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Summary 

Polysaccharides are long carbohydrate molecules of 

monosaccharide units joined together by glycosidic bonds. These 

biological polymers have emerged as promising materials for 

tissue engineering due to their biocompatibility, mostly good 

availability and tailorable properties. This complex group of 

biomolecules can be classified using several criteria, such as 

chemical composition (homo- and heteropolysaccharides), 

structure (linear and branched), function in the organism 

(structural, storage and secreted polysaccharides), or source 

(animals, plants, microorganisms). Polysaccharides most widely 

used in tissue engineering include starch, cellulose, chitosan, 

pectins, alginate, agar, dextran, pullulan, gellan, xanthan and 

glycosaminoglycans. Polysaccharides have been applied for 

engineering and regeneration of practically all tissues, though 

mostly at the experimental level. Polysaccharides have been 

tested for engineering of blood vessels, myocardium, heart 

valves, bone, articular and tracheal cartilage, intervertebral discs, 

menisci, skin, liver, skeletal muscle, neural tissue, urinary 

bladder, and also for encapsulation and delivery of pancreatic 

islets and ovarian follicles. For these purposes, polysaccharides 

have been applied in various forms, such as injectable hydrogels 

or porous and fibrous scaffolds, and often in combination with 

other natural or synthetic polymers or inorganic nanoparticles. 

The immune response evoked by polysaccharides is usually mild, 

and can be reduced by purifying the material or by choosing 

appropriate crosslinking agents.  
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Introduction 

 
Tissue engineering is an advanced 

biotechnology, defined as “an interdisciplinary field that 
applies the principles of engineering and the life sciences 
toward the development of biological substitutes that 
restore, maintain, or improve tissue function” (Langer 
and Vacanti 1993). These substitutes consist of two main 
components, i.e. cells and their carriers. The cell carrier, 
often referred to as a “scaffold”, can be made of purely 
biological molecules, such as collagen, elastin, 
fibronectin, laminin, hyaluronic acid and other 
extracellular matrix (ECM) molecules, of synthetic and 
inorganic molecules, e.g. synthetic polymers, carbon-
based materials, ceramics, metal-based materials, or of 
various combinations of these materials. The materials 
should be biocompatible, i.e. non-toxic, non-mutagenic, 
non-immunogenic and matching the mechanical 
properties of the replaced tissue. However, in advanced 
tissue engineering, these materials should not just be 
passively tolerated by cells, but they should act as 
analogues of the native ECM, i.e. they should control the 
extent and the strength of cell adhesion, cell proliferation, 
cell differentiation and maturation to the desired 
phenotype, and to proper cell functioning. 
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Among the biological polymers, polysaccharides 
have emerged as promising materials for tissue 
engineering purposes. Polysaccharides are long 
carbohydrate molecules of monosaccharide units joined 
together by glycosidic bonds. Polysaccharides can be 
classified from several points of view. Polysaccharides 
composed of only one type of monosaccharide are 
referred to as homopolysaccharides (homoglycans, e.g. 
starch, glycogen, cellulose, chitin), and if two or more 
different types of monomeric unit are present, they are 
referred to as heteropolysaccharides (heteroglycans,  
e.g. glycosaminoglycans). Other classification criteria 
consider the morphology of polysaccharide molecules, 
which can range from linear to highly branched, or the 
function of polysaccharides in organisms, which is 
usually either structure-related or storage-related. The 
main storage polysaccharides are starch and glycogen, 
while structural polysaccharides include cellulose, chitin, 
agar, arabinoxylans and pectins. Some polysaccharides 
are secreted by bacteria, fungi and algae as an 
evolutionary adaptation to help them adhere to surfaces 
and to prevent them drying out. Humans have developed 
some of these polysaccharides into useful products, e.g. 
dextran, pullulan, gellan gum and xanthan gum. 
Polysaccharides can also be sorted by their source 
(animals, plants, microorganisms), by their electrical 
charge (neutral, cationic, anionic), by modifications of 
their molecules (pristine molecules and their derivatives), 
and particularly by their degradability, which is important 
in tissue engineering. Ideal scaffolds used in advanced 
tissue engineering should be constructed from resorbable 
materials that degrade in the organism and are gradually 
replaced by natural ECM. However, polysaccharides of 
non-mammalian origin are often non-degradable or very 
slowly degradable, and in order to adjust their proper 
degradability, they need to be physically or chemically 
modified. The criteria for classifying polysaccharides, 
with examples for each polysaccharide group, are 
summarized in Table 1. They are based on the studies by 
Lee et al. (2009), Baldwin and Kiick (2010), Oliveira  
and Reis (2011), Ulery et al. (2011), and also on  
the information available at www.cfs.purdue.edu/class/ 
f&n630/pdf_full/yao-polysaccharide-2011.pdf.  

 Polysaccharides are widely applied in many 
fields, particularly in the food, pharmaceutical and 
cosmetic industries, in medicine and in various 
biotechnologies, such as drug and gene delivery or 
bioimaging. In tissue engineering, they have been used 
mainly for experimental purposes, though some of them, 

e.g. hyaluronan, heparin or alginate, are also approved for 
clinical application.  

The first, more general part of this review is 
dedicated to the use of polysaccharides in various areas of 
tissue engineering, and the second more specialized part 
is focused on the use of cellulose in vascular tissue 
engineering, including the collective experience of the 
authors of this article.  

 
Polysaccharides relevant for tissue 
engineering 

 
Not all polysaccharides are currently used in 

tissue engineering, or are suitable for this biotechnology, 
mainly due to their jelly-like consistency and insufficient 
mechanical properties. Even polysaccharides applicable 
in tissue engineering are usually combined with other 
natural or synthetic polymers, or are reinforced with 
inorganic particles. In addition, these combinations, 
together with functionalization and loading with various 
bioactive molecules, such as adhesion oligopeptides, 
growth factors and drugs, increase the bioactivity of the 
scaffolds.  

