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Abstract

We consider a coupled system of partial and ordinary differential equations describing the interaction between
an isentropic inviscid fluid and a rigid body moving freely inside the fluid. We prove the existence of measure-valued
solutions which is generated by the vanishing viscosity limit of incompressible fluid-rigid body interaction system
under some physically constitutive relations. Moreover, we show that the measure-value solution coincides with
strong solution on the interval of its existence. This relies on the weak-strong uniqueness analysis.
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1 Introduction
We consider the motion of a rigid body inside an isentropic inviscid fluid. The fluid and the body occupy a bounded
domain Ω ⊂ R3. At the time t ∈ R+, we denote by B(t) ⊂ Ω the bounded domain occupied by the rigid body and by
F(t) = Ω \B(t), the domain filled by the fluid. Assuming that the initial position B(0) of the rigid body is prescribed,
we denote B0 = B(0) and, similarly, F0 = F(0). The interface between the body and the fluid is denoted by ∂B(t) and
the normal vector to the boundary is denoted by n(t,x) pointing outside Ω and inside B(t). For T > 0 we introduce
the following notation for the space-time cylinders

QF =
⋃
t∈(0,T ){t} × F(t),

Q∂B =
⋃
t∈(0,T ){t} × ∂B(t),

QB =
⋃
t∈(0,T ){t} × B(t),

QT = (0, T )× Ω.

(1.1)
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The fluid motion is governed by the following system of equations
∂tuF + (uF · ∇)uF +∇pF = 0, divuF = 0 in QF ,

uF · n = 0 on (0, T )× ∂Ω,
uF · n = uB · n on Q∂B,
uF (0) = uF0

in F0,

(1.2)

where uF denotes the velocity of the fluid, the scalar function pF is the pressure, and uB is the full velocity of the
rigid body. We assume that the external body forces acting on the fluid are zero. The velocity of the rigid body is
given by

uB(t,x) = V(t) + w(t)× (x−X(t)) (1.3)
for any (t,x) ∈ QB, where the translation velocity V and the angular velocity w of the body satisfy the following
system of the equations

m
d

dt
V(t) =

∫
∂B(t)

pF I · ndS in (0, T ),

J(t)
d

dt
w(t) = J(t)w(t)×w(t) +

∫
∂B(t)

(x−X(t))× pF I · ndS in (0, T ),

V(0) = V0, w(0) = w0.

(1.4)

Here, the mass of the body, the center of mass X and the inertial tensor J are respectively,

m =

∫
B(t)

%B(t,x) dx, (1.5)

X(t) =
1

m

∫
B(t)

%B(t,x)x dx, (1.6)

J(t)a · b =

∫
B(t)

%B(t,x) [a× (x−X(t))] · [b× (x−X(t))] dx, (1.7)

with %B denoting the density of the body which is assumed to be smooth but does not have to be constant, i.e.
throughout this paper we assume %B(0,x) ∈ C1(B0) and %B(0,x) ≥ c0 > 0 in B0, which then implies %B ∈ C1(QB),
%B ≥ c0 > 0 in QB. Note that, without loss of generality, we can assume that the center of mass of the body is at the
origin at time zero, namely X(0) = 0. The position of the body B(t) is given by a time-dependent family of isometries
of R3 such that

η[t] : R3 → R3, B(t) = η[t](B0) for 0 ≤ t ≤ T, (1.8)
where the mapping η[t] satisfies

η[t](x) = X(t) + O(t)x, O(t) ∈ SO(3). (1.9)
The velocity of the body uB(t,x) is then naturally related to the isometries η[t] by

V(t) =
d

dt
X(t), Q(t) =

(
d

dt
O(t)

)
(O(t))

−1 (1.10)

for a.e. t ∈ (0, T ), where Q is an antisymmetric matrix such that

Q(t)(x−X(t)) = w(t)× (x−X(t)). (1.11)

Relations (1.10)-(1.11) are consequence of the fact that the body is transported by its velocity, hence the family of
isometries η[t] satisfies

d

dt
η[t](x) = uB(t, η[t](x)) with η[0](x) = x. (1.12)

Finally, equation (1.12) implies that the indicator function 1B(t,x) of the set B(t) as well as the density of the body
%B(t,x) satisfy the following transport (and continuity) equations

∂t1B + uB · ∇1B = ∂t1B + div(1BuB) = 0 on R3, (1.13)

∂t%B + uB · ∇%B = ∂t%B + div(%BuB) = 0 on B(t). (1.14)
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1.1 Discussion and Main result
In this paper, our first contribution is the proof of the existence theorem for measure-valued solutions to the system
(1.2)-(1.4). In our framework the measure-valued solution consists of the position of the body B, a Young measure Yt,x
and a dissipation defect D, which is a bounded function in time. We give the precise definition of a measure-valued
solution in Section 2, see Definition 2.1. By Lp, resp. Hm we denote the Lebesgue resp. Sobolev spaces. By Xσ we
denote a function space X with the additional property of consisting of divergence free functions. For simplicity of
notation we omit writing differentials dx and dt in the integral formulas in the rest of the paper.

Theorem 1.1. Suppose Ω and B0 ⊂ Ω are two regular bounded domains of R3 and let T > 0. Let uF0
∈ L2(F0),

V0,w0 ∈ R3, such that uF0
· n = (V0 + w0 × x) · n on ∂B0 and let Y0,x = δV0+w0×x for x ∈ B0 and Y0,x = δuF0

for
x ∈ F0. Then there exists a measure-valued solution (B, Yt,x,D) of the system (1.2)-(1.4) on time interval (0, T ) with
initial data (B0, Y0,x).

Our second main theorem is the weak-strong uniqueness theorem for measure-valued solutions of system (1.2)-
(1.4). Before stating this theorem we first recall the result proved in [24, Theorem 1.3] regarding the existence of
strong solutions to the system of rigid body moving inside an incompressible inviscid fluid. We note that the strong
solution consists of the position of the body B(t) ⊂ Ω, fluid velocity uF (t,x), fluid pressure pF (t,x), translation velocity
of the body V(t) and angular velocity of the body w(t) such that the equations (1.2)-(1.4) are satisfied pointwise.

Theorem 1.2. Let m ≥ 3 be an integer and B0 ⊂⊂ Ω. Let V0 ∈ R3, w0 ∈ R3 and uF0
∈ Hm(F0,R3) satisfy:

divuF0
(x) = 0, x ∈ F0, (1.15)

uF0
(x) · n(x) = (V0 + w0 × x) · n(x), x ∈ ∂B0, (1.16)

uF0
(x) · n(x) = 0, x ∈ ∂Ω. (1.17)

Then there exists T0 > 0 such that the system (1.2)-(1.4) admits a unique strong solution (B,uF , pF ,V,w) on time
interval (0, T0) with initial data (B0,uF0 ,V0,w0)

V ∈ C1[0, T0), w ∈ C1[0, T0),

uF ∈ C([0, T0);Hm(F(t))) ∩ C1([0, T0);Hm−1(F(t))), (1.18)

pF ∈ C([0, T0);Nm+1(F(t))),

where for any open set O ⊂ R3,

Nm(O) =

{
q ∈ Hm(O) |

∫
O
q(x) = 0

}
.

Our main goal is to show the weak-strong uniqueness property for system (1.2)-(1.4). More precisely, we want to
prove the following result:

Theorem 1.3. Suppose Ω and B0 ⊂⊂ Ω are two regular bounded domains of R3. Let V0 ∈ R3, w0 ∈ R3 and
uF0
∈ Hm(F0,R3) satisfy the compatibility conditions (1.15)-(1.17).
Let (B2,u2F , p2F ,V2,w2) be a strong solution to (1.2)-(1.4) on (0, T0) given by Theorem 1.2 satisfying (1.18)

emanating from the initial data given by B0,uF0
,V0,w0. Let (B1, Yt,x,D) be a measure-valued solution to the system

(1.2)-(1.4) on (0, T0) emanating from the same initial data, i.e. Y0,x = δV0+w0×x for x ∈ B0 and Y0,x = δuF0
for

x ∈ F0.
Then for t ∈ (0, T0)

B1(t) = B2(t), D(t) = 0, Yt,x = δu2F(t,x)
on F2(t) and Yt,x = δV2(t)+w2(t)×(x−X2(t)) on B2(t).

The existence theory of weak and strong solutions for systems describing the motion of rigid body in a viscous
incompressible fluid was studied by many authors. For introduction to the problem of fluid coupled with rigid body
see [15], [32]. Let us mention that first results on the existence of weak solutions until first collision go back to the
works of Conca, Starovoitov and Tucsnak [4], Desjardins and Esteban [7], Gunzburger, Lee and Seregin [22], Hoffman
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and Starovoitov [23]. Further, the possibility of collision in case of weak solution has been done in the works of [31],
[12]. Let us also mention existence results on strong solutions, see e.g. [34], [35], [16].

