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Abstract

We present new error estimates for the finite volume and finite difference methods applied to
the compressible Navier—Stokes equations. The main innovative ingredients of the improved error
estimates are a refined consistency analysis combined with a continuous version of the relative
energy inequality. Consequently, we obtain better convergence rates than those available in the
literature so far. Moreover, the error estimates hold in the whole physically relevant range of the
adiabatic coefficient.

Keywords: compressible Navier—Stokes system, error estimates, relative energy, strong solution,
upwind finite volume method, Marker-and-Cell finite difference method

1 Introduction

The Navier—Stokes equations governing the motion of viscous compressible fluids have numerous ap-
plications in engineering, physics, meteorology or biomedicine. In this paper we consider the viscous
barotropic fluid endowed, for simplicity, with the isentropic pressure—density state equation p = ag?,
where a > 0 is a positive constant, and v > 1 denotes the adiabatic coefficient. The global-in—time
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existence of weak solutions is known for any v > £ in the d-dimensional setting, see Lions [20] and
[7]. More recently, Plotnikov and Vaigant [26] extended the existence theory for any v > 1 if d = 2.
Unfortunately, the multilevel approach used in the existence proof is rather difficult to adapt directly
to a numerical scheme; whence the numerical analysis of the problem remains rather incomplete.

In the last few decades, many efficient and robust numerical methods have been proposed to simulate
the motion of viscous compressible fluid flows. We refer the reader to the monographs by Dolejsi and
Feistauer [2], Eymard, Gallouét and Herbin [5], Feistauer [3], Feistauer, Felcman and Straskraba [4],
Toro [27], and the references therein. Despite a good agreement of the obtained results with experiments,
a rigorous convergence analysis with the associated error estimates have been performed only in a few
particular cases.

In his truly pioneering work, Karper [18], see also [9], showed convergence (up to a subsequence) of a
mixed finite element-finite volume (or discontinuous Galerkin) approximation to a weak solution of the
compressible multidimensional Navier—Stokes system under the technical restriction v > 3. His proofs
basically follows step by step the existence theory developed in [7] and as such is difficult to adapt to
other numerical methods. Moreover, as the weak solutions are not known to be unique, the result holds
up to a subsequence and no convergence rate is available.

Recently, see [10, 11, 12], we have developed a new approach based on the concept of more general dis-
sipative weak (dissipative measure-valued) solution, which, combined with the weak—strong uniqueness
and conditional regularity results, yields a rigorous proof of convergence for the mixed finite element-
finite volume, finite volume and finite difference Marker-and-Cell (MAC) methods for any v > 1 as long
as the sequence of numerical solution remains uniformly bounded and/or if the strong solution exists.
The aim of the present paper is to derive error estimates for the finite volume and the MAC methods
for full range of the adiabatic coefficient v > 1.

There are several results concerning error estimates for the compressible Navier—Stokes equations.
Under the assumption of the L2-bounds of the discrete derivatives of the numerical solutions, Jo-
vanovi¢ [17] studied the convergence rate of a finite volume-finite difference method to the barotropic
Navier-Stokes system. In [21, 22] Liu analyzed the errors for P* conforming finite element method,
k > 2, assuming the existence of a suitably regular smooth solution. However, the stability of the
method with respect to the discrete energy was not investigated.

Furthermore, Gallouét et al. [14, 15] analyzed the unconditional convergence rates of the mixed finite
volume-finite element method [9] and the MAC scheme for v > 3/2 in the dimension d = 3. Similar
results have been obtained by Mizerova and She [23]. All the above mentioned convergence results are
based on a discrete version of the relative energy inequality estimating the error between the numerical
and the strong solution. The obtained convergence error is O(h%), where h > 0 is a mesh parameter

and A = min {%, %}, cf. [14, 15, 23]. In particular, the convergence order tends to zero when vy — %

and remains positive only if v > 3/2. Moreover, if v > 2, the convergence rate is only % in the energy
norm, though the numerical experiments indicate the second order convergence rate.
In view of the existing results, the main novelty of the present paper is two-fold:

e Extending the error analysis to the full range v > 1.
e Improving the convergence rate via a detailed consistency and error analysis.

Following the strategy proposed in the monograph [12, Chapter 9], we combine the standard consis-
tency errors with the “continuous” form of the relative energy inequality. In contrast with the existing
methods based on ad hoc construction of an approximate relative energy inequality, the new approach is
rather versatile and free of additional discretization errors. In particular, we can handle any consistent



energy stable numerical method in the same fashion. We focus on the finite volume method proposed in
[12] and the MAC method from [23]. The application to the mixed finite element-finite volume method
of Karper [18] was studied independently and presented in the recent work by Novotny and Kwon [19].
Compared to the previous results of Gallouét et al. [14, 15], we employ the consistency formulation of
the numerical solution where the test function is smooth. This new approach avoids the complicated
integration by parts formulae on the discrete level and improves the convergence rates of the MAC
method presented in [14, 23].

The paper is organized in the following way. After presenting the continuous model and the corre-
sponding relative energy, we formulate the numerical schemes: the finite volume and the MAC method,
see Section 2. Next, we discuss their energy stability and consistency. The main results on the error
estimates are formulated and proved in Section 3.

1.1 Compressible Navier—Stokes system

We begin with formulating the compressible Navier—Stokes system

dho + divy(ou) =0,

1.1
Oi(ou) + div,(ou @ u) + V,p(o) = div,S (1.1)

in the time-space cylinder [0,7] x Q, Q C R d = 2,3, where g is the density, u is the velocity field,
and S is the viscous stress tensor given by

2
S = u(Vou + Viu — adivxu]l) + Mdivyul, g>0, A > 0.
The pressure is assumed to satisfy the isentropic law
p=ao’, a>0,v>1. (1.2)

To avoid technical problems related to a proper numerical approximation of the physical boundary,
we impose the periodic boundary conditions and identify the computational domain with the flat torus

QO =T= ([0,1]]101)"

The system (1.1) is supplemented with finite energy initial data (oo, ug) : T¢ — R* x R%,

1
0(0,2) = 09 > 0, (ou)(0, ) = gouy, and Ey = / (§Q0|u0‘2 + P(go)) dx < oo, (1.3)

Td

where P is the so-called pressure potential, P(p) = % for the isentropic gas law (1.2).

1.2 Relative energy

The main tool to evaluate the distance between numerical and strong solutions is the relative energy
functional, cf. [§]:

ele.uln0) = [ (Gelu=UF +Bleln) do. with E(dr) = P(2) ~ P(r)(e =) - PO

As pointed out, relative energy functionals are often used to estimate the distance between a suitable
weak solution and the strong solution; whence yielding the weak-strong uniqueness property. Recently,
a discrete version of the relative energy has been applied in the error analysis of numerical schemes,
see [14, 15, 23].



1.3 Classical solutions

It will be useful to identify the regularity class of smooth (classical) solutions to the Navier—Stokes
system (1.1) inherited from the initial data (1.3). The following result can be the deduced from [1,
Theorem 3.3] and [6, Proposition 2.2].

