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SILTING, COSILTING, AND EXTENSIONS OF COMMUTATIVE
RING

SIMION BREAZ, MICHAL HRBEK, GEORGE CIPRIAN MODOI

Abstract. We study the transfer of (co)silting objects in derived categories
of module categories via the extension functors induced by a morphism of
commutative rings. It is proved that the extension functors preserve (co)silting
objects of (co)finite type. In many cases the bounded silting property descends
along faithfully flat ring extensions. In particular, the notion of bounded silting
complex is Zariski local.

1. Introduction

Silting theory provides useful tools in the study of various triangulated categories.
We refer to [2] and [33] for details about the influence of this. In particular, it
studies t-structures with special properties that provide good approximations. In
the case of the unbounded derived category of a module category these t-structures
are induced by some objects (called silting, respectively cosilting, objects) that
can be interpreted as generalizations of tilting complexes (in particular, they also
generalize the n-tilting modules), [5], [41]. In [4] it is shown that if we are in
the derived category of a commutative ring, the silting complexes of length 2 are
related with other structures associated to that ring (Gabriel filters, torsion theories
of finite type, the spectrum, cf. [20]. Moreover, it was proved in [1], [3], [16] and
[17] that there exists a strong connection between the spectrum of the ring and the
t-structures associated to (co)silting objects in the unbounded derived category.

Since we have such a connection, it is natural to ask if the silting property
is Zariski local or, even more, if it is an ad-property (see §2.2 for the relevant
definitions). It is already known that the properties of being projective, 1-tilting
and 2-silting are ad-properties (cf. [29], [19], and [8]). The Zariski locality for n-
tilting modules was also proved in [19]. In order to provide answers for this question,
we will study transfers, induced by a morphism λ : R → S of commutative rings,
of the (co)silting properties of objects from D(R) or D(S). More precisely, we will
consider the algebraic transfer that uses the derived functors−⊗L

RS : D(R)→ D(S)
and RHomR(S,−) : D(R) → D(S) of the covariant, respectively contravariant,
extension functors associated to λ, and the topological transfer (for cosilting objects
of cofinite type) via the canonical map λ? : Spec(S) → Spec(R). In this way we
continue the investigations realized in [19] for the case of tilting modules and in [8]
for silting complexes of length 2. For other contributions in the study of the transfer
of some related properties via ring extensions we refer to the already mentioned
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paper [29] (projective modules), but also to [12] (injective modules), [28] (compact
tilting complexes) and [39] (n-tilting and n-cotilting modules).

We will prove in Theorem 4.2 that the silting property ascends along λ (i.e.,
the functor − ⊗L

R S preserves silting objects), and that the same is true for pure-
injective cosilting objects via the functor RHomR(S,−). Moreover, these functors
preserve the (co)finiteness type properties, see Theorem 4.3. For (co)silting objects
of (co)finite type we can also apply a topological transfer since λ? is continuous with
respect to Hochster’s topology, Theorem 5.4. In fact, this transfer coincides up to
equivalence to that realized by using the derived extension functors. Moreover, if λ
is faithfully flat then λ? is also closed, and this allows us to identify all (co)silting
complexes of (co)finite type from D(S) that can be obtained, up to equivalence, by
ascending a (co)silting object from D(R).

On the other side, as in the case of n-tilting modules (cf. [19]), it is not clear
if the descent of the (co)silting property is valid for all commutative rings. More
precisely, the (co)silting property descends with respect to a faithfully flat morphism
λ : R → S of commutative rings if the functor − ⊗L

R S reflects the silting objects
(respectively, RHomR(S,−) reflects the cosilting objects). In the last part of the
paper we study the property for bounded (co)silting complexes. Even though we are
not able to prove the descent property for all bounded complexes over commutative
rings, we can indicate many situations when it is valid. We prove in Theorem 5.12
that the cosilting property descends for complexes that are duals of complexes of
projectives. Note that this result is satisfactory for noetherian rings since in this
case all bounded cosilting complexes have this form, up to equivalence. For the
silting case, we prove in Corollary 6.9 that the bounded silting property is Zariski
local. Moreover, we provide in Remark 6.11 an extensive list of rings for which the
silting property descends for bounded complexes of projectives, cf. Proposition 6.4.
This list includes all noetherian rings, all rings that are of finite injective dimension
or finite pure global dimension, in particular all rings of cardinality ℵn for some
integer n ≥ 0. Also, the n-tilting property descends for these rings (Corollary 6.5).

Unfortunately, we were not able to prove that the properties used in Lemma 3.2
to characterize (co)silting objects in D(R) descend along faithfully flat morphisms
(in [8] and [19] it is proved that these properties descend together for complexes of
length 2 and for 1-tilting modules, but the proofs cannot be extended to general
bounded complexes). In order to avoid this obstruction, we use two results that can
be of independent interest. More precisely, in Theorem 3.11 it is proven that for
bounded silting complexes the closure of the class T⊥>0 with respect to direct sums
can be replaced by the weaker condition Add(T ) ⊆ T⊥>0 . This generalizes a recent
result proved for n-tilting modules by Positselski and Šťovíček [34, §2]. The other
one is presented in Theorem 6.10, where it is proved that if R is a commutative ring
such that D(R) coincides with its smallest localizing subcategory that contains all
pure-injective objects then for every injective morphism of rings λ : R→ S that is
pure, the smallest localizing subcategory of D(R) that contains S is D(R).

Although in this paper we are mostly interested in commutative rings, for the
descending property of silting objects we also need to consider a non-commutative
setting: Marks and Vitória had notice in [27] that every bounded silting complex
can be interpreted as a tilting module in the category of representations of a Dynkin
quiver. Therefore, in Section 3 the results will be presented for general rings. In
Section 4 we study the ascent properties for silting and cosilting for some morphisms
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that are induced by a ring morphism whose domain is commutative (note that for
general rings the property to be silting does not ascend, e. g. [8, Example 2.5]). The
next two sections are dedicated to extensions induced by morphisms of commutative
rings. In Section 5 we study the transfer of (co)silting complexes of cofinite type
by using both the algebraic and topological transfers mentioned above. In the last
section we study the descent property for bounded silting complexes.

If R is a ring then Mod-R will denote the category of all right R-modules, and
D(R) will be the unbounded derived category of Mod-R. We recall that D(R) is
a triangulated category, and we will denote by _[1] the shift. The i-th homology
functor is denoted by Hi : D(R)→ Ab.

2. Preliminaries

2.1. Derived functors. Let R and S be two rings and let X ∈ D(Rop ⊗Z S) be a
complex of (R,S)-bimodules. Then the derived tensor product

−⊗L
R X : D(R)→ D(S)

is the left adjoint of the derived hom functor

RHomS(X,−) : D(S)→ D(R).

The link between the right derived hom functor and the usual hom functor is
expressed by the natural isomorphism

Hi RHomR(X,Y ) = HomD(R)(X,Y [i]).

Moreover the adjunction isomorphism

HomD(S)(−⊗L
R X,−) ∼= HomD(R)(−,RHomS(X,−))

has an enriched version

RHomS(−⊗L
R X,−) ∼= RHomR(−,RHomS(X,−)),

the initial isomorphism being recovered by taking H0. Letting X to run over all
objects in D(Rop ⊗Z S) we get two bifunctors. In particular, if R is commutative,
the derived tensor product induces a monoidal structure on the category D(R), the
unit being R itself, and the internal hom being RHomR(−,−).

Using these functors one can define two dualities on D(R), namely

( )∗ := RHomR(−, R) : D(R)→ D(Rop)

and
( )+ := RHomZ(−,Q/Z) : D(R)→ D(Rop).

We denote by the same symbols the respective dualities going in the other sense,
namely D(Rop)→ D(R).

We record some basic properties of these functors. Recall that an object C ∈
D(R) is compact if the covariant functor HomD(R)(C,−) commutes with respect
to direct sums (this definition is valid for general triangulated categories). In the
case of D(R) the compact objects are those objects that are isomorphic to bounded
complexes of finitely generated projective modules.

Lemma 2.1. [3, Lemma 21]. Let X,C ∈ D(R) and Y ∈ D(Rop), with C compact.
Then:

(1) For any n ∈ Z we have Hn(X+) ∼= H−n(X)+ and Hn(X+) = 0 if and only
if H−n(X) = 0.



4 SIMION BREAZ, MICHAL HRBEK, GEORGE CIPRIAN MODOI

(2) There are natural isomorphisms

RHomRop(Y,X+) ∼= (X ⊗L
R Y )+ ∼= RHomR(X,Y +),

RHomR(C,X) ∼= X ⊗L
R C

∗,

and

RHomR(C,X)+ ∼= C ⊗L
R X

+.

2.2. Local properties of objects of D(R). Let P be some property which can
be satisfied by an object of the unbounded derived category of a commutative ring.
Given a commutative ring R, let PR denote the full subcategory of objects of D(R)
satisfying P.

