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Summary 

Thyroid hormones (THs) play multiple roles in the organism and 

alterations of their levels can result in many pathological 

changes. Currently, we use hyperthyroid and hypothyroid rats as 

“models of a diseased organism” and analyze whether n-3 

polyunsaturated fatty acids (n-3 PUFA) administration can 

ameliorate TH-induced pathophysiological changes. We 

investigate myosin heavy chain composition, calsequestrin levels, 

changes in cardiac tissue remodeling and cell-to-cell 

communication, expression of protein kinases, mitochondrial 

functions, oxidative stress markers and cell death, changes in 

serum lipid levels, activities of key enzymes of thyroid hormone 

metabolism, activity of acetylcholine esterase and membrane 

anisotropy, as well as mobile behavior and thermal sensitivity. 

Additionally we also mention our pilot experiments dealing with 

the effect of statin administration on skeletal muscles and 

sensory functions. As THs and n-3 PUFA possess multiple sites of 

potential action, we hope that our complex research will 

contribute to a better understanding of their actions, which can 

be useful in the treatment of different pathophysiological events 

including cardiac insufficiency in humans.  
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Introduction 
 
Thyroid hormones (THs) play an important role 

in cell growth, development and differentiation and 
represent one of the major endocrine regulators of cell 
and tissue metabolic activity. Alterations of their levels in 
experimental animals can induce different changes 
including muscle fiber type transitions, alterations of 
cardiac rhythm, myosin heavy chain (MyHC) and serum 
lipid level alterations, modification of calcium handling, 
ion channels, transporters, exchangers and enzyme 
activities (for review see Soukup and Jirmanová 2000, 
Hudecova et al. 2004, Kahaly and Dillmann 2005, 
Bielecka-Dabrowa et al. 2009, Tribulová et al. 2010, 
Novák and Soukup 2011).  

On the other hand, omega n-3 polyunsaturated 
fatty acids (n-3 PUFA) have been suggested in many 
clinical trials and animal models (McLennan 2001) to 
possess multiple effects, including reduction of lipid 
levels, metabolic effects, direct interactions with 
cytosolic or membrane bound proteins, alteration of 
membrane fluidity (after being incorporated into the 
phospholipid bilayer) or cardiac tissue remodeling and 
cell-to-cell communications (for review see Den Ruijter 
et al. 2007, Rupp 2009, Tribulová et al. 2008, 2010, 
Richardson et al. 2011, Rauch and Senges 2012, von 
Schacky 2010, 2012), although the data demonstrating 
improvement remain contradictory. Their effects are 
usually tested using preparations from fish oil containing 
a high amount of eicosapentaenoic (EPA) and 
docosahexaenoic (DHA) n-3 PUFA. These preparations 
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are supposed to help in post myocardial infarction states 
as well in the reduction of hypertriglyceridemia, often as 
a supplementary treatment to statins.  

Statins are drugs used in human therapy to 
reduce high levels of serum lipids (cholesterol, LDL and 
triglycerides) and to prevent cardiovascular disease. They 
are used when dietary regimens and life style changes 
(body mass reduction and exercise) are not sufficient. On 
the other hand, it is well known that chronic 
administration of statins can induce in humans a range of 
side effects, including skeletal muscle weakness and pain, 
myopathies or even muscle breakdown (including a life 
threatening form termed rhabdomyolysis), decreased 
sensitivity to touch and various neurological problems, 
such as polyneuropathies or nerve damage resulting in 
loss of sensitivity in the fingers or toes or the 
development of neuropathic pain.  

The goal of this review is to compare our 
experiments that have been using hyperthyroid and 
hypothyroid rats as “a model of a diseased organism” 
with known literary data. We particularly reviewed 
whether i) n-3 polyunsaturated fatty acids (n-3  
PUFA) administration can ameliorate TH-induced 
pathophysiological changes such as skeletal muscle 
protein alterations, cardiac tissue remodeling and cell-to-
cell communication changes, alterations in expression of 
protein kinases, mitochondrial functions, oxidative stress 
markers and cell death, changes in serum lipid levels, in 
activities of key enzymes of TH metabolism and 
acetylcholine esterase or in membrane anisotropy, as well 
as in mobile behavior and thermal sensitivity, and ii) 
whether chronic statin administration affects fiber type 
composition and structure of skeletal muscles, as well as 
hind paws sensitivity to heat stimuli.  