The case of the motion of rigid body in an inviscid incompressible fluid is more complex and we can expect that all
problems which appear just in fluid alone must appear also there. Let us mention what is known. The case of a smooth
initial data with finite kinetic energy a problem has been investigated, see [29]. The case of Yudovich-like solutions
(with bounded vorticities) was studied by O. Glass and F. Sueur, see [19]. The study with initial vorticity of the fluid
belonging to a Lpc vorticity, p > 2 and the index c is used here and in the sequel for “compactly supported” can be found
in work of O. Glass, C. Lacave, F. Sueur, see [20]. These works provided the global existence of solutions. The result
of [29] was extended to the case of a solid of arbitrary form for which rotation has to be taken into account, see [30].
The works [19] and [20] deal with an arbitrary form as well. Furthermore let us stress that in [21] the case of an initial
vorticity in Lpc with p > 1 was studied in order to achieve the investigation of solutions “à la DiPerna–Majda”, referring
here to the seminal work [10] in the case of a fluid alone. A famous result by Delort [8] about the two-dimensional
incompressible Euler equations is the existence of weak solutions when the initial vorticity is a bounded Radon measure
with distinguished sign and lies in the Sobolev space H−1. In paper by F. Sueur [33] he was interested in the case
where a rigid body immersed in the fluid is moving under the action of the fluid pressure. They proved the existence
of solutions "à la Delort" in a particular case with a mirror symmetry assumption. Let us also mention uniqueness
result of solution "a la Yudovic type" by Glass and Sueur, see [18].

The aim of our first main theorem is to follow DiPerna, Majda [10] approach to get the existence of measure-valued
solution of the coupled system. In our knowledge, the concept of measure-valued solution in the case of fluid-structure
interaction problem is new in the literature. The idea is to view this "inviscid incompressible + rigid body" problem
as a vanishing viscosity limit of "viscous incompressible + rigid body" problem.

Second part of our paper is devoted to the so-called weak-strong uniqueness but in more general framework of
measure-valued sense. The weak-strong uniqueness is based on the concept of relative entropy (or energy) inequality
introduced already by Dafermos [5]. Our motivation goes back to work of Y. Brenier, C. De Lellis, L. Székelyhidi
[2], S. Demoulini, D. M. A. Stuart, A. E. Tzavaras [6] or Wiedemann [36]. Let us mention the references that deal
with the weak-strong uniqueness result for fluid-structure interaction problem. A weak-strong uniqueness result for a
motion on rigid body in an incompressible fluid has been shown recently in 2D case, see [1, 18], and in 3D case see,
[3], [28]. Similar result was proved for the case of rigid body inside a compressible viscous fluid by Kreml et al. [27].
In a case of rigid body with a cavity filled by incompressible fluid the weak-strong uniqueness was shown in [11]. For
an analogous result for a cavity filled by compressible fluid see [14]. We also refer to [9], [26] for problems on moving
domains. But in these previous mentioned references regarding weak-strong uniqueness for fluid-structure interaction
problem, the authors have always taken the motion of rigid body in a viscous fluid. In this article, we want to explore
the case of "inviscid incompressible + rigid body". Here we have established the uniqueness result by suitably defining
the relative energy functional and by estimating it via the energy inequalities of strong and measure-valued solution.

The outline of the paper is as follows. In Section 2 we define the measure-valued solution of the system (1.2)-
(1.4). In this section, we establish Theorem 1.1 via replacing inviscid fluid by viscous fluid (with suitable boundary
conditions) and by proving the viscosity limit of the sequence of weak solutions to "viscous incompressible + rigid
body" system converges to a measure-valued solution for the system (1.2)-(1.4). Section 3 is devoted to the proof of
Theorem 1.3. In this section, firstly, we have done a change of variable for strong solution so that we can compare it
with the measure-valued solution in the same domain. Secondly, we derived the energy estimate for the transformed
strong solution. Finally, we have established weak-strong uniqueness in Theorem 1.3 with the help of proper estimate
of relative energy functional. In Section 4 we provide more details about derivation of several identities which are
useful throughout the proofs of our main theorems.

2 Existence of measure-valued solutions
We want to derive a suitable formulation for the measure-valued solution of the system (1.2)-(1.4) with the help of
appropriate test functions. Due to the presence of this Navier-slip boundary condition, the test functions will also be
discontinuous across the interface of fluid-solid. Let us first introduce the space of rigid velocity fields:

R =
{
ϕϕϕB | ϕϕϕB(x) = `+ ω × x, for some ` ∈ R3, ω ∈ R3

}
.
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For any T > 0, we define the test function space VT as:

VT =


ϕϕϕ ∈ C([0, T ];L2

σ(Ω)), there exists ϕϕϕF ∈ D([0, T ];Dσ(Ω)), ϕϕϕB ∈ D([0, T ];R)

such that ϕϕϕ(t, ·) = ϕϕϕF (t, ·) on F(t), ϕϕϕ(t, ·) = ϕϕϕB(t, ·) on B(t) with
ϕϕϕF (t, ·) · n = ϕϕϕB(t, ·) · n on ∂B(t), ϕϕϕF · n = 0 on ∂Ω for all t ∈ [0, T ]

 .

Now, let us mention some basics on Young measures. Let L∞weak−∗(QT ;P(R3)) be the space of essentially bounded
weakly-∗ measure maps Y : QT → P(R3), (t,x) 7→ Yt,x, where the notation P(R3) denotes the space of probability
measures on R3. By virtue of fundamental theorem on Young measures, there exists a subsequence of {uε}ε>0 and
parameterized family of probability measures {Yt,x}(t,x)∈QT

[(t,x) 7→ Yt,x] ∈ L∞weak−∗(QT ;P(R3)),

called Young measure associated to the sequence {uε}ε>0, such that a.a. (t,x) ∈ QT

〈Yt,x;G(u)〉 = Ĝ(u)(t,x) for any G ∈ Cc(Ω), and a.a. (t,x) ∈ QT ,

whenever

G(uε)→ Ĝ(u)(t,x) weakly- ∗ in L∞(QT ).

Above, the hat over a function is intended as weak limit. If G ∈ C(Ω) is such that∫ T

0

∫
Ω

|G(uε)| ≤ C,

then G is Yt,x - integrable for almost all (t,x) ∈ QT and

[(t,x) 7→ 〈Yt,x;G(u)〉] ∈ L1(QT ),

and

G(uε)→ Ĝ(u)(t,x) weakly- ∗ inM(QT ).

Here, M(QT ) denotes the space of signed measures on QT = (0, T ) × Ω. Note that the Young measure [(t,x) 7→
〈Yt,x;G(u)〉] is a parameterized family of non-negative measures acting on the phase space R3, while Ĝ(u)(t,x) is a
signed measure on the physical space (0, T )× Ω. In conclusion, the difference

µG ≡ Ĝ(u)− [(t,x) 7→ 〈Yt,x;G(u)〉] ∈M(QT ),

is called concentration defect measure.
As it is quite common in works dealing with interactions between fluids and rigid bodies, one can combine the

momentum equation for the fluid velocity with the equations for the velocities of the body into one weakly formulated
equation. We provide the relevant calculations in Section 4.2 and this motivates us to introduce the measure-valued
solution to the system (1.2)-(1.4) as follows.

Definition 2.1. Let T > 0, Ω and B0 ⊂ Ω be bounded domains and let Y0,x ∈ L∞weak−∗(Ω;P(R3)) such that

Y0,x = δV0+w0×x for all x ∈ B0 (2.1)

for some V0,w0 ∈ R3.
We say that a triplet (B, Yt,x,D) represents a measure-valued solution for the system (1.2)-(1.4) on the set (0, T )×Ω

with the initial data B0, Y0,x, if the following holds
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1. B(t) ⊂ Ω is a bounded domain of R3 for all t ∈ [0, T ) such that

χB(t,x) = 1B(t)(x) ∈ L∞((0, T )× Ω) (2.2)

and there exists a family of isometries η[t] of R3 such that (1.8)-(1.9) are satisfied.

2. Yt,x ∈ L∞weak−∗((0, T )× Ω;P(R3)) such that

Yt,x = δuB(t,x) for all (t,x) ∈ QB, (2.3)

where uB(t,x) = V(t)+w(t)×(x−X(t)), (1.10)-(1.11) are satisfied and X(t) and O(t) are absolutely continuous
on [0, T ].