The most relevant polysaccharides for 
application in tissue engineering, which will be discussed 
in the following text, are starch, cellulose, chitin and 
chitosan, pectins, alginate, agar, dextran, pullulan, 
gellan, xanthan and glycosaminoglycans. Other 
polysaccharides, namely glycogen, are promising as 
carriers for delivery of drugs or imaging agents (Filippov 
et al. 2012). Arabinoxylans are also potential candidates 
for the controlled release of biomolecules, e.g. insulin 
(Berlanga-Reyes et al. 2009) or lycopene, i.e. a 
caroteinoid important in the prevention of chronic 
diseases such as atherosclerosis, skin cancer, prostate 
cancer and colon cancer (Hernández-Espinoza et al. 
2012). In addition, arabinoxylans, owing to their bound 
phenolic acids, have been shown to have antioxidant 
activity (Hromádková et al. 2013, Rivas et al. 2013). 

 
Starch 

Starch is a polymer of glucose which is used as a 
storage polysaccharide in plants, being found in the form 
of linear amylose and branched amylopectin. Pure starch 
microfibers, which could serve as scaffolds for cells in 
tissue engineering applications, were prepared recently by 
an electrospinning technique (Kong and Ziegler 2012). 
However, for these applications, starch has been usually 
combined with other natural or synthetic polymers in 

http://www.cfs.purdue.edu/class/�f&n630/pdf_full/yao-polysaccharide-2011.pdf
http://www.cfs.purdue.edu/class/�f&n630/pdf_full/yao-polysaccharide-2011.pdf
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order to achieve better mechanical properties and 
bioactivity of the scaffolds. For example, starch 
microfibers were combined with collagen I nanofibers in 
order to construct an ECM equivalent for bone tissue 
engineering (Tuzlakoglu et al. 2011). As for 
combinations with synthetic polymers, starch has been 
blended with polycaprolactone or polylactide for bone 
tissue engineering (Gomes et al. 2008). Combination 
with starch enhanced the growth and differentiation of 
articular chondrocytes on polycaprolactone scaffolds 

(Oliveira et al. 2007). Starch/polycaprolactone scaffolds 
also provided a suitable growth support for macro- and 
microvascular endothelial cells in vitro (Santos et al. 
2007). When loaded with vascular endothelial growth 
factor (VEGF) or fibroblast growth factor-2 (FGF-2), 
these scaffolds also promoted the expression of 
neovascularization mediators such as receptors for VEGF 
(VEGFR1, VEGFR2) and VEGF itself, in cells 
colonizing the scaffolds after implantation in vivo into 
mice (Santos et al. 2013).  

 
Table 1. Classification of polysaccharides. 
 

Classification criteria Examples 

Function  
Storage starch, glycogen 

Structural cellulose, chitin, alginate, agar  
Secreted dextran, pullulan, gellan gum, xanthan gum, welan gum, diutan gum  

Chemical composition  
Homoglycans starch, glycogen, cellulose, chitin 
Heteroglycans agars, alginate, carrageenans, xanthan, gellan, arabinoxylans, 

glycosaminoglycans  
Structure   

Linear glycosaminoglycans, amylose, cellulose, pectin, alginates, agarose 
Branched glykogen, amylopectin, xanthan gum, arabic gum, arabinoxylan 

Electrical charge  
Neutral amylose, amylopectin, cellulose 
Anionic alginates, carrageenans, gellan, gum arabic, xanthan 
Cationic chitosan 

Source   
Animals  

Mammals glycosaminoglycans (hyaluronan, heparin, chondroitin sulfate, keratan sulfate, 
dermatan sulfate, heparan sulfate) 

Non-mammals chitin 
Plants  

Higher plants cellulose, starch 
Algae agars, alginates, carrageenans 

Microorganisms gellan gum, xanthan gum 
Modification  

Pristine cellulose, alginate, chitin 
Derivative carboxymethyl cellulose, propylene glycol alginate, chitosan 

Degradability in humans  
Degradable dextran, glycogen, glycosaminoglycans 

Non-degradable, 
slowly degradable 

cellulose, chitosan, alginate, agar 
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Cellulose 

Cellulose is a structural polysaccharide 
consisting of a linear chain of several hundred to over ten 
thousand β(1→4) linked D-glucose units. It was 
discovered and isolated from green plants by Payen 
(1838) (for a review, see O'Sullivan 1997). It is the most 
abundant biopolymer on Earth, synthesized by herbs 
woody plants, many forms of algae, fungi and some 
species of bacteria, namely Acetobacter xylinum. 
Bacterial cellulose is identical to plant cellulose in 
chemical structure, but it can be produced without 
contaminant molecules, such as lignin and 
hemicelluloses, and does not require intensive 
purification processes. In addition, it is remarkable for its 
mechanical strength and biocompatibility, and it has 
therefore often been applied in tissue engineering (for a 
review, see Helenius et al. 2006, Petersen and Gatenholm 
2011). In addition to vascular tissue engineering, which is 
discussed below, cellulose has also been used for 
engineering a variety of other tissues, such as bone (Shi et 
al. 2012a), cartilage (Andersson et al. 2010), skin 
(Kingkaew et al. 2010), skeletal muscle (Dugan et al. 
2013), cardiac muscle (Entcheva et al. 2004) and heart 
valves (Mohammadi 2011). Cellulose has also been used 
for constructing nanofibrous three-dimensional carriers 
for liver cells (Bhattacharya et al. 2012), for 
encapsulating and immunoisolating Langerhans islets 
(Risbud et al. 2003), for creating tubes for regenerating 
damaged peripheral nerves (Kowalska-Ludwicka et al. 
2013), and also for creating carriers for delivery and 
differentiation of mesenchymal stem cells (Gu et al. 
2010) and neural stem cells (Mothe et al. 2013) for neural 
tissue regeneration. Even lignin, a macromolecule 
crosslinking different plant polysaccharides including 
cellulose, induced differentiation of embryonic stem cells 
into neuroectodermal cells, namely ocular cells and 
neural cells (Inoue et al. 2013). Cellulose acetate in the 
form of porous membranes has been applied for 
constructing a bioartificial renal tubule system (Sato et al. 
2005), and in the form of electrospun porous 
microfibrous three-dimensional scaffolds, for potential 
urinary bladder reconstruction (Han and Gouma 2006). 
Microporous scaffolds made of bacterial cellulose and 
seeded with human urine-derived stem cells supported the 
formation of a multilayered urothelium, and thus these 
constructs hold promise for creating tissue-engineered 
urinary conduits for urinary reconstruction and diversion 
(Bodin et al. 2010). 

