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LARGE SEPARATED SETS OF UNIT VECTORS IN

BANACH SPACES OF CONTINUOUS FUNCTIONS

MAREK CÚTH, ONDŘEJ KURKA, AND BENJAMIN VEJNAR

Abstract. The paper is concerned with the problem whether a nonsep-
arable C(K) space must contain a set of unit vectors whose cardinality
equals to the density of C(K) such that the distances between every two
distinct vectors are always greater than one. We prove that this is the
case if the density is at most continuum and we prove that for several
classes of C(K) spaces (of arbitrary density) it is even possible to find
such a set which is 2-equilateral; that is, the distance between every two
distinct vectors is exactly 2.

In this paper we deal with distances between unit vectors in Banach
spaces. For r ∈ R a set A in a Banach spaceX is said to be r-separated, (r+)-
separated and r-equilateral if ‖v1− v2‖ ≥ r, ‖v1− v2‖ > r and ‖v1− v2‖ = r
for distinct v1, v2 ∈ A, respectively.

A natural question considered in the literature is whether, given a Banach
space, there is a big equilateral set or there is a big (1+)-separated set in
the unit sphere of the space. Our investigation is motivated mainly by the
recent papers [11, 12, 14], where this question has been addressed also for
nonseparable Banach spaces of the form C(K), where K is a compact space.

Let us summarize what is known. By [12], it is undecidable in ZFC
whether there always exists an uncountable 2-equilateral set in the unit
sphere of a nonseparable C(K) space. On the other hand, by [14] and [11],
there always exists an uncountable (1+)-separated set in the unit sphere
of a nonseparable C(K) space. Moreover, if K is nonmetrizable and not
perfectly normal there exists an uncountable 2-equilateral set in the unit
sphere [14] and if K is perfectly normal, there exists a (1+)-separated set in
the unit sphere of cardinality equal to the density of C(K). It is mentioned
in [11, page 40] that the following is a “tantalising problem” left open by
the authors.

Question 1. Let K be a compact Hausdorff space with κ := dens C(K) >
ω. Does there exist a (1+)-separated set in the unit sphere of C(K) of
cardinality κ?

We were not able to answer this question. However, we prove that for
quite many classes of compact spaces the answer is positive.
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Let us emphasize that all compact spaces of our considerations are sup-
posed to be infinite and Hausdorff. Recall that if K is a compact Hausdorff
space then the weight of K (denoted by w(K)) is equal to the density of
C(K). Our main results read as follows.

Theorem 1. Let K be a compact space such that w(K) is at most contin-
uum. Then the unit ball of C(K) contains a (1+)-separated set of cardinality
w(K).

Theorem 2. Let K be a compact space such that at least one of the following
conditions is satisfied.

(1) There exists a set A ⊂ K with densA ≥ w(K).
(1’) K is Valdivia or the weight of K is a strongly limit cardinal.
(2) K contains two disjoint homeomorphic compact spaces of the same

weight as K.
(2’) K is homogeneous, or homeomorphic to L × L, or to a compact

convex set in a locally convex space.
(3) K is dyadic (that is, a continuous image of 2κ for some κ).
(4) K is a compact line (that is, a linearly ordered space with the order

topology).

Then the unit ball of C(K) contains a 2-equilateral set of cardinality w(K).

Theorem 1 follows from a slightly more general Theorem 6, Theorem 2
summarizes the most important results from Section 3. Let us note that
(1’) is a consequence of (1) and (2’) is a consequence of (2).

Note that separable compact spaces and first countable compact spaces
are of weight at most continuum and so Theorem 1 applies. Indeed, it is
a classical result, see [3] or [9, Theorem 3.3], that for a regular topological
space X we have w(X) ≤ 2densX ; hence, separable compact spaces have
weight at most continuum. If K is a first countable compact space, then by
the famous Arhangel’skii’s inequality, see [1] or [9, Theorem 7.1 and 7.3], it
has cardinality at most c. Hence, the weight is at most c as well.

Let us remark that our results generalize all of the results from [11, 14]
mentioned above. Indeed, if K is perfectly normal, it is first countable and
we may apply Theorem 1 and if K is not perfectly normal it contains a
subset of uncountable density and we may apply Theorem 7 (which is the
statement from which we deduce the case (1) in Theorem 2).

Our results naturally suggest certain problems/conjectures which we sum-
marize in the last section of this paper.