Proposition 1.1. Let the wnitial data belong to the class
00 € C*(T%), 09 >0 in T, uy € C3(T% RY).
Let (o, u) be a weak solution to problem (1.1) originating from the initial data (1.3) such that
0<o<7 and |ul < ae in(0,T)x T (1.4)
Then (o,w) is a classical solution of (1.1)-(1.3) in [0,T] x T¢.
If, in addition, 0o, ug belong to the class
00 € WH(T?), ug € WH(T%4RY), k> 6, (1.5)
then o € C([0,T]; WE2(T?)), w € C([0,T]; WH(T?% R?)), and the following estimate hold

105 ellcoryxreyHl ellor oy + 11/ elleqorxe) + lelloqomywremy < D, £=1,2,

10y ullc o xmamey + 1wllorqoxrara) + lulleqowramary < D, £=1,2, (1.6)
where D depends solely on T, 7,6 and the initial data (0o, wo) via the norm ||(0o, wo)|lwr.2(rararry and
ming,cra 0o().
Proof. The first part was proved in [6, Proposition 2.2] via the local existence theory by Valli and
Zajaczkowski [25] combined the weak-strong uniqueness principle and the conditional regularity result
by Sun, Wang and Zhang [24]. In particular, the bounds (1.6) were established for k = 3, £ = 1.

Next, as shown in [1, Theorem 3.3], the solution inherit higher Sobolev regularity from the data as

long as the norm ||| (o, 7};w2 . (14;r4y) is controlled. In particular, the estimates (1.6) can be established.
Similarly to Gallagher [13], the proof in [1] is based on the particular isentropic form of the pressure

that enables to transform the problem to a parabolic perturbation of a symmetric hyperbolic system.
O

2 Numerical methods

First, we introduce suitable notation. By ¢ we denote a positive constant independent of the discretiza-
tion parameters At and h. We shall frequently write A S Bif A<cBand A~ Bif A< Band B < A.
We also write ¢ € co{a, b} if min(a,b) < ¢ < max(a,b). Moreover, we denote by ||||zs, ||||zrLe, and
|| Lpwa.s the norms [|[|ze(ray, ||l zoo.7:La(ray): and ||| oo rwas (vay), respectively.

2.1 Time discretization

We divide the time interval [0, 7] into N; equidistant parts with a fixed time increment At (= T'/N).
For a function f™ given at the discrete time instances t,, = nAt, n =0,1,--- , Ny, we define a piecewise
constant approximation f(¢) in the following way

f(t,)=f° for t < Atand f(t) = f* for t € [nAt,(n+1)At), ne€{1,...,N;}.
The time derivative is approximated by the backward FEuler method

f(t")_f(t_At7')
At

Df = for all ¢t € [0,T7.



2.2 Space discretization

To begin, we introduce a uniform structured mesh including primary, dual and bidual grids.

Primary grid
We call T the primary grid with the following properties and notations:

e The domain T% is divided into compact uniform quadrilaterals T? = | J, . K, where T is the set
of all elements that forms the primary grid.

e & denotes the set of all faces of the primary grid 7. Given an element K € T, £(K) is the set of
its faces; &; is the set of all faces that are orthogonal to the unit basis vector e;; &(K) = E(K)NE;
for any ¢ € {1,...,d}.

e h denotes the uniform size of the grid, meaning |x; — x| = h for any neighbouring elements K
and L, where i and x are the centers of K and L, respectively.

e ox; and ok, denote the left and right face of an element K in the i*"-direction, respectively.

N(K) denotes the set of all neighbouring elements of K € T.

—
o = K|L denotes the face o that separates the elements K and L. Moreover, 0 = K|L means

o= K|L and z;, — xx = he; for some i € {1,...,d}.

n denotes the outer normal of a generic face o and n, x denotes the outer normal vector to a face
o€ E(K).

Dual grid
The dual of the primary grid is determined as follows.

e For any face 0 = K|L € &;, a dual cell is defined as D, = D, x U D, 1, where D, i = {z € K, z; €
co{(zk)i, ()i} }, see Figure 1(a) for a two dimensional graphic illustration.

D; = {D, |oc €&}, i€ {l,...,d}, represents the i'" dual grid of 7. Note that for each fixed
ie{l,...,d} it holds

T¢ = U Dy, int(D,)Nint(D,:) =0 for 0,0’ € &, o # 0.

o€E&;

&, is the set of all faces of the it® dual grid D; and g'” ={ee g’l\e is orthogonal to e;}.

A generic face of a dual cell D, is denoted as € € £(D,), where £(D,) denotes the set of all faces
of D,.

e
¢ = D,|D, denotes a dual face that separates the dual cells D, and D,.. Moreover, € = D,| D,
means € = D,|D, and x, — z, = he; for some i € {1,...,d}.

N*(o) denotes the set of all faces whose associated dual elements are the neighbours of D,, i.e.,

N*(o) = {0’ | Dy is a neighbour of D, }.

Bidual grid



e Similarly to the definition of the dual cell, a bidual cell D, := D., N D,, associated to € =

D,|D, € cEN’” is defined as the union of adjacent halves of D, and D,, where D, , = {z € D,|z; €
co{(z,);, (zc);}} see Figure 1(b) for a two dimensional graphic illustration.

e B;; denotes the j™ dual grid of D;, that is set of all bidual cells associated to the bidual faces of
&i ;. Note that B; ; = T in the case of i = j.

M N M N
D
€= l)(7 ’DU/
~
s
Dy i l D, 1 E =~ :
K L K ﬁ D, . L
Dy = Dofr U Da,L : S :
(a) Dual grid in two dimensions (b) Bidual grid in two dimensions

Figure 1: MAC grid in two dimensions

Discrete function spaces. We introduce the following spaces of piecewise constant functions:

Qn ={¢ | én|lx = constant for all K € T}, Q, = Q;lw
Wi = Wi, ... Wan), Win={¢|¢n|lp, = constant forall o€ &}, ie{l,...,d}.

The corresponding projections read

1
g LT = Q1. llgo = 3 (Hodlile, (Mool = o [ oo
KeT K
i i i i 1
19 (T — W, 100 = S0 1p,  WP0), = 1 [ oasio)
oes g
where 1k and 1p, are the characteristic functions. Further, for any ¢ = (¢4, ..., ¢q4) we denote Ilg¢p =

(H(gl)gbl, e ,H(gd)gbd) . Moreover, for any bidual grid D, we define

ILg

1
D. = H/€¢ds($)- (2.1)



2.3 Discrete operators
Average and jump. First, for an piecewise smooth function f;, we define its trace
out I in I _
P(e) = Jim ol +0n) and f(x) = lim fi(e - on).
Then for any r, € @), we define the average operator

in out
{rnt, (x) = (@) —;rh (z) for any x € 0 € £.

If in addition, o € & for ani € {1,...,d}, we write {r,}, as {rh}}g) and denote
{T‘h}(i) = Z IDU {{Th}}gi) Veeoekl.
o€t;
Analogously to the average operator, we define the jump operator for r, € Q) as
[ra], (2) = " (@) =y (2).

Further, for vector—valued functions v, = (vyp,...,van) € Qﬁ and up, = (urp, ..., uqn) € Wy, we define

fonk = (o3 k).

Ui hlog s T Wihlow ., . o
Uinlk = RadhE s 5 Sadii ,  Uiph = E IktUip|k, and wy = (Ul,h, o Ugp) -
KeT

Note that for any u;, € W}, we have u;, = lguy,.

Gradient operator. For any 7, € Q)), and u;, € W), we introduce the following gradient operators.

