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Summary 

Muscarinc receptor-mediated signaling takes part in many 

physiological functions ranging from complex higher nervous 

activity to vegetative responses. Specificity of action of the 

natural muscarinic agonist acetylcholine is effected by action on 

five muscarinic receptor subtypes with particular tissue and 

cellular localization, and coupling preference with different  

G-proteins and their signaling pathways. In addition to 

physiological roles it is also implicated in pathologic events like 

promotion of carcinoma cells growth, early pathogenesis of 

neurodegenerative diseases in the central nervous system like 

Alzheimer´s disease and Parkinson´s disease, schizophrenia, 

intoxications resulting in drug addiction, or overactive bladder in 

the periphery. All of these disturbances demonstrate involvement 

of specific muscarinic receptor subtypes and point to 

the importance to develop selective pharmacotherapeutic 

interventions. Because of the high homology of the orthosteric 

binding site of muscarinic receptor subtypes there is virtually no 

subtype selective agonist that binds to this site. Activation of 

specific receptor subtypes may be achieved by developing 

allosteric modulators of acetylcholine binding, since ectopic 

binding domains on the receptor are less conserved compared to 

the orthosteric site. Potentiation of the effects of acetylcholine by 

allosteric modulators would be beneficial in cases where 

acetylcholine release is reduced due to pathological conditions. 

When presynaptic function is severly compromised, the utilization 

of ectopic agonists can be a thinkable solution. 
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Physiology of muscarinic receptors 

 
Muscarinic receptors belong to the family of  

G-protein coupled receptors (GPCR) that are the most 
abundant and pharmacologically targeted plasma 
membrane receptors (Lander et al. 2001, Fredriksson et 
al. 2003). A common structural feature of GPCR is the 
extracellular N-terminus, seven membrane spanning 
domains, three extracellular and three intracellular loops, 
and an intracellular C-terminus. Stimulation of various 
GPCRs leads to activation of particular G-proteins and 
their intracellular signaling pathways that play important 
regulatory roles in virtually all physiological functions. In 
addition to these well-established pathways, it has also 
been demonstrated that receptors also transduce  
non-G-protein-mediated signaling via arrestins and  
G-protein receptor kinases (Lefkowitz 1998, Lefkowitz 
and Shenoy 2005, Reiter and Lefkowitz 2006). 

To date five subtypes of muscarinic receptors 
denoted as M1-M5 and encoded by five different genes 
have been discovered (Kubo et al. 1986a,b, Bonner  
et al. 1987, 1988, Peralta et al. 1987, Bonner 1989a,b). 
Muscarinic receptors are widely expressed in both the 
central and peripheral nervous system, with distinct 
cellular as well as tissue localization of individual 
subtypes. They mediate various physiological functions 
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of their natural agonist acetylcholine ranging from 
complex higher nervous functions such as arousal, 
memory and alertness to vegetative processes such as 
regulation of heart rate and cardiac output, blood 
pressure, temperature regulation, perspiration, secretion 
of exocrine and endocrine glands, and motility of the 
gastrointestinal tract (Eglen 2006, 2012). In addition to 
these functions mediated by neuronal acetylcholine, 
muscarinic receptors also play a role in mediating local 
responses of non-neuronally derived acetylcholine, e.g. 
modulation of immune responses or regulation of local 
circulation (Kawashima and Fujii 2004, 2008, Wessler 
and Kirkpatrick 2012). Non-neuronal acetylcholine has 
also been implicated in paracrine control influencing lung 
cancer growth through both nicotinic and muscarinic 
receptors signaling (Song et al. 2003a,b, Proskocil et al. 
2004, Song et al. 2007, Schuller 2009). 

