspaces (obvious) and quotients:

 $M \subset X$ closed \Rightarrow if (x_n) is δ -separated in X/M, you can lift it to a $(\delta-)$ -separated sequence.

Some easy cases:

• u.v.b. of ℓ_p for $p \in [1, \infty)$ is symmetrically $2^{1/p}$ -separated.

Some easy cases:

• u.v.b. of ℓ_p for $p\in [1,\infty)$ is symmetrically $2^{1/p}$ -separated. (Actually in ℓ_p this is the best you can get!).

Some easy cases:

- u.v.b. of ℓ_p for $p \in [1, \infty)$ is symmetrically $2^{1/p}$ -separated. (Actually in ℓ_p this is the best you can get!).
- in c_0 , take $x_n = (1, 1, 1, 1, -1, 0, 0, 0, ...)$. Then, $(x_n)_{n=1}^{\infty}$ is 2-sep.
- when X contains an **isomorphic** copy of c_0 or ℓ_1 , by James' non-distortion theorem, you can manufacture an almost isometric copy, so you'll get a $(2-\varepsilon)$ -sep. sequence.

Some easy cases:

- u.v.b. of ℓ_p for $p \in [1, \infty)$ is symmetrically $2^{1/p}$ -separated. (Actually in ℓ_p this is the best you can get!).
- in c_0 , take $x_n = (1, 1, 1, 1, -1, 0, 0, 0, ...)$. Then, $(x_n)_{n=1}^{\infty}$ is 2-sep.
- when X contains an **isomorphic** copy of c_0 or ℓ_1 , by James' non-distortion theorem, you can manufacture an almost isometric copy, so you'll get a $(2-\varepsilon)$ -sep. sequence.

Theorem (Kryczka–Prus, 2000). X non-reflexive $\Rightarrow S_X$ contains a $\sqrt[5]{4}$ -sep. seq.

lacksquare $\sqrt[5]{4}$ arises as the geometric mean of certain averages close to 4.

Some easy cases:

- u.v.b. of ℓ_p for $p \in [1, \infty)$ is symmetrically $2^{1/p}$ -separated. (Actually in ℓ_p this is the best you can get!).
- in c_0 , take $x_n = (1, 1, 1, 1, -1, 0, 0, 0, ...)$. Then, $(x_n)_{n=1}^{\infty}$ is 2-sep.
- when X contains an **isomorphic** copy of c_0 or ℓ_1 , by James' non-distortion theorem, you can manufacture an almost isometric copy, so you'll get a $(2-\varepsilon)$ -sep. sequence.

Theorem (Kryczka–Prus, 2000). X non-reflexive $\Rightarrow S_X$ contains a $\sqrt[5]{4}$ -sep. seq.

- $\bullet \quad \text{Main ingredient: James' char. of (non-)reflexivity: } \forall \theta \in (0,1) \exists (x_n) \subset B_X \exists (f_n) \subset B_{X^*} \langle f_k, x_j \rangle = \theta \ (k \leqslant j) \ \& \ \langle f_k, x_j \rangle = 0 \ (k > j).$

Problem (open).

• Can you prove a symmetric version of this theorem?

Some easy cases:

- u.v.b. of ℓ_p for $p \in [1, \infty)$ is symmetrically $2^{1/p}$ -separated. (Actually in ℓ_p this is the best you can get!).
- in c_0 , take $x_n = (1, 1, 1, 1, -1, 0, 0, 0, ...)$. Then, $(x_n)_{n=1}^{\infty}$ is 2-sep.
- when X contains an **isomorphic** copy of c_0 or ℓ_1 , by James' non-distortion theorem, you can manufacture an almost isometric copy, so you'll get a $(2-\varepsilon)$ -sep. sequence.

Theorem (Kryczka–Prus, 2000). X non-reflexive $\Rightarrow S_X$ contains a $\sqrt[5]{4}$ -sep. seq.

- $\textbf{Main ingredient: James' char. of (non-)reflexivity: } \forall \theta \in (0,1) \exists (x_n) \subset B_{\textbf{X}} \exists (f_n) \subset B_{\textbf{X}} \ast (f_k,x_j) = \theta \ (k \leqslant j) \ \& \ (f_k,x_j) = 0 \ (k > j).$

Problem (open).

- Can you prove a symmetric version of this theorem?
- Can you possibly improve the estimate?

What about symmetric separation? $(\|x \pm y\| > \delta)$?

Theorem (Hájek-K.-Russo, '18)

• S_X contais a symmetrically (1+)-separated sequence.

What about symmetric separation? $(\|x \pm y\| > \delta)$?

Theorem (Hájek-K.-Russo, '18)

- S_X contais a symmetrically (1+)-separated sequence.
- If X is a Banach **lattice** or a **separable dual space**, S_X contains a symmetrically $(1+\varepsilon)$ -separated sequence.

What about symmetric separation? $(\|x \pm y\| > \delta)$?

Theorem (Hájek-K.-Russo, '18)

- S_X contais a symmetrically (1+)-separated sequence.
- If X is a Banach **lattice** or a **separable dual space**, S_X contains a symmetrically $(1+\varepsilon)$ -separated sequence.
- If X has finite cotype q(X) (e.g., X is super-reflexive), then S_X contains a $(2^{1/q(X)}-)$ -separated sequence.

What about symmetric separation? $(\|x \pm y\| > \delta)$?

Theorem (Hájek-K.-Russo, '18)

- S_X contais a symmetrically (1+)-separated sequence.
- If X is a Banach **lattice** or a **separable dual space**, S_X contains a symmetrically $(1+\varepsilon)$ -separated sequence.
- If X has finite cotype q(X) (e.g., X is super-reflexive), then S_X contains a $(2^{1/q(X)}-)$ -separated sequence.

What about symmetric separation? $(\|x \pm y\| > \delta)$?