 

Chitin and chitosan 
Chitin is a long-chain polymer of  

N-acetylglucosamine. It is the main component of the cell 
walls of fungi, the exoskeletons of arthropods such as 
insects and crustaceans (e.g. crabs, lobsters and shrimps), 
the radulas of mollusks, and the beaks and internal shells 
of cephalopods, including squid and octopus. Chitin itself 
has been used only relatively rarely for tissue 
engineering. For example, composite scaffolds containing 
chitin, pectin and CaCO3 nanoparticles were tested with 
fibroblasts for potential use in tissue engineering 
and controlled drug delivery (Kumar et al. 2013). 
Biodegradable porous glycol chitin-based 
thermoresponsive hydrogel scaffolds promoted 
odontogenic differentiation of human dental pulp cells, 
and thus they proved to be promising materials for dentin 
regeneration (Park et al. 2013).  

However, an important derivative of chitin, used 
for engineering a wide range of tissues and organs, is 
chitosan. To date, about 1400 papers concerning chitosan 
and tissue engineering can be found in the PubMed 
database. Chitosan is a linear polysaccharide composed 
of randomly distributed β-(1-4)-linked D-glucosamine 
(deacetylated unit) and N-acetyl-D-glucosamine. 
Chitosan, particularly in the form of nanofibrous 
scaffolds, in combination with other polymers, ceramic or 
carbon nanoparticles, growth factors and other bioactive 
molecules, has been applied for reconstructing almost all 
tissues, such as bone (Frohbergh et al. 2012), blood 
vessels (Du et al. 2012), heart valves (Hong et al. 2009), 
myocardium (Hussain et al. 2013), liver (Wang et al. 
2005, Mareková et al. 2013), pancreatic islets (Deng et 
al. 2011), kidney (Gao et al. 2012), urinary bladder 
(Drewa et al. 2008), skin (Lin et al. 2013) or the central 
and peripheral nervous system (Shokrgozar et al. 2011, 
Hu et al. 2013).  

 
Pectins 

Pectins are a family of complex polysaccharides 
that contain 1,4-linked α-D-galactosyluronic acid 
residues. They are present in most primary cell walls and 
in the non-woody parts of terrestrial plants. Due to their 
simple and cytocompatible gelling mechanism, pectins 
have recently been exploited for various biomedical 
applications, including drug and gene delivery, wound 
healing and tissue engineering (for a review, see Munarin 
et al. 2012). Nanostructured pectin films deposited on 
titanium, glass and polystyrene substrates promoted the 
adhesion, growth and osteogenic differentiation of murine 
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preosteoblastic MC3T3-E1 cells and primary rat 
osteoblasts (Kokkonen et al. 2007, 2008, 2012). Pectin 
gels, particularly those functionalized with RGD-
containing oligopeptides, which serve as ligands for 
integrin adhesion receptors, have been proposed as 
injectable carriers for osteoblasts for bone tissue 
regeneration, due to their ability to keep immobilized 
cells viable and differentiating (Munarin et al. 2011). For 
potential bone tissue engineering, pectins have also been 
used in combination with other natural and synthetic 
polymers, such as chitosan (Coimbra et al. 2011) or 
polylactide (Liu et al. 2004).  

 
Alginate 

Alginate, also called alginic acid, is an anionic 
polysaccharide distributed widely in the cell walls of 
brown algae, where through binding with water it forms a 
viscous gum. Alginate is a linear copolymer with 
homopolymeric blocks of (1-4)-linked β-D-mannuronate 
and its C-5 epimer α-L-guluronate residues. 

Alginate has been used for engineering and 
regeneration of almost all tissues in the human organism. 
It has been widely applied in the form of injectable 
hydrogels, e.g. for encapsulation and delivery of 
Langerhans islets (Johnson et al. 2011), ovarian follicles 
(Tagler et al. 2012) and stem cells for neural tissue 
engineering (Banerjee et al. 2009), bone tissue 
engineering (Zhou and Xu 2011) and skeletal muscle 
regeneration (Liu et al. 2013). Alginate hydrogel-based 
scaffolds were also tested for engineering of cartilage 
(Wan et al. 2011) and intervertebral discs (Renani et al. 
2012). In combination with hydroxyapatite, alginate 
hydrogels were applied for regenerating the 
osteochondral interface (Khanarian et al. 2012). Alginate 
hydrogels incorporated with poly(ethylene glycol) 
molecules and antibodies served for capture of 
endothelial progenitor cells from human blood (Hatch et 
al. 2011). 