 
Pharmacology of muscarinic receptors 

 
Individual muscarinic receptor subtypes share a 

high degree of homology in the transmembrane domains 
while extracellular and intracellular loops are less 
well conserved (Hulme et al. 1990, 1991, 2003). The 
intracellular C-terminus may form the fourth intracellular 
loop by means of a glycosyl anchor. The N-terminal part 
of the third intracellular loop represents the contact 
domain for interaction with G-proteins (Wess et al. 1995, 
Hu et al. 2010). Higher variability of this domain enables 
selectivity of interaction with different G-proteins. The 
M1, M3, and M5 receptor subtypes preferentially activate 
Gq/11 G-protein intracellular signaling while the M2 and 
M4 subtypes prefer Gi/o G-proteins and activate their 
signaling pathways (Jones et al. 1991).  

Muscarinic receptors have a classical 
(orthosteric) binding site for natural or exogenous 
agonists located deep in a pocket created by the 
transmembrane segments of the protein that are highly 
conserved among individual receptor subtypes (Hulme et 
al. 2003). Due to high conservation of the orthosteric site 
there are virtually no known selective orthosteric 
agonists. It is thus of prime importance to find out a way 
to influence selectively signaling pathways of individual 
muscarinic receptors. Apart from the orthosteric binding 
site that is naturally occupied by the endogenous agonist 
acetylcholine muscarinic receptors have allosteric binding 
sites located on less conserved extracellular loops. 
Allosteric ligands bind to an allosteric site on the receptor 
and may either activate the receptor by themselves or 

modulate receptor activation by acetylcholine. They 
exhibit subtype selectivity because they bind to less 
conserved receptor domains. Binding of allosteric ligands 
results in remarkable subtype selective influencing of 
orthosteric ligand binding that depends on the receptor 
subtype and the specific pair of orthosteric-allosteric 
ligands (Jakubik et al. 1995, 1997, 2005). Allosteric 
ligands (modulators) change receptor conformation and 
in this way increase, decrease, or have no influence 
(positive, negative, or neutral cooperativity) on the 
binding affinity of given orthosteric agonists, including 
the natural agonist acetylcholine (Jakubik and  
El-Fakahany 2010). The advantage of allosteric 
modulators is that their effect, with respect to the specific 
receptor-activated pathway, is given by the factor of 
cooperativity with orthosteric ligand that dictates a 
maximal degree of interaction of binding of both agents. 
This results in eliminating a danger of overdosing.  

There are also so called ectopic ligands (Fig. 1 
and 2) that attach to more distal parts of the receptor 
binding site pocket that is less conserved. Unlike 
allosteric modulators they prevent binding of orthosteric 
ligands to the orthosteric site. However, the selectivity of 
known ectopic ligands in terms of binding affinity to 
different receptor subtypes is generally poor. On the other 
hand, some of these compounds exhibit significant 
functional selectivity (e.g. N-desmethylclozapine,  
AC-42), which makes them good candidates for 
pharmacotherapy. 

The next type of compounds that bind to 
muscarinic receptors are so called bitopic ligands. These 
agents can bind to two sites on a single receptor. An 
example is 77-LH-28-1 that was identified from a series 
of AC-42 analogs (Langmead et al. 2008) and shown to 
have selectivity for M1 receptors (Heinrich et al. 2009). 
In vitro studies indicated competitive interaction between 
the orthosteric antagonist scopolamine and 77-LH-28-1 
(Langmead et al. 2008). Further functional and site-
directed mutagenesis studies have demonstrated an 
allosteric mode of agonist action for this ligand. Another 
example of ligand that binds both to orthosteric and 
allosteric sites and can be labeled as bitopic is 
xanomeline (Jakubík et al. 2002). Xanomeline is one of 
few functionally selective muscarinic agonists. It 
preferentially activates M1 and M4 receptors while it has 
long-term antagonistic effects at M5 receptors (Grant and 
El-Fakahany 2005, Grant et al. 2010). In addition, part of 
xanomeline binding that depends on the O-hexyl group of 
the molecule (Jakubik et al. 2004) is resistant to washing 
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(Christopoulos et al. 1998, Jakubik et al. 2002, 2006). 
Interestingly, wash-resistant xanomeline itself acts on the 
receptor both competitively and allosterically (Jakubik et 
al. 2002, Machová et al. 2007). 