 
Skeletal muscles   

 
MyHC isoforms and calcium handling proteins  

Skeletal muscles contain variable proportion of 
four fiber types, marked slow type 1 and fast 2A, 2X/D 
and 2B fibers (Pette and Staron 2001, Schiaffino 2010). 
These types can be recognized by immunostaining with 
specific monoclonal antibodies against individual MyHC 
isoforms (Fig. 1), using histochemistry, e.g. by 
myofibrillar ATPase reaction or using RT-PCR to 
determine the level of MyHC isoform mRNA expression 
(Schiaffino et al. 1986, Soukup et al. 2002, 2009, 
Zacharova et al. 2005, Zurmanova et al. 2007, 2008, 
Smerdu and Soukup 2008, Novák et al. 2010, Zurmanova 

and Soukup 2013). On the other hand, mammalian heart 
muscle cells express only two MyHC isoforms, α and β 
(Mahdavi et al. 1982), the latter corresponding to slow 
type 1 isoform in skeletal muscles and being a product of 
the same gene. The molecular masses of the rat α and β 
isoforms are both about 223 kDa (Rat Gene Database: 
http://rgd.mcw.edu/) and their amino acid sequences are 
93 % identical (McNally et al. 1989) and their separation 
using SDS-PAGE is not simple (Arnostova et al. 2011). 
However, they differ in their ATPase activity and effect 
on heart contractility, as MyHCα is a part of a „fast 
myosin” with higher ATPase activity and faster 
contraction, whereas MyHCβ is contained in a „slow 
myosin” with lower ATPase activity and slower 
contraction (Pope et al. 1980). 

 
 

 
  
Fig. 1. Examples of cross sections demonstrating immune 
reactivity of the extensor digitorum longus muscle of adult Lewis 
euthyroid rats. A: BA-D5 staining slow type 1 fibers, B: SC-71 
staining fast 2A fibers, C: BF-35 staining all fibers except fast 
2X/D and D: BF-F3 staining fast 2B. Bar indicates 100 μm (from 
Soukup et al., Physiol Res 61: 575-586, 2012, with the kind 
permission of the Journal). 

 
 
It is generally supposed that the MyHC mRNA 

levels define the amount of subsequently synthesized 
MyHC protein isoforms and decisively contribute to fiber 
type contractile characteristics (e.g. Schiaffino and 
Reggiani 1996, Pette 2002, Schiaffino 2010). Skeletal 
muscles react to TH alteration by modifying their MyHC 
content and fiber type composition (d´Albis and Butler-
Browne 1993, Larsson et al. 1994, Caiozzo et al. 1997, 
Soukup and Jirmanová 2000, Soukup et al. 2001, 2012, 
Vadászová et al. 2004, 2006a,b, Vadászová-Soukup and 
Soukup 2007, Novák and Soukup 2011, Soukup and 
Zurmanova 2012) and this reaction is different from that 
occurring in the heart muscle (Dillmann 1990, Tribulová 
et al. 2010). It is generally supposed that elevated levels 
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of THs, as transcriptional factors acting via the thyroid 
hormone response element (Yen 2001, Fondell 2013), 
stimulate the expression of fast genes and thus increase 
expression of fast MyHC isoforms and number of fast 
fibers with high mATPase activity (Fig. 2). Furthermore, 
muscle fiber type characteristics can flexibly react to 
physiological demands within their given genetic range 
(Erzen et al. 1996, Snoj-Cvetko et al. 1996a,b). We 
presented quantitative evidence of corresponding 
proportions between mRNA level, protein content and 
fiber type composition in the rat soleus and EDL muscles 
and suggested that Real Time RT-PCR could be used as a 
routine method for analyzing muscle composition 
changes and could thus be advantageous for the analysis 
of scant biological samples such as muscle biopsies in 
humans (Zurmanova and Soukup 2013). Alteration of TH 

status, as well as many other experimental approaches, 
can lead to mismatch of mRNA, MyHC isoform and fiber 
type characteristics and may increase the incidence of s.c. 
mixed fibers expressing more MyHC mRNAs and protein 
isoforms within a single fiber (Stevens et al. 1999). 
Hyperthyroid (HT) status significantly increased the 
number of mixed 2C (1C) fibers in the slow soleus 
muscle, while the fast EDL muscle was more affected by 
hypothyroid (HY) status compared to euthyroid (EU) 
status (Novák and Soukup 2011). Increased numbers of 
hybrid fibers were also observed after suspension 
hypokinesia (Asmussen and Soukup 1991, Caiozzo et al. 
1997), weightlessness during space flight (Kraemer et al. 
2000) or during increased mobility (Asmussen et al. 
2003). 

