Photosynthetica 2020, 58(SI):638-645 | DOI: 10.32615/ps.2020.014

Special issue in honour of Prof. Reto J. Strasser – Comparative analysis of drought stress response of maize genotypes using chlorophyll fluorescence measurements and leaf relative water content

A. BADR1, W. BRÜGGEMANN2,3
1 Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan Cairo, Egypt
2 Department of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt, Germany
3 Senckenberg Biodiversity and Climate Research Center, Frankfurt, Germany

The initial photochemical quantum efficiency of photosystem II (Fv/Fm) and performance index (PI), describing the ability of the photosynthetic apparatus to collect light energy, have been used to screen tolerance to drought stress by ten maize accessions, monitored by leaf relative water content (RWC) and soil water content (SWC). The Fv/Fm, PI, and RWC values were significantly reduced in drought-stressed plants. The analysis of chlorophyll a fluorescence induction rise from the basic dark-adapted fluorescence yield to the maximum (OJIP transient), distinguished accession Zea 1006 from Libya and Zea 612 from Italy, as the most tolerant and the least tolerant genotypes. The maize genotypes were classified using the Principal Component Analysis (PCA) and clustering methods, based on Fv/Fm and PI values, leaf RWC and SWC. Genotypes from Egypt and Libya were differentiated from genotypes from Europe, Russia and the USA.

Additional key words: abiotic stress; photosynthesis; sensitivity index; water deficiency.

Received: December 5, 2019; Revised: January 31, 2020; Accepted: February 13, 2020; Prepublished online: April 4, 2020; Published: May 28, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
BADR, A., & BRÜGGEMANN, W. (2020). Special issue in honour of Prof. Reto J. Strasser – Comparative analysis of drought stress response of maize genotypes using chlorophyll fluorescence measurements and leaf relative water content. Photosynthetica58(SPECIAL ISSUE), 638-645. doi: 10.32615/ps.2020.014
Download citation