VDT’h<x> = (5@17”}“ cee 75Ddrh> <x>7
Viu(z) = (Veuia(z),. .., Veuan(z)) with Vgu,(z) = (0p,uin(z), . .., 0p,u0(2)),

where
T, —TK —
o

Op,rn(z) = ; 1p,(0p,rh)e,  (Op,Th)s = 0= K|L € &,
Uy — Uy _— =~
5Bi,jui,h($) = Z (5Bi,jui,h)D51De, (5Bi,jui,h)pe = T’ for e = Da|Da' € 5z',j-

€&

Furthermore, for any v;, € Q) and ¢ € W12(T9) we set

Vovy = Z 1xkVqunlx with Vouulk = Z || ’| for} @m,

KeT ceE(K
Vo= (9000, o).
Here, 859 is defined for any w;, € W;p, 1 € {1,...,d} as

_ ui,h’O'K’i_;,_ - u’i,h‘O'Kﬂ;_ K c 7.
h .

i
T uzh Z 1k 87 Uih)K, af(r)ui,h .
KeT

Note that for any r, € @5, and u;, € W, there hold

51)1-7’}1 = 8? {{Th}}(z) and 63i’iui’h = 853)%7;1

7



Divergence operator. For u, € W), and v, € Qj we define the following discrete divergence opera-
tors adjoint to the above discrete gradient operators

d d d
divy¥ uy,(7) = Z 8§f)ui,h(x) and div?vh(:c) = Z 853) {viyh}}(l) () = Z Op, Vi ().
i=1 i=1 i=1
It is easy to observe for any v, € ()}, that

le7V-V {{'vh]} = diV?—’Uh. (22)

Upwind flux. Given a velocity field u, € Q) N Wy, the upwind flux function for r;, € @)}, is given by
Up[ra, unle = (o)™ + 79" (uy) ™,

where
1 uplt-n, if u, € Qp,
rE=—(r£|r]), u,= o Ch Qn
2 uy - ’rl,7 lf Up € Wh.
To approximate nonlinear convective terms we apply the following diffusive upwind flux
Fylrn, uple = Uplrp, uple — A% [rp],, &> -1

For ¢, € Q; we define a vector-valued upwind flux componentwise

Up|on, up] = (Upldin, unl, - -, Up[@an, un]),  Fjlbn, un] = (Fy[d1n, wn), -+, F [@an, un)) -

2.4 Preliminary estimates and inequalities

In this section we present a preliminary material. First, it is easy to check that the following integration
by parts formulae hold, see e.g. [16, Lemma 2.1].

Lemma 2.1. Let ry,, ¢p € Qp, and uy, @ € Wy. Then

/ rhdiv7vyuh dr = —/ uy, - Vpry, do, / rhagf)ui,h dr = —/ w; pOp, 7 dx. (2.3a)
Td Td Td Td

Next, we report the following useful lemmas whose proofs are presented in Appendix A.

Lemma 2.2. For any r, € Qn, v, € Qp, uy € Wy, ¥ € WH(T?) and U € WH2(T4R?), there hold

/ rpdiv, U dx :/ Thdivy—VHgU dzx, (2.4)
Td Td
/ vy, - Vo da :/ vy, - VP da. (2.5)
Td Td
Lemma 2.3. For any u, € Wy, v, € Qp and ¢ € WY2(T) there hold
/ uy - Ve do = — / M2 divy wy, de, (2.6)
Td Td
d .
/ vy - Vb do = — Z/ 14 3p, vy, da. (2.7)
Td — J1a

8



Lemma 2.4. For any u, € Wy, v, € Qp, and U € W22(T% R?), we have

d d (@) (@)
I 0,U; I1:"0;U;)p
/ Hou,-AUd=-33 / %Juj,h(( { ]>Do+2< { ]>Dg> G (280
Td €

i=1 j=1 —p,|D,,€&;

/ uy, - Vdiv,U do = — / divy¥ u, 11 (div,U) dz, (2.8b)
Td Td
/ v, - AU dr = — Vopuvy, : l1cV,U dz, (2.8¢)
Td Td
/ fon} - Vodiv,U dz = — / M. div,U diviv, dz. (2.8d)
Td Td

Lemma 2.5. Let v, € Qp, uy, € Wy, U € W23(T4RY), and ® € W32(T4RY).  Then for any
i,j €{1,...,d}, we have

h h
Moun —unllzz < SIIVsunlz,  [Ifond —onlle < SlIVovalle, (2.92)

T 0,U; = 0.U; |2 < h|U w22 (2.9b)

|div,U — Mdiv,Ul| 2 < B|U w2z,  |[TMdiv,U — T&div,Ul| 2 < AU w2 (2.9¢)

|V, div,® — Vodivyllo®|| 12 < hl|®|wsz,  [|Ac® — divi¥Vpllo®| 12 < b||® |y (2.9d)

2.5 Finite volume and finite difference methods

We proceed by presenting a finite volume and a finite difference numerical method that will be used
to approximate the Navier—Stokes system (1.1)—(1.3). Both methods have been already successfully
applied in numerical simulations, see, e.g., [12]. In our recent work [11, 12, 23], the convergence was
shown for v > 1 via the concept of dissipative measure-valued solutions. However, the error analysis
was missing for the finite volume method and suboptimal for the finite difference method.

2.5.1 Finite volume method

We introduce the finite volume (FV) method approximating the Navier—Stokes system (1.1)—(1.3).

Definition 2.6 (FV scheme). Given the initial data (1.3), we set (0}, ohu))) = (Igoo, Ilgloouo]). The
FV approximation (o, u}) € Qn x Qn, n = 1,..., N, of the Navier—Stokes system (1.1)~(1.3) is a
solution of the following system of algebraic equations:

Dyoyon dz — /g Fylop, upl [on] dS(z) =0 for all ¢y € Qn, (2-10a)

Td

/ Dy(giul) - on da — / FS gl uf] - [n] dS(z) — / pidivagy da
B £ T (2.10D)

=~ | Vpul: Vpd,dr —v / diviup divie, dz  for all ¢n € Qu,
Td Td

where v = d%fu + A



2.5.2 Finite difference MAC method

We proceed by presenting the finite difference MAC scheme that is based on a staggered grid approach.
On the one hand, the discrete density g, and pressure p, = p(gy) are approximated on the primary grid
T. On the other hand, the i" component of the velocity field w, ;, is approximated on the i*" dual grid
D;. The MAC scheme reads as follows.

Definition 2.7 (MAC scheme). Given the initial data (1.3), we consider (o}, 05 Toul) = (Ilgoo, Ig[oowo))-
The MAC approximation of the Navier-Stokes system (1.1)—(1.3) is a sequence (o), u}) € Qn X Wi,
n=1,2,..., N, which solves the following system of algebraic equations:

Dy da — /g Fy Lo, wp] [¢n] dS(z) =0 for all ¢n € Qp, (2.11a)

Td

/Td Di(o)ouy!) - ¢y, dx —/g Uploillguy, up] - [én] dS(z)

+ i / Vsu} : Veon dz + v / div¥uy divy ¢y, do — / prdivy¥ ¢y, da
T T4 T (2.11b)

d d
=—ry N /T Am Y ©p,0000, 600w, for all ¢ = (S11, -, dan) € Wi,

i=1 j=1
_ d—2
where v = =+ A

In what follows, we will denote by op(t), u,(t) the piecewise constant approximations of o, u},
n=20,1,..., N on the time interval [0, T], see Section 2.1. We note that both methods, the FV method
(2.10) as well as the MAC method (2.11), preserve the positivity of density and conserve the mass

on(t) > 0 and/ on(t)de = M for all ¢ € (0,T), (2.12)

Td

where M := [, 0o dz denotes the fluid mass, see e.g. [12, Lemma 11.2].