1. Preliminaries

The notation and terminology is standard, for the undefined notions see
[5] for Banach spaces, [4] for topology and [13] for set theory. By c we denote
the cardinality of continuum. If X is a set and κ a cardinal, we denote by
[X]κ the set of all subsets of X of cardinality κ. For a cardinal κ we denote
by cf(κ) its cofinality. If X is a topological space and A ⊂ X, A stands for
the closure of A, densX stands for the density of X. The closed unit ball of a
Banach space X is denoted by BX . All compact spaces of our considerations
are supposed to be infinite and Hausdorff. On the Banach space C(K) of
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all continuous functions on a compact space K we consider the supremum
norm. In our proofs we use without mentioning the well-known fact that

w(K) = dens C(K) = ω + min{|F| : F ⊂ C(K) separates the points of K}.
Let us mention some easy facts which we will use later. First, it is easy

to see that if a compact space K is metrizable, then the unit ball of C(K)
contains a 2-equilateral set of cardinality w(K), for a proof one may for
example use Theorem 7. The other easy facts are formulated as lemmas
below.

Lemma 3. Let K be a compact space and let L be a closed subset or a
continuous image of K. If the unit ball of C(L) contains a (1+)-separated
(resp. 2-equilateral) set of cardinality κ, then the unit ball of C(K) contains
a (1+)-separated (resp. 2-equilateral) set of cardinality κ.

Proof. If L ⊂ K then we conclude using Tietze’s extension theorem. If
ϕ : K → L is continuous and surjective we realize that C(L) is isometric to
a subspace of C(K) by the mapping f 7→ f ◦ ϕ. �

Lemma 4. If a compact space K contains a zero-dimensional compact sub-
space of weight w(K), then the unit ball of C(K) contains a 2-equilateral set
of cardinality w(K).

Proof. Let L be a zero-dimensional compact subspace of K of weight w(K)
and let (Uα)α<κ be a basis of L consisting of clopen sets. Note that κ ≥
w(K). Then for every α < w(K) the norm-one function given by

fα(x) :=

{
1, x ∈ Uα,
−1, x ∈ L \ Uα,

is continuous. Clearly {fα : α < w(K)} is a 2-equilateral set. By Lemma 3
we obtain a 2-equilateral set in C(K) of cardinality w(K). �

Lemma 5 ([14, Theorem 1]). Let K be a compact space and κ be an infinite
cardinal. Then the unit ball of C(K) contains a 2-equilateral set of cardinality
κ if and only if it contains a (1 + ε)-separated set of cardinality κ for some
ε > 0.

2. Sets separated by more than 1

Theorem 6. Let K be a compact space. Then the unit ball of C(K) contains
a (1+)-separated set of cardinality w(K) or it contains a 2-equilateral set of
cardinality c.

Proof. We may without loss of generality assume that K is nonmetrizable,
see e.g. Theorem 7. Given f ∈ C(K) and x ∈ K, we say that t ∈ R is a
local maximum of f at x if f(x) = t and there exists an open neighbourhood
U of x such that f(y) ≤ t for every y ∈ U . Let us consider the following
condition inspired by the proof of [11, Theorem 4.11]:

∀x, y ∈ K,x 6= y, ∃f ∈ BC(K) : f(x) = 1,

f(z) = −1 for every z in some neighborhood of y

and 0 is not a local maximum of f at any point.

(P1)
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First, let us assume that the condition (P1) holds. Take a maximal (1+)-
separated family F (with respect to inclusion) of norm-one functions such
that 0 is not a local maximum of any f ∈ F at any point. We claim that
the cardinality of F equals w(K).

In order to get a contradiction, let us assume that F does not separate
the points of K. Thus, for some pair of distinct points x, y ∈ K and every
g ∈ F we have g(x) = g(y). Since (P1) holds, we may find a norm-one
function f ∈ C(K) such that f(x) = 1, f(z) = −1 in some neighborhood U
of y and 0 is not a local maximum of f at any point. Fix any g ∈ F . If
g(x) = g(y) 6= 0, then

‖f − g‖ ≥ max{|1− g(x)|, | − 1− g(y)|} > 1.

If g(x) = g(y) = 0, since 0 is not a local maximum of g at y, there is y′ ∈ U
with g(y′) > 0 and we have

‖f − g‖ ≥ |f(y′)− g(y′)| = | − 1− g(y′)| > 1.

Therefore, we have ‖f − g‖ > 1 for any g ∈ F which is a contradiction with
the maximality of F .