3. The dissipation defect D ∈ L∞(0, T ), D ≥ 0.

4. The continuity equation is satisfied as follows: for any test function ϕ ∈ C∞c ([0, τ)× Ω), τ ∈ [0, T ]∫ τ

0

∫
F(t)

〈Yt,x,uF 〉 · ∇ϕ =

∫ τ

0

∫
∂B(t)

uB · nϕ. (2.4)

5. The momentum equation is satisfied as follows: for any test function ϕϕϕ ∈ Vτ , τ ∈ [0, T ]

−
∫ τ

0

∫
F(t)

〈Yt,x,uF 〉 · ∂tϕϕϕF −
∫ τ

0

∫
B(t)

%BuB · ∂tϕϕϕB −
∫ τ

0

∫
F(t)

〈Yt,x, (uF ⊗ uF ) : ∇ϕϕϕF 〉

=

∫
F0

〈Y0,x,uF 〉 ·ϕϕϕF (0)−
∫
Fτ
〈Yτ,x,uF 〉 ·ϕϕϕF (τ) +

∫
B0

(%BuB ·ϕϕϕB)(0)−
∫
Bτ

(%BuB ·ϕϕϕB)(τ) +

∫ τ

0

〈µMD ,∇ϕϕϕF 〉

(2.5)

with some measure µMD ∈ L1(0, T ;M(Ft)).

6. The energy inequality ∫
F(τ)

〈Yτ,x,
1

2
|uF |2〉+

∫
B(τ)

1

2
%B|uB|2 +D(τ) ≤ E0, (2.6)

holds for a.a. τ ∈ [0, T ] with E0 =
∫
F0
〈Y0,x,

1
2 |uF |

2〉+
∫
B0

1
2 (%B|uB|2)|t=0.

7. The following compatibility condition holds: There exists ξ ∈ L1(0, T ) such that

|〈µMD (τ),∇ϕϕϕF 〉| ≤ ξ(τ)D(τ)‖ϕϕϕF‖C1(Fτ ) (2.7)

for a.a. τ ∈ (0, T ) and every ϕϕϕ ∈ Vτ .

Remark 2.1. Points 1. and 2. of Definition 2.1 imply in particular that the rigid body B is transported by the rigid
vector field uB, which can be written in the weak sense as follows: for all ψ ∈ C∞c ([0, τ) × Ω), τ ∈ [0, T ] both of the
following identities hold

−
∫ τ

0

∫
B(t)

∂tψ −
∫ τ

0

∫
B(t)

uB · ∇ψ =

∫
B0

(ψ)|t=0. (2.8)

−
∫ τ

0

∫
B(t)

%B∂tψ −
∫ τ

0

∫
B(t)

%BuB · ∇ψ =

∫
B0

(%Bψ)|t=0. (2.9)

The opposite implication holds as well, namely the fact, that the rigid body B is transported by a rigid motion uB
such that (2.8) holds implies the existence of a family of isometries η[t] with properties (1.8)-(1.9) related to the rigid
velocity uB through (1.10)-(1.11). For more details we refer to [17].
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Remark 2.2. We also note here that for any τ ∈ [0, T ]

1

2

∫
B(τ)

%B|uB|2 =
m

2
|V(τ)|2 +

1

2
J(τ)w(τ) ·w(τ) ≥ c

(
|V(τ)|2 + |w(τ)|2

)
(2.10)

for some constant c > 0 which is independent of time.

Remark 2.3. Let us mention that point 2. of Definition 2.1 introduces a generalized version of compatibility between
the family of isometries η[t] and the Young measure Yt,x in the sense of Feireisl [12].

In order to establish the existence result Theorem 1.1 for the system (1.2)-(1.4), we first introduce the following
system by replacing Euler equations by Navier-Stokes equations (with suitable boundary conditions):

∂tu
ε
F + (uεF · ∇)uεF − div σ(uεF , p

ε
F ) = 0, divuεF = 0 in QFε ,

uεF · n = 0 on (0, T )× ∂Ω,
uεF · n = uεB · n on Q∂Bε ,

σ(uεF , p
ε
F )n× n = 0 on (0, T )× ∂Ω

σ(uεF , p
ε
F )n× n = 0 on Q∂Bε

m
d

dt
Vε(t) = −

∫
∂Bε(t)

σ(uεF , p
ε
F )n dS in (0, T ),

J(t)
d

dt
wε(t) = J(t)wε(t)×wε(t)−

∫
∂Bε(t)

(x−Xε(t))× σ(uεF , p
ε
F )n dS in (0, T ),

uεF (0) = uF0
in F0,

Vε(0) = V0, wε(0) = w0.

(2.11)

In the above, uεF denotes the velocity of the fluid, the scalar function pεF is the pressure, and the velocity of the rigid
body is given by

uεB(t,x) = Vε(t) + wε(t)× (x−Xε(t))

for any (t,x) ∈ QBε , we also denote uB0
= V0 + w0 × x. The Cauchy stress tensor σ(uεF , p

ε
F ) is given by

σ(uεF , p
ε
F ) = 2εD(uεF )− pεF I with D(uεF ) =

1

2

(
∇uεF +∇uεF

>
)
.

At first, we want to introduce the weak solution to the system (2.11).

Definition 2.2. Let T > 0, Ω and B0 ⊂ Ω be two Lipschitz bounded domains of R3. A couple (Bε,uε) is a weak
solution to system (2.11) with initial data uF0 , V0, w0 if the following holds:

1. Bε(t) ⊂ Ω is a bounded domain of R3 for all t ∈ [0, T ) such that

χεB(t, x) = 1Bε(t)(x) ∈ L∞((0, T )× Ω). (2.12)

2. uε = (1− χεB)uεF + χεBu
ε
B belongs to the following space

UT =


uε ∈ L∞(0, T ;L2

σ(Ω)), there exists uεF ∈ L2(0, T ;H1
σ(Ω)), uεB ∈ L∞(0, T ;R)

such that uε(t, ·) = uεF (t, ·) on Fε(t), uε(t, ·) = uεB(t, ·) on Bε(t) with
uεF (t, ·) · n = uεB(t, ·) · n on ∂Bε(t), uεF · n = 0 on ∂Ω for all t ∈ [0, T ]

 .

3. The transport of Bε by the rigid vector field uεB:

∂χεB
∂t

+ div(uεBχ
ε
B) = 0 in R3 with χεB|t=0 = 1B0

. (2.13)

is satisfied in the weak sense: for all ψ ∈ C∞c ([0, τ)× Ω), τ ∈ [0, T ]

−
∫ τ

0

∫
Bε(t)

∂tψ −
∫ τ

0

∫
Bε(t)

uεB · ∇ψ =

∫
B0

ψ|t=0. (2.14)
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4. Balance of linear momentum holds in a weak sense, i.e, for all ϕϕϕ ∈ VT and τ ∈ [0, T ]

−
∫ τ

0

∫
Fε(t)

uεF · ∂tϕϕϕF −
∫ τ

0

∫
Bε(t)

%εBu
ε
B · ∂tϕϕϕB −

∫ τ

0

∫
Fε(t)

(uεF ⊗ uεF ) : ∇ϕϕϕF + 2ε

∫ τ

0

∫
Fε(t)

D(uεF ) : D(ϕϕϕF )

=

∫
F0

uF0
·ϕϕϕF (0)−

∫
Fε(τ)

uεF ·ϕϕϕF (τ) +

∫
B0

%BuB0
·ϕϕϕB(0)−

∫
Bε(τ)

%εBu
ε
B ·ϕϕϕB(τ). (2.15)

5. The energy inequality holds for a.e τ ∈ [0, T ]:∫
Fε(t)

1

2
|uεF (τ)|2 +

∫
Bε(t)

1

2
%εB|uεB(τ)|2 + 2ε

∫ τ

0

∫
Fε(t)

|D(uεF )|2 ≤ 1

2

∫
F0

|uF0
|2 +

1

2

∫
B0

%B|uB0
|2. (2.16)

Remark 2.4. The density of the body %εB in (2.15) is naturally solution of

∂t%
ε
B + div(%εBu

ε
B) = 0 in QBε (2.17)

with initial data given by %B(0,x).

We already know the following existence theorem due to [17, Theorem 2.2]:

Theorem 2.1. Let Ω and B0 ⊂⊂ Ω be two smooth domains of R3. Let uF0
∈ L2

σ(Ω) and uB0
∈ R be such that

uF0
· n = uB0

· n on ∂B0. There exists T ∈ R∗+ ∪∞ and a weak solution (Bε,uε) to (2.11) on [0, T ). Moreover, such
a weak solution exists up to collision, i.e, either we can take T =∞ or we can take T > 0 such that

Bε(t) ⊂⊂ Ω for all t ∈ [0, T ), lim
t→T

dist(Bε(t), ∂Ω) = 0.