In the form of porous scaffolds, alginate has 
been used for creating a capillary bed in newly 
reconstructed tissues (Yamamoto et al. 2010), and in the 
form of electrospun nanofibrous scaffolds, for 
constructing vascular replacements containing endothelial 
cells and smooth muscle cells (SMC) (Hajiali et al. 
2011), and for skin tissue engineering (Jeong et al. 2012). 
Alginate was also a component of scaffolds for heart 
valve engineering (Hockaday et al. 2012), and in 
combination with gold nanowires, for cardiac tissue 
engineering (Dvir et al. 2011).  

Agar 
Agar is a polysaccharide in red algae, serving as 

the primary structural support for their cell walls. Agar is 
a mixture of two components: the linear polysaccharide 
agarose, and a heterogeneous mixture of smaller 
molecules called agaropectin. Agarose, the predominant 
component of agar, is a linear polymer, consisting of a 
repeating monomeric unit of agarobiose. Agarobiose is a 
disaccharide containing D-galactose and 3,6-anhydro-L-
galactopyranose. Agaropectin is a heterogeneous mixture 
of smaller molecules that occur in lesser amounts,  
and is made up of alternating units of D-galactose and  
L-galactose, heavily modified with acidic side-groups, 
such as sulfate and pyruvate (for a review, see McHugh 
1987). 

Agar is well-known as growth substrate for 
bacteria and other microbes, though it has also been used 
for cultivating cells of higher plants in order to develop 
effective methods for large-scale production of artificial 
seeds (Al-Hajry et al. 1999). Another well-known 
application is in testing the migratory potential and 
invasiveness of various cell types, including cells for 
tissue engineering (Ramaswamy et al. 2012), stem cells 
for cell therapies (Sabapathy et al. 2012) and for 
identifying cancer cells (for a review, see Discher et al. 
2005). 

Other current applications of agar-based 
materials are in testing the cytotoxicity of various drugs, 
chemicals and also artificial materials for tissue 
engineering (Korkmaz et al. 2007, Verma et al. 2009), 
and in testing the effects of mechanical loading on cell 
behavior (Shelton et al. 2003). Foils made of soy agar 
and collagen gel served as substrates for the deposition of 
cells by thermal inkjet printing, i.e. an advanced 
technology developed for tissue engineering (Xu et al. 
2005). Similarly as alginate, agar can be used for cell 
encapsulation in tissue engineering applications. Due to 
its chondrogenic potential, agar was selected to entrap 
chondrocytes within poly-L-lactide scaffolds (Gong et al. 
2007). In combination with gelatin, agar has been used 
for engineering nucleus pulposus (Strange and Oyen 
2012), and in combination with hydroxyapatite and 
hyaluronic acid, for bone tissue engineering (Wagner et 
al. 2007). Composite membranes made of agar and type I 
collagen proved to be promising wound dressings for 
healing burns or ulcers (Bao et al. 2008). Agar gel, 
attached to the luminal surface of a microporous acrylate 
tube, supported the formation of in vivo tissue engineered 
autologous vascular prosthetic tissues, called “biotubes” 
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(Nakayama and Tsujinaka 2014). Agarose was used for 
neural tissue engineering (Bellamkonda et al. 1995) and 
as a vocal fold substitute (Choo et al. 2010). Together 
with hyaluronan and water, agar was used for creating an 
artificial vitreous humor (Kummer et al. 2007). 

 
Dextran and pullulan  

Dextran is a branched glucan (i.e. a 
polysaccharide composed of many glucose units) 
containing chains of varying lengths (from 3 to 
2000 kDa). Dextran is synthesized from sucrose by 
certain lactic-acid bacteria (Leuconostoc mesenteroides, 
Streptococcus mutans, Lactobacillus brevis). In medical 
practice, it is used particularly for its antithrombotic 
properties. For tissue engineering applications, it has been 
used in combination with pullulan, another 
polysaccharide consisting of maltotriose units and 
produced from starch by the fungus Aureobasidium 
pullulans. Dextran and pullulan have been applied 
particularly in vascular and bone tissue engineering. In 
the form of electrospun nanofibrous scaffolds, dextran 
and pullulan promoted the development of a stable 
confluent monolayer of endothelial cells, and also the 
transition of vascular SMC from proliferative phenotype 
to quiescent contractile phenotype in vitro (Shi et al. 
2012b). In the form of porous scaffolds, dextran and 
pullulan supported the viability, proliferation, 
differentiation and function of human endothelial 
progenitor cells isolated from cord blood (Lavergne  
et al. 2012). In bone tissue engineering, porous 
dextran/pullulan scaffolds, pure or supplemented with 
nanocrystalline hydroxyapatite, induced osteogenic cell 
differentiation in vitro and the formation of mineralized 
bone tissue in vivo (Fricain et al. 2013).  

 
Gellan and xanthan  

Gellan and xanthan have been shown to be 
excellent carriers for growth factors and matrices for 
several tissue engineering applications. These materials 
are able to gelify in situ within seconds, to retain large 
quantities of water, and thus to provide a similar 
environment to that of natural ECM (Khang et al. 2012, 
Dyondi et al. 2013). In addition, their mechanical 
properties can be fine-tuned to mimic the replaced natural 
tissues. Gellan/xanthan gels loaded with chitosan 
nanoparticles, basic fibroblast growth factor (bFGF), and 
bone morphogenetic protein 7 (BMP-7) promoted the 
differentiation of human fetal osteoblasts. At the same 
time, these gels showed antibacterial effects against 

Pseudomonas aeruginosa, Staphylococcus aureus and 
Staphylococcus epidermidis, i.e. major pathogens causing 
the failure of bone implants (Dyondi et al. 2013). Gellan 
gum was loaded with alkaline phosphatase in order to 
support enzymatic mineralization of scaffolds for bone 
tissue engineering (Douglas et al. 2012). Gellan gum also 
supported the viability of encapsulated cells of the 
nucleus pulposus, and thus it holds promise in the 
construction of intervertebral disc replacements (Khang 
et al. 2012). A xanthan gum derivative was successfully 
used for encapsulation and delivery of chondrocytes for 
potential cartilage tissue engineering (Mendes et al. 
2012). 