Theorem (Hájek-K.-Russo, '18)

- S_X contais a symmetrically (1+)-separated sequence.
- If X is a Banach **lattice** or a **separable dual space**, S_X contains a symmetrically $(1+\varepsilon)$ -separated sequence.
- If X has finite cotype q(X) (e.g., X is super-reflexive), then S_X contains a $(2^{1/q(X)}-)$ -separated sequence.

cotype = inf of q s.t. $\mathbb{E}\|\sum_{i\in F}r_ix_i\|^2\geqslant q^{-2}\sum_{i\in F}\|x_i\|^2$ for all finite tuples $(x_i)_{i\in F}$ in X, where (r_i) is a sequence of i.i.d. symmetric Bernoulli random variables

What about symmetric separation? $(\|x \pm y\| > \delta)$?

Theorem (Hájek-K.-Russo, '18)

- S_X contais a symmetrically (1+)-separated sequence.
- If X is a Banach **lattice** or a **separable dual space**, S_X contains a symmetrically $(1+\varepsilon)$ -separated sequence.
- If X has finite cotype q(X) (e.g., X is super-reflexive), then S_X contains a $(2^{1/q(X)}-)$ -separated sequence.

cotype = inf of q s.t. $\mathbb{E}\|\sum_{i\in F}r_ix_i\|^2\geqslant q^{-2}\sum_{i\in F}\|x_i\|^2$ for all finite tuples $(x_i)_{i\in F}$ in X, where (r_i) is a sequence of i.i.d. symmetric Bernoulli random variables.

Theorem (Russo, '19)

 S_X contains a symmetrically $(1+\varepsilon)$ -separated sequence.

Symmetric separation

A normalised basic sequence $(x_n)_{n=1}^{\infty}$ satisfies a lower q-estimate if there is a c>0 such that

$$c \cdot \left(\sum_{i=n}^{N} |a_n|^q\right)^{1/q} \leqslant \left\|\sum_{n=1}^{N} a_n x_n\right\|$$

for every choice $(a_n)_{n=1}^N$ and $N \in \mathbb{N}$.

A normalised basic sequence $(x_n)_{n=1}^{\infty}$ satisfies a lower q-estimate if there is a c>0 such that

$$c \cdot \left(\sum_{i=n}^{N} |a_n|^q\right)^{1/q} \le \left\|\sum_{n=1}^{N} a_n x_n\right\|$$

for every choice $(a_n)_{n=1}^N$ and $N \in \mathbb{N}$.

Suppose X has a basis $(x_n)_{n=1}^{\infty}$. Set $X_n := \overline{\operatorname{span}}\{x_i\}_{i=n}^{\infty}$ $(n \in \mathbb{N})$. An operator $T \colon X \to Y$ is bounded by a pair (γ, ϱ) , where $0 < \gamma \leqslant \varrho < \infty$, if $\|T\| \leqslant \varrho$ and $\|T\|_{X_n} \| \geqslant \gamma$ for every $n \in \mathbb{N}$.

A normalised basic sequence $(x_n)_{n=1}^{\infty}$ satisfies a lower q-estimate if there is a c>0 such that

$$c \cdot \left(\sum_{i=n}^{N} |a_n|^q\right)^{1/q} \le \left\|\sum_{n=1}^{N} a_n x_n\right\|$$

for every choice $(a_n)_{n=1}^N$ and $N \in \mathbb{N}$.

Suppose X has a basis $(x_n)_{n=1}^{\infty}$. Set $X_n := \overline{\operatorname{span}}\{x_i\}_{i=n}^{\infty}$ $(n \in \mathbb{N})$. An operator $T \colon X \to Y$ is bounded by a pair (γ, ϱ) , where $0 < \gamma \leqslant \varrho < \infty$, if $\|T\| \leqslant \varrho$ and $\|T\|_{X_n} \| \geqslant \gamma$ for every $n \in \mathbb{N}$.

Theorem (HKR). Suppose that X contains a normalised basic sequence satisfying a lower q-estimate. Then $K^s(X) \ge 2^{1/q}$.

A normalised basic sequence $(x_n)_{n=1}^{\infty}$ satisfies a lower q-estimate if there is a c>0 such that

$$c \cdot \left(\sum_{i=n}^{N} |a_n|^q\right)^{1/q} \le \left\|\sum_{n=1}^{N} a_n x_n\right\|$$

for every choice $(a_n)_{n=1}^N$ and $N \in \mathbb{N}$.

Suppose X has a basis $(x_n)_{n=1}^{\infty}$. Set $X_n := \overline{\operatorname{span}}\{x_i\}_{i=n}^{\infty}$ $(n \in \mathbb{N})$. An operator $T \colon X \to Y$ is bounded by a pair (γ, ϱ) , where $0 < \gamma \leqslant \varrho < \infty$, if $\|T\| \leqslant \varrho$ and $\|T\|_{X_n} \| \geqslant \gamma$ for every $n \in \mathbb{N}$.

Theorem (HKR). Suppose that X contains a normalised basic sequence satisfying a lower q-estimate. Then $K^s(X) \ge 2^{1/q}$.

X contains a normalised basic sequence satisfying a lower q-estimate. Then $K^{s}(X)\geqslant 2^{1/q}$.

Let $(x_n)_{n=1}^{\infty}$ be such a seq. WLOG $X = \overline{\operatorname{span}}\{x_i\}_{i=1}^{\infty}$. Then $Tx_n := e_n$ $(n \in \mathbb{N})$ defines an injection into ℓ_q .

X contains a normalised basic sequence satisfying a lower q-estimate. Then $K^{s}(X)\geqslant 2^{1/q}$.

Let $(x_n)_{n=1}^{\infty}$ be such a seq. WLOG $X = \overline{\operatorname{span}}\{x_i\}_{i=1}^{\infty}$. Then $Tx_n := e_n$ $(n \in \mathbb{N})$ defines an injection into ℓ_q .