There is accumulating evidence that muscarinic 
receptors can be activated via several different allosteric 
sites (Jakubík et al. 1996, Lebois et al. 2010) and ectopic 

sites (Langmead et al. 2008). Thus regardless of the 
binding mode (orthosteric, ectopic, allosteric or bitopic; 
Fig. 1 and 2) ligands can act as agonists (induce response 
like natural neurotransmitter) or neutral antagonists 
(produce no response on their own but block activation 
by agonists) or inverse agonists (induce response 
opposite to the natural neurotransmitter).  

 
 

 
Fig. 1. Schematic representation of ligand binding modes. Binding of the orthosteric ligand (blue rectangle) to the othosteric site (A), 
binding of the ectopic ligand (red circle) to the ectopic site that is different from the orthosteric site but prevents binding of the 
othosteric ligands (B), allosteric ligand (green triangle) binds to the allosteric binding site concurrently with the orthosteric ligand (C), 
bitopic ligand (yellow diamod) can bind to the allosteric binding site (D) as well as to the orthosteric binding site (E). 
 

 
Fig. 2. Structures of atypical 
muscarinic ligands. A, ectopic 
ligands N-desmethylclozapine 
and AC-42; B, allosteric 
agonists VU0152099 and 
VU0152100; C, bitopic 
agonists 77-LH-28-1 and 
xanomeline. 
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Alzheimer's disease 

 
Alzheimer´s disease (AD) is the most 

widespread dementing neurodegenerative disease. It was 
described in 1907 by Alois Alzheimer and since then 
enormous efforts have been exerted to find out how it 
originates and explore possibilities of an efficient 
treatment. Original pathological findings of amyloid 
plaques, neurofibrillary tangles, and impairments of the 
brain cholinergic system led to the formulation of the 
“cholinergic hypothesis” of AD (Bartus et al. 1982). 
Later on fragments of the amyloid precursor protein 
(APP), a major protein isolated from amyloid plaques 
(Masters et al. 1985a,b), were discovered (Kang et al. 
1987). Proof of increased accumulation of these 
fragments in Alzheimer’s brains gave rise to the 
“amyloid cascade hypothesis” (Hardy and Higgins 1992). 
Overproduction of Aβ fragments in hereditary cases 
of the disease is due to known defects of genes for 
APP localized on chromosome 21, presenilin 1 on 
chromosome 14 (Sherrington et al. 1995), and presenilin 
2 on chromosome 1 (Levy-Lahad et al. 1995a,b). 
However, the reason for their increased production in 
sporadic cases representing the majority (up to 98 %) of 
cases is largely unknown. Allelic polymorphism of the 
ApoE gene is a major genetic risk factor in sporadic early 
onset AD that can nonetheless account for no more than 
5-15 % of cases. By far the major risk factor of the 
disease is increasing age yet it is not known how it 
contributes to development of the disease. It has been 
suggested that exposure to a variety of insults during life 
cycle may lead to the gradual accumulation of native  
β-amyloid (Aβ) fragments and finally to the common 
clinical and pathological picture of Alzheimer´s disease 
(Mesulam 1999, Selkoe 2001, 2002, Kukar et al. 2005, 
Turner and Nalivaeva 2007, Karran et al. 2011). 

The amyloid cascade hypothesis postulates that 
the primary event in the pathogenesis of AD is the 
overproduction of Aβ fragments as a result of known 
genetic defects in hereditary cases of the disease (Hardy 
1997). It is now generally accepted that the causal agent 
that triggers and drives the disease progression is 
increased concentration of small soluble oligomers of Aβ, 
mainly fragment Aβ1-42 (Selkoe 2002, Lesne et al. 2006, 
2008, Maezawa et al. 2011, Shankar et al. 2011). 
However, familial AD disease represents only about 1 % 
of all cases. This has urged for investigations of the 
physiological function of Aβ that should help to explain 
the high prevalence of the disease in sporadic cases. The 