Remark 2.5. In fact, Theorem 2.1 is proved in [17] for constant %B and Navier slip boundary conditions, however
generalization for non-constant smooth density of the body and complete slip boundary conditions is straightforward.

Now we are in a position to prove that the sequence of weak solutions (Bε,uε) to system (2.11) converges to a
measure-valued solution (B, Yt,x,D) for the system (1.2)-(1.4) as ε→ 0. To do that, we recall couple of results.

We use a special case of [17, Proposition 3.4]:

Proposition 2.1. Let (χεB,u
ε
B) be a bounded sequence in L∞((0, T )×R3)×L∞(0, T ;R), such that χεB = 1Bε satisfying

∂χεB
∂t

+ div(uεBχ
ε
B) = 0 in R3 with χεB|t=0 = 1B0 .

Then up to a subsequence
uεB → uB weakly- ∗ in L∞(0, T ;C∞loc(R3))

with uB ∈ L∞(0, T ;R) and

χεB → χB weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lploc(R
3))

for p <∞ with χB is a solution to

∂χB
∂t

+ div(uBχB) = 0 in R3 with χB|t=0 = 1B0 .

Moreover, χB(t, ·) = 1B(t) for all t.

Secondly, we recall the following comparison result [13, Lemma 2.1]:
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Lemma 2.1. Let {Zn}∞n=1, Zn : Ω → RN be a sequence of equi-integrable functions generating a Young measure Yz,
z ∈ Ω with Ω ⊂ RN is a bounded domain. Let

G : RN → [0,∞)

be a continuous function such that
sup ‖G(Zn)‖L1(Ω) <∞

and let F be continuous such that

F : RN → R, |F (Z)| ≤ G(Z), ∀ Z ∈ RN .

Define
F∞ = F̃ − 〈Yz, F (Z)〉 dz, G∞ = G̃− 〈Yz, G(Z)〉 dz,

where F̃ ∈M(Ω), G̃ ∈M(Ω) are the weak-∗ limits of {F (Zn)}∞n=1, {G(Zn)}∞n=1 inM(Ω). Then

|F∞| ≤ |G∞|.

Proof of Theorem 1.1. For every ε > 0, uεF (0) = uF0
∈ L2

σ(Ω) and uεB(0) = uB0
∈ R are such that uF0

· n = uB0
· n

on ∂B0. Let (Bε,uε) be a sequence of weak solutions to system (2.11). We have χεB(t,x) = 1Bε(t)(x) ∈ L∞((0, T )×Ω)
from (2.12) and uε is a bounded sequence in L∞(0, T ;L2

σ(Ω)) from energy estimate (2.16) with uεB ∈ L∞(0, T ;R).
Thus, we can use Proposition 2.1 to establish the relations (2.2) and (2.8) from the equations (2.12) and (2.13) as
ε→ 0. By the fundamental theorem of Young measures we denote Yt,x the parametrized probability measure generated
by the sequence uε. Again by Proposition 2.1 we moreover get (2.3). Therefore we denote by uF the dummy variable
for the Young measure Yt,x on the fluid part, whereas we denote uB directly the limit of uε on the solid part.

The divergence-free condition uε ∈ L∞(0, T, L2
σ(Ω)) together with boundary conditions on ∂Ω and ∂Bε imply in

particular that for any test function ϕ ∈ C∞c ([0, τ)× Ω), τ ∈ [0, T ]∫ τ

0

∫
Fε(t)

uεF · ∇ϕ =

∫ τ

0

∫
∂Bε(t)

uεB · nϕ. (2.18)

Observe that∫ τ

0

∫
Fε(t)

uεF · ∇ϕ =

∫ τ

0

∫
Ω

(1− χεB)uε · ∇ϕ,
∫ τ

0

∫
∂Bε(t)

uεB · nϕ =

∫ τ

0

∫
Bε(t)

uεB · ∇ϕ =

∫ τ

0

∫
Ω

χεBu
ε · ∇ϕ.

Proposition 2.1 helps us in passing the limit in (2.18) as ε → 0 to obtain (2.4). Now we can concentrate on the
momentum equation. Notice that

ε

∫ T

0

∫
Fε(t)

D(uεF ) : D(ϕϕϕF ) =
√
ε

∫ T

0

∫
Fε(t)

√
εD(uεF ) : D(ϕϕϕF ) ≤

√
ε‖
√
εD(uεF )‖L2(0,T ;L2(Fε))‖D(ϕϕϕF )‖L2(0,T ;L2(Fε)).

The energy estimate (2.16) implies ‖
√
εD(uεF )‖L2(0,T ;L2(Fε)) ≤ C. Thus the term

ε

∫ T

0

∫
Fε(t)

D(uεF ) : D(ϕϕϕF )→ 0 as ε→ 0.

Now we can analyse the first two terms of left-hand side of (2.15). We can write∫ T

0

∫
Fε(t)

uεF ·
∂

∂t
ϕϕϕF +

∫ T

0

∫
Bε(t)

%εBu
ε
B ·

∂

∂t
ϕϕϕB =

∫ T

0

∫
Ω

[
(1− χεB)uε · ∂

∂t
ϕϕϕF + %εBχ

ε
Bu

ε · ∂
∂t
ϕϕϕB

]
with uε = (1 − χεB)uεF + χεBu

ε
B. We already know from Proposition 2.1 that χεB → χB strongly in C([0, T ];Lploc(R3))

for p <∞, therefore also %εBχ
ε
B → %BχB strongly in C([0, T ];Lploc(R3)) for p <∞. From the choice of the test function

space VT , it is clear that ∂tϕϕϕF ∈ D([0, T );D(Ω)), ∂tϕϕϕB ∈ D([0, T );R). Using the above mentioned tools, we have∫ T

0

∫
Ω

[
(1− χεB)uε · ∂

∂t
ϕϕϕF + %εBχ

ε
Bu

ε · ∂
∂t
ϕϕϕB

]
→
∫ T

0

∫
Ω

[
(1− χB)〈Yt,x,uF 〉 ·

∂

∂t
ϕϕϕF + %BχBuB ·

∂

∂t
ϕϕϕB

]
.
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Now we analyze the convergence of the convective term in the momentum equation and the energy inequality. Re-
garding the diffusive term in the energy inequality (2.16):

2ε

∫ T

0

∫
Fε(t)

|D(uεF )|2 ≥ 0 as ε→ 0.

We have from the energy inequality (2.16) that ((1 − χεB) + χεB%
ε
B) 1

2 |u
ε|2 is bounded in L∞(0, T ;L1(Ω)). We can

identify

((1− χεB) + χεB%
ε
B)

1

2
|uε|2(τ, ·) ∈M(Ω) bounded uniformly for τ ∈ [0, T ].

Up to a subsequence, we can assume

((1− χεB) + χεB%
ε
B)

1

2
|uε|2(τ, ·)→ E weakly- ∗ in L∞weak(0, T ;M(Ω)).

We introduce a new non-negative measure:

E∞ = E − 〈Yt,x; ((1− χεB) + χεB%
ε
B)

1

2
|uε|2〉 dx.

We can take the limit ε→ 0 in the energy balance (2.16) that yield: for a.e. τ ∈ (0, T )∫
F(τ)

〈Yτ,x,
1

2
|uF |2〉+

∫
B(τ)

1

2
%B|uB|2 + E∞(τ)|Ω| ≤

∫
F0

1

2
|uF0
|2 +

∫
B0

1

2
%B|uB0

|2. (2.19)

Thus, it gives us the energy inequality (2.6) with

D(τ) = E∞(τ)|Ω| for a.e. τ ∈ (0, T ).

Regarding the convective term, the quantity uεF ⊗ uεF is bounded only in L∞(0, T ;L1(Fε)). Moreover, we have the
following observation:

|uεF ⊗ uεF | ≤ |uεF |2.

Thus, using Lemma 2.1, we have the following convergence: as ε→ 0∫ T

0

∫
Fε(t)

(uεF ⊗ uεF ) : ∇ϕϕϕF →
∫ τ

0

∫
F(t)

〈Yt,x, (uF ⊗ uF ) : ∇ϕϕϕF 〉+

∫ τ

0

〈µMD ,∇ϕϕϕF 〉,

where
µMD = {µMD,i,j}3i,j=1, µ

M
D,i,j ∈ L∞weak(0, T ;M(Ft)),

along with the relation ∫ τ

0

∫
Ω

|µMD | ≤ 2

∫ τ

0

E∞(τ)|Ω| for a.e. τ ∈ (0, T ).