On the other hand, let us assume that (P1) does not hold. Then there
is a pair of distinct points x, y ∈ K which witnesses the negation of (P1).
Pick a function f ∈ BC(K) such that f(x) = 1 and f(z) = −1 for every z
in some neighborhood of y. By the choice of the pair x, y, we know that
every t ∈ (−1, 1) is a local maximum of f at some point xt ∈ K. Indeed,
if t ∈ (−1, 1) is not a local maximum of f at any point, then we can easily
modify the function f in such a way that 0 is not a local maximum at any
point and this would contradict the choice of the pair x, y.

Hence, for every t ∈ (−1, 1), there exists a neighborhood Ut of xt with
f(z) ≤ t for every z ∈ Ut. We have xs /∈ Ut for s > t and thus xt /∈
{xs : s > t}. Therefore, for every t ∈ (−1, 1), we may pick a function ft ∈
BC(K) with ft(xt) = 1 and ft(xs) = −1 for every s > t. Then {ft : t ∈
(−1, 1)} is a 2-equilateral set of cardinality c. �

3. Equilateral sets

Let us start with the following simple observation which already leads to
interesting consequences. Recall that for a point x in a topological space X
the character χ(x,X) is the minimal cardinality of a local basis at x.

Theorem 7. Let K be a compact space and κ be a cardinal. Suppose at
least one of the following conditions is satisfied.

(i) There exists a set A ⊂ K with densA ≥ κ.
(ii) There exists a point x ∈ K with χ(x,K) ≥ κ.

Then the unit ball of C(K) contains a 2-equilateral set of cardinality κ.

Proof. If there is A ⊂ K with densA ≥ κ, we inductively find points {xα :

α < κ} ⊂ A such that xα /∈ {xβ : β < α} and for each α < κ we pick a
norm-one function fα such that fα(xα) = 1 and fα(xβ) = −1 for β < α.
Then {fα : α < κ} is a 2-equilateral set.

Let us assume that (ii) holds. Recall that the character of a point in
a compact space equals to the pseudocharacter, see e.g. [2, page 127]. In
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other words, {x} is not the intersection of less than κ open sets. We shall
inductively find points xα and open sets Uα for α < κ such that x ∈ Uα and

xα ∈
⋂
β<α

Uβ \ Uα. (1)

Pick x0 6= x and an open U0 3 x with x0 /∈ U0. Having chosen xβ and
Uβ for every β < α, we pick a point xα ∈

⋂
β<α Uβ \ {x} and then we find

Uα 3 x such that xα /∈ Uα. In this way we have picked all the xα’s and, by
(1), we have xβ /∈ {xα : α > β} for every β < κ. Hence, for each β < κ we
may pick a norm-one function fβ such that fβ(xβ) = 1 and fβ(xα) = −1 for
α > β. Then {fβ : β < κ} is a 2-equilateral set. �

We may apply Theorem 7 to several classes of compact spaces which
include also classes studied in functional analysis. For a survey about Val-
divia and Corson compacta we refer to [10], for information about Eberlein
compacta to [6]. Let us recall that a cardinal κ is strongly limit if 2λ < κ
whenever λ < κ.

Corollary 8. Let K be a compact space. Suppose at least one of the follow-
ing conditions holds.

• K is Valdivia (e.g. K is metrizable, Eberlein or Corson);
• w(K) is a strongly limit cardinal;
• K is a connected continuous image of a linearly ordered compact

space.

Then the unit ball of C(K) contains a 2-equilateral set of cardinality w(K).

Proof. If K is Valdivia, then we may apply Theorem 7 since every dense
Σ-subset A ⊂ K satisfies densA = w(K), see [10, Lemma 3.4].

If w(K) is a strongly limit cardinal, then densK = w(K). Indeed, it is
a classical result, see [3] or [9, Theorem 3.3], that for a regular topological
space X we have w(X) ≤ 2densX ; hence, if densK < w(K) we would get
w(K) < w(K), a contradiction.

If K is a connected continuous image of a linearly ordered compact space
then, by [16], we have densK = w(K) and we may apply Theorem 7. �

Another class of compact spaces where an analogous statement holds is
given by the following result.

Theorem 9. Let K be a compact space. Then the unit ball of C(K×{0, 1})
contains a 2-equilateral set of cardinality w(K).