In general, it is possible to extend the consideration of the property P from
the affine setting of modules over commutative rings to the non-affine setting of
the category Qcoh-X of quasi-coherent sheaves over a scheme X in the following
way. Given a scheme X, let D(X) = D(Qcoh-X) denote the unbounded derived
category of the category of quasi-coherent sheaves over X. Let OX denote the
structure sheaf on X. For any open subset U ⊆ X we have the module of sections
functor _(U) : Qcoh-X → Mod-OX(U). If U is open affine then this functor
is exact [43, Lemma 30.2.2.], and so it extends naturally to a triangle functor
_(U) : D(X) → D(OX(U)). Then we say that an objectM ∈ D(X) satisfies the
property P if the section object M(U) ∈ D(OX(U)) belongs to POX(U) for any
open affine subset U of X.

Well-behaved properties of quasi-coherent sheaves are expected to be verifiable
on any choice of open affine cover of X. A property P is therefore called (Zariski)
local if for any scheme X, any open affine cover X =

⋃
i∈I Ui, and anyM∈ D(X),

we have that M satisfies P whenever M(Ui) ∈ POX(Ui) for all i ∈ I. Thanks
to the following result, called the Affine Communication Lemma, there is a purely
module-theoretic criterion sufficient to check that a property is local.

Lemma 2.2. Let P be a property of objects of D(R) where R runs over commu-
tative rings. Assume the following two conditions for any commutative ring R:

(1) If X ∈ D(R) satisfies P then X ⊗L
R R[f−1] ∈ PR[f−1] for any element

f ∈ R,
(2) Let f0, f1, . . . , fn−1 ∈ R be elements such that R =

∑
i<n fiR and consider

the ring homomorphism R→ S :=
∏
i<nR[f−1i ]. Then for any X ∈ D(R),

if X ⊗L
R S ∈ PS then X ∈ PR.

Then the property P is local.

Proof. The proof is completely analogous to the non-derived version in [15, Lemma
3.4], see also [19, Lemma 2.1]. �

It is often the case that a local property satisfies a stronger variant than the
conditions of Lemma 2.2. Following [15, Definition 3.5], we say that a property P
is an ad-property (=ascent-descent property) if the following two conditions hold for
any commutative ring R and X ∈ D(R):

(1) If X ∈ PR then X ⊗L
R S ∈ PS for any flat ring morphism R→ S,

(2) If X⊗L
R S ∈ PS then X ∈ PR for any faithfully flat ring morphism R→ S.
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2.3. Phantoms. We say that a morphism ϕ : U → V in D(R) is a phantom if
for every compact object C ∈ D(R) we have HomD(R)(C,ϕ) = 0, [23]. A triangle

X → Y → Z
δ→ X[1] is called pure if δ is a phantom.

Remark 2.3. The notion of phantom is used in many triangulated categories. For
instance, in the homotopy category of spectra a map f is a phantom if and only
if all maps induced by f on homologies are zero. In the case of derived categories
of modules this property is not true. In order to see this, we consider in D(Z) the
morphism ϕ induced by the following morphism of complexes

· · · // 0 //

��

Z
2·_ //

1Z
��

Z //

��

0 //

��

· · ·

· · · // 0 // Z // 0 // 0 // · · ·

.

It is easy to see that Hn(ϕ) = 0 for all n ∈ Z. But ϕ 6= 0 (since it is not equal to
0 in the homotopy category), so it is not a phantom since its domain is a compact
object.

Lemma 2.4. [3, Lemma 2.6] A morphism ϕ : U → V in D(R) is a phantom if
and only if ϕ+ = 0.

Assume that λ : R→ S is a flat morphism of commutative rings and that A is an
R algebra such that R is central. We consider the S-algebra B = A⊗RS. Applying
the functor −⊗L

R S = −⊗A B : D(A)→ D(B), we obtain a natural morphism (of
R-modules) HomD(A)(C, Y ) → HomD(B)(C ⊗L

R S, Y ⊗L
R S) that induces a natural

morphism of S-modules

Ξ : HomD(A)(C, Y )⊗R S → HomD(B)(C ⊗L
R S, Y ⊗L

R S).

These morphisms are also described in [42, Lemma 3].
The proof of the following lemma follows the lines of the proofs presented in [30,

Lemma 2.2], [42, Lemma 3] for noetherian rings, where C may be a complex of
finitely generated modules.

Lemma 2.5. Let λ : R→ S be a flat morphism of commutative rings. Suppose that
A is an R-algebra such that R is central and that B = A⊗R S. If C,X ∈ D(A)are
two complexes such that C is compact, the natural morphism

Ξ : HomD(A)(C,X)⊗R S → HomD(B)(C ⊗L
R S,X ⊗L

R S)

is an isomorphism.

Proof. Observe that we can assume that C is a bounded complex of finitely gener-
ated projective modules, so we can view the homomorphisms from HomD(A)(C,X)
as morphisms in the homotopy category. As in the above mentioned proof we ap-
ply the induction on the length of C. If C is of length 1, it follows that C is a
finitely generated projective module concentrated in a degree i. It follows that
HomD(A)(C,X) ∼= HomA(Ci, Hi(X)) and, using the flatness of S, we obtain the
isomorphisms

HomD(A)(C ⊗L
R S,X ⊗L

R S) ∼= HomB(Ci ⊗R S,Hi(X ⊗R S))

∼= HomB(Ci ⊗R S,Hi(X)⊗R S).



6 SIMION BREAZ, MICHAL HRBEK, GEORGE CIPRIAN MODOI

We apply [14, Lemma 3.2.4] to conclude that, in this particular case, Ξ is an
isomorphism.

Assume that the statement is valid for all bounded complexes of projectives of
length at most n − 1, and suppose that C has length n (n ≥ 2). Using the brutal
truncations we observe that we can embed C in a triangle

C ′ → C → C ′′
+→

such that C ′ and C ′′ are complexes of finitely generated projective modules of
length at most n− 1.

We obtain the commutative diagram

HomD(A)(C
′, X[−1])⊗R S

∼= //

��

HomD(B)(C
′ ⊗L

R S,X[−1]⊗L
R S)

��
HomD(A)(C

′′, X)⊗R S
∼= //

��

HomD(B)(C
′′ ⊗L

R S,X ⊗L
R S)

��
HomD(A)(C,X)⊗R S //

��

HomD(B)(C ⊗L
R S,X ⊗L

R S)

��
HomD(A)(C

′, X)⊗R S
∼= //

��

HomD(B)(C
′ ⊗L

R S,X ⊗L
R S)

��
HomD(A)(C

′′, X[1])⊗R S
∼= // HomD(B)(C

′′ ⊗L
R S,X[1]⊗L

R S),

where the horizontal arrows are the corresponding maps Ξ. The conclusion follows
from five lemma. �

Remark 2.6. If λ : R → S is faithfully flat then the derived functor − ⊗L
R S :

D(R) → D(S) does not reflect zero-morphisms. In order to see this, let consider
a prime p and the faithfully flat inclusion Z(p) → Jp, where Z(p) it the (local) ring
of all rational numbers whose denominator is coprime with p and Jp is the ring of
p-adic integers. Observe that

HomD(Z(p))(Q,Z(p)[1]) ∼= ExtZ(p)
(Q,Z(p)) 6= 0.

However,

HomD(Jp)(Q⊗
L
Z(p)

Jp,Z(p) ⊗L
Z(p)

Jp[1]) ∼= ExtJp(Q⊗L
Z(p)

Jp, Jp) = 0,

since Jp is pure-injective and Q ⊗L
Z(p)

Jp is flat. However, − ⊗L
R S reflects the

phantoms.

Proposition 2.7. Let λ : R → S be a faithfully flat morphism of commutative
rings. Suppose that A is an R-algebra such that R is central and that B = A⊗R S.
If φ : Z → X[1] is a map D(A) such that the induced map Z ⊗L

R S → X[1]⊗L
R S is

phantom in D(B) then φ is phantom too.

Proof. For every compact C in D(A) the object C⊗L
R S is compact in D(B), hence

HomD(B)(C⊗L
RS, φ⊗L

RS) = 0. Using Lemma 2.5 it follows that HomD(A)(C, φ)⊗R
S = 0, hence HomD(A)(C, φ) = 0. �
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3. Silting and cosilting in D(R)

3.1. TTF-triples in triangulated categories. We recall some standard notions
and notations in triangulated categories. Let D be a triangulated category. For a
subcategory C ⊆ D and a subset I ⊆ Z of the set of integers, we denote

C⊥I = {X ∈ D | HomD(C,X[i]) = 0, for all C ∈ C and all i ∈ I}

and
⊥IC = {X ∈ D | HomD(X,C[i]) = 0, for all C ∈ C and all i ∈ I}.

Often the set I is symbolized as ≤ n, < n, = n or similar, where n ∈ Z, with the
obvious meaning.

