Very Weak Solutions and Convergence of Numerical Schemes

Eduard Feireisl

joint work with M. Lukáčová (Mainz), H. Mizerová (Bratislava), Bangwei She (Prague)

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

SIAM PDE conference 14 - 18 March 2022

Prologue - Lax equivalence principle

Peter D. Lax

Formulation for LINEAR problems

- Stability uniform bounds of approximate solutions
- Consistency vanishing approximation error

 \Rightarrow

• Convergence - approximate solutions converge to exact solution

Example - compressible viscous fluid

NAVIER-STOKES SYSTEM

$$\begin{split} \partial_t \varrho + \operatorname{div}_x(\varrho \mathbf{u}) &= 0 \\ \partial_t(\varrho \mathbf{u}) + \operatorname{div}_x(\varrho \mathbf{u} \otimes \mathbf{u}) + \nabla_x \rho &= \operatorname{div}_x \mathbb{S}(\nabla_x \mathbf{u}) + \varrho \mathbf{g} \\ \mathbb{S}(\nabla_x \mathbf{u}) &= \mu \left(\nabla_x \mathbf{u} + \nabla_x^t \mathbf{u} - \frac{2}{d} \operatorname{div}_x \mathbf{u} \mathbb{I} \right) + \eta \operatorname{div}_x \mathbf{u} \mathbb{I} \end{split}$$

ISENTROPIC PRESSURE

$$p = p(\varrho) = a\varrho^{\gamma}, \ a > 0, \ \gamma > 1.$$

PERIODIC BOUNDARY CONDITIONS

$$t \in [0, T], x \in \mathbb{T}^d, d = 2, 3.$$

State-of-the art

- Global existence. Global-in-time existence of weak solutions $\gamma > \frac{d}{2}$, uniqueness open
- Local existence. Local existence of smooth solutions, global existence of smooth solutions for the data close to equilibrium
- Finite time blow up. Solutions on R³ may develop finite time blow up.
 - F. Merle, P. Raphael, I. Rodnianski, and J. Szeftel [2020]: Blow up for certain γ but not for $\gamma=\frac{5}{2}$
 - T. Buckmaster, G. Cao-Labora, and J. Gomez-Serrano [2022]: Blow up for $\gamma = \frac{7}{6}$
- Conditional regularity. Sun, Wang, and Zhang [2011]: If the maximal existence time $T_{\rm max}$ is finite, then

$$\|(arrho, \mathbf{u})\|_{L^\infty} o \infty$$
 as $t o T_{ ext{max}}$

FV numerical scheme

$$\int_{\mathbb{T}^d} D_t \varrho_h \varphi_h \; \mathrm{d}x - \sum_{\sigma \in \Sigma} \int_{\sigma} F_h(\varrho_h, \mathbf{u}_h) \left[[\varphi_h] \right] \mathrm{d}\sigma = 0 \quad \text{for all } \varphi_h \in Q_h$$

$$\int_{\mathbb{T}^d} D_t(\varrho_h \mathbf{u}_h) \cdot \boldsymbol{\varphi}_h \, dx - \sum_{\sigma \in \Sigma} \int_{\sigma} \mathbf{F}_h(\varrho_h \mathbf{u}_h, \mathbf{u}_h) \cdot [[\boldsymbol{\varphi}_h]] \, d\sigma - \sum_{\sigma \in \Sigma} \int_{\sigma} \{\!\!\{ \boldsymbol{\rho}(\varrho_h) \}\!\!\} \, \mathbf{n} \cdot [[\boldsymbol{\varphi}_h]] \, d\sigma$$

$$= -\mu \frac{1}{h} \sum_{\sigma \in \Sigma} \int_{\sigma} [[\mathbf{u}_h]] \cdot [[\boldsymbol{\varphi}_h]] \, \mathrm{d}\sigma - \lambda \int_{\mathbb{T}^d} \mathrm{div}_h \mathbf{u}_h \mathrm{div}_h \boldsymbol{\varphi}_h \, \, \mathrm{d}x \quad \text{for all } \boldsymbol{\varphi}_h \in \mathbf{Q}_h$$