 
Glycosaminoglycans 

Glycosaminoglycans (GAGs) are long 
unbranched polysaccharides consisting of a repeating 
disaccharide unit. The general disaccharide unit consists 
of an N-acetyl-hexosamine and a hexose or hexuronic 
acid, either or both of which may be sulfated. The only 
GAG that is exclusively non-sulfated is hyaluronan, and 
sulfated GAGs include heparin, chondroitin sulfate, 
dermatan sulfate, keratan sulfate and heparan sulfate.  
In addition to sulfating, the members of the 
glycosaminoglycan family vary in the type of 
hexosamine, hexose or hexuronic acid unit that they 
contain (e.g. glucuronic acid, iduronic acid, galactose, 
galactosamine, glucosamine). They also vary in the 
geometry of the glycosidic linkage (for a review, see 
Collins and Birkinshaw 2013, Schnabelrauch et al. 2013).  

Hyaluronan (also called hyaluronic acid or 
hyaluronate) is an anionic, non-sulfated GAG, which is 
an important component of ECM and synovial fluid. As 
hyaluronan is an important component of cartilage, it has 
been widely used for cartilage tissue engineering. To 
date, there are almost 3000 papers in the PubMed 
database dealing with the role of hyaluronan in cartilage 
tissue engineering, reconstruction and regeneration. 
Hyaluronan has been used mainly for engineering 
articular cartilage (Erickson et al. 2012, Kim et al. 2013), 
but also for meniscus reconstruction (Zellner et al. 2010), 
osteochondral defects (Filová et al. 2008, Galperin et al. 
2013), tracheal defects (Hong et al. 2012) and 
intervertebral discs (Park et al. 2012). For these purposes, 
hyaluronan has been applied in the form of a hydrogel 
with encapsulated chondrocytes (Filová et al. 2008, Park 
et al. 2012) or mesenchymal stem cells (Zellner et al. 
2010, Erickson et al. 2012, Kim et al. 2013). It is also 
possible to create hyaluronan fibers of submicron- and 
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nano-size by an electrospinning technique (Kim et al. 
2013) or hyaluronan-based porous scaffolds (Yan et al. 
2013). For constructing these scaffolds, hyaluronan has 
often been combined with other natural and synthetic 
polymers, such as collagen I and fibrin (Filová et al. 
2008, Hong et al. 2012), silk (Park et al. 2012), chitosan 
(Chen et al. 2013) or methacrylates (Galperin et al. 
2013), and for bone tissue engineering, also with a 
mineral component, e.g. calcium phosphates (Chen et al. 
2013, Galperin et al. 2013).  Hyaluronan is also a major 
component of skin, and it has therefore been applied in 
dermal tissue engineering (Mineo et al. 2013, Yan et al. 
2013). Other tissue engineering applications of 
hyaluronan include reconstruction of heart valves (Duan 
et al. 2013), myocardial tissue (Dahlmann et al. 2013), 
skeletal muscle tissue (Desiderio et al. 2013), and also 
small-caliber arteries (diameter 2-4 mm). Hyaluronan-
based biodegradable vascular grafts implanted into pigs 
supported spontaneous development of a neoartery 
segment composed of mature smooth muscle cells 
(SMC), collagen, and elastin fibers organized in layers 
and completely covered by endothelial cells on the 
luminal surface (Zavan et al. 2008). Hyaluronan has also 
been reported to play an important role in the onset and 
development of atherosclerosis and other vascular 
diseases, namely by its stimulatory effects on migration 
and proliferation of vascular SMC (Vigetti et al. 2008). 
This behavior of SMC can also lead to stenosis and 
failure of vascular replacements. However, these negative 
effects are typical for hyaluronan with low molecular 
weight (less than 500 kDa), while native high molecular 
weight hyaluronan (more than 1000 kDa) has been 
reported to have antimigratory and antiproliferative 
effects on SMC (Kothapalli et al. 2010). Antiproliferative 
activity of hyaluronan can also be induced by  
O-sulfonation of hyaluronan molecules (Garg et al. 
1999).  

The presence of sulfur in the molecules of GAGs 
is generally associated with antiproliferative effects on 
SMC. In adult healthy vascular wall, sulfated GAGs keep 
SMC in quiescent differentiated contractile phenotype 
(Glukhova and Koteliansky 1995). These effects can also 
be exploited in vascular tissue engineering. For example, 
SMC in hybrid vascular grafts, constructed on knitted 
Dacron grafts using endothelial cells, SMC, fibroblasts 
and artificial ECM consisting of type I collagen and 
dermatan sulfate, were predominantly of contractile 
phenotype after 12-week-implantation into dogs 
(Ishibashi and Matsuda 1994). Sulfated GAGs also 

supported endothelialization of vascular grafts  
and their antithrombogenic properties. Expanded 
polytetrafluoroethylene (ePTFE) vascular grafts coated 
with perlecan, i.e. the major heparan sulfate proteoglycan 
in cell basement membranes, stimulated the growth of 
endothelial cells and suppressed the adhesion of platelets 
(Lord et al. 2009). The retention of endothelial cells on 
poly(carbonate-urea)urethane vascular grafts under shear 
stress was enhanced by modifying these grafts with a 
matrix consisting of collagen type IV and dermatan 
sulfate (Salacinski et al. 2001). Heparin in vascular grafts 
improved not only their antithrombogenicity, but also the 
retention of growth factors for endothelial cells, such as 
vascular endothelial growth factor (VEGF) (Ye et al. 
2012) and basic fibroblast growth factor (bFGF) (Pitarresi 
et al. 2013). In addition, heparin enabled stable 
attachment of stromal cell-derived factor-1α (SDF-1α) to 
vascular prostheses, which served as a capture molecule 
for endothelial and smooth muscle progenitor cells from 
blood (Yu et al. 2012).   