A torsion pair in D is a pair (U ,V) of subcategories D such that:
(1) Both U and V are closed under direct summands.
(2) U⊥0 = V and U = ⊥0V.
(3) Every objects X ∈ D lies in a triangle U → X → V → U [1] with U ∈ U

and V ∈ V.
It is clear that if (U ,V) is a torsion pair, then U is closed under coproducts and V
is closed under products. A TTF-triple in D is a triple that (U ,V,W) such that
both (U ,V) and (V,W) are torsion pairs. Let S be a set of objects from D. The
TTF triple is generated by S if V = S⊥0 . An object C ∈ D is called compact if the
covariant functor HomD(C,−) commutes with respect to direct sums. If S is a set
of compact objects then we will say that the TTF-triple is compactly generated.

A torsion pair is called t-structure (co-t-structure) if in addition U is closed
under positive (respectively negative shifts). Note that the closure of U under
positive (negative) shifts, that is U [1] ⊆ U (respectively U [−1] ⊆ U) is equivalent
to V[−1] ⊆ V (respectively V[1] ⊆ V). In these cases, we say that U is the aisle,
respectively V is the coaisle of the (co)-t-structure (U ,V).

3.2. Silting and cosilting objects in derived categories. Let T ∈ D(R). We
say that T is a silting object if the pair (T⊥>0 , T⊥≤0) is a t-structure in D(R). In
this case, the induced t-structure is called the silting t-structure induced by T . A
class of objects is a silting class if it is an aisle of a silting t-structure. Dually,
an object C ∈ D(R) is called cosilting if (⊥≤0C,⊥>0C) is a t-structure, called the
cosilting t-structure induced by C. A coaisle of a cosilting t-structure is called
a cosilting class. Two (co)silting objects are equivalent if they induce the same
(co)silting class.

Remark 3.1. We know by [35, Lemma 4.5] that two silting objects T1 and T2 are
equivalent if and only if Add(T1) = Add(T2). Similarly, two cosilting objects C1

and C2 are equivalent if and only if Prod(C1) = Prod(C2).

Lemma 3.2. An object T ∈ D(R) is silting if and only if
(S1) T ∈ T⊥>0 .
(S2) T⊥>0 is closed under coproducts.
(S3) T generates D(R), that is T⊥Z = {0}.
Dually, a pure-injective object C ∈ D(R) is cosilting if and only if
(C1) C ∈ ⊥>0C.
(C2) ⊥>0C is closed under products.
(C3) C cogenerates D(R), that is ⊥ZC = {0}.
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Proof. The characterization of the silting complexes is a particular case of [35,
Proposition 4.13]. For the cosilting case, the argument is dual, the only modification
occurs when we need to show that C induces a t-structure whose aisle is ⊥≤0C (and
consequently the coaisle is the smallest cosuspended and closed under products
subcategory of D(R)). Here we use the additional hypothesis that C is pure-
injective and then the claim follows by [26, Corollary 5.11] (the main result of [32]
is essentially the reason why no extra assumption is needed on the silting side.) �

Remark 3.3. (1) A t-structure (Y,Z) is silting if and only if it extends to a TTF-
triple (X ,Y,Z) which is non-degenerate, suspended and generated by a set of ob-
jects in D(R), [2, Theorem 4.11]. If (X ,Y,Z) is induced by the silting object T ,
we will denote it by (XT ,YT ,ZT )

(2) A silting object T is bounded, that is, isomorphic in D(R) to a bounded
complex of projectives, if and only if (XT ,YT ,ZT ) is intermediate and suspended,
see [3, Theorem 2.1]. In particular, this TTF-triple is compactly generated.

(3) Dually, a t-structure (U ,V) in D(Rop) is induced by a pure–injective cosilting
C object if and only if it extends to a non-degenerate cosuspended TTF triple
(U ,V,W) which is homotopically smashing, [25, Theorem 4.6]. In this case we will
write (U ,V,W) = (UC ,VC ,WC).

(4) A cosilting object C is bounded, that is, isomorphic in D(R) to a bounded
complex of injectives if and only if the associated TTF-triple (UC ,VC ,WC) is
cointermediate and cosuspended, see [3, Theorem 2.12]. As before, in this case
(UC ,VC ,WC) is homotopically smashing.

3.3. (Co)Silting of (co)finite type. For a not necessarily commutative ring R,
there is a 1-to-1 correspondence (see [3, Theorem 3.1]){

compactly generated TTF
triples in D(R)

}
−→

{
compactly generated TTF

triples in D(Rop)

}
which assigns the TTF triple in D(R) generated by a set C of compacts in D(R)
to the TTF triple in D(Rop) generated by the set of compacts C∗ = {C∗ | C ∈ C}.

A silting object T ∈ D(R) is of finite type if the TTF triple (XT ,YT ,ZT ) is
compactly generated. A cosilting object C is of cofinite type if the TTF triple
(UC ,VC ,WC) is compactly generated.

Remark 3.4. From [38] it follows that all compactly generated t-structures in D(R)
are homotopically smashing, hence all cosilting objects of cofinite type from D(R)
are pure-injective. The converse is not true in general, but it holds if R is commu-
tative noetherian [18, Corollary 2.14].

Theorem 3.5. [3, Theorem 3.3] The assignment T 7→ T+ induces:
(1) an injective map from the set of equivalence classes of silting objects of finite

type from D(R) to the set of equivalence classes of cosilting objects of cofinite
type from D(Rop);

(2) a bijective map between the set of equivalence classes of bounded silting com-
plexes from D(R) and the set of equivalence classes of bounded cosilting com-
plexes of cofinite type from D(Rop).

Remark 3.6. From the proof of [3, Lemma 3.2] it follows that in the above corre-
spondences, the classes YT and VT+ are dual definable classes, i.e. Y ∈ YT if and
only if Y + ∈ VT+ and V ∈ VT+ if and only if V + ∈ YT .
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Lemma 3.7. For an object T ∈ D(R) and a subset I ⊆ Z we have:
(a) T⊥I = {X ∈ D(R) | Hn RHomR(T,X) = 0, for all n ∈ I}.
(b) ⊥I (T+) = {X ∈ D(Rop) | Hn(T ⊗L

R X) = 0, for all n ∈ −I},
where −I = {−i | i ∈ I}.

Proof. The equality (a) follows by the isomorphism

HomD(R)(T,X[n]) ∼= Hn RHomR(T,X),

valid for any n ∈ Z.
For the equality (b), note that for all n ∈ Z we have the isomorphisms:

HomD(Rop)(X,T
+[n]) ∼= Hn RHomRop(X,T+)

= Hn RHomRop(X,RHomZ(T,Q/Z))

∼= Hn RHomZ(T ⊗L
R X,Q/Z)

= Hn(T ⊗L
R X)+

and Hn(T ⊗L
R X)+ = 0 if and only if H−n(T ⊗L

R X) = 0. �

Corollary 3.8. Let T ∈ D(R). If T is a silting object and (XT ,YT ,ZT ) is the
TTF triple associated to T , then

(a) YT = {X ∈ D(R) | Hn RHomR(T,X) = 0, for all n > 0}.
(b) ZT = {X ∈ D(R) | Hn RHomR(T,X) = 0, for all n ≤ 0}.

If T+ is cosilting (in D(Rop)) and (UT+ ,VT+ ,WT+) is the corresponding TTF
triple, then:

(c) UT+ = {X ∈ D(Rop) | Hn(T ⊗L
R X) = 0, for all n ≥ 0}.

(d) VT+ = {X ∈ D(Rop) | Hn(T ⊗L
R X) = 0, for all n < 0}.

Corollary 3.9. Let T ∈ D(R) be an object such that T+ is cosilting in D(R).
Then, for every X ∈ D(Rop) we have T ⊗L

R X = 0 if and only if X = 0.

Proof. The converse implication is obvious, so we need to prove only the direct one.
Let X ∈ D(Rop) with the property T ⊗L

R X = 0. Then Hn(T ⊗L
R X) = 0 for all

n ∈ Z and Lemma 3.8 implies that X ∈ UT+ ∩ VT+ = {0}. �

3.4. Bounded (co)silting complexes. In what follows, we will be particularly
interested in silting complexes which are bounded in the sense that they are isomor-
phic in the derived category to bounded complexes of projective modules. This is a
natural condition to consider since it is part of the definition of n-tilting modules,
and also it ensures a well-behaved theory of derived equivalences [35]. It turns out
that the characterization of Lemma 3.2 simplifies considerably in this situation.