Proof. By Theorem 7, we may assume thatK is nonmetrizable. By Lemma 5,
it is sufficient to find a 3

2 -separated set of cardinality w(K).
For f ∈ C(K × 2) consider the following condition:

∀z ∈ K : |f(z, 0)| < 1
2 =⇒ f(z, 1) = −1. (P2)

Take a maximal 3
2 -separated family F (with respect to inclusion) of norm-

one functions satisfying the condition (P2). We claim that the cardinality
of F equals w(K). In order to get a contradiction, let us assume that F
does not separate the points of K × {0}. Thus, for some pair of distinct
points x, y ∈ K and every g ∈ F we have g(x, 0) = g(y, 0). Now, consider
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any norm-one function f ∈ C(K×2) satisfying the condition (P2) such that
f(y, 0) = −1 and f(x, 0) = f(x, 1) = 1. Such a function exists because we

may pick any f̃ ∈ BC(K) with f̃(x) = 1 = −f̃(y) and take any continuous
extension of a function defined on disjoint closed sets K × {0}, {(x, 1)} and

f̃−1
(
[−1

2 ,
1
2 ]
)
× {1} in the obvious way, that is, f(z, 0) = f̃(z) for every

z ∈ K, f(x, 1) = 1 and f(z, 1) = −1 for z ∈ f̃−1
(
[−1

2 ,
1
2 ]
)
.

Fix any g ∈ F . If g(x, 0) = g(y, 0) ≥ 1
2 , then

‖f − g‖ ≥ | − 1− g(y, 0)| = 1 + g(y, 0) ≥ 3
2 .

If g(x, 0) = g(y, 0) ≤ −1
2 , then

‖f − g‖ ≥ |1− g(x, 0)| = 1− g(x, 0) ≥ 3
2 .

If |g(x, 0)| < 1
2 , then since g satisfies (P2) we have

‖f − g‖ ≥ |f(x, 1)− g(x, 1)| = 1− g(x, 1) = 2.

Therefore, we have ‖f − g‖ ≥ 3
2 for any g ∈ F which is a contradiction with

the maximality of F . �

Corollary 10. Let K be a compact space which contains two disjoint homeo-
morphic compact spaces of weight w(K). Then the unit ball of C(K) contains
a 2-equilateral set of cardinality w(K).

Proof. The statement follows immediately from Theorem 9 and Lemma 3.
�

This result has interesting consequences. The first one is a strengthening
of [14, Corollary 2.11 and 2.12]. To prove it, we need the following simple
lemma.

Lemma 11. Let K be a compact convex subset of a locally convex space E.
Then K contains two disjoint subsets homeomorphic to itself.

Proof. Let x, y ∈ K be two distinct points and let x∗ ∈ E∗ be such that
x∗(y − x) > 0. It is sufficient to show that

(1− λ)x+ λK and (1− λ)y + λK

are disjoint for a small enough λ ∈ (0, 1]. Assuming the opposite for some
λ, we obtain that there are u, v ∈ K such that

(1− λ)x+ λu = (1− λ)y + λv,

which implies

supx∗(K)− inf x∗(K) ≥ x∗(u)− x∗(v) =
1− λ
λ

x∗(y − x).

Therefore, any λ ∈ (0, 1] satisfying 1−λ
λ x∗(y − x) > supx∗(K) − inf x∗(K)

works. �

Corollary 12. Let K be a compact space which is homeomorphic to either
L× L for a compact space L or to a compact convex set in a locally convex
space. Then the unit ball of C(K) contains a 2-equilateral set of cardinality
w(K).
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Proof. If K is homeomorphic to L×L, we use Corollary 10 and the fact that
L × L contains L × {x} and L × {y} for a pair of distinct points x, y ∈ L.
If it is homeomorphic to a compact convex set in a locally convex space, we
use Corollary 10 and Lemma 11. �

Before proving another corollary of Theorem 9, let us formulate the fol-
lowing easy observation.

Lemma 13. Let K be a compact space. Then there exists a point x ∈ K
such that w(U) = w(K) for every neighborhood U of x.

Proof. In order to get a contradiction, let us assume that for every point
x there exists an open neighborhood Ux of x with w(Ux) < w(K). By
compactness, there are points x1, . . . , xn ∈ K such that Ux1 ∪ . . .∪Uxn = K;
hence, w(K) = w(Ux1 ∪ . . . ∪ Uxn) ≤ w(Ux1) + . . . + w(Uxn) < w(K), a
contradiction. �

Corollary 14. Let K be a homogeneous compact space. Then the unit ball
of C(K) contains a 2-equilateral set of cardinality w(K).

Proof. By Lemma 13, there exists a point x ∈ K such that w(U) = w(K)
for every neighborhood of x. Pick y ∈ K \ {x} and a homeomorphism
h : K → K with h(x) = y.