Set $\varrho_n = \|T|_{X_n}\|$ $(n \in \mathbb{N})$. $(\varrho_n)_{n=1}^{\infty}$ decreases and $\varrho_n \geqslant 1$. $T|_{X_k}$ $(k \in \mathbb{N})$ is bounded by $(\inf_{n\geqslant 1}\varrho_n,\varrho_k)$ and, of course, $\varrho_k \to \inf_{n\geqslant 1}\varrho_n$ as $k\to\infty$. WLOG $T\colon X\to \ell_q$ is bounded by (γ,ϱ) with $\frac{\gamma}{\varrho}$ as close to 1 as we wish (with $\frac{\gamma}{\varrho}<1$).

Let $\tilde{\gamma} < \gamma$ be such that $\frac{\tilde{\gamma}}{\varrho} \cong 1$. Since $\|T\| > \tilde{\gamma}$, we can find a u.v. y_1 in $\operatorname{span}\{x_i\}_{i=1}^{\infty}$ s.t. $\|Ty_1\| > \tilde{\gamma}$. Having found y_1, \ldots, y_n in $\operatorname{span}\{x_i\}_{i=1}^{\infty}$ such that $\|Ty_k\| > \tilde{\gamma}$ and the Ty_k have mutually disjoint supports. Then there is N s.t. $y_1, \ldots, y_n \in \operatorname{span}\{x_i\}_{i=1}^{N}$ and the fact that $\|T|_{X_{N+1}}\| > \tilde{\gamma}$ allows us to find a u.v. $y_{n+1} \in \operatorname{span}\{x_i\}_{i=N+1}^{\infty}$ s.t. $\|Ty_{n+1}\| > \tilde{\gamma}$.

X contains a normalised basic sequence satisfying a lower q-estimate. Then $K^s(X)\geqslant 2^{1/q}$.

Let $(x_n)_{n=1}^{\infty}$ be such a seq. WLOG $X = \overline{\operatorname{span}}\{x_i\}_{i=1}^{\infty}$. Then $Tx_n := e_n$ $(n \in \mathbb{N})$ defines an injection into ℓ_q .

Set $\varrho_n = \|T|_{X_n}\|$ $(n \in \mathbb{N})$. $(\varrho_n)_{n=1}^{\infty}$ decreases and $\varrho_n \geqslant 1$. $T|_{X_k}$ $(k \in \mathbb{N})$ is bounded by $(\inf_{n\geqslant 1}\varrho_n,\varrho_k)$ and, of course, $\varrho_k \to \inf_{n\geqslant 1}\varrho_n$ as $k\to\infty$. WLOG $T\colon X\to \ell_q$ is bounded by (γ,ϱ) with $\frac{\gamma}{\varrho}$ as close to 1 as we wish (with $\frac{\gamma}{\varrho}<1$).

Let $\tilde{\gamma} < \gamma$ be such that $\frac{\tilde{\gamma}}{\varrho} \cong 1$. Since $\|T\| > \tilde{\gamma}$, we can find a u.v. y_1 in $\operatorname{span}\{x_i\}_{i=1}^{\infty}$ s.t. $\|Ty_1\| > \tilde{\gamma}$. Having found y_1, \ldots, y_n in $\operatorname{span}\{x_i\}_{i=1}^{\infty}$ such that $\|Ty_k\| > \tilde{\gamma}$ and the Ty_k have mutually disjoint supports. Then there is N s.t. $y_1, \ldots, y_n \in \operatorname{span}\{x_i\}_{i=1}^{N}$ and the fact that $\|T|_{X_{N+1}}\| > \tilde{\gamma}$ allows us to find a u.v. $y_{n+1} \in \operatorname{span}\{x_i\}_{i=N+1}^{\infty}$ s.t. $\|Ty_{n+1}\| > \tilde{\gamma}$.

Thus, for $n \neq k$ we have

$$\varrho \cdot ||y_n \pm y_k|| \geqslant ||Ty_n \pm Ty_k|| = (||Ty_n||^q + ||Ty_k||^q)^{1/q} \geqslant \tilde{\gamma} \cdot 2^{1/q}.$$

X contains a normalised basic sequence satisfying a lower q-estimate. Then $K^{s}(X)\geqslant 2^{1/q}$.

Let $(x_n)_{n=1}^{\infty}$ be such a seq. WLOG $X = \overline{\operatorname{span}}\{x_i\}_{i=1}^{\infty}$. Then $Tx_n := e_n$ $(n \in \mathbb{N})$ defines an injection into ℓ_q .

Set $\varrho_n = \|T|_{X_n}\|$ $(n \in \mathbb{N})$. $(\varrho_n)_{n=1}^{\infty}$ decreases and $\varrho_n \geqslant 1$. $T|_{X_k}$ $(k \in \mathbb{N})$ is bounded by $(\inf_{n\geqslant 1}\varrho_n,\varrho_k)$ and, of course, $\varrho_k\to\inf_{n\geqslant 1}\varrho_n$ as $k\to\infty$. WLOG $T\colon X\to\ell_q$ is bounded by (γ,ϱ) with $\frac{\gamma}{\varrho}$ as close to 1 as we wish (with $\frac{\gamma}{\varrho}<1$).

Let $\tilde{\gamma} < \gamma$ be such that $\frac{\tilde{\gamma}}{\varrho} \cong 1$. Since $\|T\| > \tilde{\gamma}$, we can find a u.v. y_1 in $\mathrm{span}\{x_i\}_{i=1}^\infty$ s.t. $\|Ty_1\| > \tilde{\gamma}$. Having found y_1,\ldots,y_n in $\mathrm{span}\{x_i\}_{i=1}^\infty$ such that $\|Ty_k\| > \tilde{\gamma}$ and the Ty_k have mutually disjoint supports. Then there is N s.t. $y_1,\ldots,y_n \in \mathrm{span}\{x_i\}_{i=1}^N$ and the fact that $\|T|_{X_{N+1}}\| > \tilde{\gamma}$ allows us to find a u.v. $y_{n+1} \in \mathrm{span}\{x_i\}_{i=N+1}^\infty$ s.t. $\|Ty_{n+1}\| > \tilde{\gamma}$.