2.6 Energy stability

The essential feature of any numerical scheme is its stability. We now recall the energy stability of both
numerical methods introduced above, see [12, Theorem 11.1 and 14.1]

Lemma 2.8 (Energy estimates). Let (o, up) be a numerical solution obtained either by the F'V scheme
(2.10) or by the MAC scheme (2.11) with v > 1. Then for all T € (0,T), it holds

1 T T
/ <_Qh ’HQ’U/h|2 + P(Qh>> (7') dz + ,u/ / |thh|2 dzdt + V/ ‘dth’U,h|2 dzdt < Eo, (213)
Td 2 0 JTd 0 JTd

where By = de (%Qo|u0|2 + P(go)) dx s the initial energy and

(Vpup, diV7Q—uh) for wy, € Qp, in the F'V scheme;

Vi, divyuy) =
(Viup, divy,uyg,) {(Vguh,diVy—Vuh) for u, € Wy, in the MAC scheme.

Moreover, there exists ¢ > 0 which may depend on the fluid mass M and the initial energy Ey but is

independent of the parameters h and At such that
lon [Mounl*lprr < e, llonllioern <, lonllquall 2 <, (2.14a)

5T

HdivhuhHLsz <cgc, thuhHLsz <cg, Huh”LzLe <ec. (2.14b)

10



2.7 Consistency formulation

The next important ingredient of our approach is the consistency formulation of the numerical scheme.

Lemma 2.9 (Consistency formulation). Let (on,up) be either a solution of the FV scheme (2.10) or
the MAC scheme (2.11) with At =~ h € (0,1), v > 1 and e > —1.

Then for allT € (0,T), ¢ € L=(0,T; W?>(T%)), 2¢ € L>°((0,T)xT%) and ¢ € L>(0, T; W>(T?; R?)),
02¢ € L>=((0,T) x T4 RY) there holds

{/ On dx] = / / (0n0:9 + onllguy, - V,¢) dxdt + e, (T, At, b, @), (2.15a)
Td =0 0o J1d

l/d QhHQuh . ¢d$:| = / /d (QhHQ’U,h : atd) + ,QhHQuh X HQ’LLh : Vzcﬁ +phdlvx¢) dxdt
T t=0 0 T
- ,u/ Viuy : Vo dadt — 1// / divyuy, diveed dedt + e, (1, At, h, @), (2.15b)
0 JTd 0 JTd

where the consistency errors are bounded as follows:

At + h + hlte 4 pltbp the F thod
|eQ(T,At,h,q§)|§{CQ( + h+ + ) for the F'V metho

Cy(At + h'Te + p1HAD) for the MAC method ( )
2.15¢
lem (7, At B )] < Con (VAL + h 4 b1 4 1) for the FV method
em 7—7 ) ) —_
Cor (VAL + h 4 R 4 W10 4 p1+60)  for the MAC method.
Here, the constant C, depends on
the initial energy Eo, T, and ”QbHLOO(O,T;W?vOO(’]I‘d))? ||at2¢HL°°((O,T)><’]I‘d)7
and Cy, depends on
Eo, T, ||¢||L°°(O,T;W2’°°(']I‘d;Rd)7 ||8152¢||L°°((0,T)XT‘1;R¢)'
Further, the exponents Bp and By are given by
_%7 Zf’76 (172)7
_ 3e+34d =2 : =3 :
gy {m{ B Ry e, IR e, 2.15d)
0, if v > 2, 0, if v >3 ford=3,

0, if v > 2 ford=2.

Remark 1. Consistency formulation for the FV and MAC method was introduced in [12, Theorem 11.2]
and [12, Theorem 14.2], respectively. Instead of an abstract consistency error identified in [12], Lemma 2.9
provides an explicit bound in terms of the numerical step and reqularity of the associated test function.
Moreover, we improve the result of [12] by requiring less reqularity of the test functions.

Proof of Lemma 2.9. The consistency errors arising from the time derivative term can be evaluated in
the following way. First, by a direct calculation, we obtain
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tn+1 tn+1

r(t) — rp(t — At
/ Dyry(H)ge(t) dadt = / / n(t) h( )go(t) dzdt
0 Td Td
1 tn+1

= —/ / rn(t)e(t) dedt — —/ / rn(t)e(t + At) dzdt

At Jg Td At J1d

tn+1 tn+1
- / / t)Dip(t + At) dedt + — / / o(t + At) dzdt
0 Td Td
) (2.16)
— —/ / ra(t)e(t + At) dadt
At At T‘d

[ gl At
—/ / t)Dyp(t + At) dadt + —/ / rn(t)e(t) dedt — —/ / rio(t) dodt
0 Td Td Td

—/0 /’]Td t)0yp(t dxdt—l—/w () (1) d:L'—/Td rho(0)dz + I + I + I3,
=rpVreftr, tntl)

tn+1

for any 7 € [t,,tn41), n =1,..., Ny, where
At
= [ i / (1) dtde S Aol i~ Irflls
tn+1
= t At) — dtd
YT
tn+1
— [ [ et a0 - p()deds S A0l
Td At Jin
tn+1 tk:+1
I3 = / / rn(t) (Opp(t) — Dyp(t + At)) dadt = / / 8tg0 t) — Dyp(t + At))dt dz
0 Td Td
< At|0F | o ree |[7a | oo -
Collecting the above estimates we obtain from (2.16) that
it
[/ TR dx] ) (Dyrn(O)gp(t) + (1) 0sp(t)) dzdt < At||07¢||peres|ITnllpor,  (2.17)
T

whenever 7 € [t,,t,41), where r}, stands for g, or opus.
Analogously as in the proofs of [12, Theorem 11.2] and [12, Theorem 14.2], we obtain

o] =

T tn+l
{/ onllquy, - ¢d$} = /
Td t=0 0
tn+1
“
0

tn+1

/d (0n0:9 + onllguy, - Vi) dxdt + e, (1, At, h, @), (2.18a)
T

/ (QhHQ’U,h . @gb + QhHQ’U,h & HQ’U,h . Vx¢) dzdt
T (2.18D)

/ (phI[ — uVyuy — udivhuh) : Vepdadt + e (1, At, h, ¢),
Td

12



where e}, is controlled by

e (1. AL B, &) < Crn (A 4 h+ b€ 4 pi+o) for the FV method ,
mh T — | O (At + h + hlte 4 plthm 4 h””ﬁD) for the MAC method.

In order to derive (2.15a) it suffices to realize that the time integral from 7 to t"*! at the right hand
side of (2.18a) is of order O(At) . Indeed

J o

< (10l orllghllzrr + IIchbIILOOLooIIQZHQUZIILOOLl)/ ldt S At.

T

tn+l

[ (@06 + atlgun - 9.0) dads
T

Combining (2.18a) and (2.19) yields (2.15a).
Similarly, to get (2.15b) we need the following estimate

/

tn+1 tn+1
< / ||QZHQUZ||L1(W)||at¢||Loo(1rd)dt + / HQZHQUZ @ lquj + I?Z]IHLl(?rd)||vas92')||L°°(11‘d)dt

T

tn+1

/ (,QhHQ’u,h : @q& + (thQuh X HQuh —f—phl[ — uvhuh - l/dthuh) . Vzd)) dzdt
Td

tn+1

+ / ||thu’,f + l/dth’Ll,ZHLl(Td) ||vr¢||Loo(Td)dt

< AtllopTqup[ Lot 10:@ | oo e + At o Huy @ Houy, + pjy ||z £ [Vl oo o
tn+l 1/2
+ ||v$¢||LooLoo||,lLVh’U/Z + l/dth’U,ZHLZLl </ 12dt) 5 V At.