For a (full) subcategory C of D(R), let add(C) (resp., Add(C)) denote the sub-
category formed by all direct summands of finite coproducts (resp., all coproducts)
of objects from C. Similarly, Prod(C) is formed by all direct summands of arbi-
trary products of objects of C. If C = {X} for some object X, we drop the curly
brackets in the notation. We denote by susp (C) (resp. cosusp (C)) the suspended
(resp. cosupended) closure of C in D(R), that is, the smallest full subcategory of
D(R) containing C and closed under direct summands, extensions and [1] (resp.,
[−1]). Both susp (C) and cosusp (C) admit an explicit description as follows. Let
E+0 = add{C[n] | C ∈ C, n ≥ 0} and E−0 = add{C[n] | C ∈ C, n ≤ 0}. For i > 0,
define inductively subcategory E+i consisting of all X ∈ D(R) fitting into a triangle
E0 → X → Ei−1 → E0[1] with E0 ∈ E+0 and Ei−1 ∈ E+i−1; subcategories E

−
i are
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defined in the analogous way. Then one can easily check that susp (C) =
⋃
i≥0 E

+
i

and cosusp (C) =
⋃
i≥0 E

−
i . This description has a consequence important in what

follows:

Lemma 3.10. Suppose that C is a full subcategory of D(R) closed under products
(resp. coproducts). If X ∈ susp (C) then XI ∈ susp (C) (resp. X(I) ∈ susp (C)) for
any set I, and the same holds for cosusp (C).

Proof. Assume C is closed under products and let I be a set. Since X ∈ susp (C),
there is by the above description some i ≥ 0 such that X ∈ E+i . We prove XI ∈ E+i
by induction on i ≥ 0. If i = 0 then X ∈ add{C[n] | C ∈ C, n ≥ 0}. Since C is
closed under products, clearly XI ∈ add{C[n] | C ∈ C, n ≥ 0}. If i > 0 then there
is a triangle E0 → X → Ei−1 → E0[1] with E0 ∈ E+0 and Ei−1 ∈ E+i−1. Then the
triangle EI0 → XI → EIi−1 → EI0 [1] together with the induction hypothesis shows
that XI ∈ E+i . The case of coproduct closure and/or the cosuspended closure is
handled the same way. �

The following result extends [34, Theorem 2.3 and Theorem 4.3] from the case of
n-(co)tilting modules, and the proof idea is similar to loc. cit. with some necessary
modifications. For basics on homotopy limits and colimits in triangulated categories
we refer to [31, §1.6]. We will also use the notations D(R)≥n = {X ∈ D(R) |
Hi(X) = 0 for all i < n} and D(R)≤n = {X ∈ D(R) | Hi(X) = 0 for all i > n}.

Theorem 3.11. Let T ∈ D(R) be an object which is isomorphic to a bounded
complex of projective R-modules. Then T is silting if and only if
(Sb1) Add(T ) ⊆ T⊥>0 .
(Sb2) T generates D(R), that is T⊥Z = {0}.
Dually, let C ∈ D(R) be an object which is isomorphic to a bounded complex of
injective R-modules. Then C is cosilting if and only if
(Cb1) Prod(C) ⊆ ⊥>0C.
(Cb2) C cogenerates D(R), that is ⊥ZC = {0}.

Proof. We prove only the silting result, the cosilting one follows by a completely
analogous argument. Put (Y,Z) = (T⊥>0 , T⊥≤0) and our goal is to show that
this constitutes a t-structure in D(R). Without loss of generality, we may assume
that T is a complex of projective R-modules concentrated in degrees −n+ 1,−n+
2, . . . ,−1, 0 for some n > 0.

First, we show that for any X ∈ D(R) there is a triangle Y → X → Z → Y [1]
with Y ∈ Y and Z ∈ Z. Put X0 := X and define inductively a sequence of triangles

T (Hi)[i]
hi−→ Xi

fi−→ Xi+1 → T (Hi)[i+ 1]

where Hi = HomD(R)(T [i], Xi) and hi is the canonical evaluation morphism. Since
HomD(R)(T [i], hi) is surjective for each i ≥ 0 and by (Sb1), we see that

HomD(R)(T [j], Xi) = 0 for all j = 0, 1, . . . , i− 1.

This construction defines an inductive system

X0
f0−→ X1

f1−→ X2
f2−→ X3

f3−→ · · ·
and we consider its homotopy colimit Z = hocolimi≥0(Xi). Recall that for any
j ≥ 0 we have Z = hocolimi≥j(Xi), see [31, Lemma 1.7.1]. Considering Xj as the
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trivial homotopy colimit Xj = hocolimi≥j(Xj) of an inductive tower consisting of
identities on Xj , [31, Lemma 1.6.6], we obtain a commutative square∐

i≥j Xi
(1−shift(fi))−−−−−−−−→

∐
i≥j Xi∐

i≥j fji

x ∐
i≥j fji

x∐
i≥j Xj

(1−shift(IdXj
))

−−−−−−−−−−→
∐
i≥j Xi

where fji = fi−1 ◦ · · ·◦fj+1 ◦fj for j < i and fjj = IdXj
. For each 0 ≤ j ≤ i, let Sji

be the cone of fji. Then Sji is an iterated extension of the objects T [k+1](Hk) where
k = j, j + 1, . . . , i− 1. In particular, since T ∈ D(R)≤0, we have Sji ∈ D(R)≤−j−1.
By [6, 1.1.11], the square above extends to a diagram∐

i≥j Sji −−−−→
∐
i≥j Sji −−−−→ Cx x x∐

i≥j Xi
(1−shift(fi))−−−−−−−−→

∐
i≥j Xi −−−−→ Z

∐
i≥j fji

x ∐
i≥j fji

x x∐
i≥j Xj

(1−shift(IdXj
))

−−−−−−−−−−→
∐
i≥j Xi −−−−→ Xj

in which all squares commute and all rows and columns extend to triangles. Since
Sji ∈ D(R)≤−j−1, we have

∐
i≥j Sji ∈ D(R)≤−j−1, and therefore C ∈ D(R)≤−j−1.

Using that HomD(R)(T,D(R)≤−n) = 0, we argue from the rightmost vertical tri-
angle of the diagram that HomD(R)(T [i], Z) ∼= HomD(R)(T [i], Xi+n+1) = 0 for any
i ≥ 0. This shows that Z ∈ Z = T⊥≤0 .

Now extend the map X = X0 → Z to a triangle Y → X → Z → Y [1] and let us
show that Y ∈ Y = T⊥>0 . The diagram above puts Y into a triangle

Y →
∐
i≥0 S0i →

∐
i≥0 S0i → Y [1].

Put C0i = S0i[−1] for all i > 0, so that Y is the mapping cone of
∐
i≥0 C0i →∐

i≥0 C0i.
Recall that C0i is an iterated extension of objects T (H0), . . . , T (Hi−1)[i− 1], and

therefore C0i ∈ susp(Add(T )) ⊆ Y = T⊥>0 , the latter inclusion follows from (Sb1)
and the obvious closure properties of Y. It remains to show that also the co-
product

∐
i≥0 C0i belongs to Y. Note that by the assumption on T , we clearly

have D(R)≤−n ⊆ Y. Put m = n + 1. For any i > m, there is a triangle
C0m → C0i → Cmi → C0m[1], and we know that Cmi ∈ D(R)≤−m. Consider
the coproduct triangle∐

i>m C0m →
∐
i>m C0i →

∐
i>m Cmi →

∐
i>m C0m[1].

Then
∐
i>m Cmi ∈ D(R)≤−m = D(R)≤−n−1. Since D(R)≤−n ⊆ Y, we see that∐

i>m C0i ∈ Y if and only if
∐
i>m C0m

∼= C
(ω)
0m ∈ Y. But the latter inclusion follows

from Lemma 3.10 because C0m ∈ susp (Add(T )) ⊆ Y. Therefore,
∐
i>m C0i ∈ Y.

Since we already know that
∐
i≤m C0i ∈ Y, we showed that Y ∈ Y.

Finally we need to show that HomD(R)(Y,Z) = 0. Take X ∈ Y, and consider
the same triangle Y → X → Z → Y [1] as constructed above. Since Y,X ∈ Y,
also Z ∈ Y. But then Z ∈ Y ∩ Z = T⊥Z . It follows by (Sb2) that Z = 0
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and so X ∼= Y . By the construction, Y belongs to the smallest suspended and
coproduct closed subcategory of D(R) generated by T (since we constructed Y
from T by using extensions, [1], and coproducts). Since HomD(R)(T,Z) = 0, this
shows HomD(R)(Y,Z) = 0, which in turn renders (Y,Z) a t-structure. �

We record here for further use a consequence of the above result that was already
observed in [34].

Corollary 3.12. [34, Corollary 3.6] Suppose that T ∈ Mod-R is a module. Then
T is n-tilting (for a positive integer n) if and only if
(i) T is of projective dimension at most n;
(ii) Add(T ) ⊆ T⊥>0 ;
(iii) T generates D(R), that is T⊥Z = {0}.