Find open neighborhoods U and V of x and y respectively such that
U∩V = ∅ and h(U) = V . This is indeed possible since we may pick arbitrary
neighborhoods U0 and V0 of x and y respectively such that U0 ∩ V0 = ∅ and
put U := h−1(V0) ∩ U0, V := h(U).

Now, U and V are homeomorphic, disjoint and w(U) = w(K); hence, we
may apply Corollary 10. �

The next corollary of Theorem 9 is based on a variant of the Ramsey
theorem for higher cardinalities.

Definition 15. Let κ and λ be cardinals. By writing

κ→ (λ)2
2

we mean that the following statement is true: for every set X of cardinality
κ and for every F : [X]2 → {0, 1} there exists a subset Y of X of cardinality
λ such that F |[Y ]2 is constant.

Corollary 16. Let K be a compact space and let κ be the weight of K. If λ is
a cardinal with κ→ (λ)2

2, then the unit ball of C(K) contains a 2-equilateral
set of cardinality λ.

Proof. By Theorem 9, in the unit ball of C(K × {0, 1}) there exists a 2-
equilateral set X of cardinality κ. Consider the mapping F : [X]2 → {0, 1}
such that F ({f, g}) = 0 if and only if there exists a point x ∈ K × {0} with
|(f−g)(x)| = 2. If there is a set Y ⊂ X of cardinality λ such that F |[Y ]2 ≡ 0
then {f |K×{0} : f ∈ Y } is a 2-equilateral set in the unit ball of C(K ×{0}).
Otherwise, there is a set Y ⊂ X of cardinality λ such that F |[Y ]2 ≡ 1 and
{f |K×{1} : f ∈ Y } is a 2-equilateral set. �

As a corollary, we may obtain the following result.
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Corollary 17. Let K be a compact space with w(K) ≥ (2<κ)+ for some
cardinal κ. Then there exists a 2-equilateral set of cardinality κ in the unit
ball of C(K).

Proof. It follows from Corollary 16 and the classical Erdős-Rado theorem
(see e.g. [8, Theorem 2.9]), which states that (2<κ)+ → (κ)2

2 whenever κ is
an infinite cardinal. �

Recall that a compact space K is said to be dyadic if it is a continuous
image of 2κ for some κ. For more information about dyadic compacta we
refer to [15, Section 7].

Lemma 18. Let K be a dyadic compact space and F,H ⊂ K disjoint closed
subsets. Then there exists dyadic compact C ⊂ K such that F ⊂ C and
H ∩ C = ∅.

Proof. Since K is dyadic, there is a continuous map f of 2κ onto K. Clearly
the sets f−1(F ) and f−1(H) are disjoint and closed, hence we can find for
every point x ∈ f−1(F ) its basic clopen neighborhood Ux which is disjoint
from f−1(H). By compactness of f−1(F ) there is a finite set S such that
{Us : s ∈ S} covers f−1(F ). Every Us is a dyadic space, since it is a basic
subset of 2κ. It is easy to see that U :=

⋃
{Us : s ∈ S} is dyadic too and

hence the set C = f(U) is dyadic as well. It remains to note that F ⊂ C
and H ∩ C = ∅. �

Theorem 19. Let K be a dyadic compact space. Then the unit ball of C(K)
contains a 2-equilateral set of cardinality w(K).

Proof. Put κ = w(K). First, assume that cf(κ) > ω. Then K can be
mapped continuously onto [0, 1]κ, see [7] or more generally also [15, Theorem
7.21]. Hence, by Lemmas 3 and 4, it is enough to realize that [0, 1]κ contains
the zero-dimensional subspace 2κ.

Hence, we may assume that cf(κ) = ω and thus that there is a sequence
of uncountable regular cardinals (µn) whose limit is κ. By Lemma 13, there
exists a point x ∈ K such that w(U) = κ for every neighborhood U of x.
By Theorem 7, we may assume that λ := χ(x,K) < κ.

We claim that for every µ < κ and every neighborhood U of x there is
a compact set Lµ,U ⊂ U \ {x} of weight at least µ. Indeed, in the opposite
case there is some neighborhood U of x and some µ < κ such that every
compact set in U \ {x} is of weight less than µ. Let W be a neighborhood
of x such that W ⊆ U and let V be a local base at x of cardinality λ formed
by open subsets of K. Then

W \ {x} =
⋃
{W \ V : V ∈ V}.