References

  1. Adee E., Roozeboom K, Balboa G.R. et al.: Drought-tolerant corn hybrids yield more in drought-stressed environments with no penalty in non-stressed environments. - Front. Plant Sci. 7: 1534, 2016. Go to original source...
  2. Ahmadi G., Zienaly K.G.H, Rostamy M.A. et al.: The study of drought tolerance and biplot method in eight corn hybrids. - Iran J. Agric. Sci. 31: 513-523, 2000.
  3. Anjum S.A., Ashraf U., Tanveer M. et al.: Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. - Front. Plant Sci. 8: 69, 2017. Go to original source...
  4. Arisandy P., Suwarno W.B., Azrai M.: Evaluation of drought tolerance in maize hybrids using stress tolerance indices. - Int. J. Agron. Agric. Res. 11: 46-54, 2017.
  5. Ashraf M., Harris P.J.C.: Photosynthesis under stressful environments: An overview. - Photosynthetica 51: 163-190, 2013. Go to original source...
  6. Bąba W., Kompała-Bąba A. Zabochnicka-Świątek M. et al.: Discovering trends in photosynthesis using modern analytical tools: More than 100 reasons to use chlorophyll fluorescence. -Photosynthetica 57: 668-679, 2019. Go to original source...
  7. Bänziger M., Edmeades G.O., Beck D.L., Bellon M.R.: Breeding for Drought and Nitrogen Stress Tolerance in Maize: From Theory to Practice. Pp. 68. CIMMYT, Mexico 2000.
  8. Bell J.: Corn Growth Stages and Development. Pp. 5. Texas A&M AgriLife Research, Amarillo 2017.
  9. Benešová M., Holá D., Fischer L. et al.: The physiology and proteomics of drought tolerance in maize: Early stomatal closure as a cause of lower tolerance to short-term dehydration? - PLoS ONE 7: e38017, 2012. Go to original source...
  10. Björkman O., Demmig B.: Photon yield of O2 evolution and chlorophyll fluorescence at 77 K among vascular plants of diverse origins. - Planta 170: 489-504, 1987. Go to original source...
  11. Blankenship R.E.: Molecular Mechanisms of Photosynthesis. Pp. 312. Wiley-Blackwell, Chichester 2014.
  12. Bouslama M., Schapaugh Jr. W.T.: Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance. - Crop Sci. 24: 933-937, 1984. Go to original source...
  13. Farooq M., Hussain M., Wahid A., Siddique K.H.M: Drought stress in plants: An overview. - In: Aroca R. (ed.): Plant Responses to Drought Stress. Pp. 1-33. Springer, Berlin-Heidelberg 2012. Go to original source...
  14. Farooq M., Wahid A., Kobayashi N. et al.: Plant drought stress: effects, mechanisms and management. - Agron. Sustain. Dev. 29: 185-212, 2009. Go to original source...
  15. Golabadi M., Arzani A., Maibody S.A.M.M.: Assessment of drought tolerance in segregating populations in durum wheat. - Afr. J. Agr. Res. 1: 162-171, 2006.
  16. Golbashy M., Ebrahimi M., Khorasani S.K., Choucan R.: Evaluation of drought tolerance of some corn (Zea mays L.) hybrids in Iran. - Afr. J. Agr. Res. 5: 2714-2719, 2010.
  17. Grzesiak M.T., Grzesiak S., Skoczowski A.: Changes of leaf water potential and gas exchange during and after drought in triticale and maize genotypes differing in drought tolerance. - Photosynthetica 44: 561-568, 2006. Go to original source...
  18. Grzesiak M.T., Waligórski P., Janowiak F. et al.: The relations between drought susceptibility index based on grain yield (DSIGY) and key physiological seedling traits in maize and triticale genotypes. - Acta Physiol. Plant. 35: 549-565, 2013. Go to original source...
  19. Grzesiak S., Hordyńska N., Szczyrek P. et al.: Variation among wheat (Triticum aestivum L.) genotypes in response to drought stress: I - selection approaches. - J. Plant. Interact. 14: 30-44, 2019. Go to original source...
  20. Gunasekera D., Berkowitz G.A.: Evaluation of contrasting cellular-level acclimation responses to leaf water deficits in three wheat genotypes. - Plant Sci. 86: 1-12, 1992. Go to original source...
  21. Hefny M.M., Ali A.A., Byoumi T.Y. et al.: Classification of genetic diversity for drought tolerance in maize genotypes through principal component analysis. - J. Agr. Sci. 62: 213-227, 2017. Go to original source...
  22. Huo Y., Wang M., Wei Y., Xia Z.: Overexpression of the maize psbA gene enhances drought tolerance through regulating antioxidant system, photosynthetic capability, and stress defense gene expression in tobacco. - Front. Plant Sci. 6: 1223, 2016. Go to original source...
  23. Jedmowski C., Ashoub A., Brüggemann W.: Reactions of Egyptian landraces of Hordeum vulgare and Sorghum bicolor to drought stress, evaluated by the OJIP fluorescence transient analysis. - Acta Physiol. Plant. 35: 345-354, 2013. Go to original source...
  24. Kalaji H.M., Goltsev V.N., Żuk-Golaszewska K. et al.: Chloro-phyll Fluorescence. Understanding Crop Performance: Basics and Applications. Pp. 222. CRC Press, Boca Raton 2017. Go to original source...
  25. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016. Go to original source...
  26. Kalaji H.M., Rastogi A., Živčák M. et al.: Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. - Photosynthetica 56: 953-961, 2018. Go to original source...
  27. Less H., Galili G.: Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. - Plant Physiol. 147: 316-330, 2008. Go to original source...
  28. Liu Y., Zhang X., Tran H.: Assessment of drought tolerance of 49 switchgrass (Panicum virgatum) genotypes using physiological and morphological parameters. - Biotechnol. Biofuels 8: 152, 2015. Go to original source...
  29. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  30. Murata N., Allakhverdiev S., Nishiyama Y.: The mechanism of photoinhibition in vivo: Re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport. - BBA-Bioenergetics 1817: 1127-1133, 2012. Go to original source...
  31. Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. - J. Exp. Bot. 64: 3983-3998, 2013. Go to original source...
  32. Oukarroum A., El Madidi S., Schansker G., Strasser R.J.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. - Environ. Exp. Bot. 60: 438-446, 2007. Go to original source...
  33. Oukarroum A., Schansker G., Strasser R.J.: Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. - Physiol. Plantarum 137: 188-199, 2009. Go to original source...
  34. Saitou N., Nei M.: The neighbour-joining method: a new method for reconstruction phylogenetic trees. - Mol. Biol. Evol. 4: 40-42, 1987.
  35. Schonfeld M.A., Johnson R.C., Carwer B.F., Mornhinweg D.W.: Water relations in winter wheat as drought resistance indicators. - Crop Sci. 28: 526-531, 1988. Go to original source...
  36. Shiri M., Choukan R., Aliyev R.T.: Drought tolerance evaluation of maize hybrids using biplot method. - Trends Appl. Sci. Res. 5: 129-137, 2010. Go to original source...
  37. Smart R., Bingham G.E.: Rapid estimates of relative water content. - Plant Physiol. 53: 258-260, 1974. Go to original source...
  38. Song Y.S. Li J., Liu M. et al.: Nitrogen increases drought tolerance in maize seedlings. - Funct. Plant Biol. 46: 350-359, 2019. Go to original source...
  39. Strasser B.J., Strasser R.J.: Measuring fast fluorescence transients to address environmental questions: The JIP test. - In: Mathis P. (ed.): Photosynthesis: From Light to Biosphere. Vol. 5. Pp. 977-980. Kluwer Academic Publishers, Dordrecht 1995. Go to original source...
  40. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluores-cence transient as a tool to characterize and screen photosyn-thetic samples. - In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. Taylor & Francis, London 2000.
  41. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  42. Żurek G., Rybka K., Pogrzeba M. et al.: Chlorophyll a fluorescence in evaluation of the effect of heavy metal soil contamination on perennial grasses. - PLoS ONE 9: e91475, 2014. Go to original source...
  43. Zushi K., Matsuzoe N.: Using of chlorophyll a fluorescence OJIP transients for sensing salt stress in the leaves and fruits of tomato. - Sci. Hortic.-Amsterdam 219: 216-222, 2017. Go to original source...
  44. Živčák M., Brestič M., Olšovská K., Slamka P.: Performance index as a sensitive indicator of water stress in Triticum aestivum. - Plant Soil Environ. 54: 133-139, 2008. Go to original source...