Proof. We apply Theorem 3.11 together with [41, Corollary 3.7]. �

4. Transfer of (co)silting objects using ring morphisms

In this section we will use the following

Setting 1. Let λ : R→ S be a morphism of commutative rings. Suppose that A is
an R-algebra such that R is central and that B = A ⊗R S. Then we have a ring
morphism A→ B. The covariant, respectively contravariant, extension functor and
the restriction functor induced by this morphism (we use the terminology from [9])
and their derivates (see [40]) can be described, up to natural isomorphism, in the
following ways:

• − ⊗A B ∼= −⊗R S : Mod-A→ Mod-B (the covariant extension functor);
• − ⊗L

A B : D(A) → D(B) (the derived covariant extension functor); if we
assume that A or S is flat over R then we have a natural isomorphism

(−⊗L
A B) ∼= (−⊗L

A (A⊗R S)) ∼= (−⊗L
A (A⊗L

R S))

∼= ((−⊗L
A A)⊗L

R S) ∼= (−⊗L
R S).

• HomA(B,−) ∼= HomR(S,−) : Mod-A → Mod-B (the contravariant exten-
sion functor);
• RHomA(B,−) : D(A) → D(B) (the derived contravariant extension func-

tor); again, the supplementary assumption that A or S is flat over R allows
us to compute

RHomA(B,−) ∼= RHomA(S ⊗R A,−) ∼= RHomA(S ⊗L
R A,−)

∼= RHomR(S,RHomA(A,−)) ∼= RHomR(S,−).

• HomB(B,−) ∼= −⊗B B ∼= HomS(S,−) ∼= −⊗S S : Mod-B → Mod-A (the
restriction functor);
• RHomB(B,−) ∼= −⊗L

B B
∼= RHomS(S,−) ∼= −⊗L

S S : D(B)→ D(A) (the
derived restriction functor).

Note that the restriction functors do not change the module/complex. There-
fore, there is no danger of confusion if we write X instead of HomB(B,X) or
RHomB(B,X), respectively. Moreover, if A is a subcategory in D(A), we denote
by A

⋂
D(B) the subcategory of D(B) defined by

A
⋂

D(B) = {X ∈ D(B) | RHomB(B,X) = X ⊗L
B B ∈ A}.
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4.1. The extension of scalars functors applied on (co)silting objects. We
will prove that the derived covariant (contravariant) extension functors defined
above preserve the silting (respectively, pure-injective cosilting) objects from D(R).

We start by observing that [1, Lemma 1.10] and [16, Proposition 2.3] are still
valid in our setting (with verbatim proofs).

Lemma 4.1. Let R be commutative and A be an R-algebra such that R is central.
Let (U ,V) be a t-structure in D(A). For every X ∈ D≤0(R) we have:
(1) If U ∈ U then U ⊗L

R X ∈ U .
(2) If V ∈ V then RHomR(X,V ) ∈ V.

In the next theorem we will use the notation presented in Remark 3.3.

Theorem 4.2. Assume that we are in the hypotheses of Setting 1, and A or S is
flat over R.

(I) Suppose that T ∈ D(A) is silting.
(1) The complex T ⊗L

R S is silting in D(B).
(2) YT⊗L

RS
= YT

⋂
D(B), and ZT⊗L

RS
= ZT

⋂
D(B).

(3) XT ⊗L
R S ⊆ XT⊗L

RS
, and YT ⊗L

R S ⊆ YT⊗L
RS

.
(4) If T is bounded then T ⊗L

R S has the same property.
(II) Suppose that C ∈ D(A) is pure-injective cosilting.

(1) The complex RHomR(S,C) is pure-injective cosilting in D(B).
(2) URHomR(S,C) = UC

⋂
D(B), and VRHomR(S,C) = VC

⋂
D(B).

(3) RHomR(S,VC) ⊆ VRHomR(S,C), and RHomR(S,WC) ⊆ WRHomR(S,C).
(4) If C is bounded cosilting, then RHomR(S,C) has the same property.

Proof. (I) (1) The ring homomorphism λ induces a structure of R-module on S,
and as a complex of R modules it belongs to D≤0(R). Since T is silting, it induces
a t-structure (T⊥>0 , T⊥≤0) in D(A). From T ∈ T⊥>0 it follows by Lemma 4.1 that
T ⊗L

R S ∈ T⊥>0 .
For every n ∈ Z and every X ∈ D(B), we have the adjunction isomorphism

HomD(A)(T,X[n]) ∼= HomD(B)((T ⊗L
R S), X[n]).

Using this isomorphism for n > 0 and X = T ⊗L
R S, together with T ⊗L

R S ∈ T⊥>0 ,
we deduce that the B-complex T ⊗L

R S belongs to (T ⊗L
R S)⊥>0 .

Further, the same isomorphism, applied for n = 0 and X =
∐
i∈I Xi, together

with the fact that (the derived functor of) the restriction of the scalars functor
D(B)→ D(A) preserves all coproducts, shows that the class (T ⊗L

R S)⊥>0 ⊆ D(B)
is closed under coproducts.

Finally, if X ∈ D(B) and X ∈ (T ⊗L
RS)⊥Z , it follows that HomD(A)(T,X[n]) = 0

for all n ∈ Z. Then X is acyclic as an A-complex, hence it is acyclic as a B-complex.
(2) These equalities are consequences of the isomorphism

HomD(B)(T ⊗L
RS, Y ) ∼= HomD(B)(T ⊗L

AA⊗L
RS, Y ) ∼= HomD(R)(T,RHomB(B, Y )).

(3) Let Y ∈ YT . Then RHomB(B, Y ⊗L
R S) = Y ⊗L

R S ∈ YT . For all i > 0 we
have

HomD(B)(T ⊗L
R S, Y ⊗L

R S[i]) ∼= HomD(B)(T ⊗L
A B, Y ⊗L

R S[i])

∼= HomD(A)(T,RHomB(B, Y ⊗L
R S)[i]) ∼= HomD(A)(T, Y ⊗L

R S[i]) = 0.
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Let X ∈ XT and Y ∈ YT⊗L
RS

. Then RHomB(B, Y ) ∈ YT , hence the prop-
erty X ⊗L

R S = X ⊗L
A B ∈ XT⊗L

RS
can be obtained by applying the adjunction

isomorphism.
(4) If T is bounded, then obviously the same property holds true for T ⊗L

R S.
(II) The functor RHomA(B,−) preserves all products, hence it preserves the

pure-injectivity property, [38, Lemma 5.3]. Therefore, using the natural isomor-
phisms

HomD(A)(U ⊗L
S S, V ) ∼= HomD(B)(U,RHomA(B, V )),

a proof can be done by following the lines of the proof for (I). �

4.2. The transfer of (co)silting complexes of (co)finite type. In the follow-
ing, we will study the transfer of (co)silting complexes of (co)finite type. In this
case, we have more connections between the associated TTF triples.

Theorem 4.3. Assume that we are in Setting 1, and A or S is flat over R.
(I) If C ∈ D(A) is cosilting of cofinite type then RHomR(S,C) is cosilting of

cofinite type in D(B).
(II) If T ∈ D(A) is silting of finite type then T ⊗L

R S is of finite type in D(B).

Proof. (I) Since all cosilting objects of cofinite type are pure-injective, it follows
that RHomR(S,C) ∈ D(B) is cosilting.

There exists a set of compact objects P ⊆ UC such that VC = P⊥0 . Using
the fact the the restriction functor preserves coproducts, it follows that P ⊗L

R S =
{P ⊗L

R S | P ∈ P} is a set of compact objects from D(B).
We have V ∈ VRHomR(S,C) if and only if V ⊗L

S S = RHomS(S, V ) ∈ VC , and this
is equivalent to

0 = HomD(R)(P,RHomS(S, V )) ∼= HomD(S)(P ⊗L
R S, V ).

This implies that VRHomR(S,C) = (P ⊗L
R S)⊥0 , hence RHomR(S,C) is of cofinite

type.
(II) The proof is similar to the proof used for the cosilting case. �

Lemma 4.4. Suppose that we are in the hypothesis of Setting 1. Assuming that
λ : R → S is faithfully flat, T ∈ D(A), and X ∈ D(Aop) then X ∈ ⊥I (T+) if and
only if X ⊗L

R S ∈ ⊥I [(T ⊗L
R S)+] (in D(Bop)).

Proof. Using Lemma 3.7, the equivalence is a consequence of the isomorphisms

Hn((T ⊗L
R S)⊗L

S (X ⊗L
R S)) ∼= Hn(T ⊗L

R X ⊗L
R S) ∼= Hn(T ⊗L

R X)⊗R S,
that hold for all X ∈ D(R). �

Proposition 4.5. Suppose that we are in the hypothesis of Setting 1 and that
λ : R→ S is faithfully flat. Let T ∈ D(A) be a silting complex of finite type. Using
the notations from Remark 3.3, the following are true:
(1) UT+ = {X ∈ D(Aop) | X ⊗L

R S ∈ U(T⊗L
RS)

+};
(2) VT+ = {X ∈ D(Aop) | X ⊗L

R S ∈ V(T⊗L
RS)

+};
(3) YT = {Y ∈ D(A) | Y ⊗L

R S ∈ YT⊗L
RS
}.