Substituting the above estimate into (2.18b) we obtain (2.15b), which completes the proof. [

Lemma 2.10 (Consistency formulation for a bounded numerical solution). Let the assumptions of

Lemma 2.9 hold. Moreover, let o, and wy be uniformly bounded, i.e., there exist positive constants 0
and u such that

on <0 and |uy| <. (2.20)

Then for allT € (0,T), ¢ € L>=(0,T; W2>>°(T%)), 02¢ € L>((0,T)xT¢) and ¢ € L>(0,T; W*°(T% R?))N
L0, T; W33(T% RY)), 02¢p € L>=((0,T) x T4 R?), there holds

{/ ond d:c] = / / (0n0:9 + onllguy, - V,¢) dxdt + e, (T, At, b, @), (2.21a)
Td =0 Jo Jrd

|:/d QhHQuh : ¢d$:| = / /d (QhHQ’u,h . 8t¢ + QhHQ’u,h & HQuh : VIQS —i—phdiVxQS) dzdt
T t=0 0 T

—|—/ / up, - (A + vV, div,@) dedt + e (7, A, h, @), (2.21Db)
o Jtd
where the consistency errors can be bounded as follows

leo(T, At h, @) < Co(At+h), lem(T, At h, @) < Cpp (At + h) (2.21c¢)
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Here, the constant C, depends on
0,7, Eo, T, || 9|l oo 0,mw 200 (1) 1070l oo (0,7 x4
and C,, depends on
0,1, By, T, || @l e (0.0 w200 (e, |9l L2 (0,752 ramay), 1|07 Bl Lo (0,7 w19

Proof. We will present the proof for the FV method, the proof for the MAC method is analogous. First,
we denote the errors of the inviscid fluxes as

t"+1
€1 = / / QhHQ’U,h : qub dzdt — /
0 Td 0

tn+1 tn+1
/ onllouy, ® lguy, : Vo dadt — /
Td 0

tn+1

| Filonw) Mool asayat. (2.22)

62:/
0

/g F= (o, wn] - [Moa] dS(x)dt

e (2.23)
—|-/ / prdivy@ — ppdivyIlge dadt.
0 Td
Analogously as in the proof of [12, Theorem 11.3] we get
le1] < c(l|@llzeewzse)hllonllr2rz  and  ea| < c([|@|| Locwzoe )bl onten]| r2r2.
In view of assumption (2.20) the errors e; and ey are controlled by
e <c o200 ) <c o0, 0)h,
lex] < c(l|@llzeewzs)hllonll 2z < c((|]| Loz, ) (2.24)

le2| < c(l|@llLoewze)hllonunllr2r2 < c(l|@llLew, 0, W)h.

Now, summing up (2.22) and (2.17) with r, = g5, and recalling the estimates (2.19) and (2.24) implies
(2.21a). Moreover, summing up (2.23) and (2.17) with r, = g,up, we get

[/d OnUp * ¢d$} :/ /d onuy - Orp + (Qhuh & up ‘|’th) 1 V@t (AL @ + vV, div, @) dedt
T 0 0 T

+ex +e3+ ey,
(2.25)
where e, is given in (2.23). The error terms ez and e4 can be estimated in the following way

es] = | /

0

tn+1
-1/

< C(||¢||L2W3’27ﬂ)hv

tn+1
T
tn+l

< Atl|@llor ([lenTlgunll st + llon Mounl*||oe 1 + [palloer1) Jrﬂ||¢>||L<>ow27<><>/ dt

< cl[@lleewzes, [|@llor, @, WAL

Consequently, collecting the estimates of eq, e3 and e4 we observe that (2.21b) follows from (2.25), which
completes the proof. O

tn+1

/ Uy - (,quqb + vadlvx(},)) + (MVDuh : VDHQQZ,) + l/dthuhdthHQ¢) dz
Td

/ uup, - (le};-VVDHQQ’) — A$¢> + rvuy, - (VQdthHQQ’) — delvxd)) dz
Td

/d thQuh . (‘9tq_’> + (thQuh X HQ’LLh + th) : de) + uy, - (LLAJCQ’) + udewmd)) dzdt
T
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3 Error estimates

This section is the heart of the paper. We prove the main result — the convergence rates for the FV
(2.10) and MAC (2.11) schemes. If, in addition, the numerical solutions are uniformly bounded, the
convergence rates can be improved to the first order.

Theorem 3.1 (Convergence rates). Let v > 1 and the initial data (0o, uo) satisfy
00 € WE2(Th), 0o > 0 in T, uy € WE2(T%4RY), k> 6.

Suppose that the Navier—Stokes system (1.1) admits a classical solution (o,w) defined on [0,T] x T¢,
with the initial data (09, uo). Further, let (on,un) be a numerical solution obtained either by the FV
scheme (2.10) or by the MAC scheme (2.11) emanating from the projected initial data (o), u)).

Then there exists a positive number

c = c(T, [|(00, o) [lwr2(rara+ry, inf 0o, [|(0, w) | c(o,r1xTaRA+1))

such that
T T
sup &(on, uplo, u) + u/ Vhuy, — Veul? dodt + V/ |divuy, — div,wl?* dzdt
0<t<T o Jrd o Jrd (3.1)
< c(h* + VAL,
lon = ollzoers + llonun —oull 2 S (VAL WY? +c(VAL+ R fory <2, (3.2)
3.2
lon = ellz=rz + llonun — oul| | 2 S c(VAL+ W2 for v >2,
and
s, — w22 < e(VAE+ hA)Y2 (3.3)
The convergence rate A reads
A Apy :=min{l,1+¢,1+4 Bp,1+ By} for the FV method, (3.4)
Apyac:=min{l,1+¢e,14+ 6p,1+ By, 1 +e+ Bp}  for the MAC method. ‘

Here the constants Bp and Bar are given in (2.15d).

Remark 2. Let us discuss the obtained convergence rate O(h?) for the choice At = h and different
values of v > 1, d = 2, 3.

e For the case d = 2, we obtain the following convergence rate A:

— Let v > 2. Then for any € > 0 both numerical methods have the first order convergence rate,
i.e. A=1.

— Let v € (1,2). The convergence rates are different for the FV and MAC schemes.

3+6'y

* Apy = min {1 - %, 1,1+ 5}. Choosing the optimal value of €, € = —32— € (=2, —3),
the convergence rate Apy = 1+ ¢ varies between ‘—1 for v\, 1 and 2 s fory /2.

x Apac = min {1 5+3E, L,14e1+e— 5+35} reaches its mazimum value 2= > 0 at

e =0. Thus, the convergence rate varies between 5 for vy \(1 and < 15 for vy /‘ 2.
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e For the case d = 3, we obtain the following convergence rate A:

— Let v > 3. Then for any € > 0 both methods have first order convergence rates, i.e. A = 1.

— Let v € [2,3). Then for any ¢ > ? we have A = 277—73 and the convergence rate varies
between % fory=2and 1 for~ /3.

— Let v € (1,2).

x Apy = min{ 2+5, 1,1+ 8} Choosing an optimal value of €, € = —ﬁ € (—%, —%),
Apy = 1+ € and varies between l for v\ 1 and % for~ /2.