Thus, we have established the relations (2.5) and (2.6) with ξ = 2 and D(τ) = E∞(τ)|Ω| for a.e. τ ∈ (0, T ).

3 Weak-strong uniqueness

3.1 Change of coordinates
Let {B1, Yt,x,D} be a measure-valued solution to (1.2)-(1.4) on time interval (0, T ) in the sense of Definition 2.1 with
u1B = V1 + w1 × (x −X1) being the associated velocity of the rigid body. Moreover we denote by u1F the dummy
variable of the Young measure Yt,x on the fluid domain. Let (B2,u2F , p2F ,V2,w2) be a strong solution to (1.2)-(1.4)
on time interval (0, T0). We denote by F1(t) the domain occupied by the fluid at time t for the measure-valued solution
and analogously, F2(t) for the strong solution.
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We denote
u2 =

∣∣∣∣ u2F in QF2 ,
V2 + w2 × (x−X2) in QB2

.
(3.1)

A priori, there is no reason why the body B1(t) of the measure-valued solution would not touch the boundary ∂Ω at
some time instant t < T0. Therefore, following Kreml et al. [27], we introduce a time Tmin such that

Tmin = inf
{
t ∈ (0, T0); d(B1(t), ∂Ω) ≤ κ

2

}
, (3.2)

where, for the strong solution, κ satisfies the following relation

d(B2(t), ∂Ω) ≥ κ > 0, ∀t ∈ [0, T0], for some d(B0, ∂Ω) > κ > 0. (3.3)

In particular, we have Tmin > 0 and on the interval (0, Tmin) there is no collision between the body B1 and the boundary
∂Ω. Here and hereafter, our analysis will be performed on the time interval (0, Tmin). However, for simplicity of the
notation, we keep denoting the time interval by (0, T ).

In order to compare the two solutions, we need to transfer them to the same domain, because in general B1 6= B2.
In particular, we need to transform the strong solution to the domain of the measure-valued solution in such a way
that B2(t) is transformed to B1(t). For this purpose, following the analysis developed in [27], we introduce cutoff
functions ζi(t,x) for i = 1, 2 such that ζi(t,x) = 1 in a neighborhood of Bi(t) and ζi(t,x) = 0 in a neighborhood of
∂Ω. Moreover, we extend the domain of definition of the rigid body motions uiB to the whole (0, T )× Ω, namely for
x ∈ Ω we have

uiB(t,x) = Vi(t) + wi(t)× (x−Xi(t)).

Then we set
Λi(t,x) = ζi(t,x)uiB(t,x).

Note that Λi is a rigid motion in a neighborhood of Bi(t) and vanishes in a vicinity of ∂Ω. In addition, Λi should
be smooth in the space variables and divergence free, in order to preserve the divergence-free condition on the fluid
velocity.

Now, we introduce the transformations
Zi : Ω→ Ω

as solutions to the following ODEs

d

dt
Zi(t,y) = Λi(t,Zi(t,y)), ∀y ∈ Ω, t ∈ (0, T ),

Zi(0,y) = y.

Then, we define Yi = Z−1
i and the mappings Z̃i : Ω→ Ω as

Z̃1(t,x) = Z1(t,Y2(t,x)), (3.4)

Z̃2(t,x) = Z2(t,Y1(t,x)). (3.5)

Note that Z̃1(t, ·) = Z̃−1
2 (t, ·) and Z̃2(t,B1(t)) = B2(t) for all t ∈ [0, T ). In particular in the neighborhoods of the body

B2(t) the mapping Z̃1(t, ·) is rigid and vice versa. More precisely we have

Z̃1(t,x) = X1(t) + O1(t)OT2 (t)(x−X2(t)) in the neighborhood of B2(t), (3.6)

Z̃2(t,x) = X2(t) + O2(t)OT1 (t)(x−X1(t)) in the neighborhood of B1(t). (3.7)

For simplicity of notation we denote
Õ(t) = O2(t)OT1 (t). (3.8)
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Now, we define the transformed strong solution Us
F as

Us
F (t,x) = JZ̃1

(t, Z̃2(t,x))u2F (t, Z̃2(t,x)) for all (t,x) ∈ QT , (3.9)

where (JZ̃1
)ij(t, Z̃2(t,x)) = ∂(Z̃1)i

∂xj
(t, Z̃2(t,x)), and the transformed pressure as P sF (t,x) = p2F (t, Z̃2(t,x)). In partic-

ular, for x ∈ B1(t), the transformed rigid velocity reads

Us
B(t,x) = Vs(t) + ws(t)× (x−X1(t)) (3.10)

with
Vs(t) = ÕT (t)V2(t), ws(t) = ÕT (t)w2(t). (3.11)

The following lemma holds (see [27], Lemma 3.1).

Lemma 3.1. (i) It holds

ÕT (t)
dÕ
dt

(t)x = (ws −w1)(t)× x. (3.12)

(ii) The following estimates hold for x ∈ ∂B1(t), t ∈ (0, T )

|Z̃2(t,x)− x| ≤ C
(
‖V1 −Vs‖L2(0,t) + ‖w1 −ws‖L2(0,t)

)
, (3.13)

|∂tZ̃2(t,x)| ≤ C (|V1 −Vs|(t) + |w1 −ws|(t)) . (3.14)

(iii) The following estimates hold for t ∈ (0, T )

‖Z̃2(t, ·)− id‖W 3,∞(F1(t)) ≤ C
(
‖V1 −Vs‖L2(0,t) + ‖w1 −ws‖L2(0,t)

)
, (3.15)

‖∂tZ̃2(t, ·)‖W 1,∞(F1(t)) ≤ C (|V1 −Vs|(t) + |w1 −ws|(t)) . (3.16)

We would like to mention that such transformation was introduced by Inoue, Wakimoto [25] and properties of it
were discussed in details by Takahashi, see [34]. The same transformation has been used in [3, 27, 28] to show the
weak-strong uniqueness property for the incompressible and compressible fluid-structure interaction problem.

3.2 Transformed solution and weak formulation
The transformed strong solution Us satisfies pointwise the following system of equations in the fluid part of the domain
Ω 

∂tU
s
F + div(Us

F ⊗Us
F ) +∇P sF = F(Us

F ), divUs
F = 0 in QF1

,
Us
F · n = Us

B · n on (0, T )× ∂B1,
Us
F · n = 0 on (0, T )× ∂Ω,

Us
F (0, ·) = uF0 in F0.

(3.17)

In order to express the term on the right hand sides of the momentum equation, we introduce the following notation

H = (∇xZ̃2)−1 = ∇xZ̃1, i.e. (H)ij = ∂j(Z̃1)i, (3.18)

G = HHT , i.e. (G)ij = ∂k(Z̃1)i∂k(Z̃1)j , (3.19)

Γiαβ = ∂l(Z̃1)i∂αβ(Z̃2)l. (3.20)

Consequently, we have

Fi(U
s
F ) = −Hiα∂t∂β(Z̃2)α(Us

F )β + Γiαβ(∂tZ̃1)α(Us
F )β + (∂tZ̃1)β∂β(Us

F,i)− Γiαβ(Us
F )α(Us

F )β − (G− I)iβ∂βP sF .
(3.21)

12



The velocity of the rigid body is given by (3.10), where the transformed translation velocity Vs and the transformed
angular velocity ws of the body satisfy the following system of the equations

m
dVs

dt
= −m(ws −w1)×Vs +

∫
∂B1(t)

P sF IndS in (0, T ), (3.22)

J1
dws

dt
= J1w

s ×ws − ((ws −w1)× J1w
s) +

∫
∂B1(t)

(x−X1(t))× P sF IndS in (0, T ), (3.23)

Vs(0) = V0, ws(0) = w0, (3.24)

where we have used J1 = ÕT J2Õ.
Relations (3.21)-(3.24) are obtained from a similar computation of the proof of [3, Lemma 3.1]. A consequence of

the Lemma 3.1 is the following lemma that gives a control on the terms of (3.21) (see [3, Lemma 3.3]).

Lemma 3.2. The following estimate holds

‖F‖L2(0,T ;L2(F1(t))) ≤ C
(
||V1 −Vs||L2(0,T ) + ||w1 −ws||L2(0,T )

)
, (3.25)

where C depends only on ‖Us
F‖L2(0,T ;H2(F1(t))), ‖P sF‖L2(0,T ;H1(F1(t))) and ‖Us‖L∞(0,T ;H1(F1(t))).

Given F as in (3.21), we can write the weak formulation for the strong solution. Using (3.17)-(3.24) we obtain that
the transformed solution satisfies the following equality for τ ∈ [0, T ]. We present more details about derivation of
(3.26) in Section 4.3.