Proof. (1) and (2) follow from Lemma 4.4.
(3) The inclusion YT ⊆ {Y ∈ D(A) | Y ⊗L

R S ∈ YT⊗L
RS
} already appeared in

Theorem 4.2.
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Conversely, since both T and T ⊗L
R S are of finite type, the associated TTF-

triples are compactly generated. Let Y ∈ D(A) be such that Y ⊗L
R S ∈ YT⊗L

RS
. If

C ∈ XT is a compact object then C ⊗L
R S ∈ XT⊗L

RS
by Theorem 4.2, hence

HomD(A)(C ⊗L
R S, Y ⊗L

R S) = 0.

Using the isomorphism presented in Lemma 2.5 we get:

HomD(R)(C, Y )⊗R S = 0,

hence HomD(R)(C, Y ) = 0, since S is faithfully flat. It follows Y ∈ YT . �

Corollary 4.6. Suppose that we are in the hypothesis of Setting 1 and that λ :
R→ S is faithfully flat. If T1, T2 ∈ D(A) are silting objects of finite type such that
the D(B) silting objects T1 ⊗L

R S and T2 ⊗L
R S are equivalent then T1 and T2 are

equivalent.

4.3. Ascend of n-tilting modules for R-algebras. We present here generaliza-
tions, for R-algebras, of some results proved in [19] that are useful in our approach.

If S is a family of modules from Mod-A (A is a ring) then (KS ,LS) denotes
the cotorsion theory generated by S i.e., L = Ker

∏
n≥1 ExtnA(S,−). Recall that an

A-module is strongly finitely presented if it admits a projective resolution consisting
of finitely generated projective A-modules.

The proof of the following result follows verbatim from the argument presented
in [19, Proposition 2.3].

Lemma 4.7. Suppose that we are in the hypothesis of Setting 1 and that λ : R→
S is flat. If S is a family of strongly finitely presented modules in Mod-A then
KS ⊗R S ⊆ KS⊗RS and LS ⊗R S ⊆ LS⊗RS.

Moreover, if λ is faithfully flat, then

KS = {X ∈ Mod-A | X ⊗R S ∈ KS⊗RS},

and
LS = {X ∈ Mod-A | X ⊗R S ∈ LS⊗RS}.

Proposition 4.8. Suppose that we are in the hypothesis of Setting 1 and that
λ : R→ S is flat. If T is an n-tilting module and then T ⊗R S is n-tilting.

Moreover, if λ is faithfully flat then

KT = {X ∈ Mod-A | X ⊗R S ∈ KT⊗RS},

and
LT = {X ∈ Mod-A | X ⊗R S ∈ LT⊗RS}.

Proof. We work in D(A) and replace T by its (bounded) projective resolution.
From Lemma 4.1 it follows that T ⊗L

R S ∈ T⊥>0 . By Proposition 4.2 we know that
T ⊗L

R S ∈ (T ⊗L
R S)⊥>0 , and that T ⊗L

R S is a weak generator in D(R). Since S
is flat, T ⊗L

R S = T ⊗R S is also a B-module, hence T ⊗L
R S ∈ (T ⊗L

R S)⊥<0 . The
conclusion follows from Corollary 3.12.

The last part is a consequence of Lemma 4.7 since all tilting cotorsion pairs are
generated by families of strongly finitely presented modules. �
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5. Cosilting complexes of cofinite type over commutative rings

Let λ : R → S be a morphism of commutative rings. In this section we con-
sider the transfers of (co)silting objects of (co)finite type provided by the functors
associated to λ.

5.1. Thomason filtrations. Since R is a commutative ring, any compactly gen-
erated t-structure (U ,V) in D(R) is parametrized by so called Thomason filtration
on Spec(R). More precisely we call Thomason (open) a subset of Spec(R) a union
of the subsets of the form V (I) = {p ∈ Spec(R) | I ⊆ p}, where I is a finitely
generated ideal of R (such a subset is called a basic Thomason set). Note that
the basic Thomason sets are closed in the Zariski topology, that is the Thomason
topology is the Hochster dual of the Zariski one.

A Thomason filtration on Spec(R) is a family X = (Xk)k∈Z such that for every
integer k we have Xk ⊆ Spec(R) is a Thomason set, and Xk+1 ⊆ Xk. This filtration
is called non-degenerate if

⋂
nXn = ∅ and

⋃
nXn = Spec(R). Moreover, we will say

that X is bounded if there exist two integers m0 and n0 such that Xm = Spec(R)
for all m ≤ m0 and Xn = ∅ for all n ≥ n0. It was proved in [17, Proposition
5.12] that non-degenerate Thomason filtrations parametrize cosilting complexes of
cofinite type. We record, for further use, this correspondence.

Theorem 5.1. (I) There are bijective correspondences between the following classes:
i) equivalence classes of cosilting complexes of cofinite type in D(R);
ii) compactly generated TTF-triples that are cosuspended and non-degenerate;
iii) non-degenerate Thomason filtrations on Spec(R).
(II) These bijections restrict to bijections between equivalence classes of bounded

cosilting complexes of cofinite type, TTF-triples that are cointermediate and cosus-
pended, and bounded Thomason filtrations.

Proof. The first part is proved in [17, Proposition 5.12]. These bijections extend
the bijections described in [16, Theorem 3.11].

The correspondence between bounded cosilting complexes and cointermediate,
cosuspended TTF-triples is provided by [27, Theorem 3.13], see also [3, Corollary
2.14]. For the correspondence between TTF-triples that are cointermediate and
cosuspended and bounded Thomason filtrations, let X = (Xk)k∈Z be a bounded
Thomason filtration. By [16, Theorem 3.11], the aisle of the corresponding t-
structure is

UX = {X ∈ D(R) | Supp(Hk(X)) ⊆ Xk for all n ∈ Z}.

Since Xk = ∅ for all k ≥ n, it follows that for every X ∈ UX we have Hk(X) = 0
for all k ≥ n. It follows that

D(R)≥n = {X ∈ D(R) | Hi(X) = 0 for all i < n} ⊆ U⊥0

X = VX,

where UX is the coaisle of the t-structure associated to X. Conversely, it is easy
to see that if (U ,V,W) is a TTF-triple that is cointermediate and cosuspended
TTF-triple then the associated Thomason filtration is bounded. �

5.2. A topological transfer. If λ : R→ S is a morphism of commutative rings, we
can use the topological properties of the associated map λ? : Spec(S) → Spec(R),
λ?(q) = λ−1(q), together with Theorem 5.1. Therefore, we obtain a topological
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method to transfer the cosilting complexes of cofinite type from D(R) to cosilting
complexes of cofinite type in D(S). We start by recalling some basic results.

Lemma 5.2. Let f : S1 → S2 be a surjective closed map between two topological
spaces. If f−1(Y ) ⊆ S1 is an open set, then Y is open in S2.

Lemma 5.3. (I) [37, Proposition 5.9] The map λ? is continuous with respect to
Thomason’s topology.

(II) [19, Lemma 3.15] If λ is faithfully flat then λ? is a surjective closed map
with respect to Thomason’s topology.

We will say that a Thomason subset X ⊆ Spec(S) is Thomason saturated (with
respect to λ) if X = (λ?)−1(λ?(X)). This means that for every q ∈ Spec(S) we
have q ∈ X if and only if λ−1(q) ∈ λ?(X).

Theorem 5.4. Suppose that λ : R → S is a morphism of commutative rings.
If X = (Xn)n∈Z is a non-degenerate Thomason filtration in Spec(R) then Y =
((λ?)−1(Xn))n∈Z is a non-degenerate Thomason filtration in Spec(S).

Therefore, λ induces a map

Φ :

{
compactly generated
t-structures in D(R)

}
−→

{
compactly generated
t-structures in D(S)

}
,

that is defined in the following way:
If (U ,V) is a compactly generated t-structure in D(R) and X = (Xn)n∈Z is the
Thomason filtration associated to it then Φ(U ,V) is the t-structure in D(S) that
is defined by the Thomason filtrations Y = ((λ?)−1(Xn))n∈Z. All components of Y
are Thomason saturated with respect to λ.

Moreover, if λ is faithfully flat then it induces a map Ψ that associates to every
compactly generated t-structure (U ′,V ′) in D(S) with the property that all compo-
nents Yn of the associated Thomason filtration Y = (Yn)n∈Z are Thomason satu-
rated with respect to λ, the t-structure of D(R) that corresponds to X = (λ?(Yn))n∈Z.
In this case we have ΨΦ(U ,V) = (U ,V) for every compactly generated t-structure
(U ,V) ∈ D(R)

Proof. Since λ? is continuous with respect to Hochster’s topology it follows that Y
is a system of Thomason sets.

Observe that q ∈ (λ?)−1(Xn) if and only if λ−1(q) ∈ Xn. Using this, it is easy
to see that Y is a Thomason filtration.

For the last statement, we apply Lemma 5.3 and Lemma 5.2 to conclude that
the terms of the sequence X are Thomason sets. As before, it is an easy exercise to
prove that X is a Thomason filtration. �

Remark 5.5. As we already mentioned in the introduction, Φ induces a map

Φ :

 equivalence classes of
cosilting objects

of cofinite type in D(R)

 −→
 equivalence classes of

cosilting objects
of cofinite type in D(S)

 .