 
 

Fig. 2. Examples of cross sections 
demonstrating alkali-stable mATPase 
reaction after pH 10.3 pre-incubation of the 
soleus muscles of adult hypothyroid (A), 
euthyroid (B) and hyperthyroid (C) Lewis 
strain rats. The same image was achieved 
using the SC-71 monoclonal antibody. Slow 
type I fibers are marked as 1 and fast type 
2A fibers as 2A. Note the great difference in 

the number of darkly stained 2A fibers. Bar indicates 50 μm (from Soukup et al., Physiol Res 61: 575-586, 2012, with the kind 
permission of the Journal). 

 
 

 

Calsequestrin expression  
For the physiological change of muscle 

performance one should expect changes of both 
contractile and excitation-contraction-coupling (ECC) 
machinery, namely changes of calcium binding proteins 
(CaBPs), including calsequestrin (CSQ). CSQ is the most 
abundant CaBP of skeletal and cardiac muscle. It 
maintains free Ca2+ concentrations relatively low, which 
is important for easier and more efficient transport of 
released calcium by SERCA pumps. CSQ is a component 
of the macromolecular complex involved in ECC, the 
process linking surface membrane depolarization to Ca2+ 
release from the SR (Berchtold et al. 2000, Dulhunty 
2006, Franzini-Armstrong 2009). CSQ is produced as a 
skeletal (CSQ1) isoform found in fast-twitch and slow-
twitch muscles and a cardiac (CSQ2) isoform, considered 
to be the only transcript present in cardiac and a minor 
transcript in adult slow-twitch muscle (Beard et al. 2004, 
Wei et al. 2009). Functional changes of the CSQ complex 
and its mutations can result in pathology, including 
impairment of ECC, skeletal muscle myopathies or 
cardiac arrhythmias (for review see Marks et al. 2002, 
Tomelleri et al. 2006, for detailed literature survey see 

Novák and Soukup 2011). We investigated the effects of 
altered TH levels on the expression of CSQ1 in relation 
to simultaneously induced changes in fiber type 
composition. Both features were analyzed in normal and 
regenerated fast and slow skeletal muscles and in hearts 
of EU, HT and HY adult inbred Lewis strain rats. We 
found that the extent of changes in CSQ1 levels after TH 
alterations corresponded to the changes of the fiber type 
composition both in normal and regenerated muscles. 
This “correlation” was most remarkable after grafting of 
the soleus muscle into the EDL and vice versa, as the 
CSQ1 level and fiber type composition corresponded to 
the level typical for the host muscle and not to that of the 
graft source (Soukup et al. 2012). The higher TH level 
thus increased both the level of CSQ1 and the 
percentages of fast 2X/D and 2B fibers in the EDL, while 
HY status lead to opposite changes. This suggests that the 
observed minor changes in CSQ1 level are probably 
related to complex fiber type changes occurring during 
muscle fiber type TH induced transformation. 
We observed no significant effect of n-3 PUFA 
supplementation (unpublished data). 
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Pravastatin effect  

