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Prologue - Lax equivalence principle

Formulation for | LINEAR | problems
-

e Stability - uniform bounds of approximate solutions

e Consistency - vanishing approximation error
Peter D. Lax

=

exact solution

e Convergence - approximate solutions converge to
L




Example - compressible viscous fluid

NAVIER-STOKES SYSTEM

Or0 + divi(ou) =0
Ot(ou) + divi(ou @ u) + Vip = diviS(Viu) + ¢g

S(Vxu) =p (qu +Viu— %divxuﬂ) + ndiv,ul

ISENTROPIC PRESSURE

p=p(o) =a0", a>0, y>1.

PERIODIC BOUNDARY CONDITIONS

tel0,T], xeT?, d=2,3.




State—of-the art

Global existence. Global-in-time existence of weak solutions v > £,
uniqueness open

Local existence. Local existence of smooth solutions, global
existence of smooth solutions for the data close to equilibrium
Finite time blow up. Solutions on R® may develop finite time blow
up.

F. Merle, P. Raphael, |. Rodnianski, and J. Szeftel [2020]: Blow up
for certain « but not for v = %

T. Buckmaster, G. Cao-Labora, and J. Gomez-Serrano [2022]: Blow
up for v = %

Conditional regularity. Sun, Wang, and Zhang [2011]: If the
maximal existence time Tax is finite, then

(o, u)llL — o0 a5 £ = T




FV numerical scheme

/d DtthOh dx — Z/ Fh(gh, uh) [[cph]] do =0 forall ©h € Qn
T
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Discrete time derivative

k k—1
Dyrf = Tk~ Tk

Ik At

Upwind, fluxes

Uplrv] =790~ (v nl[lr]

Fi(r,v) = Up[r,v] — h* [[1]]



Convergence of the numerical method

Hypothesis: FV scheme produces a family of numerical solutions (g5, us)
such that

||Qh7 uhHLOO((O,T)XTd;Rd+1) < C for h \J 0

Conclusion:

on— 0 in L9((0, T) x T%)
up = u in L9((0, T) x T% RY)

forany 1 < g < o0

m The functions (g, u) are classical solution of the Navier-Stokes
system




Proof, step |

Weak convergence:

on — o weakly-(*) in L((0, T) x T%)
up — u weakly-(*) in L((0, T) x T; R?)

Limit system:

atQ + divxw =0

Orou + diviou @ u + Vip(p) = diviS(Viu) + og

Energy inequality:
[ elulz+ Py ax+ [ [ 8T T dx
Td 2 0 Td

1
< / = ooluol* + P(00) dx
Td 2




Step 1, weak—strong uniqueness

Measure—valued solutions:

m(t, X) = <Vt,><; B(Q,U)>

v — a Young measure associated to the sequence (o, Un)h>0

MV — strong uniqueness EF, P. Gwiazda, A.Swierczewska—Gwiazda, E.
Wiedemann [2016]

m The MV-solution coincides with the strong solution as long as the
latter exists.

m The Young measure reduces to a Dirac mass.

m The convergence is strong.

.

Conclusion:
Numerical solutions converge strongly in L” to the strong solution of the
Navier—Stokes system on its life span (locally in time)



Step Ill, conditional regularity

boundedness of the numerical solutions = the limit (o, u) is bounded

Global existence:

conditional regularity criterion of Sun, Wang, Zhang
=

convergence in (0, T) to the classical solution




Error estimates

Relative energy:

E (Qh, uh| 0, U) = %Qh\u — up|® + P(n) — P'(0)(en — ) — P(0)

Error estimates (M. Lukacova, B. She):

/Td E(Qh,Uh

0, u) (r,-) dx < C(At+ h)

07T




Statistical solutions

Data:

m initial data [go, uo]

m viscosity coefficients p, A
m driving force g
n

EOS - the pressure law p(p) = ap”

uncertain data = data considered as random variables

m Weak stochastic approach: Only distribution of the data is known.
Monte—Carlo and related methods

m Strong stochastic approach: Data are known as random variables
ranging in a suitable space. Stochastic Galerkin, stochastic
collocation methods etc.




Numerical approximation

Step 1:

Choose regular (initial) data

Step 2: [Nonintrusive methods] Apply deterministic numerical method
several times with (i) randomly generated data (weak approach) (ii) exact
data at collocation points (strong approach)

Numerical solutions:

(oh,nyunn), n=1,2 ... family of numerical solutions

Empirical means:

N
(on,n,unn) = E Oh,ns Uh.n)

Boundedness in probability
Given € > 0, there is M(g) such that:

1
N#{th,n,uh,n”LW < /\/I(E),n < N} >1—¢




Convergence analysis, |

Application of Skorokhod representation theorem:
m Data:

|:§0,N760,N7 ﬁN7 ﬁN7 EN] ~ |:Q07 Uo, K, 17, g]

Oo,n = Q0 ~ Qo
U,y — Ug ~ Ug
AN = L~ py Iy = 1~ 1)
gv > E~8
m Numerical solutions

N
- ~ 1
L(law)(2n v, Unn) = 5 D Son )
n=1

m Boundedness a.s.

(Eh,N,ﬁh,N) <Cash—0, N— oo a.s.




Convergence analysis, |l

Application of Gyongly—Krylov convergence criteria:
m The limit problem admits a regular solution (g, u) a.s.

L]
l(on, un) — (o,u)||rs — O in probability, 1 < g < oo




Possible applications to more complex systems

m (Complete) Navier-Stokes—Fourier system. The existence and
weak strong uniqueness principle proved in a series of papers with J.

Btezina (Kyushu University) and (Toulon)

m Regularity criterion by EF, Wen and Zhu [2022]
If Tmax < oo for the complete Navier—Stokes—Fourier system, then

llo(t; -)lleee +[[0(t, )l[Le — 00 as t = Tmax