If λ is faithfully flat, this map is injective.

5.3. The ascend of (co)silting complexes of (co)finite type via derived
functors. We already proved in Theorem 4.3 that the (co)induction functor asso-
ciated to λ preserves the (co)finite type property. In the following we will see that
the map induced by the coinduction functor on the equivalence classes of cosilting
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objects of cofinite type is in fact the map Φ described in Remark 5.5. We will need
the following

Lemma 5.6. Suppose that λ : R→ S is a morphism of commutative rings.
(I) If C ∈ D(R) is an object such that RHomR(S,C) ∈ D(S) is cosilting

of cofinite type and Y = (Yn)n∈Z is the Thomason filtration associated to
RHomR(S,C) then all sets Yn are Thomason saturated with respect to λ.

(II) If T ∈ D(R) is an object such that T ⊗L
R S ∈ D(S) is silting of finite type

and Y = (Yn)n∈Z is the Thomason filtration associated to (T ⊗L
R S)+ then all

sets Yn are Thomason saturated with respect to λ.

Proof. (I) Let n ∈ Z. From [17, Lemma 3.7] and Theorem 4.2 (applied for A = R
and, consequently, B = S) it follows that

Yn = {q ∈ Spec(S) | κ(q)[−n] ∈ URHomR(S,C)}
= {q ∈ Spec(S) | κ(q)[−n]⊗L

S S ∈ UC}.

Note that for every q ∈ Spec(S) there exists a canonical morphism (of R-
algebras) κ(λ?(q)) → κ(q) that is induced by the morphism R/λ−1(q) → S/q.
This morphism is unital, and κ(λ?(q)) and κ(q) are fields. It follows that, as an
R-module, κ(q) is a direct sum of copies of κ(λ?(q)). Then HomD(R)(κ(q), V ) = 0
if and only if HomD(R)(κ(λ?(q)), V ) = 0.

Since κ(q)[−n] ∈ URHomR(S,C) if and only if for all i ≤ 0 we have

0 = HomD(S)(κ(q)[−n],RHomR(S,C)[i]) ∼= HomD(R)(κ(q)[−n], C[i]),

we conclude that κ(q)[−n] ∈ URHomR(S,C) if and only if for all i ≤ 0 we have
HomD(R)(κ(λ?(q))[−n], C[i]) = 0. Then Yn is Thomason saturated with respect to
λ.

(II) For this case we apply (I) and the isomorphism (T⊗L
RS)+ ∼= RHomR(S, T+).

�

Theorem 5.7. Let λ : R→ S be a morphism of commutative rings.
(I) If C ∈ D(R) is cosilting of cofinite type then RHomR(S,C) ∈ Φ(C), where

Φ is the map described in Remark 5.5.
(II) If T ∈ D(R) is silting of finite type then (T ⊗L

R S)+ ∈ Φ(T+).

Proof. (I) From Lemma 5.6 it follows that for all n ∈ Z we have Yn = (λ?)−1(Xn),
where X = (Xn)n∈Z is the Thomason filtration associated to C, and the proof is
complete.

(II) This is also a consequence of Lemma 5.6. �

If λ is faithfully flat, we can apply Theorem 5.7 together with the second part
of Theorem 5.4, we obtain the following cosilting version of Corollary 4.6.

Corollary 5.8. Suppose that λ : R → S is faithfully flat. If C1, C2 ∈ D(R) are
cosilting complexes of cofinite type such that the cosilting complexes RHomR(S,C1)
and RHomR(S,C2) are equivalent then C1 and C2 are equivalent.

5.4. Some descent properties. If λ : R → S is faithfully flat, we can use the
above results to describe all cosilting complexes of cofinite type from D(S) that can
be obtained as images of the functor RHomR(S,−).
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Proposition 5.9. Let λ : R → S be a faithfully flat morphism of commutative
rings. If C ∈ D(S) is a cosilting complex of cofinite type and Y = (Yn)n∈Z is the
associated Thomason filtration on Spec(S), the following are equivalent:
(i) there exists a cosilting complex of cofinite type C in D(R) such that C is

equivalent to RHomR(S,C);
(ii) all Yn are Thomason saturated with respect to λ.

Proof. i)⇒ii) follows from Lemma 5.6.
ii)⇒i) From the proof of Theorem 5.4 it follows that X = (λ?(Yn))n∈Z is a

Thomason filtration. Let C ∈ D(R) be a cosilting complex that corresponds to X.
It follows from Theorem 5.7 that RHomR(S,C) is equivalent to C. �

Using the equivalence described in Theorem 3.5(2), we obtain:

Corollary 5.10. Let λ : R→ S be a faithfully flat morphism of commutative rings.
If T ∈ D(S) is a bounded silting complex, the following are equivalent:
(i) there exists a (bounded) silting complex T in D(R) such that T is equivalent

to T ⊗L
R S;

(ii) if Y = (Yn)n∈Z is the Thomason filtration associated to T
+

then all sets Yn
are Thomason saturated with respect to λ.

Proof. The implication (i)⇒(ii) is proved in Lemma 5.6. Conversely, since Y =
(Yn)n∈Z is a (bounded) Thomason filtration that is saturated with respect to λ,
there exists a bounded cosilting complex C ∈ D(R) such that RHomR(S,C) is
equivalent to T

+
. Since C is bounded, it follows that C is equivalent to a complex of

the form T+ with T ∈ D(R) a bounded silting complex. Applying Theorem 3.5(2),
it follows that the bounded silting complexes T and T ⊗L

R S are equivalent. �

Remark 5.11. The above corollary is also valid for all silting complexes of finite
type T ∈ D(S) if we assume that all cosilting complexes of cofinite type from D(R)
are of the form T+, with T ∈ D(R) a silting complex of finite type (e.g., if R is
noetherian, cf. [3, Theorem 3.8]).

The above considerations let us prove a descend property for bounded cosilting
complexes:

Theorem 5.12. Let T ∈ D(R) be a bounded complex of projectives. If RHom(S, T+)
is cosilting in D(S) then T+ is cosilting in D(R).

Proof. Since the Thomason filtration of RHomR(S, T+) ∼= (T ⊗L
R S)+ is bounded

and Thomason saturated with respect to λ, we can apply Proposition 5.10 to observe
that there exists a bounded complex of projectives T̃ in D(R) such that T̃ is silting
and (T̃⊗L

RS)+ is equivalent to (T⊗L
RS)+. It follows that (T̃⊗L

RS)+ and (T⊗L
RS)+,

induce the same t-structure whose aisle and coaisle are

V(T⊗L
RS)

+ = ⊥≤0 [(T ⊗L
R S)+] = ⊥≤0 [(T̃ ⊗L

R S)+],

respectively
W(T⊗L

RS)
+ = ⊥>0 [(T ⊗L

R S)+] = ⊥>0 [(T̃ ⊗L
R S)+].

Using Corollary 4.4 twice, we get
⊥≤0(T+) = {X ∈ D(R) | X ⊗L

R S ∈ V(T⊗L
RS)

+} = ⊥≤0(T̃+)
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and
⊥>0(T+) = {X ∈ D(R) | X ⊗L

R S ∈ W(T⊗L
RS)

+} = ⊥>0(T̃+).

Therefore the pair (⊥≤0(T+),⊥>0(T+)) coincides with the cosilting t-structure in-
duced by (T̃ )+. Hence T+ is cosilting too and it is obviously equivalent to (T̃ )+. �

6. The descend property for bounded silting complexes

6.1. Bounded silting complexes as modules over Dynkin quivers. Let T
be a bounded silting complex in D(R). We assume that it is concentrated in the
degrees −n + 1, . . . ,−1, 0, and we will use the interpretation presented in [27]. In
order to do this, we consider the Dynkin quiver

An :
−n+1• −→ −n+2• −→ · · · −→ −1• −→ 0•,

and we denote by A(R) the R-algebra RAn/I, where I is the ideal generated by
all paths of length 2. Note that A(R) ∼= Tn(R)/J(Tn(R))2, where Tn(R) denotes
the ring of lower triangular matrices over R and J(Tn(R)) is the corresponding
Jacobson radical.

Let Rep(A(R)) be the category of representations bounded by I of An in Mod-R.
Then Rep(A(R)) is equivalent to the category Mod-A(R), and it can be identified
to the category of complexes over R that are concentrated in −n + 1, . . . ,−1, 0,
so we have a fully faithful functor from Rep(A(R)) to the category of complexes.
If X is a complex concentrated in −n + 1, . . . ,−1, 0, we will denote by X̂ the
corresponding object from Rep(A(R)). The above mentioned functor induces a
functor ΨR : Rep(A(R))→ D(R). We have the following useful result

Lemma 6.1. [27, Lemma 2.4] If Ψ(T̂ ) is a complex of projectives then for every
X̂ ∈ Rep(A(R)) and for every i > 0 we have

HomD(R)(ΨR(T̂ ),ΨR(X̂)[i]) = ExtiRep(A(R))(T̂ , X̂).