We are currently studying two effects of long 
term statin application known in human pathology, i.e. 
muscle and sensory perception impairment. We are 
testing whether muscle structure or fiber type 
composition as well as MyHC isoform composition, 
thermal sensitivity and mobile behavior will also change 
in rats. We use pravastatin, which is one of so-called acid 
statins (fluvastatin, pravastatin, cerivastatin) that directly 
inhibit the activity of 3-hydroxy-3-methyl-glutaryl- CoA 
(coenzyme A) (HMG-CoA), which is a key enzyme in 
the cholesterol synthesis pathway. Pravastatin can be 
easily dissolved in water (lactone statins – simvastatin 
and lovastatin must first be metabolized in the organism 
and are practically insoluble in water) and can be 
commercially purchased as a chemical, although it was 
already used in human therapy. We applied pravastatin 
beginning from the 4th postnatal week for maximally 
21 months. Comparing the life span of rat and man, this 
corresponds to the administration in man from about the 
age of 3 to 75 years. The minimal dose was 50 μg/100 g 
at the beginning of the experiments; the maximal dose 
applied from the 6th month onward was 300 μg/100 g of 
body weight. In man, the minimal dose used is 10 and the 
maximum 80 μg/100 g of body weight. Thus, both the 
length of administration and dose greatly surmount 
those used in humans. Nonetheless, our preliminary 
experiments did not show any significant changes either 
in the structure of muscle fibers or changes in fiber type 
or MyHC isoform composition. Also, the thermal 
sensitivity tested with radiant heat applied to the plantar 
surface of each hind paw at room temperature 
(Pospíšilová and Paleček 2006) did not change 
significantly after chronic pravastatin application. Still, it 
has been reported that the combined effect of n-3 PUFA 
and atorvastatin suppresses ventricular fibrillation 
inducibility in hypertriglyceridemic rat hearts (Bacova et 
al. 2010). 
 
Heart 

 
Heart remodeling  

Apart from pathophysiological factors such as 
hemodynamic overload and diabetes, THs represent the 
most potent regulator of cardiac MyHC gene expression 
leading to MyHC transitions and changes of heart 
contraction (Lompre et al. 1984, Izumo et al. 1986, 
Ojamaa and Klein 1993, Fletcher and Weetman 1998, 
Stevenson 2002, Danzi et al. 2008, for review see 

Swynghedauw 1986, Morkin 2000, Gupta 2007, 
Tribulova et al. 2010). We have recently shown that in 
the left ventricles of EU and HT adult inbred Lewis strain 
rats, MyHCα was the predominant isoform, while in HY 
rats it was the MyHCβ isoform (Arnostova et al. 2011). 
We also showed that the HT status led in Lewis strain rats 
to cardiac hypertrophy (both absolute and relative), while 
HY status resulted in heart atrophy. Unfortunately, it is 
difficult to draw any parallels with the situation in 
humans, as human hearts contain MyHCβ as the major 
isoform. Nonetheless, it is known that chronic exercise 
induces physiological hypertrophy in humans 
characterized by the increased expression of MyHCα, 
while pathological hypertrophy caused by pressure and 
volume overload leads to the opposite effect (for review 
see Gupta 2007). Based on the differences in the ATP 
requirement of the two isoforms, it is accepted that hearts 
expressing mostly MyHCβ have a more economical 
metabolism than those expressing predominantly 
MyHCα. Still, data obtained from studies on transgenic 
rabbit hearts have indicated that moderate expression of 
the MyHCα isoform was advantageous for preserving 
heart function under stress conditions, suggesting that the 
benefit to heart function presented by this isoform may 
outweigh its higher energy demands (James et al. 2005, 
Gupta 2007). Maybe even more importantly, changes in 
cardiac MyHC isoforms expression (i.e. shift to MyHCβ) 
are supposed to be the major cause of heart failure (Gorza 
et al. 1984, Spann 1984, Miyata et al. 2000, Reiser et al. 
2001, Tribulova et al. 2002). Alterations of TH levels 
thus contribute to various pathological changes, including 
some of the most life threatening cardiac events, such as 
atrial and ventricular fibrillations or malignant ventricular 
arrhythmias (Kahaly and Dillmann 2005, Bielecka-
Dabrowa et al. 2009, Tribulová et al. 2010). Since it was 
shown that many cardiovascular diseases are associated 
with a shift between cardiac α and β MyHC isoforms, 
their unequivocal determination by SDS-PAGE is 
extremely important, especially for human pathology 
(Arnostova et al. 2011). Malignant cardiac arrhythmias 
including atrial and ventricular fibrillation represent, as 
already said, major problems in humans. Certain 
therapies, such as the administration of statins and n-3 
PUFA, are supposed to provide additive antiarrhythmic 
efficacy by reducing risk factors involved in the 
development of the arrhythmogenic substrate (myocardial 
remodeling). Previous experiments suggested that 
intercellular Cx43 gap junction channels are involved in 
the increased susceptibility of the heart to arrhythmias 
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caused by increased TH levels and also that expression of 
PKCε, which directly phosphorylates Cx43, is affected 
(Tribulová et al. 2002, 2005, Lin et al. 2008, Mitašíková 
et al. 2009, for review see Dhein 1998, Tribulova et al. 
2008, 2010). Some experiments suggested that n-3 PUFA 
may exert their protective effect via attenuation of the 
arrhythmogenic substrate (Mitašíková et al. 2008, Bacova 
et al. 2011, Radosinska et al. 2011). It was also shown 
that left ventricle hypertrophy in SHR rats was also 
associated with “remodeling” of MyHC, which altered 
susceptibility of the heart to sustained ventricular 
fibrillation in experimental animals (Tribulova et al. 
2002). In our two recent papers (Radosinska et al. 2013, 
2014) we found that n-3 PUFA intake significantly 
reduced cardiovascular risk factors, as they suppressed 
the incidence of ventricular fibrillation and facilitated 
sinus rhythm restoration in SHR in early and late stages 
of hypertension. The antiarrhythmic effects of n-3 PUFA 
can be attributed to the attenuation of abnormal 
myocardial Cx43 distribution, expression and 
phosphorylation, as well as to positive modulation of 
PKCε and PKCδ signaling and normalization of MyHC 
profiles (Radosinska et al. 2013, 2014). These results 
support the prophylactic use of n-3 PUFA to minimize 
the risk of lethal arrhythmias in hypertensive individuals. 
In addition, n-3 PUFA also modify the activity of 
membrane bound proteins such as the fast sodium 
channel, the voltage-gated L-type Ca2+ channel, Na+/Ca2+ 
exchanger, proteins regulating calcium homeostasis (e.g. 
SERCA), transporters and membrane receptors or 
molecular targets such as peroxisome proliferator 
activated receptors (PPARs) or mitogen activated protein 
kinase/extracellular signal-related kinase (MEK/ERK) 
that all can modulate the function of the heart as well as 
of other organs (e.g. Richardson et al. 2011, Rauch and 
Senges 2012). 