* Apac = min{ 2+5, LL14+e14¢e— 2ff} reaches its maximum wvalue 77_1 > 0 at
e = 0. Note that Aprac varies between 0 when v\, 1 and % when v 7 2.

Remark 3. In view of the above results, the convergence rates available in the literature, see e.g. [14,
15, 23], are not optimal. Indeed, for d =3 and v = %, they degenerate to 0. Moreover, no error analysis
1s available for v < % Our approach yields error estimates also for~y € (1, ] In addition, we have better

convergence rates, e.g., ford =3 and vy = 5, where the convergence errors are O(hi) and O(hs) for the
FV and MAC schemes, respectively.

Proof of Theorem 3.1. First, by a straightforward but lengthy calculation, see Appendix D, we observe
the following relative energy inequality

[@(gh,uh\g, U)]g —|—/ /d (,U ’thh’2 + v ‘dth’u,hF) dzdt
o Jr
<T oL 4 i, - v, ) dad At b, lul? /2
< , thT“‘Qh QUn* Va5~ $t+€g(7'> t, >|U|/)
T

/ / (0n0:P'(0) + onllguy - V. P'(0)) dz — e, (T, At, h, P'(0))
Td (3.5)

— / / (QhHQ’U,h . 8tu -+ QhHQ’U,h X HQ'LLh . Vmu + phdivmu) dxdt
0 Td

—I—/ / (uVpuy, : Vou + vdivyugdivew) dedt + e, (7, At b, —u)
o Jrd

i /oT Td 0:(oP'(0) — P(0)) dxdt.

Next, we observe the following identities

2
u
QhHQ’U,h . Vx% — QhHQ’U,h & HQ'U,h . Vmu

= —op(llgup —u) @ (Llguy, — u) : Vou — o (guy, — w) - (w - Vyu),

P"(g) = ép’@, 0P'(0) — P(0) = (o). u(eP'(0) — Plo) = ip(o).

Then by substituting the above equalities into (3.5) and denoting

es = e, (7‘, At, h, |u|2 /2) —e,(1, At, h, P'(0)) + em(T, At, h, —u),
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we obtain

(€ (o, up|o, )]y + /OT /’]I‘d (u |Viuy, — qu\2 + v|divyuy, — divxu|2) dxdt
<eg+ /OT /Td on(u —Iguy) - (Qu +u - Vyu) dedt

— /OT /Td on(lguy, — u) @ (Ilgu, —u) : Vyudedt

- M/OT /Td (IVou)* = Vi, : Vou) dodt

+v / / (|div,ul” — divyuydiveu) dedt
0o Jrd
T 13) Ve .
+/ /d (@p(g) — on p(0) — onllouy, - $ — phdlva> dxdt.
o Jr

Y
As (o, u) satisfies the Navier—Stokes system (1.1), we know that

00w+ u - Vou) = pAsu + vVadiveu — Vap(o).

Substituting this equality into (3.6) we get
(€(on, wnlo, w)]] + /0 /T (1 |Viuy — Voul® + v|diveuy, — diveul’) dadt
<eg+ /OT /Td(gh —0)(u —guy) - (Gu + u - V,u) dzdt,
_ /OT /Td on(gup, —u) ® (llgu, — u) : Vyudadt,
+ M/OT /Td (]qu\z — Viuy : Vou+ (u —Iguy,) - Axu) dxdt
v /T /Td (|diVZ'u,|2 — divyupdiveu + (u — Houy) - V,diveu) dzdt
0

+/ / <9 _QQh dp(o) — Q—;chuh - V.p(0) —phdivxu) dzdt — / / (u — Mguy) - Vap(o) dzdt.
0 Td 0 T

Rearranging the terms on the right hand side, we arrive at

. 5
[€(0n, unlo, u)l; +/ / (1| Viuy — Voul® + v |divyu, — divxu|2) dzdt < eg+ Z RE,
0o Jrd i=1
where the integrals R i =1,--- 5, read

R{E:/OT/’W( h—Q)(U—HQUh) (8tu+u V +V ())d dt

0
T div,S(V,u
/ (on — 0)(u —Tlquy) - —é )
T‘i

dxdt

S~

0

RE = — on(llguy, — u) @ (Ilguy, —u) : Vyudadt,
Td

u/ (Viuy : Vou + Houy, - Ayu) dzdt,
Td

[e=]
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RE = —1// / (divpupdiv,u + Houy, - Vdivew) dedt,
0 Jrd

Ry =~ /OT /w (pn = P'(0)(on — 0) — p(0))div,u dzdt.

Next, for i = 1,--- ,5 we analyze RE such that it can be controlled either by the relative energy or the
mesh parameter h.

Term RF. Applying Holder’s inequality and Lemma B.4 we obtain
‘Rﬂ < %||dinS(vru>HLOO((OJ")X’]I‘d) (C’o /OT &(on, uplo, u)dt + C10|| Vi, — Voul3: + 025h2)
=C; /OT E(on, uplo, w)dt + Ci0||Vyuy — Voul|re + Cidh?,
where Cg > 0 depends on |[u|| g2, ||0llco,rx1e), M, Eo,7, 6, and 1 = minjg 7,4 0;

C} > 0 depends on ||u|| g2, M, Ey, and ;
C5 > 0 depends on ||w||peew2.00, M, Ey, 7y, and ||Vauw| poc(0,1)x14)-

Term RF. Thanks to Holder’s inequality we observe the following estimate.

RE < [ €lonwlowdt
0
where C' depends on ||Vt || oo (0,1 xT4)-

Term RY. We analyze the third term RY in two cases.

First, we consider the case of the F'V scheme. In this case u, € Qp, Viyuy, = Vpuy, and Iguy, = uy,.
Thus,

|R§| =H ‘/0 /Td (Viuy : Vou + lguy, - Ayu) dxdt' =u

/ / (Vpuh :Veu + uy, - div?’l’[‘gvxu) dadt
0o JTd

= p

/ VD’U,h : (qu - HgVIu) dl’dt‘ < uhHthhHLszHuHszz,z,
0 JTd

where we have used the equality (2.4), the integration by parts formula (2.3a), and the estimate (2.9b).
Second, we consider the case of u;, € W, obtained by the MAC scheme. In this case, V,u, = Vuy,
and the term RY can be estimated in the following way

\Rf\:u/o Ad(vhuh:v$u+HQuh-Axu) dxdt‘

r d d () (i)
(IIg’Oyu;)p, + (g Ou;)p,,
—H /0 ZZ Z B /D 6Bj,z‘uj7h (ain — £ ! £ ! dadt

— < 2
=1l j=1 c=p,|D_,€&;;

S uh||thh||LzL2||'u,||L2W2,2,

where we have applied (2.8a), Hélder’s inequality and the estimate (2.9b).
Consequently, we have for both cases
RE| <

where the constant C' depends on u, the initial energy Fy and ||U|| p2pp2.2.
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Term RE. We analyze the term RY also in two cases.
First, for u;, € Qy obtained by the FV method, we have div,u;, = divguh, IIoup = uy, and thus

Bl _
‘Rﬂ—”

/ / (divyupdiv,u + Houy, - Vydiv,w) dxdt‘
0o Jrd

=v

/ / (aivPundiveu + wy - Vodivew — (Medivyw divio, + for} - Vadivew) ) dxdt‘
0 Td

=V

/ / <div?—uh(divxu — MLdiv,w) + (s — Jund) - deivxu> dxdt’
0 Td
< h(ldivaunllrore + (| Vaunl r2z2) [wll 2wz,

where we have used the identity (2.8d), Hélder’s inequality, the estimates (2.9a) and (2.9¢).
Second, for the case of u;, € W), we have

’Rﬂ =V / / (divyupdiveu + Houy, - Vediv,w) dxdt’
0o Jrd

=v / / (div¥updivyu — (divy wplldivew + wy, - Vidiveu) + Houy, - Vedivew) dxdt'
0 Td

=V / / (divy-v'u,h(divx'u, - Hedivmu) + (HQuh — uh) . deivx'u,) dIdt‘
0 JTd
S vh (||dthuh||L2L2 + ||thh||L2L2) ||u||L2W2,2,

where (2.8b), Holder’s inequality, the estimates (2.9a) and (2.9¢) were applied.
Consequently, we have for both cases
RY| <

where the constant C' depends on v, initial energy Fy, and ||w|| 2y 2.2.