Since λ < κ it follows that w(W \ {x}) = κ. On the other hand W \ V is
of weight at most µ and hence the weight of

⋃
{W \ V : V ∈ V} is at most

λ · µ < κ. This is a contradiction.
Using the claim, we can inductively construct a sequence (Ln) of compact

subspaces of K \ {x} such that the weight of Ln is at least µn and for each
Ln there is an open set Un ⊃ Ln which is disjoint from every Lm, m 6= n.
By the use of Lemma 18 there are dyadic compact spaces Kn ⊂ Un such
that Ln ⊂ Kn for every n ∈ ω. By the first part of the proof we are
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able to find for every n a 2-equilateral set Fn in the unit ball of C(Kn) of
cardinality w(Kn) ≥ w(Ln) ≥ µn. We can extend every function f ∈ C(Kn)
to a function f ′ ∈ C(K) with the same norm and satisfying f ′(y) = 1 for
y ∈ K \ Un. We may without loss of generality assume that, for each n ∈ ω
and f ∈ Fn, there is a point x ∈ Kn with f(x) = −1 (because, for each
n ∈ ω there is at most one function f ∈ Fn for which it does not hold). Let
F := {f ′ : f ∈ Fn, n ∈ ω}. It is easily checked that F is a 2-equilateral set
in the unit ball of C(K) of cardinality κ. �

Theorem 20. Let K be a linearly ordered compact space. Then the unit
ball of C(K) contains a 2-equilateral set of cardinality w(K).

Proof. Put κ := w(K). By Theorem 7 we may suppose that λ := dens(K) <
κ. Let D ⊂ K be a dense set of cardinality λ. The cardinality of the system
of open intervals {(a, b) : a, b ∈ D, a < b} is λ, hence it is not a base for K.
Put

L := {x ∈ K : ∃a < x : (a, x) = ∅}, R := {x ∈ K : ∃b > x : (x, b) = ∅}.

We claim that either L or R is of cardinality w(K). Indeed, assume the
opposite case. For every x ∈ L \ R, there is ax < x with (ax, x) = ∅ and
Bx := {(ax, b) : b ∈ D, b > x} is a neighborhood basis of x. Similarly, for
every x ∈ R \L we find bx > x such that Bx := {(a, bx) : a ∈ D, a < x} is a
neighborhood basis of x. Note that the points of L ∩R are isolated. Then

B =
{

(a, b) : a, b ∈ D, a < b
}
∪
⋃{
Bx : x ∈ L4R

}
∪
{
{x} : x ∈ L ∩R

}
is of cardinality less then κ. Moreover, it is easy to see that B is a basis of
K; hence, w(K) < κ, a contradiction.

Now, assume that the cardinality of L is κ. For every x ∈ L consider a
continuous function fx defined as

fx(y) =

{
1, y ≥ x,
−1, y < x.

Then {fx : x ∈ L} is a 2-equilateral set of cardinality w(K). The case when
R is of cardinality κ is similar. �

It is worth mentioning that the density of a linearly ordered compact
space can be less than the weight. This is witnessed e.g. by the Alexandrov
double arrow space.

4. Remarks and questions

Up to our knowledge it is not known whether in the unit ball of a nonsep-
arable Banach space X there exists a 1-separated set of cardinality equal to
the density of X. However, if we consider only Banach spaces of the form
C(K), this is easy.

Proposition 21. Let K be a compact space. Then the unit ball of C(K)
contains a 1-separated set of cardinality w(K).

Proof. By Theorem 7, we may assume that K is nonmetrizable. Take a max-
imal 1-separated family F (with respect to inclusion) of norm-one functions.
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We claim that the cardinality of F equals w(K). In order to get a contra-
diction, let us assume that F does not separate the points of K. Thus, for
some pair of distinct points x, y ∈ K and every g ∈ F we have g(x) = g(y).
Find a norm-one function f ∈ C(K) such that f(x) = 1 = −f(y), then we
have ‖f − g‖ ≥ 1 for every g ∈ F ; hence F ∪ {f} is 1-separated, which is a
contradiction with the maximality of F . �

We get easily from our results that the situation is quite simple under
GCH.

Corollary 22 (GCH). Let K be a compact space.

(1) If w(K) is a limit cardinal, then the unit ball of C(K) contains a
2-equilateral set of cardinality w(K).

(2) If w(K) = κ+ for an infinite cardinal κ, then the unit ball of C(K)
contains a 2-equilateral set of cardinality κ.

Proof. The first statement follows immediately from Corollary 8 because
under GCH every limit cardinal is strongly limit.