Heparin and other sulfated GAGs have also been 
applied in many other areas of tissue engineering. For 
example, heparin was used for bioactivation of 
electroconductive polypyrrole-based scaffolds for bone 
tissue engineering (Meng et al. 2013) and for synthesis of 
carbonated apatites, which proved to be more favorable to 
the proliferation and differentiation of MC3T3-E1 pre-
osteoblasts than apatites prepared by a traditional method 
(Deng et al. 2013). Heparin was also a component of 
polymeric scaffolds for neural tissue engineering (Kuo 
and Wang 2012). In the form of hydrogels, heparin has 
been used for efficient seeding of chondrocytes on 
polymeric scaffolds for cartilage tissue engineering (Kim 
et al. 2012), for modifying scaffolds for liver tissue 
engineering (Bao et al. 2011) and for encapsulating 
dermal fibroblasts for skin tissue engineering (Choi and 
Yoo 2013). Keratan sulfate took part in cornea tissue 
engineering (Wu et al. 2013), and chondroitin and 
dermatan sulfates in the reconstruction of bone, cartilage 
and skin (Vandrovcova et al. 2011, for a review, see 
Schnabelrauch et al. 2013). 

 
Polysaccharides and inflammatory reactions 

 
Like other biological and artificial materials 

used in tissue engineering, polysaccharides are associated 
with a risk of undesirable immune activation of cells and 
inflammatory reactions. The reaction is usually 
manifested by expression of immunoglobulin and selectin 
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molecules on cells contacting the material. These 
molecules are e.g. intercellular adhesion molecule-1 
(ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) 
and endothelial-leukocyte adhesion molecule-1  
(ELAM-1). Other inflammatory markers include the 
production of cytokines (e.g. tumor necrosis factors and 
interleukins), infiltration with leucocytes, lymphocytes 
and macrophages, foreign body reaction and fibrous 
encapsulation of the implant. Some polysaccharide-based 
materials evoke a relatively severe immune reaction. For 
example, hyaluronan-based scaffolds (Hyalograft C) for 
engineering cartilage for laryngotracheal reconstruction 
implanted into rabbits induced a foreign body reaction 
leading to complete degradation of the neocartilage and 
failure of the implant (Weidenbecher et al. 2007). Intra-
articular injections of Hylan G-F 20, a hyaluronan-based 
synovial fluid replacement, caused an acute inflammatory 
reaction with the activation of complement and local 
invasion of pro-inflammatory cells in a human patient 
with osteoarthritis (Dragomir et al. 2012). The 
immunogenicity of hyaluronan has been attributed to the 
presence of low-molecular weight fragments in this 
material, but it seems to be related rather to the presence 
of contaminating DNA in hyaluronan preparation (Filion 
and Phillips 2001). Paradoxically, alginate, which is often 
used for encapsulation and immunoprotection of cells, 
can also evoke an immune reaction. This is mainly due to 
impurities in this material, e.g. contamination with 
mitogens and endotoxins (Zimmermann et al. 1992, 
Breger et al. 2009). Other factors inducing 
immunogenicity of polysaccharides can be the agents 
used for their crosslinking, particularly glutaraldehyde 
(Lai 2012). 

Nevertheless, in other polysaccharides, such as 
chitosan (VandeVord et al. 2002), gellan gum (Silva-
Correia et al. 2013), bacterial cellulose (Helenius et al. 
2006, Mendes et al. 2009, Esguerra et al. 2010) and 
dextran (Ferreira et al. 2005), the immunogenicity was 
classified as mild. Adding pullulan to dextran increased 
its immunogenic activity (Abed et al. 2011). The immune 
response to biodegradable starch-based materials was 
even slighter than the reaction to other currently used 
synthetic and natural polymeric materials (Marques et al. 
2005). Similarly, titanium coated with heparin/fibronectin 
complex revealed a weaker inflammatory response than 
pristine Ti (Li et al. 2011).   

 
 
 

Cellulose in vascular tissue engineering 
 
The specialized part of this review is focused on 

the potential use of cellulose in blood vessel 
reconstruction. One of the first attempts at vascular tissue 
engineering was carried out with microfibers made of 
regenerated cellulose, i.e. purified plant cellulose 
chemically converted from short fibers (coming e.g. from 
trees) into long fibers used in textiles and nonwovens. 
These fibers were applied for constructing three-
dimensional vascularized tissue in vitro. They were 
immobilized with fibronectin in order to improve cell 
adhesion, and were seeded with bovine coronary artery 
SMC. These cells proliferated on the scaffolds and, after 
they formed multilayers on the fibers, the fibers were 
removed by enzymatic digestion using cellulase. The 
remaining SMC aggregates maintained lumens after this 
procedure, and thus mimicked newly-formed blood 
vessels (Ko and Iwata 2001). Further experiments were 
performed on three-dimensional nanofibrous scaffolds 
with micropores made of bacterial cellulose. These 
scaffolds allowed the attachment and proliferation of 
human saphenous vein SMC on the surface and also in 
the inside of the scaffolds (Backdahl et al. 2008). In 
addition, the mechanical properties of nanofibrous 
bacterial cellulose scaffolds, evaluated by the shape of the 
stress-strain response, were reminiscent of the properties 
of the carotid artery, most probably due to the similarity 
in architecture of the nanofibril network (Backdahl et al. 
2006). 