Thus, for $n \neq k$ we have

$$\varrho \cdot ||y_n \pm y_k|| \geqslant ||Ty_n \pm Ty_k|| = (||Ty_n||^q + ||Ty_k||^q)^{1/q} \geqslant \tilde{\gamma} \cdot 2^{1/q}.$$

So

$$K^{s}(X) \geqslant \frac{\tilde{\gamma}}{\varrho} \cdot 2^{1/q}$$

Cotype business

If X has finite cotype q(X), then S_X contains a $(2^{1/q(X)}-)$ -separated sequence.

- If $q_X = \infty$, then the assertion follows immediately from the Riesz lemma, so WLOG $q_X < \infty$.
- If X is a Schur space, then by Rosental's ℓ_1 -theorem X contains a copy of ℓ_1 and the James' non-distortion theorem even implies $K^s(X) = 2$.
- In the other case, there is a weakly null normalised basic sequence in X; it is known (see, Hájek–Johannis) that for every $r > q_X$ such a sequence admits a subsequence with a lower r-estimate, so the result follows from the previous proposition.

Separation under renormings

Given X, one may find an equiv. norm \tilde{X} so that $S_{\tilde{X}}$ contains a 2-sep. sequence.

Given X, one may find an equiv. norm \tilde{X} so that $S_{\tilde{X}}$ contains a 2-sep. sequence.

Take a b.-o. seq.
$$(x_n,f_n)\in X\times X^*$$
 $(\langle f_k,x_j\rangle=\delta_{kj},\|f_i\|=\|x_j\|=1)$ and set
$$\nu(X)=\sup_{i\neq k}|\langle f_i,x\rangle|+|\langle f_k,x\rangle|,\|x\|'=\max\{\|x\|,\nu(x)\}.$$

• $K(X) = \sup\{\sigma > 0 \colon S_X \text{ contains a } \sigma\text{-separated sequence}\}$ (Kottman constant)

Given X, one may find an equiv. norm \tilde{X} so that $S_{\tilde{X}}$ contains a 2-sep. sequence.

```
Take a b.-o. seq. (x_n,f_n)\in X\times X^* (\langle f_k,x_j\rangle=\delta_{kj},\|f_i\|=\|x_i\|=1) and set \nu(X)=\sup_{i\neq k}|\langle f_i,x\rangle|+|\langle f_k,x\rangle|,\|x\|'=\max\{\|x\|,\nu(x)\}.
```

- $K(X) = \sup\{\sigma > 0 \colon S_X \text{ contains a } \sigma\text{-separated sequence}\}$ (Kottman constant)
- $\tilde{K}(X) = \inf\{K(\tilde{X}) : X \cong \tilde{X}\}$ (isomorphic Kottman constant).

Given X, one may find an equiv. norm \tilde{X} so that $S_{\tilde{X}}$ contains a 2-sep. sequence.

```
Take a b.-o. seq. (x_n,f_n)\in X\times X^* (\langle f_k,x_j\rangle=\delta_{kj},\|f_i\|=\|x_i\|=1) and set \nu(X)=\sup_{i\neq k}|\langle f_i,x\rangle|+|\langle f_k,x\rangle|,\|x\|'=\max\{\|x\|,\nu(x)\}.
```

- $K(X) = \sup\{\sigma > 0 \colon S_X \text{ contains a } \sigma\text{-separated sequence}\}$ (Kottman constant)
- $\tilde{K}(X) = \inf\{K(\tilde{X}) : X \cong \tilde{X}\}$ (isomorphic Kottman constant).
- $K_f(X) = \sup\{\sigma > 0 \colon \forall N \in \mathbb{N} \ \exists (x_n)_{n=1}^N \ \text{in} \ B_X \ \text{s.t.} \ \|x_n x_m\| \geqslant \sigma \ \text{for} \ n \neq m \}$ (finite Kottman constant)
- for a Banach lattice X, K^{\perp} (Kottman for disjoint sequences).
- K_s , \tilde{K}_s the symmetric versions.
- $K(c_0) = 2 = \tilde{K}_s(c_0),$

Given X, one may find an equiv. norm \tilde{X} so that $S_{\tilde{X}}$ contains a 2-sep. sequence.

```
Take a b.-o. seq. (x_n,f_n)\in X\times X^* (\langle f_k,x_j\rangle=\delta_{kj},\|f_i\|=\|x_i\|=1) and set \nu(X)=\sup_{i\neq k}|\langle f_i,x\rangle|+|\langle f_k,x\rangle|,\|x\|'=\max\{\|x\|,\nu(x)\}.
```

- $K(X) = \sup\{\sigma > 0 \colon S_X \text{ contains a } \sigma\text{-separated sequence}\}$ (Kottman constant)
- $\tilde{K}(X) = \inf\{K(\tilde{X}): X \cong \tilde{X}\}$ (isomorphic Kottman constant).
- $K_f(X) = \sup\{\sigma > 0 \colon \forall N \in \mathbb{N} \ \exists (x_n)_{n=1}^N \ \text{in} \ B_X \ \text{s.t.} \ \|x_n x_m\| \geqslant \sigma \ \text{for} \ n \neq m \}$ (finite Kottman constant)
- for a Banach lattice X, K^{\perp} (Kottman for disjoint sequences).
- K_s , \tilde{K}_s the symmetric versions.
- $K(c_0) = 2 = \tilde{K}_s(c_0)$,
- $K(\ell_p) = 2^{1/p} = \tilde{K}_s(\ell_p);$

Given X, one may find an equiv. norm X so that S_{X} contains a 2-sep. sequence.

```
Take a b.-o. seq. (x_n,f_n)\in X\times X^* (\langle f_k,x_j\rangle=\delta_{kj},\|f_i\|=\|x_i\|=1) and set \nu(X)=\sup_{i\neq k}|\langle f_i,x\rangle|+|\langle f_k,x\rangle|,\|x\|'=\max\{\|x\|,\nu(x)\}.
```