−
∫ τ

0

∫
F1(t)

Us
F ·

∂

∂t
ϕϕϕF−

∫ τ

0

∫
B1(t)

%BU
s
B ·
∂

∂t
ϕϕϕB−

∫ τ

0

∫
F1(t)

(
(〈Yt,x,u1F 〉⊗Us

F ) : ∇ϕϕϕF−(Us
F−〈Yt,x,u1F 〉)·∇Us

F ·ϕϕϕF
)

−
∫ τ

0

∫
B1(t)

ρB

(
(u1B ⊗Us

B) : ∇ϕϕϕB − (Us
B − u1B) · ∇Us

B ·ϕϕϕB
)

=

∫ τ

0

∫
F1(t)

(
F ·ϕϕϕF

)
−
∫ τ

0

((ws −w1)× (J1w
s) ·ϕϕϕB,w +m(ws −w1)×Vs ·ϕϕϕB,V) +

∫
F0

(Us
F ·ϕϕϕF )(0)−

∫
F1(τ)

(Us
F ·ϕϕϕF )(τ)

+

∫
B0

(%BU
s
B ·ϕϕϕB)(0)−

∫
B1(τ)

(%BU
s
B ·ϕϕϕB)(τ), (3.26)

where the test function ϕϕϕ ∈ VT with ϕϕϕB is rigid on B1(t), i.e,

ϕϕϕB(t,x) = ϕϕϕB,V(t) +ϕϕϕB,w(t)× (x−X1(t)), for x ∈ B1(t).

Observe that by applying the Reynolds transport Theorem 4.1, we have

−
∫ τ

0

∫
F1(t)

Us
F ·

∂

∂t
Us
F =

1

2

∫
F0

(Us
F ·Us

F )(0)− 1

2

∫
F1(τ)

(Us
F ·Us

F )(τ) +

∫ τ

0

∫
F1(τ)

(〈Yt,x,u1F 〉 ⊗Us
F ) : ∇Us

F , (3.27)

−
∫ τ

0

∫
B1(t)

%BU
s
B ·
∂

∂t
Us
B =

1

2

∫
B0

(%BU
s
B ·Us

B)(0)− 1

2

∫
B1(τ)

(%BU
s
B ·Us

B)(τ)+

∫ τ

0

∫
B1(t)

(
%B(u1B⊗Us

B) : ∇Us
B

)
. (3.28)

Consequently, by taking the test function ϕϕϕF = Us
F , ϕϕϕB = Us

B in (3.26) and by using (3.27)-(3.28), we obtain the
following energy equality: for a.e. τ ∈ [0, T ]∫

F1(τ)

1

2
|Us
F |2+

∫
B1(τ)

1

2
%B|Us

B|2+

∫ τ

0

∫
F1(t)

(
(Us
F−〈Yt,x,u1F 〉)·∇Us

F ·Us
F

)
+

∫ τ

0

∫
B1(t)

%B

(
(Us
B−u1B)·∇Us

B ·Us
B)
)

=

∫ τ

0

∫
F1(t)

(
F ·Us

F
)
−
∫ τ

0

((ws−w1)×(J1w
s) ·ws+m(ws−w1)×Vs ·Vs)+

∫
F0

1

2
|uF0
|2 +

m

2
|V0|2 +

1

2
J(0)w0 ·w0

(3.29)
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3.3 Proof of Theorem 1.3

We introduce the following energy functional for the measure-valued solution

E(Yt,x)(t) =

∫
F1(t)

〈Yt,x,
1

2
|u1F |2〉+

∫
B1(t)

1

2
%B|u1B|2. (3.30)

Similarly, for the transformed strong solution we have

E(Us)(t) =

∫
F1(t)

1

2
|Us
F |2 +

∫
B1(t)

1

2
%B|Us

B|2 =

∫
F1(t)

〈Yt,x,
1

2
|Us
F |2〉+

∫
B1(t)

1

2
%B|Us

B|2. (3.31)

Given (3.30) and (3.31), we write a relative energy functional as follows

[E(Yt,x|Us)]
t=τ
t=0 =

[∫
F1

〈Yt,x,
1

2
|u1F −Us

F |2〉
]t=τ
t=0

+

[∫
B1

1

2
%B|u1B −Us

B|2
]t=τ
t=0

= [E(Yt,x)]
t=τ
t=0 + [E(Us)]

t=τ
t=0 −

[∫
F1

〈Yt,x,u1F 〉 ·Us
F

]t=τ
t=0

−
[∫
B1

%Bu1B ·Us
B

]t=τ
t=0

(3.32)

In particular we emphasize that the integral over the rigid body gives the control

c(|V1 −Vs|2(τ) + |w1 −ws|2(τ)) ≤ E(Yt,x|Us)(τ) (3.33)

for some strictly positive c which does not depend on τ .
Now, from the weak formulation (2.5), we have

−
∫ τ

0

∫
F1(t)

〈Yt,x,u1F 〉 · ∂tUs
F −

∫ τ

0

∫
B1(t)

%Bu1B · ∂tUs
B −

∫ τ

0

∫
F1(t)

〈Yt,x, (u1F ⊗ u1F )〉 : ∇Us
F

=

∫
F0

〈Y0,x,u1F 〉 ·Us
F (0)−

∫
F1(τ)

〈Yτ,x,u1F 〉 ·Us
F (τ)+

∫
B0

(%Bu1B ·Us
B)(0)−

∫
B1(τ)

(%Bu1B ·Us
B)(τ)+

∫ τ

0

〈µMD ,∇Us
F 〉,

(3.34)

where we used as a test function the strong solution Us. Relation (3.34) could be written in a more concise form as[∫
F1(·)
〈Yt,x,u1F 〉 ·Us

F

]t=τ
t=0

+

[∫
B1(·)

%Bu1B ·Us
B

]t=τ
t=0

=

∫ τ

0

∫
F1(t)

〈Yt,x,u1F 〉 · ∂tUs
F +

∫ τ

0

∫
B1(t)

%Bu1B · ∂tUs
B +

∫ τ

0

∫
F1(t)

〈Yt,x, (u1F ⊗ u1F )〉 : ∇Us
F +

∫ τ

0

〈µMD ,∇Us
F 〉.

(3.35)

Now, using the energy balance (2.6) and (3.29), we have from (3.32):

[E(Yt,x|Us)]
t=τ
t=0 ≤ −D(τ)−

∫ τ

0

∫
F1(t)

(
(Us
F − 〈Yt,x,u1F 〉) · ∇Us

F ·Us
F

)
−
∫ τ

0

∫
B1(t)

%B

(
(Us
B − u1B) · ∇Us

B ·Us
B

)
+

∫ τ

0

∫
F1(t)

(
F ·Us

F
)
−
∫ τ

0

((ws −w1)× (J1w
s) ·ws +m(ws −w1)×Vs ·Vs)

−

[∫
F1(·)
〈Yt,x,u1F 〉 ·Us

F

]t=τ
t=0

−

[∫
B1(·)

%Bu1B ·Us
B

]t=τ
t=0

.
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Namely, using (3.35), the above relation becomes

[E(Yt,x|Us)]
t=τ
t=0 +D(τ) ≤ −

∫ τ

0

∫
F1(t)

(
(Us
F − 〈Yt,x,u1F 〉) · ∇Us

F ·Us
F

)
−
∫ τ

0

∫
B1(t)

%B

(
(Us
B − u1B) · ∇Us

B ·Us
B

)
+

∫ τ

0

∫
F1(t)

(
F ·Us

F
)
−
∫ τ

0

((ws −w1)× (J1w
s) ·ws +m(ws −w1)×Vs ·Vs)−

∫ τ

0

∫
F1(t)

〈Yt,x,u1F 〉 · ∂tUs
F

−
∫ τ

0

∫
B(t)

%Bu1B · ∂tUs
B −

∫ τ

0

∫
F1(t)

〈Yt,x, (u1F ⊗ u1F )〉 : ∇Us
F −

∫ τ

0

〈µMD ,∇Us
F 〉. (3.36)

Now observe that, using (3.17), we have

−
∫ τ

0

∫
F1(t)

〈Yt,x,u1F 〉 · ∂tUs
F =

∫ τ

0

∫
F1(t)

(div (Us
F ⊗Us

F ) · 〈Yt,x,u1F 〉 − F · 〈Yt,x,u1F 〉) +

∫ τ

0

∫
∂B1(t)

(u1F · n)P sF

=

∫ τ

0

∫
F1(t)