This correspondence is compatible with respect to change of rings.

Lemma 6.2. Suppose that λ : R → S is a flat morphism of commutative ring.
Then A(S) ∼= A(R)⊗ S and we have a commutative diagram

Rep(A(R))
−⊗RS //

ΨR

��

Rep(A(S))

ΨS

��
D(R)

−⊗L
RS // D(S)

Proof. For the first isomorphism we observe that (RAn/I) ⊗R S ∼= (RAn ⊗R
S)/(I ⊗R S) ∼= SAn/K, where K is the ideal in SAn generated by all paths of
length 2 (see [13]). The commutativity of the diagram can be checked by direct
computations. �

With these preparatory considerations in hand, we are ready to prove the fol-
lowing

Proposition 6.3. Let λ : R → S be a faithfully flat morphism of commutative
rings. Suppose that T is a bounded complex of projective R-modules that is concen-
trated in −n+ 1, . . . ,−1, 0. If T ⊗L

R S is silting then Add(T ) ⊆ T⊥>0 .
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Proof. Since T ⊗R S is bounded silting, we can use Lemma 5.6 and Corollary 5.10
to observe that there exists a silting complex P ∈ D(R) such that P ⊗L

R S is
equivalent to T ⊗L

R S. Moreover, since λ is faithfully flat, we can assume that P is
concentrated in −n+ 1, . . . ,−1, 0. We use [27, Theorem 2.10] to observe that P̂ is
an (n − 1)-tilting module over A(R), and that P̂ ⊗L

R S
∼= P̂ ⊗R S and T̂ ⊗L

R S are
equivalent (n− 1)-tilting modules over A(S). From Proposition 4.8 it follows that
T̂ (I) ∈ KP̂

⋂
LP̂ for all sets I. Then ExtiA(R)(T,Add(T )) = 0 for all i > 0. Since T

is a complex of projectives, we can use Lemma 6.1 to obtain the conclusion. �

There, we now see that the condition (Sb1) of the characterization of bounded
silting complexes from Theorem 3.11 descends along all faithfully flat morphisms.
Although we are not able to show an analogous result for (Sb2) in full generality,
we shall show that it holds in many situations.

Recall that a full subcategory C of D(R) is localizing if it is a triangulated
subcategory closed under coproducts. If C is an arbitrary subcategory of D(R) we
denote by Loc(C) the smallest localizing subcategory of D(R) containing C, and we
write just Loc(X) if C = {X}. Recall from [2, Theorem 3.14] that (Loc(X), X⊥Z) is
a t-structure. Therefore, Loc(X) = D(R) if and only if X is a generator of D(R),
that is, X⊥Z = 0. We will freely use the fact that any localizing subcategory C of
D(R) is a tensor ideal, meaning that X ⊗L

R C ∈ C for any C ∈ C and X ∈ D(R),
see [22, Lemma 1.1.8].

Proposition 6.4. Let R be a commutative ring and R→ S a faithfully flat homo-
morphism of commutative rings such that Loc(S) = D(R).

Suppose that T ∈ D(R) is isomorphic to a bounded complex of projective R-
modules. If T ⊗L

R S is silting in D(S) then T is silting in D(R).

Proof. By Proposition 6.3, we already know that (Sb1) from Theorem 3.11 holds
for T . It remains to show that (Sb2), that is, we need to check Loc(T ) = D(R).
We have T ⊗L

R S ∈ Loc(T ) and by the assumption, T ⊗L
R S is a silting in D(S). It

follows that S ∈ Loc(T ) (this is clear since T ⊗L
R S satisfies condition (S2) of [2,

Definition 5.1] thanks to [2, Proposition 5.3]), and therefore Loc(T ) = D(R) by the
assumption we made on S. �

Using Corollary 3.12 we obtain

Corollary 6.5. Let R be a commutative ring and R → S a faithfully flat homo-
morphism of commutative rings such that Loc(S) = D(R). If T ∈ Mod-R is a
module such that T ⊗R S ∈ Mod-S is n-tilting then T is n-tilting.

Remark 6.6. Following [35], a silting object T is called a tilting object if in addition
we have Add(T ) ⊆ T⊥<0 . If T ∈ D(R) is bounded silting, then T is tilting precisely
if the realization functor from the bounded derived category of the heart of the
silting t-structure to the bounded derived category of R is an equivalence [35,
Corollary 5.2]. Any n-tilting module is a tilting object as an object of the derived
category.

We don’t know if the descent (or even the ascent) properties we established for
bounded silting complexes restrict to tilting complexes, in general. In particular,
our approach which used the transfer to the category Rep(A(R)) does not offer
information about the groups Hom(T, T (I)[k]) for k < 0.
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An important example of a faithfully flat morphism is the so-called Zariski cover,
that is, a ring morphism of the form R →

∏n−1
i=0 R[f−1i ] for some finite generating

set f0, f1, . . . , fn−1 of the regular module R, also see §2.2.

Lemma 6.7. Let R→ S be a Zariski cover of R, then Loc(S) = D(R).

Proof. This is essentially proved in [19, Lemma 4.1]. �

For the definition of a local property and an ad-property, see §2.2.

Lemma 6.8. The property of X ∈ D(R) of being isomorphic to a bounded complex
of projectives is an ad-property.

Proof. Clearly, if X is a bounded complex of projective R-modules then X ⊗R S is
a bounded complex of projective S-modules for any flat ring morphism R→ S.

Let R→ S be faithfully flat and assume without loss of generality that X⊗RS is
a complex of projective S-modules concentrated in degrees −n,−n+1, . . . , 0. Since
R→ S is faithfully flat and X⊗R S is bounded, we see immediately that homology
of X vanishes outside of degrees −n,−n+1, . . . , 0. Therefore, there is a complex P
of projective R-modules concentrated in non-positive degrees which is isomorphic
to X in D(R). Since P ⊗R S is a complex of projective S-modules isomorphic in
D(S) to X ⊗R S. By the assumption on X ⊗R S, the cokernel of the differential
map X−n−1⊗RS → X−n⊗RS, which is the same as Coker(X−n−1 → X−n)⊗RS,
is a projective S-module. Then by the result of Raynaud and Gruson [43, Theorem
95.5], the cokernel of the differential X−n−1 → X−n is a projective R-module.
It follows that the soft truncation τ≥−nX, which is quasi-isomorphic to X, is a
bounded complex of projective R-modules. �

Corollary 6.9. The property of an object T ∈ D(R) being bounded silting is
(Zariski) local.

Proof. Combine Theorem 4.2, Lemma 6.7 and Lemma 6.8, and apply the Affine
Communication Lemma 2.2. �

Denote by I the full subcategory of all pure-injective objects of D(R).

Theorem 6.10. Let R be a commutative ring with the property that Loc(I) =
D(R). Then any faithfully flat ring homomorphism R → S of commutative rings
has the property that Loc(S) = D(R).

Proof. Recall from [43, Lemma 35.4.8.] that the map λ : R→ S is a pure monomor-
phism of R-modules. It follows that for any object X ∈ D(R) the morphism
X⊗L

Rλ : X → X⊗L
RS is a pure monomorphism in D(R) by [3, Lemma 2.6]. If X is

pure-injective, then X⊗L
Rλ is a split monomorphism and so X is a direct summand

in X ⊗L
R S. Since X ⊗L

R S ∈ Loc(S), we have X ∈ Loc(S). Then I ⊆ Loc(S) and
so Loc(S) = D(R). �

Remark 6.11. The condition Loc(I) = D(R) holds in the following hypotheses:
• R noetherian, this follows from [36, Theorem 3.3],
• R admits a finite injective resolution, in particular, if R has finite global

dimension,
• more generally, if R is isomorphic to a bounded complex of pure-injectives,

in particular, if R has finite pure global dimension, in particular, if R is
countable or of cardinality ℵn for some n > 0 [21, Proposition 10.5],
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• if D(R) is a compactly generated triangulated category of finite pure global
dimension in the sense of [7], in particular, if D(R) satisfies the “Brown
representability for homology of morphisms“, see [10].
• if R is such that every localizing subcategory of D(R) is cohomological in

the sense of Krause, see e.g. [24, §3.2].
We also remark that Loc(S) = D(R) where R → S is a faithfully flat homomor-
phism of commutative rings such that S is of projective dimension at most 1 over
R and such that the projective dimension of flat R-modules are bounded by some
positive integer is proved in [11, Proposition 4.2].

Remark 6.12. Combining the above, we see that if Loc(I) = D(R) holds for all
commutative rings then the property of being a bounded silting object is even an
ad-property. We do not know any ring for which Loc(I) = D(R) fails. An example
for which injective modules do not generate D(R) is in [36]. If R is von Neumann
regular that Loc(I) = D(R) precisely if injectives generate in the sense of [36].
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