 
Antioxidant system and cell death  

THs affect the energy metabolism of 
cardiomyocytes and at physiological concentrations may 
exert beneficial effects on the heart. Excess of THs can 
enhance mitochondrial respiration, but also the 
production of potentially harmful reactive oxygen species 
(ROS) (Venditti and Meo 2006). THs affect energy 
metabolism by regulating the gene expression of enzymes 
involved in oxidative as well as glycolytic metabolism 
via interaction with TH receptors (THR). T3-regulated 
genes also include transcriptional factors such as nuclear 
respiratory factor 1 (NRF-1) and peroxisome proliferator-

activated receptor gamma co-activator 1α (PGC-1α), 
which are critical for mitochondrial metabolism (Weitzel 
et al. 2011). A stimulatory effect of THs on hypoxia 
inducible transcriptional factor (HIF1) was also recently 
described (Moeller et al. 2005), as well as a HIF1 
feedback loop controlling THs function via activation of 
local deiodinase D3 expression (Simonides et al. 2008). 
There is clear evidence indicating down-regulation of the 
TH signaling system demonstrated as decrease of THR in 
the failing heart (for review see Dillmann 2010). The n-3 
PUFA that have been shown to build up TH signaling 
(Souza et al. 2011) may then ameliorate such negative 
effect. Energy homeostasis of cardiomyocytes and control 
of apoptosis are also closely connected with the function 
of proteins associated with outer or inner mitochondrial 
membranes such as Bcl-2 family proteins (Youle and 
Astrasser 2008), hexokinase I and II (Miyamoto et al. 
2008, Waskova-Arnostova et al. 2013) or the 
mitochondrial creatine kinase (mtCK). The mtCK 
octamer complex is localized in the inter-membrane 
space between the voltage-dependent anion channel 
(VDAC) and adenine nucleotide translocase (ANT) 
(Wallimann et al. 2011). Physiological interaction of the 
functional mtCK octamer is dependent on cardiolipin 
content in the inner membrane (Schlattner et al. 2009) 
and n-3 PUFAs directly increase the membrane n-3: n-6 
ratio and cardiolipin content and improve tolerance to 
ischemia and reperfusion (Pepe 2000). Administration of 
n-3 PUFA thus could stabilize the mtCK octamer 
function and support energy homeostasis of 
cardiomyocytes under altered TH states. New avenues of 
cardioprotection have been opened by studies of cellular 
homeostasis, which is regulated by mitochondria, 
endoplasmic reticulum or expression of cytosolic 
signaling molecules. Several types of cell death may 
appear in response to death-inducing stimuli (Fink et al. 
2005, Chung et al. 2012, Li et al. 2012). Hypothetically, 
TH can also act as a stimulus of cell death, and exploring 
and attenuating TH induced autophagy, apoptosis and 
pyroptosis formation in the damaged heart or other 
tissues is important for ameliorating the progress of 
cardiac diseaseas (Chien et al. 2012). Activation 
of nuclear factor-erythroid-2-related factor 2 (Nrf2) 
signaling provides cardioprotection, renoprotection and 
an anti-inflammatory effect, whereas down-regulation or 
knockout Nrf2 abrogates such protection (Chen et al. 
2011, Wu et al. 2011, Chung et al. 2012). It can be 
assumed that elevated TH level through its receptor overt 
activation may inhibit nuclear Nrf2 translocation, impair 
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Bcl-2/Bcl-xL dependent-mitochondrial function and 
reduce downstream gene translation products such as 
HO-1 in the damaged heart. Enhanced Bcl-2/Bcl-xL 
expression, using Nrf2 activator or n-3 PUFA treatment 
may countervail TH induced heart injury. 