- $\mathit{K}(\mathit{X}) = \sup\{\sigma > 0 \colon \mathit{S}_{\mathit{X}} \text{ contains a } \sigma\text{-separated sequence}\}$ (Kottman constant)
- $\tilde{K}(X) = \inf\{K(\tilde{X}) : X \cong \tilde{X}\}$ (isomorphic Kottman constant).
- $K_f(X) = \sup\{\sigma > 0 \colon \forall N \in \mathbb{N} \ \exists (x_n)_{n=1}^N \ \text{in } B_X \text{ s.t. } \|x_n x_m\| \geqslant \sigma \text{ for } n \neq m\}$ (finite Kottman constant)
- for a Banach lattice X, K^{\perp} (Kottman for disjoint sequences).
- K_s , \tilde{K}_s the symmetric versions.
- $K(c_0) = 2 = \tilde{K}_s(c_0)$,
- $K(\ell_p) = 2^{1/p} = \tilde{K}_s(\ell_p);$
- Kryczka–Prus: $K(X) \geqslant \sqrt[5]{4}$ for any non-reflexive X.

T. Russo, A note on symmetric separation in Banach spaces, RACSAM (2019), arXiv:1904.12598.

Theorem (Russo). If B_X contains a weakly null $(1 + \varepsilon)$ -sep. seq, then S_X contains a symmetrically $\sqrt{1 + \varepsilon}$ -sep. seq.

T. Russo, A note on symmetric separation in Banach spaces, RACSAM (2019), arXiv:1904.12598.

Theorem (Russo). If B_X contains a weakly null $(1 + \varepsilon)$ -sep. seq, then S_X contains a symmetrically $\sqrt{1 + \varepsilon}$ -sep. seq.

Theorem (HKR). If X has an ℓ_1 -spreading model, then $K^s(X) = 2$.

T. Russo, A note on symmetric separation in Banach spaces, RACSAM (2019), arXiv:1904.12598.

Theorem (Russo). If B_X contains a weakly null $(1 + \varepsilon)$ -sep. seq, then S_X contains a symmetrically $\sqrt{1 + \varepsilon}$ -sep. seq.

Theorem (HKR). If X has an ℓ_1 -spreading model, then $K^s(X) = 2$.

Theorem (Russo). It is possible to have a c_0 -spreading model and K(X) arbitrarily close to 1.

Problem (open). In a complex Banach space, can you prove a 'toroidal' version of the Elton–Odell theorem?

T. Russo, A note on symmetric separation in Banach spaces, RACSAM (2019), arXiv:1904.12598.

Theorem (Russo). If B_X contains a weakly null $(1 + \varepsilon)$ -sep. seq, then S_X contains a symmetrically $\sqrt{1 + \varepsilon}$ -sep. seq.

Theorem (HKR). If X has an ℓ_1 -spreading model, then $K^s(X) = 2$.

Theorem (Russo). It is possible to have a c_0 -spreading model and K(X) arbitrarily close to 1.

Problem (open). In a complex Banach space, can you prove a 'toroidal' version of the Elton–Odell theorem?

x and y are toroidally δ -separated, whenever $||x - \theta y|| \ge \delta$ for every $|\theta| = 1$.

Preliminary observations

ullet For a countably incomplete ultrafilter ${\mathscr U}$ and a space X, we have

$$1 < K(X) \leqslant K_f(X) = K(X^{\mathcal{U}}) \leqslant 2,$$

where $X^{\mathcal{U}}$ stands for the ultrapower of X w.r.t. \mathcal{U} .

Preliminary observations

ullet For a countably incomplete ultrafilter ${\mathscr U}$ and a space X, we have

$$1 < K(X) \leqslant K_f(X) = K(X^{\mathscr{U}}) \leqslant 2,$$

where $X^{\mathcal{U}}$ stands for the ultrapower of X w.r.t. \mathcal{U} .

• There exists a space Z for which

$$K(Z) < K(Z^{**}),$$

and it is easy to check that this space also satisfies $K_s(Z) < K_s(Z^{**})$. The said space is a J-sum of ℓ_1^n ($n \in \mathbb{N}$) in the sense of Bellenot; it has the property that K(Z) < 2, yet Z^{**} admits a quotient map onto ℓ_1 so that $K_s(Z^{**}) = 2$.

Castillo-González-K.-Papini

For every space X, $2 \leqslant K(X) \cdot K(X^*)$.

Based on a simple application of Ramsey's theorem:

Lemma

Let (x_n) be a bounded sequence in a Banach space. Then there exists an infinite subset M of $\mathbb N$ such that $\|x_i-x_j\|$ converges as $i,j\in M,\ i,j\to\infty$.

Proof.

X contains a basic seq. with basis constant at most $1+\varepsilon$: $(x_n)_{n=1}^\infty$ in X and $(x_n^*)_{n=1}^\infty$ in X^* with $\|x_n\|=1$ and $\|x_n^*\|\leqslant 1+\varepsilon$ $(n\in\mathbb{N})$ s.t. $\langle x_i^*,x_j\rangle=\delta_{ij}$. For $i\neq j$,

$$2 = \langle x_i^* - x_j^*, x_i - x_j \rangle \leqslant ||x_i^* - x_j^*|| \cdot ||x_i - x_j||.$$

Let us set $y_n^* = (1+\varepsilon)^{-1} x_n^*$. (Passing to a subsequence) $\|y_i^* - y_j^*\|$ and $\|x_i - x_j\|$ converge to k^* and to k, resp. in the sense of the Lemma. Then

$$2(1+\varepsilon)^{-1} \leqslant k^* \cdot k \leqslant K(X^*) \cdot K(X),$$

hence $2 \leqslant K(X) \cdot K(X^*)$.