fragments of Aβ that are generated by sequential cleavage 
at the β and γ sites of APP have been reported to have 
both neuroprotective and neurotoxic effects (Whitson et 
al. 1989, 1990, Yankner et al. 1990, Pike et al. 1991). 
More recently, the specific physiological role of 
major Aβ fragments connecting APP and lipid 
metabolism has been demonstrated. Fragment Aβ1-40 
downregulates cholesterol synthesis by inhibiting 
hydroxymethylglutaryl-CoA synthase whereas fragment 
Aβ1-42 decreases sphingomyeline levels by activating 
neutral sphingomyelinase (Grimm et al. 2005, 2007). In 
turn, changes in membrane lipid composition influence 
APP processing (Kojro et al. 2001, Grimm et al. 2008, 
2011). The amyloid precursor protein is a receptor-like 
membrane protein. Tuning of proteolytic amyloidogenic/ 
nonamyloidogenic processing depends on plasma 
membrane properties and localization in membrane 
domains (Schneider et al. 2006, 2008, Hicks et al. 2012) 
and the same may be true for other transmembrane 
proteins including G-protein-coupled receptors (Rudajev 
et al. 2005, Michal et al. 2007, 2009). 

Original neurochemical findings in Alzheimer´s 
disease brains pointed out disturbances of acetylcholine 
metabolism (Bowen et al. 1976, Davies and Maloney 
1976, Perry et al. 1977a,b, Sims et al. 1981, Francis et al. 
1985, 1999). Since then a large body of evidence 
supporting as well as questioning this hypothesis has 
accumulated (Bartus and Emerich 1999, Bartus 2000). 
Several lines of evidence argue for viability of the 
cholinergic hypothesis. Cholinergic muscarinic 
transmission plays an important role in mental functions 
like attention, learning, and memory (Peralta et al. 1988, 
Ehlert et al. 1994, Lahiri et al. 2004, Koch et al. 2005). 
These functions decline in the course of natural aging and 
more so in AD. In primates such a decline correlates with 
a decrease in the number of cholinergic neurons in the 
basal forebrain and treatments that rescue these neurons 
lead to improvement of cognitive performance (Smith et 
al. 1999, Conner et al. 2001). Cholinergic neurons are 
very sensitive to changes in homeostasis and disturbances 
of cognitive performance also accompany various insults 
like head trauma, intoxications, and hypoxia. Up to now 
the major therapeutic interventions that demonstrate 
certain benefits target the cholinergic system (e.g. 
clinically approved cholinesterase inhibitors). 
Conversely, it has been shown that application of 
antimuscarinic treatment in patients with Parkinson´s 
disease results in a significant increase in the probability 
to develop Alzheimer´s disease (Perry et al. 2003). In line 
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with this finding is an enhancement of amyloid pathology 
in transgenic APPswe/ind mice that express low levels of 
M1 muscarinic acetylcholine receptors (Davis et al. 
2010). 

Aging is by far the most imporatant risk factor in 
sporadic Alzheimer´s disease. A decline of cholinergic 
transmission naturally occurring during aging is 
dramatically accentuated in Alzheimer´s disease and 
underlies cognitive symptoms of this devastating 
disorder. Up to now the only treatment of this disease that 
shows certain benefit is the use of cholinesterase 
inhibitors (Wilkinson et al. 2004). These drugs prevent 
hydrolysis of the endogenous muscarinic agonist 
acetylcholine and can thus be effective only when the 
presynaptic component of cholinergic synapses is 
operating. This is often not the case in clinically 
manifested stages of Alzheimer’s disease. Moreover, 
preservation of synaptic acetylcholine by these 
compounds results not only in beneficial memory 
enhancing effects (through M1 muscarinic receptors), but 
also significant side effects (mediated by other subtypes 
of muscarinic receptors). Muscarinic receptors are rather 
well preserved even in the late state of the disease 
although their activation appears somewhat compromised 
in the course of healthy aging and more so during disease 
progression (Tsang et al. 2006, Machová et al. 2008, 
2010, Janickova et al. 2013). Thus M1 selective agonists 
bear therapeutic potential for treatment of Alzheimer's 
disease. Recently, systemically active M1 allosteric 
agonists VU0152099 and VU0152100, were synthesized 
at the Vanderbilt Center for Neuroscience Drug 
Discovery (Lebois et al. 2010). 