$$\lambda = \frac{1}{d}\mu + \eta$$

Discrete time derivative

$$D_t r_K^k = \frac{r_K^k - r_K^{k-1}}{\Delta t}$$

Upwind, fluxes

$$Up[r, \mathbf{v}] = \overline{r} \ \overline{\mathbf{v}} \cdot \mathbf{n} - \frac{1}{2} |\overline{\mathbf{v}} \cdot \mathbf{n}| [[r]]$$

$$F_h(r, \mathbf{v}) = Up[r, \mathbf{v}] - h^{\alpha} [[r]]$$

Convergence of the numerical method

Hypothesis: FV scheme produces a family of numerical solutions $(\varrho_h, \mathbf{u}_h)$ such that

$$\|\varrho_h, \mathbf{u}_h\|_{L^{\infty}((0,T)\times\mathbb{T}^d;R^{d+1})}\leq C \text{ for } h\searrow 0$$

Conclusion:

$$\varrho_h \to \varrho \quad \boxed{\text{strongly}} \quad \text{in} \quad L^q((0,T) \times \mathbb{T}^d)$$

$$\mathbf{u}_h \to \mathbf{u} \quad \boxed{\text{strongly}} \quad \text{in} \quad L^q((0,T) \times \mathbb{T}^d; R^d)$$

for any
$$1 \le q < \infty$$

 \blacksquare The functions (ϱ , \mathbf{u}) are classical solution of the Navier–Stokes system

Proof, step I

Weak convergence:

$$\varrho_h \to \varrho$$
 weakly-(*) in $L^{\infty}((0,T) \times \mathbb{T}^d)$
 $\mathbf{u}_h \to \mathbf{u}$ weakly-(*) in $L^{\infty}((0,T) \times \mathbb{T}^d; R^d)$

Limit system:

$$\partial_{t} \varrho + \operatorname{div}_{x} \overline{\varrho \mathbf{u}} = 0$$
$$\partial_{t} \overline{\varrho \mathbf{u}} + \operatorname{div}_{x} \overline{\varrho \mathbf{u} \otimes \mathbf{u}} + \nabla_{x} \overline{\varrho(\varrho)} = \operatorname{div}_{x} \mathbb{S}(\nabla_{x} \mathbf{u}) + \varrho \mathbf{g}$$

Energy inequality:

$$\int_{\mathbb{T}^d} \frac{1}{2} \varrho |\mathbf{u}|^2 + P(\varrho)(\tau, \cdot) \, dx + \int_0^{\tau} \int_{\mathbb{T}^d} \mathbb{S}(\nabla_x \mathbf{u}) : \nabla_x \mathbf{u} \, dx$$

$$\leq \int_{\mathbb{T}^d} \frac{1}{2} \varrho_0 |\mathbf{u}_0|^2 + P(\varrho_0) \, dx$$

Step II, weak-strong uniqueness

Measure-valued solutions:

$$\overline{B(\varrho,\mathbf{u})}(t,x) = \langle \nu_{t,x}; B(\varrho,\mathbf{u}) \rangle$$

 ν – a Young measure associated to the sequence $(\varrho_h, \mathbf{u}_h)_{h>0}$

MV – **strong uniqueness** EF, P. Gwiazda, A.Swierczewska–Gwiazda, E. Wiedemann [2016]

- The MV-solution coincides with the strong solution as long as the latter exists.
- The Young measure reduces to a Dirac mass.
- The convergence is strong.

Conclusion:

Numerical solutions converge strongly in L^p to the strong solution of the Navier–Stokes system on its life span (locally in time)

Step III, conditional regularity

boundedness of the numerical solutions \Rightarrow the limit (ϱ,\mathbf{u}) is bounded

Global existence:

conditional regularity criterion of Sun, Wang, Zhang

 \Rightarrow

convergence in (0, T) to the classical solution

Error estimates

Relative energy:

$$E\left(\varrho_{h},\mathbf{u}_{h}\middle|\varrho,\mathbf{u}\right)=\frac{1}{2}\varrho_{h}|\mathbf{u}-\mathbf{u}_{h}|^{2}+P(\varrho_{h})-P'(\varrho)(\varrho_{h}-\varrho)-P(\varrho)$$