  
Serum lipids 

 
THs are important modulators of lipid 

metabolism. Generally, hypothyroidism is associated 
with increased levels of serum triglycerides, cholesterol 
and LDL cholesterol and vice versa hyperthyroidism is 
associated with their decreased levels. As regards n-3 
PUFAs, they can shift energy substrates away from their 
storage as triglycerides, suppressing lipogenesis and 
promoting the utilization of fatty acids as fuel by 
increasing lipase activity and β-oxidation in mitochondria 
and peroxisomes. EPA and DHA are also poor substrates 
for triglyceride synthesizing enzymes, thus decreasing 
lipid levels. The hypolipidemic effect of n-3 PUFA is not 
completely understood, but it seems that it is mainly 
exerted via the activation of gene expression by up-
regulation of nuclear transcription factors, such as 
PPARα in the liver, which indicates cross-talk between  
n-3 PUFA and THs (Bordoni et al. 2006, Sugiyama et al. 
2008, Souza et al. 2011). Souza et al. (2011) reported that 
EU Wistar rats maintained on a fish oil diet (n-3 PUFA) 
exhibited higher liver expression of TH receptor β1 
(TRβ1). In contrast, in the HY rats, the ability to induce 
TRβ1 was lost suggesting the enhancement of THs action 
following n-3 PUFA supplementation. The recommended 
dose of n-3 PUFA for humans with established coronary 
heart disease is 1 g/day and 3-4 g/day for patients wishing 
to achieve clinical protection against lipoprotein level 
elevation (Davidson et al. 2011). In rats, however, even 
6-week-supplementation at a higher dose of 0.2 g/kg 
body weight/day, which significantly decreased blood 
pressure, suppressed inducible ventricular fibrillation, 
improved myocardial metabolic state, preserved 
cardiomyocytes and the integrity of their junctions in 
aged male and female SHR (Mitasikova et al. 2008), had 
no significant effect on serum postprandial triglyceride, 
total cholesterol and LDL-cholesterol levels (Rauchová et 
al. 2013). This could be partially explained by the data of 
Raederstorff et al. (1991) who showed that the quality 
and consistency of n-3 PUFA were altered by THs 
probably due to the competition for desaturases, 
elongases and acyltransferases between n-3 and n-6 
PUFA. Moreover, rats are a rather poor model for testing 

lipid metabolism because they transport most of their 
cholesterol in the HDL fraction (Harris 1997) and are 
relatively hyporesponsive to increasing cholesterol levels 
(Zhang et al. 2009). Nevertheless, many animal studies 
have shown that a diet with n-3 PUFA usually lowered 
plasma triglyceride and total cholesterol levels almost 
always due to a decrease in HDL cholesterol (Harris 
1997). 

A good marker of the different thyroid status  
is mitochondrial glycerol-3-phosphate dehydrogenase 
(GPDH EC 1.1.99.5.), a flavin-linked enzyme, which is 
implicated in glycolysis, oxidative phosphorylation and 
lipid metabolism. It is well known that THs markedly 
influence GPDH activity in various mammalian organs, 
such as liver, skeletal muscle or heart (Lee and Lardy 
1965, Dümmler et al. 1996). Our chronic experiments 
confirmed that HT status increased expression and 
activity of rat liver GPDH, while HY status resulted in 
opposite changes (Rauchová et al. 2004, 2011). 