The cholinergic and amyloid hypotheses are not 
mutually exclusive (Isacson et al. 2002). As mentioned 
above, the increase in Aβ concentration in hereditary 
cases is due to known gene defects. The link between 
cholinergic neurotransmission and increase in Aβ 
concentration has been demonstrated in vitro. Stimulation 
of Gq/11 G-protein coupled M1 and M3 muscarinic 
receptors increases non-amyloidogenic cleavage of APP 
at the α site by α-secretase and in this way prevents 
amyloidogenic processing of APP (Buxbaum et al. 1992, 
Nitsch et al. 1992). Weakening of cholinergic muscarinic 
signal transduction may thus lead to an increase in Aβ 
production and consequently to the acceleration of 
disease progression (Doležal and Kašparová 2003). 
Indeed, inhibition of Gq/11 G-protein function has been 
demonstrated in rodent primary cultures as a reduction of 
muscarinic receptor-induced GTPase activity (Kelly et al. 

1996), and as a decrease in Gq/11 G-protein concentration 
(Kelly et al. 2005) and attenuation of muscarinic 
receptor-stimulated phosphatidylinositol hydrolysis in 
plasma membranes prepared from post mortem brain 
samples of Alzheimer‘s patients (Jope et al. 1997, 
Thathiah and De Strooper 2009). 

  
Schizophrenia 

 
Schizophrenia is a diagnosis that covers a set of 

disorders of different etiologies with the same symptoms. 
This disorder can be divided based on the presence or 
absence of negative symptoms or according to DSM-IV 
(The Diagnostic and Statistical Manual of Mental 
Disorders) to paranoid, disorganized, catatonic, 
undifferentiated, and residual types. Schizophrenia is 
characterized by faint pathology and has both sporadic 
and hereditary forms. The common pathologic aspect of 
schizophrenia is excessive dopaminergic transmission in 
striatal and mesolimbic areas that can be abated by 
dopamine D2 receptor antagonists, and deficit of 
dopamine signaling in prefrontal cortex (Karam et al. 
2010). An alternative hypothesis for the development of 
schizophrenia symptoms involves muscarinic receptors. 
Clinical trials provided evidence that muscarinic agonists 
are moderately effective as antipsychotic agents (Biel et 
al. 1962, Mego et al. 1988). Moreover, it has been shown 
that the levels of both M1 and M4 receptors are reduced in 
the prefrontal cortex, hippocampus, caudate and putamen 
in post mortem samples from schizophrenic patients 
(Dean et al. 1999, 2002, Crook et al. 1999, 2000, 2001). 
From studies in knockout mice, the M1 receptor subtype 
has been viewed as the most likely candidate for 
mediating effects on cognition, attention mechanisms, 
and sensory processing so reduction in M1 receptors may 
be the cause of cognitive symptoms of schizophrenia. The 
M4 receptor is localized in dopamine rich brain regions 
(the mesolimbic dopaminergic pathway), and regulates 
dopamine levels in this region (Tzavara et al. 2004). Thus 
the “dopamine hyperfunction hypothesis” and the 
“cholinergic hypothesis” of schizophrenia are compatible. 

The importance of the cholinergic system in 
schizophrenia has been further validated clinically by the 
use of clozapine, one of the most clinically useful 
atypical antipsychotics (Kane et al. 1988, Hagger et al. 
1993, Goldberg and Winberger 1994). Numerous studies 
suggest that the unique efficacy of clozapine is due to its 
major circulating metabolite, N-desmethylclozapine 
(NDMC) acting as an M1 ectopic agonist (Weiner et al. 
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2004, Burstein et al. 2005, Davies et al. 2005) in 
combination with its inhibition of D2 receptors. Taken 
together M1 and M4 selective agonists have a potential to 
alleviate cognitive deficits and positive symptoms of 
schizophrenia. The studies with positive allosteric 
modulators of acetylcholine at M4 receptors VU0152099 
and VU0152100 (Brady et al. 2008, Shierey et al. 2008, 
Byun et al. 2011) provide further support for the 
“cholinergic hypothesis” of shizophrenia. 