(div (Us
F ⊗Us

F ) · 〈Yt,x,u1F 〉 − F · 〈Yt,x,u1F 〉) +

∫ τ

0

∫
∂B1(t)

(u1B · n)P sF , (3.37)

where we integrated by parts the pressure term in (3.17), and use the divergence-free condition with the boundary
condition for the measure-valued solution. Consequently, using the compatibility condition (2.7) and the equality
(3.37), the relation (3.36) reads

[E(Yt,x|Us)]
t=τ
t=0+D(τ) ≤ C

∫ τ

0

D(·)−
∫ τ

0

∫
F1(t)

(
(Us
F−〈Yt,x,u1F 〉)·∇Us

F ·Us
F

)
−
∫ τ

0

∫
B1(t)

%B

(
(Us
B−u1B)·∇Us

B·Us
B

)
+

∫ τ

0

∫
F1(t)

F · (Us
F − 〈Yt,x,u1F 〉)−

∫ τ

0

((ws −w1)× (J1w
s) ·ws +m(ws −w1)×Vs ·Vs)−

∫ τ

0

∫
B(t)

%Bu1B · ∂tUs
B

+

∫ τ

0

∫
∂B1(t)

(u1B · n)P sF +

∫ τ

0

∫
F1(t)

div (Us
F ⊗Us

F ) · 〈Yt,x,u1F 〉 −
∫ τ

0

∫
F1(t)

〈Yt,x, (u1F ⊗ u1F )〉 : ∇Us
F . (3.38)

Now, we analyze the last two terms in (3.38). We have∫ τ

0

∫
F1(t)

div (Us
F ⊗Us

F ) · 〈Yt,x,u1F 〉 −
∫ τ

0

∫
F1(t)

〈Yt,x, (u1F ⊗ u1F )〉 : ∇Us
F

=

∫ τ

0

∫
F1(t)

(Us
F · ∇Us

F ) · 〈Yt,x,u1F 〉 −
∫ τ

0

∫
F1(t)

〈Yt,x,u1F 〉 · ∇Us
F 〈Yt,x,u1F 〉

=

∫ τ

0

∫
F1(t)

〈Yt,x,u1F 〉 · ∇Us
F

(
Us
F − 〈Yt,x,u1F 〉

)
.

Thus (3.38) can be rewritten as:

[E(Yt,x|Us)]
t=τ
t=0 +D(τ) ≤ C

∫ τ

0

D(·)−
∫ τ

0

∫
F1(t)

(
(Us
F − 〈Yt,x,u1F 〉) · ∇Us

F ·Us
F

)
+

∫ τ

0

∫
F1(t)

〈Yt,x,u1F 〉 · ∇Us
F ·
(
Us
F − 〈Yt,x,u1F 〉

)
+

∫ τ

0

∫
F1(t)

F · (Us
F − 〈Yt,x,u1F 〉)

−
∫ τ

0

∫
B1(t)

%B

(
(Us
B − u1B) · ∇Us

B ·Us
B

)
−
∫ τ

0

∫
B1(t)

%Bu1B · ∂tUs
B +

∫ τ

0

∫
∂B1(t)

(u1B · n)P sF

−
∫ τ

0

((ws −w1)× (J1w
s) ·ws +m(ws −w1)×Vs ·Vs) = C

∫ τ

0

D(·) + I1
F + I2

F + I3
F + I1

B + I2
B + I3

B + I4
B.

(3.39)
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Now, observe that

I1
F + I2

F =

∫ τ

0

∫
F1(t)

(Us
F − 〈Yt,x,u1F 〉) · ∇Us

F · (Us
F − 〈Yt,x,u1F 〉)

and therefore
|I1
F + I2

F | ≤ C
∫ τ

0

E(·).

The estimate (3.25) of the forcing term F in Lemma 3.2 gives us

|I3
F | = |

∫ τ

0

∫
F1(t)

F · (Us
F − 〈Yt,x,u1F 〉) | ≤ C

∫ τ

0

E(·).

Regarding the terms on the rigid body, observe that as u1B · ∇Us
B · u1B = (u1B ⊗ u1B) : ∇Us

B = 0, we can write

−
(

(Us
B − u1B) · ∇Us

B ·Us
B

)
− u1B · ∂tUs

B

= Us
B · ∇Us

B · u1B −Us
B · ∇Us

B ·Us
B − u1B · ∇Us

B · u1B + u1B · ∇Us
B ·Us

B −
(
Us
B · ∇Us

B · u1B + u1B · ∂tUs
B

)
= (Us

B − u1B) · ∇Us
B · (u1B −Us

B)−
(
Us
B · ∇Us

B · u1B + u1B · ∂tUs
B

)
.

Moreover, using the calculations presented in detail in Section 4.4, we have:

−
∫ τ

0

∫
B1(t)

(
%BU

s
B · ∇Us

B · u1B + %Bu1B · ∂tUs
B

)
= −

∫ τ

0

∫
∂B1(t)

(u1B · n)P sF +

∫ τ

0

(m(ws −w1)×Vs) ·V1

+

∫ τ

0

((ws −w1)× (J1w
s)) ·w1. (3.40)

Thus,

I1
B + I2

B + I3
B + I4

B =

∫ τ

0

∫
∂B1(t)

%B(Us
B − u1B) · ∇Us

B · (u1B −Us
B) +

∫ τ

0

((ws −w1)× (J1w
s) · (w1 −ws))

+

∫ τ

0

m(ws −w1)×Vs · (V1 −Vs)).

So, ∣∣∣I1
B + I2

B + I3
B + I4

B

∣∣∣ ≤ C ∫ τ

0

E(·).

Hence, (3.39) becomes

E(Yt,x|Us)(τ) +D(τ) ≤ C
∫ τ

0

(
E(·) +D(·)

)
+ E(Yt,x|Us)(0).

Since the initial states coincide and therefore the value of the relative energy functional at time zero is equal to zero,
we use Gronwall lemma to conclude that for t ∈ (0, T ):

D = 0 and Yt,x = δUs
F
for x ∈ F1, u1B = Us

B.

Finally, we have to show that in fact V1 = V2, w1 = w2, B1(t) = B2(t) and Yt,x = δu2F on F1(t). This argument
is the same as was presented i.e. in [27]. We start with (3.11) to write V1 = O1OT2 V2 and w1 = O1OT2 w2, therefore

OT1 V1 = OT2 V2, (3.41)

OT1 w1 = OT2 w2. (3.42)
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Moreover, we use the relation between the angular velocity of the body and the isometries describing the motion of
the body (1.10) to conclude

wi × x = Qix =
dOi
dt

OTi x (3.43)

for i = 1, 2 and for all x ∈ R3. Thus

OTi wi × x = OTi (wi ×Oix) = OTi
dOi
dt

OTi Oix = OTi
dOi
dt

x (3.44)

for i = 1, 2 and all x ∈ R3 and finally combining this with (3.42) we deduce

OT1
dO1

dt
= OT2

dO2

dt
. (3.45)

We rewrite (3.45) as
d(O1 −O2)

dt
= (O1 −O2)OT2

dO2

dt
.

Denoting O∆ = O1 −O2 and treating O2 as a given function of time we end up with

dO∆(t)

dt
= O∆(t)W(t), (3.46)

O∆(0) = 0, (3.47)

for some given matrix valued function W(t). The problem (3.46)-(3.47) has a unique solution O∆(t) = 0, therefore
O1 = O2 and taking into account (3.41) and (3.42) we finally end up with V1 = V2 and w1 = w2. This also proves
that the position of the bodies of the measure-valued and strong solutions are the same, i.e. B1(t) = B2(t).

Finally we can set the cutoff functions ζi(t,x) (i = 1, 2) introduced in Section 3.1 to coincide in the case that
B1 = B2. Therefore Λ1(t,x) = Λ2(t,x), Z1 = Z2 and Z̃2(t,x) = Z̃1(t,x) = x for all x ∈ Ω and t ∈ (0, T ). Finally we
use (3.9) to conclude that Us

F = u2F . This also proves that Tmin has to be equal to T0.

4 Appendix

4.1 Reynolds transport theorem
For completeness of presentation we state here the Reynolds transport theorem which is one of the key ingredients in
analysis of fluid on moving domains.

Theorem 4.1. Let f be a function such that all integrals in the formula below are well defined. Let uB be a rigid
velocity field describing the motion of the body B(t). Then the following formula for time derivative of an integral over
the fluid domain holds.

d

dt

∫
F(t)

f dx =

∫
F(t)

∂tf dx +

∫
∂B(t)

fuB · ndS (4.1)

4.2 Weak formulation of the momentum equation
In this section, we present the calculation behind the weak formulation of the momentum equation (2.5).

