Novinky

Na čem pracujeme: Eruptivní hvězdy pozorované hledačem exoplanet TESS

Erupce na hvězdách jsou známy již několik desetiletí, přesto je jejich výskyt zahalen rouškou tajemství. Tým astronomů včetně Olgy Maryevy z ASU studoval eruptivní hvězdy pozorované kosmickou družicí TESS v blízkých otevřených hvězdokupách a zajímala se o souvislosti výskytu erupcí u hvězd s jejich věkem, rotační rychlostí nebo spektrálním typem. 

Sluneční erupce vznikají při přepojení zamotaných smyček magnetického pole v atmosféře Slunce do energeticky výhodnější konfigurace. Při tomto jevu se překotně uvolní velké množství energie v nejrůznějších formách, od elektromagnetického záření v celém spektru až po vysoce urychlené nabité částice. Erupce jsou velmi důležitými jevy ovlivňujícími kosmické počasí v okolí Země.
Erupce jsou důsledkem existence magnetických polí provazujících sluneční atmosféru i vnější vrstvy tělesa Slunce. Slunce je však jen jednou z nepřeberného množství hvězd ve vesmíru a pozorovací důkazy nám velmi přesvědčivě dokazují, že i u jiných hvězd lze registrovat magnetická pole ne nepodobná těm slunečním. Lze tedy oprávněně očekávat, že i u jiných hvězd bude možné pozorovat erupce podobné těm slunečním.

Je pravdou, že erupce, ke kterým dochází na Slunci, by byly z větší vzdálenosti jen velmi obtížně detekovatelné, neboť jsou příliš slabé. U jiných hvězd ale může docházet k podstatně mohutnějším erupcím, které jsou na dálku dobře odhalitelné. Takové se obvykle označují jako super-erupce. Obvykle ale probíhají velmi rychle a jejich systematické studium tak dlouho bylo nad možnosti pozorovatelů vybavených potřebnou technikou. Jejich obtížná pozorovatelnost a pomíjivost způsobila, že ještě v polovině 20. století bylo známo jen šest jiných hvězd, u nichž probíhají erupce. Situace se dramaticky změnila s vypuštěním družic určených k objevování planet tranzitní metodou, zejména známé družice Kepler. Vysokokadenční fotometrie umožnila dlouhodobé systematické monitorování mnoha hvězd najednou. Náhlé záblesky způsobené erupcemi začaly být studovány systematicky a dnes jich je známo více než 4000.

Malířova představa chladné hvězdy u níž probíhá intenzivní erupční činnosti.
Malířova představa chladné hvězdy, u níž probíhá intenzivní erupční činnosti.

Olga Maryeva ze Stelárního oddělení ASU byla součástí autorského týmu, který hledal eruptivní hvězdy v archívech jiného přístroje, družice Transiting Exoplanet Survey Satellite (TESS). Podobně jako Kepler je i TESS sondou určenou především k objevování exoplanet tranzitní metodou. Sonda byla vypuštěna v dubnu 2018 a systematicky opakovaně mapuje značnou část oblohy. Tým astrofyziků si pro svůj výzkum vybral eruptivní hvězdy nacházející se v otevřených hvězdokupách. Předpokládá se totiž, že všechny hvězdy v otevřených hvězdokupách jsou stejného stáří, a tak průzkumem jejich populace lze jejich věk určit. K tomu vědcům posloužila měření družice Gaia.

Z družice TESS získal tým celkově 957 kvalitních světelných křivek 136 hvězd patřících do blízkých otevřených hvězdokup. V těchto světelných křivkách automatickou metodou vyhledávali známky hvězdných erupcí, které se projevují velmi prudkým nárůstem jasnosti následovaným pozvolnějším exponenciálním poklesem. Ze světelné křivky mohli též určit pravděpodobnou periodu rotace hvězdy.

Autoři nalezli celkově 151 erupcí u 56 hvězd ze vzorku. Typická délka hvězdných záblesků je mezi 20 a 70 minutami, takže tyto erupce byly vzhledem k dvouminutové kadenci pozorování bezpečně popsány a detekovány. Nejaktivnější hvězdou ve vzorku byla hvězda EQ Chamaeleontis, u níž bylo zaznamenáno 14 záblesků během 25 dnů pozorování.

Celkově téměř 42 % erupcí bylo detekováno u hvězd chladných spektrálních typů. Ovšem 8 erupcí bylo zaznamenáno u velmi horkých hvězd typu A a B. Výskyt erupcí u horkých hvězd je značně kontroverzním tématem, neboť tyto hvězdy nemají dnešní teorií požadované vlastnosti nitra, zejména pak postrádají přípovrchové konvektivní zóny, které jsou dnes považovány za nutnou podmínku pro funkci magnetického dynama slunečního typu. Někteří odborníci tak spekulují, že erupce mohou pocházet z chladného neviditelného souputníka. Některé vlastnosti supererupcí u horkých hvězd jsou však s touto hypotézou v rozporu.

Statisticky ve studovaném vzorku každá druhá hvězda chladného spektrálního typu vykazuje erupční aktivitu, nejčastěji pak hvězdy spektrálního typu M, zatímco u horkých hvězd typu A je pouze každá sedmadvacátá erupční. Autoři neprokázali žádnou významnou souvislost mezi erupční aktivitou a rotační rychlostí hvězdy nebo jejím věkem.

Tato práce tak otevírá další okno pro studium erupcí na hvězdách. Družice TESS bude doufejme fungovat ještě dlouho a její datové archívy se budou plnit údaji použitelnými pro tuto disciplínu.

Studie je výsledkem týmové práce mladých astrofyziků a studentů, která probíhala jako praktická část letní astronomické školy GATE (Gaia & Tess: Tools for understanding the local universe), která byla organizována online v srpnu loňského roku. Tým studentů vedl Dr. Kristian Vida z maďarské Konkolyho observatoře, který na práci též odborně dohlížel. 

Michal Švanda 

Citace práce

O. Maryeva a kol., Flare stars in nearby Galactic open clusters based on TESS data, Contrib. Astron. Obs. Skalnaté Pleso v tisku, preprint arXiv:2012.09981.

Kontakt: Dr. Olga V. Maryeva, CSc., olga.maryeva@asu.cas.cz