Concerning the second statement, it follows from Corollary 17. Indeed, it
is sufficient to notice that under GCH we have 2<κ = κ, which follows from
the computation

2<κ = sup{2λ : λ < κ} = sup{λ+ : λ < κ} = κ,

where the first equality follows e.g. from [13, Lemma I.13.17] and the second
from GCH. �

Question 2. Does Corollary 22 hold in ZFC?

Moreover, we do not know if it is possible to have an analogue of Koszmider’s
example [12] for higher densities.

Question 3. Let κ ≥ ω1 be a cardinal. Does there (at least consistently)
exist a compact space of weight κ+ such that the unit sphere of C(K) does
not contain a 2-equilateral set of cardinality κ+?

Since dyadic compacta are ccc, the positive answer to the following ques-
tion would generalize Theorem 19.

Question 4. Let K be a compact space which is ccc. Does the unit sphere
of C(K) contain a 2-equilateral (or at least (1+)-separated) set of cardinality
w(K)?

Remark 23. P. Koszmider proved [12] that consistently there exists a non-
metrizable compact space K without an uncountable 2-equilateral set in
the unit ball of C(K). Knowing in a detail his construction, it is quite easy
to see that for Koszmider’s example we have ind(K) ≤ 2, where ind(K) is
the topological dimension (for a definition see e.g [4, Chapter 7]). Since in
zero-dimensional nonmetrizable compact spaces there always exists an un-
countable 2-equilateral set in the unit ball of C(K), it is of a certain interest
to know what is the situation for compact spaces with dimension 1. Modi-
fying Koszmider’s example it is possible to obtain the following statement:

It is relatively consistent with ZFC that there exists a non-
metrizable compact space K with ind(K) = 1 such that there
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does not exist an uncountable 2-equilateral set in the unit ball
of C(K).

Let us include some details of the above mentioned modification. In
order to shorten the notation, for a finite subset N of ω and s ∈ 2N , put
Ns := {x ∈ 2ω : x|N = s}. First, following the proof of [12, Theorem 3.3]
(replacing the interval [0, 1] by the compact space 2ω), one observes that it
is sufficient to prove that consistently there are points {rξ : ξ < ω1} ⊂ 2ω

and a sequence of functions (fξ : ξ < ω1), where fξ : 2ω \ {rξ} → [−1, 1] are
continuous, such that given

(a) m ∈ N,
(b) a finite subset N of ω and pairwise different sequences s1, . . . , sm ∈

2N ,
(c) any sequence (Fα)α<ω1 where Fα = {ξα1 , . . . , ξαm} are pairwise disjoint

finite subsets of ω1 such that rξαi ∈ Nsi for every 1 ≤ i ≤ m and
every α < ω1,

(d) any m-tuple {q1, . . . , qm} of rational numbers from [−1, 1],

there are α < β < ω1, a finite subset M ⊃ N of ω and sequences (tαi )1≤i≤m,

and (tβi )1≤i≤m from 2M such that for each 1 ≤ i ≤ m we have:

(1) Ntαi ∪Ntβi ⊂ Nsi and tαi 6= tβi ,

(2) rξαi ∈ Ntαi and r
ξβi
∈ N

tβi
,

(3) fξαi �2ω\(Ntα
i
∪N

t
β
i

)= f
ξβi

�2ω\(Ntα
i
∪N

t
β
i

),

(4) fξαi �N
t
β
i

= qi = f
ξβi

�Ntα
i

.

Now, similarly as in [12, Section 4], by a forcing argument, we prove that
consistently such points {rξ : ξ < ω1} ⊂ 2ω and a sequence of functions
(fξ : ξ < ω1) exist. Fix any points {rξ : ξ < ω1} ⊂ 2ω. The forcing notion
P consists of triples (Np, Fp,Fp) such that

(1) Np ∈ [ω]<ω,
(2) Fp is a finite subset of ω1 such that {rξ �Np : ξ ∈ Fp} are pairwise

different sequences,

(3) FP = {f ξp : ξ ∈ Fp},
(4) f ξp : 2ω \ Nrξ�Np → [−1, 1] is a rationally piecewise constant function

for each ξ ∈ Fp (i.e. for every s ∈ 2Np with s 6= rξ �Np there is a

rational number qs such that f ξp (x) = qs for every x ∈ Ns).
We say that q ≤ p if and only if

(a) Nq ⊃ Np,
(b) Fq ⊃ Fp,
(c) f ξq ⊃ f ξp for every ξ ∈ Fp.

Similarly as in [12, Lemma 4.3] we prove that P is ccc; hence, it preserves
cofinalities and cardinals [13, Theorem IV.7.9]. Finally, similarly as in [12,
Proposition 4.4], we prove that P forces that there are functions (fξ : ξ < ω1)
with the properties indicated above.