Error estimates (M. Lukáčová, B. She):

$$\int_{\mathbb{T}^d} E\left(\varrho_h, \mathbf{u}_h \middle| \varrho, \mathbf{u}\right) (\tau, \cdot) dx \le C(\Delta t + h)$$

$$0 < \tau < T$$

Statistical solutions

Data:

- \blacksquare initial data $[\varrho_0, \mathbf{u}_0]$
- \blacksquare viscosity coefficients μ , λ
- driving force g
- EOS the pressure law $p(\varrho) = a\varrho^{\gamma}$

uncertain data ⇒ data considered as random variables

- Weak stochastic approach: Only distribution of the data is known. Monte—Carlo and related methods
- Strong stochastic approach: Data are known as random variables ranging in a suitable space. Stochastic Galerkin, stochastic collocation methods etc

Numerical approximation

Step 1:

Choose regular (initial) data

Step 2: [Nonintrusive methods] Apply deterministic numerical method several times with (i) randomly generated data (weak approach) (ii) exact data at collocation points (strong approach)

Numerical solutions:

$$(\varrho_{h,n},\mathbf{u}_{h,n}), n=1,2,\ldots$$
 family of numerical solutions

Empirical means:

$$(\varrho_{h,N},\mathbf{u}_{h,N})=rac{1}{N}\sum_{n=1}^{N}(\varrho_{h,n},\mathbf{u}_{h,n})$$

Boundedness in probability

Given $\varepsilon > 0$, there is $M(\varepsilon)$ such that:

$$\frac{1}{N} \# \Big\{ \|\varrho_{h,n}, \mathbf{u}_{h,n}\|_{L^{\infty}} < M(\varepsilon), n \leq N \Big\} > 1 - \varepsilon$$

Convergence analysis, I

Application of Skorokhod representation theorem:

■ Data:

$$\begin{split} \left[\widetilde{\varrho}_{0,N},\widetilde{\mathbf{u}}_{0,N},\widetilde{\mu}_{N},\widetilde{\eta}_{N},\widetilde{\mathbf{g}}_{N}\right] \sim \left[\varrho_{0},\mathbf{u}_{0},\mu,\eta,\mathbf{g}\right] \\ & \qquad \qquad \widetilde{\varrho}_{0,N} \rightarrow \widetilde{\varrho}_{0} \sim \varrho_{0} \\ & \qquad \qquad \widetilde{\mathbf{u}}_{0,N} \rightarrow \widetilde{\mathbf{u}}_{0} \sim \mathbf{u}_{0} \\ & \qquad \qquad \widetilde{\mu}_{N} \rightarrow \widetilde{\mu} \sim \mu, \widetilde{\eta}_{N} \rightarrow \widetilde{\eta} \sim \eta \\ & \qquad \qquad \widetilde{\mathbf{g}}_{N} \rightarrow \widetilde{\mathbf{g}} \sim \mathbf{g} \end{split}$$

Numerical solutions

$$\mathcal{L}(\mathsf{law})(\widetilde{\varrho}_{h,N},\widetilde{\mathbf{u}}_{h,N}) = \frac{1}{N} \sum_{n=1}^{N} \delta_{(\varrho_{n,h},\mathbf{u}_{n,h})}$$

■ Boundedness a.s.

$$(\widetilde{\varrho}_{h,N},\widetilde{\mathbf{u}}_{h,N}) \leq C$$
 as $h \to 0$, $N \to \infty$ a.s.

Convergence analysis, II

Application of Gyöngly-Krylov convergence criteria:

■ The limit problem admits a regular solution (ϱ, \mathbf{u}) a.s.

$$\|(\varrho_N,\mathbf{u}_N)-(\varrho,\mathbf{u})\|_{L^q}\to 0$$
 in probability, $1\leq q<\infty$

Possible applications to more complex systems

- (Complete) Navier–Stokes–Fourier system. The existence and weak strong uniqueness principle proved in a series of papers with J. Březina (Kyushu University) and A. Novotný (Toulon)
- Regularity criterion by EF, Wen and Zhu [2022] If $T_{\rm max} < \infty$ for the complete Navier–Stokes–Fourier system, then

$$\|\varrho(t,\cdot)\|_{L^{\infty}} + \|\vartheta(t,\cdot)\|_{L^{\infty}} \to \infty \text{ as } t \to T_{\max}$$