Term RE. The estimate of R is straightforward by applying Holder’s inequality, i.e.,

RE|<C / &(on, up| 0, ),
0

where C' depends on || div || peo(0.1)xTe)-
Consequently, collecting the above estimates of RE for i =1,--- 5, we find

E(on, uplo, w) () + / / (e — C78) |Vhuy — Voul? + v |diveuy, — divmu|2) dxdt
0 Jrd

_ (3.7)
< es+ €(op, up|r,u)(0) + C; / &(on, up|r, w)dt + C30R%
0
Applying the standard projection error estimates we get
& (on, uplo, u)(0) < CR?, (3.8)

where C' depends on || go||c and ||uol| 2.2
Consequently, by choosing § < £, substituting (3.8) into (3.7), using Gronwall’s lemma and recalling
1

the consistency error (2.15c), we may infer that

TCy

€(on, unlo,uw)(1) + / / (IV e — Voul? + |divyu, — div,ul?) dzdt < Ce™3 (VAL + h*)
0 Td
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for At < CLO Here, the constant C' depends on ||g||pow2, ||t|| L~z and the exponent A is given by
(3.4).

Finally, we combine the above estimate with Lemma C.1 and Lemma B.2 in order to obtain (3.2)
and (3.3), respectively. Note that Ey and M are bounded by the norm (0o, wo)|lw#2(1e;gd+1). Due to
Proposition 1.1 all terms depending on the norms of the exact solution (g, u) as well as r are bounded
by a constant ¢ = ¢(T, ||(0o, o) |lwr.2(1a;ga+1y, || (0, @) || (0,77 xTe;Ra+1y) Which finishes the proof. O

Finally, we observe that under the assumption that the numerical solutions (gp,,u;) are uniformly
bounded, the above error estimates can be improved. Indeed, applying Lemma 2.10, Lemma C.1 and
Lemma B.2 we derive the first order error rate.

Theorem 3.2 (Error rates for bounded numerical solutions). In addition to the hypotheses of Theo-
rem 3.1, let the numerical solution (op,wy) be uniformly bounded,

llonllLoe(o.ryxmey <@ and [l oo 01y x 1Ry < T (3.9)

Then there exists a positive number

c=¢c¢ (T7 || (QOa UO) ||Wk72(Td;R‘i+1)7 inf 00, 0; U, )

such that

sup €(on, uplo,u) + ,u/ /d \Vauy — Veul? dedt + 1// /d |divu, — div,w|? dedt
0o JT o Jr

0<t<r

< c(h+ At)
for all T € [0,T], and

lon — oll ooz + lontn — ol perz + |[un — ullr2rz < c(At2 + h2).

4 Conclusion

In this paper we have presented improved error estimates for two well-known numerical methods applied
to compressible Navier—Stokes equations. Specifically, we consider the upwind finite volume method and
the Marker-and-Cell (MAC) method with implicit time discretization and piecewise constant approxi-
mation in space. However, the approach presented in the paper can be applied also to other well-known
numerical methods for compressible Navier—Stokes equations.

The novelty of our approach lies in the use of continuous form of the relative energy inequality
combined with a refined consistency analysis. Thus, following the framework of the Lax equivalence
theorem it suffices to show the (energy) stability, cf. Lemma 2.8, and the consistency of a numerical
scheme, cf. Lemma 2.9, in order to obtain the convergence rates for the scheme. Indeed, the consistency
errors directly yield global errors in the relative energy. To obtain the corresponding error estimates we
only assume that the initial data are sufficiently regular and a strong solution exists globaly in time.
The error estimates presented in Theorem 3.1 improves the results already presented in the literature
[15, 14, 23], see Remarks 2,3 for a detailed discussion. In particular, our error estimates hold for the full
range of the adiabatic coefficient v > 1.

Moreover, we have considered a natural hypothesis on uniformly bounded numerical solutions and
proved that the error estimates can be further improved, cf. Theorem 3.2. Indeed, we prove that both
numerical methods converge with the first order in time and mesh parameter in terms of the relative
energy and with the half order in the L*°(0,T; L?(T%))-norm for the density and momentum, as well as
in the L?((0,7) x T?)-norm for the velocity.
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Appendix

A Proof of the preliminary lemmas

In this section we present the proofs of Lemmas 2.2 — 2.5.
Proof of Lemma 2.2. First, we calculate

/ rpdiv, U dox = Z TK/ div,U dz = Z TR Z
Td K

KeT KeT  oe&(K

=3k Y JollleU -n =Y rg|K|divy U :/ rdivWITeU da.
KeT  oc&(K) KeT T¢

)/GU-ndS(x)

Analogously, we find

Advh.vmdx:ZvK./KvmdxzZvK.( Z)/qumdsm)

KeT KeT oef(K
=S o (XY elnfun) =33 vl (K100
KeT i=1 ce&;(K) i=1 KeT
d
= Z/ vip ST da = / v, - Ve du,
i=1 7/ T¢ T4
which completes the proof. O

Proof of Lemma 2.5. First, we calculate

/Tduh.vribdx - Xd:Z/D ui O da = iZuh (/6+¢d8(1;) _/6_¢ds(x))

i=1 o€g; i=1 o€g&;

:zdjzu,,h (/anegwdx—/l)

i=1 og€&;

T4 dx) /h,

e—

where €~ and et are the left and right edges of D, in the i*"-direction of the canonical system for o € &;.
Note that D+ C T are elements of the primary grid 7. Then we can rewrite the above relation as

d d

/w wp Vopde = Y | Doluipdpepde = = > |K[0P w1 du = — / Iy divi¥ay, dz,

i=1 oc&; i=1 KeT T

where we have used (2.3a). This proves (2.6).
The proof of (2.7) follows from (2.5) and (2.3a), specifically,

d d
/ vy - Vatb dz = / vy - VY dr = Z/ vindP I de ==Y / Op, vip IV da.
T Td i—p JTd K

i=1 KeT
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Proof of Lemma 2.4. First, we recall (2.4) and (2.3a) to derive the first equality

/ Houy - AU dx = / Houy, - (div, V,U) dx = / Houy, - (divyﬂgVIU) dx
Td Td

Td
| Vollgu : V.U de = — ZZZ/ 3p, T 1Y 0 d
i=1 j=1 o€&;
d d 1 A
—ZZ Z/ 5 Z (65]77in,h)De HS)E?ZUJ dz
i=1 j=1 oe&; /Do c€,.4(Do)

d d () (4)
n90,0,)p, + (MY9,U)p
-3 > / 6Bj,iug',h<( 2 0Uy) 2( £ ])D“) da
D.