Cellulose-based scaffolds were attractive not 
only for vascular SMC, but also for vascular endothelial 
cells. The adhesion, spreading, formation of an actin 
cytoskeleton, proliferation, metabolic activity and 
maturation of human saphenous vein cells was supported 
by nanofibrous bacterial cellulose scaffolds, particularly 
scaffolds functionalized with xyloglugan bearing RGD-
containing oligopeptides, i.e. ligands for integrin 
adhesion receptors on cells (Bodin et al. 2007, Fink et al. 
2011). Similarly, the population densities of endothelial 
cells and the spontaneous formation of capillary tube-like 
structures in vitro were improved on nano- and micro-
fibrous cellulose acetate scaffolds after they were 
combined with chitosan (Rubenstein et al. 2007). The 
angiogenic response to cellulose was also observed under 
in vivo conditions, i.e. after implantation of bacterial 
cellulose scaffolds in the form of a dorsal skinfold 
chamber into Syrian golden hamsters (Esguerra et al. 
2010). 
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Cellulose has also been used for creating tubular 
structures designed for replacing small-caliber vessels. 
The construction of functional small-caliber vascular 
replacements is relatively complicated, because these 
grafts are associated with the highest risk of restenosis 
and failure. Optimal prevention of restenosis is achieved 
by covering the inner surface of these grafts with 
endothelial cells. Wippermann et al. (2009) created 
hollow-shaped segments of bacterial cellulose 10 mm in 
length, 3.0-3.7 mm in inner diameter, and 0.6-1.0 mm in 
wall thickness. These grafts were used to replace the 
carotid arteries of eight pigs. After a follow-up period of 
3 months, seven grafts (87.5 %) remained patent, whereas 
one graft was found to be occluded. All patent grafts 
developed not only a single inner layer of endothelium 
with a basement membrane and a thin layer of collagen, 
but also a concentric medial layer containing SMC and 
cellulose, and an outer layer of fibrous cells.  

Similarly, bacterial cellulose grafts 4 cm in 
length and 4 mm in internal diameter were implanted 
bilaterally in the carotid arteries of eight sheep. Although 
50 % of the grafts occluded within two weeks, all patent 
grafts developed a confluent inner layer of endothelial-
like cells (Malm et al. 2012). In addition, the mechanical 
properties of tubular structures created from bacterial 
cellulose seemed to be advantageous for vascular tissue 
engineering. For example, these structures exhibited a 
compliance response similar to that of human saphenous 
vein, and even higher than in vascular grafts made of 
expanded polytetrafluoroethylene (ePTFE) and 
polyethylene terephthalate (PET; Dacron), i.e. in 
prostheses currently used in clinical practice. In addition, 
the surface of bacterial cellulose was less thrombogenic 
when compared with ePTFE and Dacron (Zahedmanesh 
et al. 2011). 

In spite of all these encouraging findings, 
cellulose is not an ideal scaffold for tissue engineering, 
due to its low degradation ability. As mentioned above, 
ideal scaffolds used in advanced tissue engineering 
should be constructed from resorbable materials that 
degrade proportionally to the tissue regeneration and are 
gradually replaced by a newly-formed functional tissue 
(Collins and Birkinshaw 2013). However, cellulose in the 
human organism behaves as a non-degradable or very 
slowly degradable material. For example, the degradation 
time of viscose cellulose sponges implanted 
subcutaneously into rats was longer than 60 weeks 
(Märtson et al. 1999). This very slow degradability of 
cellulose is due to the absence of enzymes that attack the 

β(1→4) linkage. These enzymes are present in microbial 
and fungal cells (for a review, see Märtson et al. 1999). 
In our experiments, we have therefore focused on 
inducing and controlling the cellulose degradability. An 
efficient method for inducing degradability of cellulose is 
oxidation. Oxidized cellulose can be generated by various 
techniques and by various oxidizing agents, such as the 
HNO3/H3PO4-NANO2 system, CCl4, periodate or  
2,2,6,6-tetramethylpiperidinyl-1-oxyl radical (TEMPO) 
combined with NaClO (Roychowdhury and Kumar 2006, 
Saito et al. 2009, for a review, see Novotná et al. 2013). 
Oxidized cellulose is degradable by hydrolysis, mediated 
by hydrolytic enzymes present in the serum supplement 
of cell culture media in vitro and in macrophages in vivo 
(Dimitrijevich et al. 1990a,b).  

Cellulose oxidation induces conversion of the 
glucose residues to glucuronic acid residues containing  
–COOH groups. The concentration of these groups 
modulates not only the degradation time of cellulose, but 
also its pH, its swelling in a water environment, its 
mechanical stability, its drug loading efficiency, and 
other behavior of the material (Zhu et al. 2011). In 
addition, the –COOH groups, which are polar and 
negatively charged, can be used for functionalizing the 
oxidized cellulose with various biomolecules (Zimnitsky 
et al. 2005, 2006).  

Oxidized cellulose has been widely used as a 
hemostatic and wound healing material. It is highly 
absorbable, able to initiate or accelerate blood 
coagulation, and displays antibacterial and antiviral 
effects. It is also a promising carrier for controlled drug 
delivery (for a review, see Novotná et al. 2013). Oxidized 
dialdehyde cellulose (DAC) has been applied as a 
biodegradable scaffold for tissue engineering. 
Microporous DAC membranes supported adhesion, 
proliferation and ECM formation in human neonatal skin 
fibroblast cells (Roychowdhury and Kumar 2006), and 
also proved to be suitable for engineering vocal fold 
lamina propria (Roychowdhury et al. 2009). 