Theorem (Castillo–González–K.–Papini). For a short exact sequence of Banach spaces

$$0 \to Y \to X \to Z \to 0,$$

we have

$$\tilde{\textit{K}}(\textit{X}) = \max\{\tilde{\textit{K}}(\textit{Y}), \tilde{\textit{K}}(\textit{Z})\}.$$

Theorem (Castillo–González–K.–Papini). For a short exact sequence of Banach spaces

$$0 \to Y \to X \to Z \to 0,$$

we have

$$\tilde{\textit{K}}(\textit{X}) = \max\{\tilde{\textit{K}}(\textit{Y}), \tilde{\textit{K}}(\textit{Z})\}.$$

First idea: The Kottman constant is cts w.r.t the Banach–Mazur distance: $K(X) \leq K(Y) \cdot d_{BM}(X, Y)^2$. This is not sufficient, though.

Theorem (Castillo–González–K.–Papini). For a short exact sequence of Banach spaces

$$0 \to Y \to X \to Z \to 0$$
,

we have

$$\tilde{K}(X) = \max\{\tilde{K}(Y), \tilde{K}(Z)\}.$$

First idea: The Kottman constant is cts w.r.t the Banach-Mazur distance:

 $K(X) \leq K(Y) \cdot d_{BM}(X, Y)^2$. This is not sufficient, though.

Main idea: the constant is cts w.r.t. to the Kadets metric

$$d_K(M,N) = \inf \max \big\{ \sup_{x \in iB_M} \operatorname{dist}(x,jB_N), \sup_{y \in jB_N} \operatorname{dist}(y,iB_M) \big\},$$

where the inf is taken w.r.t all isometric embeddings i, j of M, N into common spaces.

4 D > 4 B > 4 B > B 9 Q Q

 $d_K(M,N) = \inf \max \big\{ \sup\nolimits_{x \in iB_{\textstyle M}} \, \operatorname{dist}(x,jB_{\textstyle N}), \sup\nolimits_{y \in jB_{\textstyle N}} \, \operatorname{dist}(y,iB_{\textstyle M}) \big\}$

Claim. Let $M, N \subseteq Z$. Then $|K(M) - K(N)| \leq 2 \cdot g(M, N)$.

```
d_K(M,N) = \inf \max \big\{ \sup\nolimits_{x \in iB_M} \, \operatorname{dist}(x,jB_N), \sup\nolimits_{y \in jB_N} \operatorname{dist}(y,iB_M) \big\}
```

Claim. Let $M, N \subseteq Z$. Then $|K(M) - K(N)| \le 2 \cdot g(M, N)$. Sketch. Say K(M) is attained. Take $(a_n)_{n=1}^{\infty}$ in B_M s.t. $K(M) = ||a_n - a_m||$.

For a_n pick b_n in B_N so that $||a_n - b_n|| \le g(M, N)$.

```
d_K(M,N) = \inf \max \big\{ \sup\nolimits_{x \in iB_M} \, \operatorname{dist}(x,jB_N), \sup\nolimits_{y \in jB_N} \, \operatorname{dist}(y,iB_M) \big\}
```

Claim. Let $M, N \subseteq Z$. Then $|K(M) - K(N)| \le 2 \cdot g(M, N)$. Sketch. Say K(M) is attained. Take $(a_n)_{n=1}^{\infty}$ in B_M s.t. $K(M) = \|a_n - a_m\|$. For a_n pick b_n in B_N so that $\|a_n - b_n\| \le g(M, N)$. Then $\|b_n - b_m\| \ge K(M) - 2 \cdot g(M, N)$.

```
d_K(M,N) = \inf \max \big\{ \sup\nolimits_{x \in iB_M} \, \operatorname{dist}(x,jB_N), \sup\nolimits_{y \in jB_N} \operatorname{dist}(y,iB_M) \big\}
```

Claim. Let $M, N \subseteq Z$. Then $|K(M) - K(N)| \leq 2 \cdot g(M, N)$.

Sketch. Say K(M) is attained. Take $(a_n)_{n=1}^{\infty}$ in B_M s.t. $K(M) = \|a_n - a_m\|$.

For a_n pick b_n in B_N so that $||a_n - b_n|| \le g(M, N)$. Then

$$||b_n - b_m|| \geqslant K(M) - 2 \cdot g(M, N).$$

$$K(N) \geqslant K(M) - 2 \cdot g(M, N)$$
, so

```
d_K(M,N) = \inf \max \big\{ \sup\nolimits_{x \in iB_M} \, \operatorname{dist}(x,jB_N), \sup\nolimits_{y \in jB_N} \operatorname{dist}(y,iB_M) \big\}
```

Claim. Let $M, N \subseteq Z$. Then $|K(M) - K(N)| \leq 2 \cdot g(M, N)$.

Sketch. Say K(M) is attained. Take $(a_n)_{n=1}^{\infty}$ in B_M s.t. $K(M) = \|a_n - a_m\|$.

For a_n pick b_n in B_N so that $||a_n - b_n|| \leq g(M, N)$. Then

$$||b_n-b_m||\geqslant K(M)-2\cdot g(M,N).$$

$$K(N) \geqslant K(M) - 2 \cdot g(M, N)$$
, so

$$K(M) - K(N) \leqslant 2 \cdot g(M, N).$$

```
d_K(M,N) = \inf \max \big\{ \sup\nolimits_{x \in iB_M} \, \operatorname{dist}(x,jB_N), \sup\nolimits_{y \in jB_N} \operatorname{dist}(y,iB_M) \big\}
```

Claim. Let $M, N \subseteq Z$. Then $|K(M) - K(N)| \leq 2 \cdot g(M, N)$.

Sketch. Say K(M) is attained. Take $(a_n)_{n=1}^{\infty}$ in B_M s.t. $K(M) = \|a_n - a_m\|$.