 
Metabolism of thyroid hormones 

  
Multiple biological effects of THs depend on 

intracellular levels of 3,5,3’-triiodo-L-thyronine (T3), 
which binds to nuclear THRs with the highest affinity. 
More than 80 % of circulating T3 is generated in 
peripheral tissues by outer-ring 5’-deiodination of the 
pro-hormone thyroxin (T4), produced entirely in the 
thyroid gland. This enzymatic conversion is catalyzed by 
iodothyronine 5’-deiodinases (IDs) type 1 and 2 (D1 and 
D2, respectively). D1 is mainly present in the liver, 
kidney, thyroid gland and pituitary gland and due to its 
high specific activity, hepatic D1 is considered the most 
important source of circulating T3. In turn, its activity is 
regulated by circulating T3 (Pavelka 2010a). As D1 
enzyme activity in white adipose tissue under the 
conditions of changing adiposity shows pronounced 
changes (Macek-Jílková et al. 2010), it can be anticipated 
that supplementing the diet with n-3 PUFA may also 
influence adipose tissue metabolism and/or accumulation 
of the tissue in experimental rats by affecting their 
THs metabolism. Moreover, activities of thyroid 
peroxidase (TPO) and/or of THs conjugating enzymes 
(e.g. iodothyronine glucuronyl-transferase, UDP-GT) 
(Pavelka 2010b, 2012) may be modified by n-3 PUFA 
supplementation and therefore the rate of biosynthesis 
and the rate of excretion of metabolized THs can be 
altered.  
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Neurological effects 
 
There is a close association between THs, brain 

cholinergic function and AChE activity. Dietary depletion 
of n-3 PUFA has been shown to adversely affect 
cholinergic function (Aid et al. 2005) and may contribute 
to cognitive decline in Alzheimer disease (Astarita et al. 
2010). On the other hand, animal studies suggest that 
higher long-term dietary intake of n-3 PUFA can exert 
positive effects on various functions of the CNS (Wang et 
al. 2010) and other tissues, including rat cardiomyocytes 
(Leifert et al. 2000), apparently due to incorporation of  
n-3 PUFA into the cellular membrane phospholipid 
bilayer influencing its fluidity. Our preliminary results, 
however, failed to demonstrate any significant effect of  
n-3 PUFA supplementation on AChE activity and 
membrane fluidity (membrane anisotropy) measured in 
the cortex, striatum, hippocampus and cerebellum of EU, 
HT and HY rats (Říčný et al. 2011). Alterations of CNS 
caused by THs can be reflected by behavioral changes. 
Experiments measuring activity and response latency in 
the open field test showed that HT rats reacted with 
increased activity and shortening of response latency, 
while HY status yielded opposite results (Redei et al. 
2001). Knocking down THRα in mice, mimicking HY 
status was manifested by decreased activity, learning and 
recall impairments in the Morris water maze and by 
increased anxiety/fear behavior in the open field test 
compared to control C57BL6J mice (Wilcoxon et al. 
2007). Our pilot experiments (Petrásek et al. 2011) 
showed that HT rats are more mobile and HY less mobile 
than EU rats. The HY rats also spent less time by visiting 
central parts of the arena (increased thigmotaxis) 
compared to EU and HT rats. This suggests that behavior 
of the HY rats was less explorative and more anxious. 
Alterations of THs are thus involved in behavioral 
alterations and cognitive deficits resulting in 
increased anxiety and decreased exploratory behavior. 
Supplementation with n-3 PUFA, however, did not show 
any significant effect compared to changes caused by 
altered thyroid status. 

 
Conclusions 

 
Polyunsaturated fatty acids (n-3 PUFA) can help 

in the prevention of adverse cardiac tissue remodeling 
associated with severe arrhythmias and cell-to-cell 
communication. Although thyroid hormones (TH) play 
multiple positive roles in the organism, chronic or 
prolonged alterations of their levels can result in 
pathophysiological changes affecting expression of many 
proteins as well as tissue remodeling. As THs and n-3 
PUFA possess multiple sites of potential action, we hope 
that our complex research will contribute to a better 
understanding of their actions, which can be useful in the 
treatment of different pathophysiological events including 
cardiac insufficiency in humans.  
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