It remains to see that our modification of Koszmider’s example is 1-
dimensional. As we have mentioned above, the modification is in replacing
the interval [0, 1] by the compact space 2ω in the construction from [12];
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more precisely it is a resolution given by functions (fξ) in the sense of [17].
In order to describe some more details, let us recall the concept of a reso-
lution (we use the concept of a resolution from [17]; constructed compact
spaces are easily seen to be homeomorphic to the ones considered in [12]).

Let L be a compact space, B ⊂ L and for every b ∈ B let us have a
continuous function fb : L\{b} → [−1, 1]. By a resolution given by functions
(fb)b∈B we understand the space K = R(L, (fb)b∈B) = (B× [−1, 1])∪(L\B)
with the topology given by the following neighborhood basis. If x ∈ L \ B,
then its neighborhood basis is the collection of all sets

U(x, U) :=
(
(U ∩B)× [−1, 1]

)
∪ (U \B),

where U is an open neighborhood of x in the space L. If x ∈ B and
y ∈ [−1, 1], then the neighborhood basis at (x, y) is the collection of all sets

U(x, U, V ) := ({x} × V )∪
(
(U ∩ f−1

x (V )∩B)× [−1, 1]
)
∪ (U ∩ f−1

x (V ) \B),

where U is an open neighborhood of x in the space L and V is an open
neighborhood of y in the space [−1, 1].

Finally, we prove the following proposition which yields that the above
described modification gives a 1-dimensional compact space.

Proposition 24. Let L be a zero-dimensional compact space with countable
character, B ⊂ L and let fb : L \ {b} → [−1, 1] be a continuous function
for every b ∈ B. Then the resolution K = R(L, (fb)b∈B) is a compact space
with ind(K) ≤ 1.

Proof. It is well-known that K is a compact space [17, Theorem 3.1.33]. We
will find a neighborhood basis at every point in K such that the boundary
of each of its members is finite (in particular zero-dimensional). Let x ∈
L \ B first. Then the set U(x, U) is a clopen neighborhood of x in K for a
clopen neighborhood U of x in L. Moreover, sets of this type form a local
neighborhood basis at x in K.

On the other hand suppose that (x, y) ∈ B× [−1, 1] and let U(x, U, V ) be
a given neighborhood of (x, y) in K. We want to find a smaller neighborhood
of (x, y) in K whose boundary is finite. We may assume that U is a clopen
set. Let W = [a, b] be a neighborhood of y in [−1, 1] such that W ⊂ V and
let Wn be open subsets of [−1, 1] such that Wn+1 ⊂ Wn for every n ∈ ω,
W =

⋂
n∈ωWn and W0 = V . We claim that there exists a clopen set C in

L \ {x} such that f−1
x (W ) ⊂ C ⊂ f−1

x (V ) and x /∈ f−1
x ([−1, 1] \Wn) ∩ C

for every n ∈ ω. Indeed, let {Bn : n ∈ ω} be a local neighborhood basis at
x formed by clopen sets in L with Bn+1 ⊂ Bn for each n ∈ ω and B0 = L.
One can easily find a clopen set Cn ⊂ L \ {x} such that f−1

x (W ) ⊂ Cn ⊂
f−1
x (Wn). Without loss of generality we may suppose that C0 ⊃ C1 ⊃ . . . .

Set C =
⋃
n∈ω(Cn ∩Bn \Bn+1).

It follows that the set M = ((C∩U∩B)×[−1, 1])∪(C∩U \B)∪({x}×W )
is a neighborhood of (x, y) in K. We shall prove that its boundary is a subset
of {(x, a), (x, b)}, hence it is finite.

First, every point of L\B as well as every point (x′, y′) ∈ (B\{x}×[−1, 1])
is either an interior point of M or a point outside of the closure of M .
Moreover, for z ∈ W \ {a, b} we have that (x, z) is in the interior of M
because (x, z) ∈ U(x, U, (a, b)) ⊂M .
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Finally, for z ∈ [−1, 1] \ W the point (x, z) is outside of the closure
of M . Indeed, there is n ∈ ω such that z /∈ Wn. Let U ′ be an open

neighborhood of x in L such that U ′∩ f−1
x ([−1, 1] \Wn) ∩ C = ∅. Let V ′ be

an open neighborhood of z disjoint from Wn. Then U(x, U ′, V ′) is an open
neighborhood of (x, z) disjoint from M . �
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