For a_n pick b_n in B_N so that $||a_n - b_n|| \leq g(M, N)$. Then

$$||b_n - b_m|| \geqslant K(M) - 2 \cdot g(M, N).$$

$$K(N) \geqslant K(M) - 2 \cdot g(M, N)$$
, so

$$K(M) - K(N) \leq 2 \cdot g(M, N).$$

Exchanging the rôles of M and N one finally gets $|K(N) - K(M)| \leq 2 \cdot g(M, N)$.

 $d_K(M,N) = \inf \max \big\{ \sup\nolimits_{x \in iB_M} \, \operatorname{dist}(x,jB_N), \sup\nolimits_{y \in jB_N} \operatorname{dist}(y,iB_M) \big\}$

Claim. Let $M, N \subseteq Z$. Then $|K(M) - K(N)| \leq 2 \cdot g(M, N)$.

Sketch. Say K(M) is attained. Take $(a_n)_{n=1}^{\infty}$ in B_M s.t. $K(M) = \|a_n - a_m\|$.

For a_n pick b_n in B_N so that $||a_n - b_n|| \leq g(M, N)$. Then

$$||b_n-b_m||\geqslant K(M)-2\cdot g(M,N).$$

$$K(N) \geqslant K(M) - 2 \cdot g(M, N)$$
, so

$$K(M) - K(N) \leq 2 \cdot g(M, N)$$
.

Exchanging the rôles of M and N one finally gets $|K(N) - K(M)| \leqslant 2 \cdot g(M, N)$.

Theorem. The Kottman constant is continuous with respect to the Kadets metric. More precisely,

$$|K(X) - K(Y)| \leq 2 \cdot d_{K}(X, Y).$$

The same is true for both symmetric and finite Kottman constants.

 $d_K(M,N) = \inf \max \big\{ \sup\nolimits_{x \in iB_M} \, \operatorname{dist}(x,jB_N), \sup\nolimits_{y \in jB_N} \operatorname{dist}(y,iB_M) \big\}$

Claim. Let $M, N \subseteq Z$. Then $|K(M) - K(N)| \leq 2 \cdot g(M, N)$.

Sketch. Say K(M) is attained. Take $(a_n)_{n=1}^{\infty}$ in B_M s.t. $K(M) = ||a_n - a_m||$.

For a_n pick b_n in B_N so that $||a_n - b_n|| \leq g(M, N)$. Then

$$||b_n-b_m||\geqslant K(M)-2\cdot g(M,N).$$

$$K(N) \geqslant K(M) - 2 \cdot g(M, N)$$
, so

$$K(M) - K(N) \leq 2 \cdot g(M, N)$$
.

Exchanging the rôles of M and N one finally gets $|K(N) - K(M)| \leq 2 \cdot g(M, N)$.

Theorem. The Kottman constant is continuous with respect to the Kadets metric. More precisely,

$$|K(X) - K(Y)| \leq 2 \cdot d_{\mathbf{K}}(X, Y).$$

The same is true for both symmetric and finite Kottman constants.

Sketch. For isometric embeddings i, j, we have K(X) = K(iX) and K(Y) = K(jY). Thus,

 $d_K(M,N) = \inf \max \left\{ \sup_{x \in iB_M} \operatorname{dist}(x,jB_N), \sup_{y \in jB_M} \operatorname{dist}(y,iB_M) \right\}$

Claim. Let $M, N \subseteq Z$. Then $|K(M) - K(N)| \leq 2 \cdot g(M, N)$.

Sketch. Say K(M) is attained. Take $(a_n)_{n=1}^{\infty}$ in B_M s.t. $K(M) = ||a_n - a_m||$.

For a_n pick b_n in B_N so that $||a_n - b_n|| \le g(M, N)$. Then

$$||b_n - b_m|| \geqslant K(M) - 2 \cdot g(M, N).$$

$$K(N) \geqslant K(M) - 2 \cdot g(M, N)$$
, so

$$K(M) - K(N) \leqslant 2 \cdot g(M, N).$$

Exchanging the rôles of M and N one finally gets $|K(N) - K(M)| \leq 2 \cdot g(M, N)$.

Theorem. The Kottman constant is continuous with respect to the Kadets metric. More precisely,

$$|K(X) - K(Y)| \leq 2 \cdot d_{\mathbf{K}}(X, Y).$$

The same is true for both symmetric and finite Kottman constants.

Sketch. For isometric embeddings i, j, we have K(X) = K(iX) and K(Y) = K(jY). Thus,

$$|K(iX) - K(jY)| \leqslant 2g(iX, jY)$$
, so

$$|K(iX) - K(jY)| \leq 2d_{\mathbf{K}}(X, Y).$$

T. Kania (AV ČR)

May 21, 2020

Kalton–Peck: $0 \to \ell_2 \to Z_2 \to \ell_2 \to 0$ that does not split.

For $\Omega x = (x \log (|x_n|/\|x\|_2))_n$ $(x \in \ell_2)$, $\|(y,x)\| = \|y - \Omega x\|_2 + \|x\|_2$ $((y,x) \in Z_2)$ is a quasi-norm. Kalton: the convex hull of the unit ball of the preceding quasi-norm provides an equivalent Banach-space topology.

Kalton–Peck: $0 \to \ell_2 \to Z_2 \to \ell_2 \to 0$ that does not split.

For $\Omega x=(x\log{(|x_n|/\|x\|_2)})_n$ $(x\in\ell_2)$, $\|(y,x)\|=\|y-\Omega x\|_2+\|x\|_2$ $((y,x)\in Z_2)$ is a quasi-norm. Kalton: the convex hull of the unit ball of the preceding quasi-norm provides an equivalent Banach-space topology.

Theorem. Let $0 \to Y \to X \to Z \to 0$ be an exact sequence of Banach spaces. Then

$$\tilde{\textit{K}}(\textit{X}) = \max\{\tilde{\textit{K}}(\textit{Y}), \tilde{\textit{K}}(\textit{Z})\}.$$

Analogous inequalities hold for $\tilde{K}_s(\cdot)$ and $\tilde{K}_f(\cdot)$ too.