 
Overactive bladder 

 
Current therapy of overactive bladder relies on 

inhibition of M3 (and M2) receptors of lower urinary tract 
smooth muscles by long acting muscarinic antagonists 
(LAMAs) (Smith and Wein 2010). LAMAs produce 
symptomatic improvement by decreasing detrusor 
overactivity, increasing bladder capacity, and reducing 
urgency and urge of urinary incontinence and frequency 
(Smith and Wein 2010). LAMAs, however, exert adverse 
effects, mainly dry mouth and constipation, probably due 
to the lack of binding selectivity. Their effect is primarily 
based on slower kinetics at M3 receptors (Hegde 2006, 
Sykes et al. 2012). Thus, there is room for improvement 
of LAMAs in binding selectivity that would be beneficial 
in dose lowering and diminution of side effects. 
Importantly, currently available LAMAs do not possess 
the O-hexyl group that is responsible for xanomeline 
wash-resistant binding (Jakubík et al. 2004). 
Combination of potential M3 selective antagonists with 
O-hexyl groups may thus open an avenue to synthesize 
new classes of LAMAs. 

 
Drug addiction 

 
Drug addiction is a disease that is not primarily 

caused by cell damage. Addictive drugs impact regular 
learning to reinforce their own intake. In general, 
addictive drugs increase dopaminergic transmission in the 
striatum (Sulzer 2011). Blocking of M5 receptors has 
been shown to reduce reinforcement and withdrawal 
symptoms of morphine (Basile et al. 2002) as well as 
cocaine addiction (Lester et al. 2010). Occurrence of M5 
receptors in the body is limited to cerebral blood vessels 
(Yamada et al. 2001) and neurons of specific regions 
of brain-ventral tegmental area of substantia nigra, 
hippocampus, and striatum (Yamada et al. 2003, Raffa 
2009). In the striatum M5 receptors located on 
dopaminergic nerve terminals facilitate muscarinic 

agonist-induced dopamine release, a key process of drug 
addiction events of reward, reinforcement and withdrawal 
(Koob and Volkow 2010, Morales and Pickel 2012). 
Moreover, striatum innervating dopaminergic neurons 
almost exclusively express the M5 receptor subtype 
(Yamada et al. 2001). Therefore M5 antagonists have 
potential therapeutic use for treatment of drug addiction 
and abuse with minimum side effects. No M5 selective 
antagonists are known so far (Eglen et al. 2006, Raffa 
2009, Stahl et al. 2010). Search for ectopic antagonists 
that bind to the less conserved parts of the receptor but 
still effectively block the receptor by interaction with the 
orthosteric site may be a way to obtain potent M5 
selective antagonists. 

 
Conclusions 

 
The major problem of muscarinic 

pharmacotherapy is the paucity of targets influencing of 
muscarinic neurotransmission. The use of 
anticholinesterases to strengthen transmission, e.g. in 
treatment of Alzheimer´s disease, by prolonging the 
presence of the natural agonist acetylcholine in the 
synaptic cleft does not discriminate among various 
signaling pathways activated by various muscarinic 
receptor subtypes and consequently suffers of many side-
effects and a peril of overdosing. Despite this disadvantage 
cholinesterases inhibitors are up to now the only approved 
drugs for Alzheimer´s disease that demonstrate marked 
therapeutic benefits. Provided that presynaptic function is 
at least partially preserved, allosteric modulators of 
acetylcholine binding provide unusual selectivity and may 
serve as a drug for selective activation (e.g. in Alzheimer´s 
disease) or attenuation (e.g. in Parkinson´s disease) of 
neurotransmission mediated by different muscarinic 
receptors. When presynaptic function is severly 
compromised, the utilization of ectopic agonists can be a 
thinkable solution. Unfortunately, in either case, no 
clinically exploitable drugs have been generated yet. 
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