Let all the functions be sufficiently smooth so that we can do integration by parts. We multiply equation (1.2)1 by
test function ϕϕϕ ∈ VT and integrate over F(t) to obtain

d

dt

∫
F(t)

uF ·ϕϕϕF −
∫
F(t)

uF ·
∂

∂t
ϕϕϕF −

∫
F(t)

(uF ⊗ uF ) : ∇ϕϕϕF = −
∫
∂Ω

pF In ·ϕϕϕF −
∫
∂B(t)

pF In ·ϕϕϕF . (4.2)
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As ϕϕϕ ∈ VT , we have ϕϕϕF ·n = 0 on ∂Ω. Using the Reynolds transport theorem 4.1 and the mass transport of the body
we have

d

dt

∫
B(t)

%BuB ·ϕϕϕB =

∫
B(t)

∂

∂t
(%BuB ·ϕϕϕB) +

∫
B(t)

div (%BuB(uB ·ϕϕϕB))

=

∫
B(t)

%BuB ·
∂

∂t
ϕϕϕB +

∫
B(t)

%B

( ∂
∂t

uB + uB · ∇uB
)
·ϕϕϕB +

∫
B(t)

ρB(uB ⊗ uB) : ∇ϕϕϕB.

As D(ϕϕϕB) = 0, we have (uB ⊗ uB) : ∇ϕϕϕB = 0. Using the rigid body equations (1.4) and the boundary condition
ϕϕϕF · n = ϕϕϕB · n on ∂B(t), we obtain

−
∫
∂B(t)

pF In ·ϕϕϕF = − d

dt

∫
B(t)

%BuB ·ϕϕϕB +

∫
B(t)

%BuB ·
∂

∂t
ϕϕϕB. (4.3)

Thus by combining the above relations (4.2)-(4.3) and then integrating in time, we have

−
∫ τ

0

∫
F(t)

uF ·
∂

∂t
ϕϕϕF −

∫ τ

0

∫
B(t)

%BuB ·
∂

∂t
ϕϕϕB −

∫ τ

0

∫
F(t)

(uF ⊗ uF ) : ∇ϕϕϕF

=

∫
F0

(uF ·ϕϕϕF )(0)−
∫
Fτ

(uF ·ϕϕϕF )(τ) +

∫
B0

(%BuB ·ϕϕϕB)(0)−
∫
Bτ

(%BuB ·ϕϕϕB)(τ) (4.4)

for τ ∈ [0, T ].

4.3 Derivation of (3.26).
We multiply equation (3.17)1 by test function ϕϕϕ ∈ VT , integrate over F1(t) and use the Reynolds transport theorem
4.1 to obtain

d

dt

∫
F1(t)

Us
F ·ϕϕϕF −

∫
F1(t)

Us
F ·

∂

∂t
ϕϕϕF −

∫
F1(t)

(
〈Yt,x,u1F 〉 ⊗Us

F ) : ∇ϕϕϕF − (Us
F − 〈Yt,x,u1F 〉) · ∇Us

F ·ϕϕϕF
)

= −
∫
∂Ω

P sF In ·ϕϕϕF −
∫
∂B1(t)

P sF In ·ϕϕϕF +

∫
F1(t)

F ·ϕϕϕF , (4.5)

where we combine the weak formulation of the continuity equation and the boundary condition. As ϕϕϕ ∈ VT , we have
ϕϕϕF ·n = 0 on ∂Ω. We use the Reynolds transport theorem 4.1 together with the mass transport of the body to obtain

d

dt

∫
B1(t)

%BU
s
B ·ϕϕϕB =

∫
B1(t)

∂

∂t
(%BU

s
B ·ϕϕϕB) +

∫
B1(t)

div (%Bu1B(Us
B ·ϕϕϕB))

=

∫
B1(t)

%BU
s
B ·

∂

∂t
ϕϕϕB+

∫
B1(t)

%B

( ∂
∂t

Us
B+Us

B ·∇Us
B

)
·ϕϕϕB+

∫
B1(t)

ρB

(
(u1B⊗Us

B) : ∇ϕϕϕB− (Us
B−u1B) ·∇Us

B ·ϕϕϕB
)
.

Using the rigid body equations (3.22)-(3.23) and the boundary condition ϕϕϕF · n = ϕϕϕB · n on ∂B1(t), we obtain

−
∫
∂B1(t)

P sF In·ϕϕϕF = − d

dt

∫
B1(t)

%BuB ·ϕϕϕB+

∫
B1(t)

%BuB ·
∂

∂t
ϕϕϕB+

∫
B1(t)

ρB

(
(u1B⊗Us

B) : ∇ϕϕϕB−(Us
B−u1B)·∇Us

B ·ϕϕϕB
)

− ((ws −w1)× (J1w
s) ·ϕϕϕB,w +m(ws −w1)×Vs ·ϕϕϕB,V). (4.6)
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Thus by combining the above relations (4.5)-(4.6) and then integrating in time, we have for τ ∈ [0, T ]:

−
∫ τ

0

∫
F1(t)

Us
F ·

∂

∂t
ϕϕϕF−

∫ τ

0

∫
B1(t)

%BU
s
B ·
∂

∂t
ϕϕϕB−

∫ τ

0

∫
F1(t)

(
(〈Yt,x,u1F 〉⊗Us

F ) : ∇ϕϕϕF−(Us
F−〈Yt,x,u1F 〉)·∇Us

F ·ϕϕϕF
)

−
∫ τ

0

∫
B1(t)

ρB

(
(u1B ⊗Us

B) : ∇ϕϕϕB − (Us
B − u1B) · ∇Us

B ·ϕϕϕB
)

=

∫ τ

0

∫
F1(t)

(
F ·ϕϕϕF

)
−
∫ τ

0

((ws −w1)× (J1w
s) ·ϕϕϕB,w +m(ws −w1)×Vs ·ϕϕϕB,V) +

∫
F0

(Us
F ·ϕϕϕF )(0)−

∫
F1(τ)

(Us
F ·ϕϕϕF )(τ)

+

∫
B0

(%BU
s
B ·ϕϕϕB)(0)−

∫
B1(τ)

(%BU
s
B ·ϕϕϕB)(τ).

4.4 Derivation of (3.40).
In this section, we follow the calculations of [26, Appendix] to derive our desired identity. We know that

u1B(t, x) = V1(t) + w1(t)× (x−X1(t)) in QB1

Us
B(t, x) = Vs(t) + ws(t)× (x−X1(t)) in QB1

.

A simple calculation gives

∂Us
B

∂t
+ (Us

B · ∇)Us
B =

dVs

dt
+

dws

dt
× (x−X1) + ws × (ws × (x−X1)) in QB1 . (4.7)

We use (3.22) to deduce ∫
B1(t)

%B
dVs

dt
·V1 =

∫
∂B1(t)

P sFn ·V1 − (m(ws −w1)×Vs) ·V1. (4.8)

Next, by (1.6) we get∫
B1(t)

%B
dVs

dt
· (w1 × (x−X1)) =

(
dVs

dt
×w1

)
·
∫
B1(t)

%B(x−X1) = 0, (4.9)

∫
B1(t)

%B

(
dws

dt
× (x−X1)

)
·V1 = V1 ·

(
dws

dt
×
∫
B1(t)

%B(x−X1)

)
= 0, (4.10)

∫
B1(t)

%B(ws × (ws × (x−X1)) ·V1 = V1 ·

(
ws ×

(
ws ×

∫
B1(t)

%B(x−X1)

))
= 0. (4.11)

Using (1.7) and (3.23) we obtain∫
B1(t)

%B

(
dws

dt
× (x−X1)

)
· (w1 × (x−X1)) = J1

dws

dt
·w1 (4.12)

= (J1w
s ×ws) ·w1 − ((ws −w1)× (J1w

s)) ·w1 + w1 ·
∫
∂B1(t)

(x−X1)× P sFn

= J1w
s · (ws ×w1)− ((ws −w1)× (J1w

s)) ·w1 +

∫
∂B1(t)

P sFn · (w1 × (x−X1)).

We also have ∫
B1(t)

%B (ws × (ws × (x−X1))) · (w1 × (x−X1)) = −J1w
s · (ws ×w1). (4.13)
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Summing (4.8)-(4.13) and using (4.7) we end up with∫ τ

0

∫
B1(t)

(
%BU

s
B · ∇Us

B · u1B + %Bu1B · ∂tUs
B

)
=

∫ τ

0

∫
∂B1(t)

(u1B · n)P sF −
∫ τ

0

(m(ws −w1)×Vs) ·V1

−
∫ τ

0

((ws −w1)× (J1w
s)) ·w1.
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