Kalton–Peck: $0 \to \ell_2 \to Z_2 \to \ell_2 \to 0$ that does not split.

For $\Omega x = (x \log (|x_n|/\|x\|_2))_n$ $(x \in \ell_2)$, $\|(y,x)\| = \|y - \Omega x\|_2 + \|x\|_2$ $((y,x) \in Z_2)$ is a quasi-norm. Kalton: the convex hull of the unit ball of the preceding quasi-norm provides an equivalent Banach-space topology.

Theorem. Let $0 \to Y \to X \to Z \to 0$ be an exact sequence of Banach spaces. Then

$$\tilde{\textit{K}}(\textit{X}) = \max\{\tilde{\textit{K}}(\textit{Y}), \tilde{\textit{K}}(\textit{Z})\}.$$

Analogous inequalities hold for $\tilde{K}_s(\cdot)$ and $\tilde{K}_f(\cdot)$ too.

Sketch. Again, there is no loss of generality in assuming that $\tilde{K}(X) = K(\tilde{X})$. Thus

$$|\tilde{K}(A) - \tilde{K}(B)| = |K(\tilde{A}) - K(\tilde{B})| \le 2 \cdot g(\tilde{A}, \tilde{B}).$$

The space $Y\oplus_1 Z$ is a subspace of $X\oplus_1 Z$. For each positive ε , the subspace $X_\varepsilon=\{(\varepsilon x,qx)):x\in X\}$ of $X\oplus_1 Z$ is isomorphic to X. Both equalities follow from $\lim_{\varepsilon\to 0} g(X_\varepsilon,Y\oplus_1 Z)=0$, which follows from a lemma due to M. Ostrovskii.

Kalton and Ostrovskii proved that the Kadets metric is continuous with respect to the interpolation parameter, by showing that

$$d_{\mathrm{K}}(X_t, X_s) \leqslant 2 \left| \frac{\sin \left(\pi(t-s)/2 \right)}{\sin \left(\pi(t+s)/2 \right)} \right|, \quad 0 < s, t < 1.$$

Kalton and Ostrovskii proved that the Kadets metric is continuous with respect to the interpolation parameter, by showing that

$$d_{\mathrm{K}}(X_t, X_s) \leqslant 2 \left| \frac{\sin \left(\pi(t-s)/2 \right)}{\sin \left(\pi(t+s)/2 \right)} \right|, \quad 0 < s, t < 1.$$

Corollary. Let (X_0, X_1) be an interpolation couple. Then the (symmetric, finite) Kottman constant is continuous with respect to the interpolation parameter; precisely

$$|K(X_t) - K(X_s)| \le 4 \left| \frac{\sin(\pi(t-s)/2)}{\sin(\pi(t+s)/2)} \right|, \quad 0 < s, t < 1.$$

Kalton and Ostrovskii proved that the Kadets metric is continuous with respect to the interpolation parameter, by showing that

$$d_{\mathrm{K}}(X_t, X_s) \leqslant 2 \left| \frac{\sin \left(\pi(t-s)/2 \right)}{\sin \left(\pi(t+s)/2 \right)} \right|, \quad 0 < s, t < 1.$$

Corollary. Let (X_0, X_1) be an interpolation couple. Then the (symmetric, finite) Kottman constant is continuous with respect to the interpolation parameter; precisely

$$|K(X_t) - K(X_s)| \le 4 \left| \frac{\sin(\pi(t-s)/2)}{\sin(\pi(t+s)/2)} \right|, \quad 0 < s, t < 1.$$

An interpolation couple (X_0, X_1) is called *regular*, whenever $X_0 \cap X_1$ is dense in both X_0 and X_1 .

Kalton and Ostrovskii proved that the Kadets metric is continuous with respect to the interpolation parameter, by showing that

$$d_{\mathrm{K}}(X_t, X_s) \leqslant 2 \left| \frac{\sin \left(\pi(t-s)/2 \right)}{\sin \left(\pi(t+s)/2 \right)} \right|, \quad 0 < s, t < 1.$$

Corollary. Let (X_0, X_1) be an interpolation couple. Then the (symmetric, finite) Kottman constant is continuous with respect to the interpolation parameter; precisely

$$|\mathcal{K}(X_t) - \mathcal{K}(X_s)| \leqslant 4 \left| \frac{\sin(\pi(t-s)/2)}{\sin(\pi(t+s)/2)} \right|, \quad 0 < s, t < 1.$$

An interpolation couple (X_0, X_1) is called *regular*, whenever $X_0 \cap X_1$ is dense in both X_0 and X_1 .

Theorem. Let (X_0, X_1) be regular interpolation pair of Banach spaces with X_0 reflexive and let 0 < a < b < 1. Then

$$\mathit{K}(\mathit{X}_{(1-\theta)\mathsf{a}+\theta\mathsf{b}})\leqslant \mathit{K}(\mathit{X}_{\mathsf{a}})^{1-\theta}\mathit{K}(\mathit{X}_{\mathsf{b}})^{\theta} \quad \big(\theta\in(0,1)\big).$$

The inequality is valid for $K_s(\cdot)$ and $K_f(\cdot)$ as well.

- J.M.F. Castillo and P.L. Papini, On the Kottman constants in Banach spaces, Banach Center Publ. 92 (2011), 75–84.
- P. Hájek, T. Kania, and T. Russo, Symmetrically separated sequences in the unit sphere of a Banach space, J. Funct. Anal. 275 (2018), 3148–3168.
- C. A. Kottman, Subsets of the unit ball that are separated by more than one. *Studia Math.* 53 (1975), 15–27.

Preprints:

- P. Hájek, T. Kania, and T. Russo, Separated sets and Auerbach systems in Banach spaces, arXiv:1803.11501.
- J. M. F. Castillo, M. González, T. Kania, and P. Papini, The isomorphic Kottman constant of a Banach space, arXiv:1910.01626.