Our experiments were performed on cellulose-
based materials modified by oxidation and/or 
functionalization with biomolecules. We have prepared 
fibrous scaffolds made of non-oxidized viscose, 
dialdehyde cellulose and 6-carboxycellulose with 
2.1 wt. % or 6.6 wt. % of –COOH groups. In addition, all 
these material types were functionalized with arginine, 
i.e. an amino acid with a basic side chain, or with 
chitosan, in order to balance the relatively acid character 
of oxidized cellulose molecules. Two groups of samples, 
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with and without functionalization, were then seeded with 
SMC derived from rat thoracic aorta by an explantation 
method (Novotná et al. 2009, 2013). 

We found that oxidized cellulose with 2.1 wt. % 
of –COOH groups was the most appropriate of all the 
tested materials for colonization with SMC. The cells on 
this material achieved an elongated shape, while they 
were rather spherical in shape on the other materials 
(Fig. 1). In addition, the number of cells found one week 
after seeding and the concentration of contractile proteins 
alpha-actin and SM1 and SM2 myosins, measured per mg 
of protein, were significantly higher on oxidized cellulose 
with 2.1 wt. % of –COOH groups. Functionalization of 

the material with arginine and chitosan further improved 
the phenotypic maturation of SMC, which was 
manifested by a further increase in the concentration of 
alpha-actin and SM1 and SM2 myosins in these cells. 
Chitosan also improved the adhesion and growth of 
SMC. However, in comparison with the control 
polystyrene dishes, the proliferation activity of the cells 
on our cellulose-based materials was relatively low. This 
suggests that these materials can be used in applications 
where high proliferation activity of cells is not desirable, 
e.g. proliferation of SMC on vascular prostheses, which 
can lead to restenosis of the graft.  

 
 

Fig. 1. Morphology and 
viability of vascular smooth 
muscle cells on day 7 after 
seeding on the following 
cellulose-based materials: 
viscose (A, B, C); oxidized 
cellulose with 2.1 wt. % of  
–COOH groups (D, E, F); 
oxidized cellulose with 
6.6 wt. % of –COOH groups  
(G, H, I); dialdehyde 
cellulose (J, K). A, D, G, 
J: materials with no 
modification; B, E, H, K: 
materials functionalized with 
chitosan; C, F, I: materials 
functionalized with arginine. 
LIVE/DEAD staining, obj. 4x. 
Olympus IX 51 microscope, 
DP 70 digital camera, 
obj. 4x, bar = 1 mm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
On the other hand, 6-carboxycellulose with 

2.1 wt. % of –COOH groups, particularly if 
functionalized with arginine or chitosan, provided better 
support for SMC growth than corresponding groups of  
6-carboxycellulose with 6.6 wt. % of –COOH groups, 
viscose and dialdehyde cellulose. In the case of  
6-carboxycellulose with 6.6 wt. % of –COOH, this was 

probably due to the relatively high acidity of this 
material, and also due to its lower stability in the cell 
culture environment and during manipulation. In other 
words, the content of 6.6 wt. % –COOH groups appeared 
to be too high for this material to be biocompatible and 
stable. In addition, the stability of dialdehyde cellulose 
proved to be very low, probably because of a specific 
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arrangement of the fibers in its fabric, which resembled a 
loose network, while in oxidized cellulose or viscose the 
fibers were densely packed in thick rope-like bundles 
(Fig. 1). The highest stability was observed in viscose 
materials, which had almost no tendency to degrade. The 
stability of oxidized cellulose with 2.1 wt. % of –COOH 
was sufficiently high, as it did not disintegrate while the 
samples were being handled, and its degradation in the 
cell culture system was relatively slow in comparison 
with oxycellulose with 6.6 wt. % of –COOH and 
dialdehyde cellulose (Novotná et al. 2009, 2013). 

Similar results were obtained in our earlier study 
performed on polyethylene (PE) foils doped with various 
concentrations (0-20 wt. %) of calcium salt of oxidized 
cellulose (OKCEL Ca-L, Synthesia, Pardubice, Czech 
Republic). The surface of the samples was polished in 
order to enhance the exposure of oxidized cellulose to the 
cells. The samples were seeded with SMC derived from 
rat aorta. On all samples doped with oxidized cellulose, 
the cells proliferated better than on non-doped PE, but the 
highest cell numbers were found on samples with lower 
concentrations of oxidized cellulose, i.e. 1-5 wt. % 
(Mikulíková et al. 2005). 

 
Conclusions 

 
Polysaccharides have proved to be very 

important biological polymers indispensable in advanced 
tissue engineering, cell therapies and regenerative 
medicine. They are equally important as widely-used 
synthetic degradable and non-degradable polymers, such 
as polylactides, polyglycolides, polycaprolacton, PTFE 
and PET, though they often seem to be overshadowed by 

these polymers. In the form of injectable hydrogels, 
polysaccharides, particularly alginate and hyaluronan, are 
essential for encapsulation and delivery of cells directly 
to the organism (pancreatic islets, ovarian follicles) or to 
three-dimensional scaffolds for tissue engineering. 
Polysaccharides can also be prepared in the form of 
porous or fibrous scaffolds, the latter often being  
created by an advanced electrospinning technique. 
Polysaccharides are also important biomolecules for 
further modification of various polymeric and other 
materials designed for tissue replacement, in order to 
increase their bioactivity, e.g. cell retention. For specific 
purposes, such as engineering of hard or conductive 
tissues, polysaccharides can also be combined with 
ceramic, carbon and metallic nanoparticles. 
Polysaccharides are also important carriers for the 
delivery of growth factors and drugs to cells. Thus, 
polysaccharides are promising materials for further 
development and for broader applications in clinical 
practice.  
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