Novinky

Na čem pracujeme: Hustota plazmatu, velikost magnetického pole a turbulence ve sluneční erupci

Marian Karlický ze Slunečního oddělení ASU je nestorem teoretického výzkumu dění ve slunečních erupcích a interpretace rádiových pozorování. V představované práci společně se svým ruským spolupracovníkem Leonidem Jasnovem využil pozorování zvláštního typu rádiových záblesků na Slunci k určení fyzikálních podmínek v místě probíhající erupce.

Sluneční erupce, coby nejenergetičtější projevy sluneční aktivity, vyzařují na všech vlnových délkách celého elektromagnetického spektra. Dobře je známo náhlé zvýšení zářivého toku v tvrdých oblastech rentgenového nebo ultrafialového záření, které souvisí s velmi vysokými teplotami plazmatu v oblasti erupce. V důsledku netermálních procesů jsou ale erupce zdrojem i podstatně měkčího rádiového záření.

Elektromagnetické vlnění se v plazmatu, tedy horkém plynu s nabitými částicemi, šíří jinak než v běžných látkách. Tak například zde existuje hraniční frekvence vlnění. Má-li vlnění frekvenci nižší, nemůže se v plazmatu šířit, neboť je velmi účinně tlumeno. Tzv. plazmová frekvence má svoji hodnotu nejčastěji v oblasti odpovídající právě rádiovým vlnovým délkám. To znamená, že i když mohou být procesy v erupci zdrojem rádiových vln v celém spektru, ke vnějšímu pozorovateli se dostanou jen ty, které překonají hraniční plazmovou frekvenci. Zdálo by se to jako nevýhoda, ale pravý opak je pravda. Identifikace hraniční frekvence v pozorováních umožňuje na dálku určit například hustotu plazmatu v erupčním místě. V plazmatu můžeme identifikovat i jiné charakteristické frekvence, které se často objevují v pozorovaném elektromagnetickém spektru. Cyklotronová frekvence, která závisí na indukci magnetického pole, nebo horní hybridní frekvence, která je kombinací frekvence cyklotronové a plazmové.

Rádiové záření Slunce lze relativně snadno pozorovat, vhodná technologie je rutinně k dispozici přibližně od 2. světové války. V ASU v Ondřejově vznikla kolem tohoto problému pracovní skupina, která obhospodařuje a postupně modernizuje několik radioteleskopů, které Slunce pozorují na mnoha vlnových délkách vždy, když je nad obzorem, a to bez ohledu na počasí. To je velkou výhodou rádiových vlnových délek – prostupují oblačností. Vzhledem k dostupnému skenování ve frekvenci a kontinuálnímu záznamu v čase lze pořízená pozorování zobrazovat např. prostřednictvím tzv. dynamických spekter. Jde o dvojrozměrný obraz intenzity rádiového záření, kdy na vodorovné ose běží čas a na ose svislé frekvence záření.

Některá rádiová vzplanutí mají v dynamických spektrech velmi komplikovaný vzhled. Často připomínají zástupce živočišné říše, po nichž tak získávají názvy. Před téměř půlstoletím byla poprvé pozorována vzplanutí typu zebra. Tato vzplanutí v dynamických spektrech připomínají vlnící se horizontální pruhy s přibližně stálými frekvencemi. Jednotlivé pruhy jsou od sebe odděleny přibližně stejnými frekvenčními rozdíly. Nejvíce propracovaným teoretickým modelem pro vzplanutí typu zebra je model s dvojitou plazmovou rezonancí. Ten předpokládá, že zvýšená emise je pozorována na takových frekvencích, kdy si odpovídají horní hybridní frekvence a celočíselný násobek cyklotronové frekvence. Vlny s frekvencí vyhovující rezonanční podmínce jsou zesilovány. Odstup pruhů ve frekvenci souvisí s prostorovou změnou hustoty plazmatu a indukce magnetického pole, tedy jak rychle se tyto veličiny zmenšují se vzdáleností podél erupční smyčky. Pruhy zebry se v čase vlní a toto vlnění se připisuje turbulentnímu chování plazmatu.

Rádiové spektrum zobrazující zebru ze 14. února 1999.
Rádiové spektrum zobrazující zebru ze 14. února 1999.

Zdá se až neuvěřitelné, jaké všechny základní parametry lze v principu získat ze vzdáleného pozorování Slunce s pomocí radioteleskopů. Nic ale není zadarmo, pro měření frekvencí pruhů zebry a jejich interpretaci je třeba sestavit pokročilý počítačový program, údaje z něj jsou pak využity k výpočtu parametrů plazmatu a magnetického pole v rezonanční erupční oblasti. To vše však autoři zvládli a svoji metodiku použili pro výjimečně kvalitní pozorování vzplanutí typu zebra z 14. února 1999 získaného s pomocí radioteleskopů v Ondřejově. Z analýzy vyplývá, že během této události dosáhla hustota plazmatu v erupční oblasti kolem 3×1010 částic v kubickém centimetru a magnetická indukce 1,7‒3,2 mT. Autoři též studovali turbulentní vlastnosti hustoty i magnetické indukce a zjistili, že turbulentní změny v daném místě zdroje zebry zachycené v čase jsou výraznější než turbulentní změny podél zdroje zebry. To je podle autorů indikátorem anizotropie této turbulence, zřejmě vyvolané okolním magnetickým polem. Z pozorovaných vlastností lze odhadnout i teplotu v erupční oblasti, která pro případ erupce z 14. 2. 1999 byla autory určena na 3 miliony stupňů.

Práce jasně demonstruje, že i relativně jednoduchá pozorování prováděná technikou z konce minulého století lze v součinnosti se správnou interpretací použít k určení hodnot základních fyzikálních veličin v erupcích. Tyto informace slouží k upřesnění modelů, popisujících tyto erupční jevy s potenciálním vlivem na život na Zemi.

Michal Švanda

Citace práce

M. Karlický, L. Jasnov, Estimating density and magnetic field turbulence in solar flares using radio zebra observations, Astronomy & Astrophysics 638 (2020) A 22.

Kontakt: prof. RNDr. Marian Karlický, DrSc., karlicky@asu.cas.cz