i=1 j=1 ¢=p,|D,/€E; ;

Next, it is easy to check (2.8b) by setting ¢ = div,U in (2.6), i.e
/ wy, - Vodiv,U do = — / divy¥ u, I (div,U) dz.
Td Td
Further, thanks to (2.4) and (2.3a), we observe (2.8¢c), i.e

/ v, - AU dr = / vy, - (div,V,U)dx = / vy, - (diV7WHngU) dr = Vv, : 1V, U dx.
Td Td Td Td
Finally, by setting ({v, } ,div,U) as (up, ) into (2.6) we get (2.8d), i.e
/ {v,} - Vodiv,U dz = — / M. div,U divy ({vn})de = — / M. div,U divdvy, dz,
T4 Td Td
where we have used the identity (2.2). O
Proof of Lemma 2.5. Note that the estimates stated in (2.9b) — (2.9d) hold due to the standard in-

terpolation error; whence we omit the proof. Now we prove (2.9a). First, by a direct calculation, we
have

Ui T Ui ’
||HQ’U,h—uh||L2—ZZ Z |DO'K|< 1,0K i+ 1,0K, _Ui,a)

KeT i=1 oe&;(K)

‘ o 9 d ) 2
SE L () T ml- % S IKIS (o) < TITwwl
KeT =1

KeT i=1 o€&i(K)

where we have used the fact that 0p,, = g) in the last inequality, which proves the first estimate of

(2.9a). Analogously, we compute

out 2
||{{vh}—vh||iQ—ZZ > |D0K|( wh + VG —vi-%)

KeT i=1 0e&;(K)

d
= Z Z Y. > Dokl@pvin)’ = ZZ | Do (Bp,vi)* < _||vah||L27
KeT i=1 ge&;(K) i=1 o€
which proves the second estimate of (2.9a). This concludes the proof of Lemma 2.5. [
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B Sobolev-Poincaré type inequality

First, we recall [12, Theorem 17] for a generalized Sobolev-Poincaré inequality.

Lemma B.1 ([12]). For a structure mesh let v > 1 and o, > 0 satisfy

0<cM§/ on dz and/ 0 dz < cp,
Td Td

where vy > 1, ¢yy and cg are positive constants. Then there exists ¢ = c(cpr, cp,7y) independent of h such
that

il < ¢ (90l + [ il az).
Now we are ready to show the following lemma.

Lemma B.2. Under the assumption of Lemma B.1 let (o, wp) be a solution obtained either by the FV
method (2.10) or the MAC method (2.11). Let U € W2>(T4; RY), then there exists Cy = Cy(M, Ep,7y) >
0 and Cy = Co(M, Eo, 7, [|V.U || Lo, |U||w2e) > 0 such that

s = U1 < € (1900 = V.0 e + [ ulun = U ) + Cat (B.1)
T
||HQ’U,h — U||%2 S 01 (thuh — vahH%%’Ed) + /d Qh|’uh — l/vl2 dZL‘) + CQhQ, (BQ)
T

where M and Ey are the fluid mass and initial energy.

Proof. Firstly, by setting f, = u, — U, for some U;, belonging to the same discrete space as uy, in
Lemma B.1 we know that

I, — Unll72 ey < Co (th(uh — U2y + /W onlun — Uyl? dl’) ,

where the constant C depends on ¢y = M, cg = Ey and ~. Note that the choices of ¢); and cg are
owing to the mass conservation (2.12) and energy stability (2.13).

Next, for u, € Q) and u;, € W), we set Uy, = IIgU € Q) and U), = II:U € Wy, respectively. Then
by the triangular inequality and projection error we derive

lur, = ULz < llun = Ullz> + U — Ullz

< 1 (I9atn ~ U)o + [ anlun = O ) + (9,02
<O (thuh — Vo U22(pay + /’]I‘d on|un — U]de>

+C (9.0 = Vil + [ oUs - UPds) + 9.
<c (thuh VLU + /T onlus — U|2dx>

+Cy (h2||U||§V2,m +h2|ysz||iw/ thx) + B2V U2
Td
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= Cl (HVh’U/h - vZUHiQ(Td) +/ Qh‘UJ}L — U|2 dﬂf) + 02h2,
Td

where Cy depends on Cy, ||U ||z, | VU || L, M, and ||V, U ||r2, which proves (B.1).

Finally, we proceed with the proof of (B.2). On the one hand, for the case of u, € @, we have
IIou, = wp, meaning (B.2) automatically holds as it is the same as (B.1). On the other hand, for the
case of u, € Wy, we employ (B.1) and the triangular inequality to derive

Moun — Ull7: < [Hquy, — uallz: + un — U7

S h2Hdth’U/hH%2 -+ Cl (thuh — VxUH%Q(Td) +/ Qh”ulh — U|2d$> —+ 02h2
T‘i
5 01 (||thh — V$U||iQ(Td) + /d gh|uh — IJ|2 dl‘) + 02h2,
T

where we have used the fact that ||div,ul|2. < Ep in view of (2.14b), which completes the proof. [

~Y

Next, we recall [12, Lemma 14.3] in order to show the following statement formulated in Lemma B.4.

Lemma B.3 ([12]). Lety > 1,r=1% min r>0and7 =2 max r. Then there exists C = C(r,7) > 0

2 (t,2)eQr (t2)€Qr
such that

(0= 1) Less(0) + (1 + ") 1es(0) < CE(g|r),
where E(o|r) = P(o) — P'(r)(0 —r) — P(r) and

(1,0)  ifeoelT,

0.1) ifoeRA[r7] (B3)

(1eSS<Q)7 1res(g)) = {

Now we are ready to show the following lemma.

Lemma B.4. Let (on,ur) be a solution obtained either by the F'V method (2.10) or the MAC method
(2.11), and let U € L>=(0,T; W2>°(T% R?)). Then there holds

/ ) |(Qh — T)(HQ’U,}L — U)| dxdt < Co/ @(Qh, uh|r, U)dt + 015||thh — vaH%z + CgéhQ,
0 T 0

where C, Cy are the same as in Lemma B.2, and Cy depends on r,7,d, M, Eqy, .

Proof. First, thanks to Lemma B.3 we observe

//lres(gh) ghdxdt:/ / Lo, <r thxdt+/ / 1,,>7 on dzdt
0o Jrd 0 Jtd 0o Jrd

< ﬁ/ / 1o, <r 1dadt +/ / Loy>7 QZ dzdt < C/ €(on, up|r, U)dt,
0 Td - 0 Td 0

where C' = C(r,T) is given in Lemma B.3.
Next, using the triangular inequality, Young’s inequality, the above estimate, Lemma B.2 and
Lemma B.3 we find

/ ) |(on, — ) (Hguy, — U)| dadt
0o Jr
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5/ / 1ess(gh)](gh—r)(HQuh—U)|dxdt+/ / 1, - FlTTgus — U] dadt
T 0 T

/ / gh>rQh|HQuh — U| dadt

/ / ess(0n) 5 ((Qh —7)* + op|lguy, — U|?/r) dadt
1,1,

—|—/ / 1Qh<£—(—7" +5|HQuh — U| )dxdt
0 Td 2 5
i 1

+ / / 1Qh>F§ (Qh + Qh‘HQ’U/h - U‘2) dzdt
0 Td

5 C()/ @(Qh, ’U,h|’f’, U)dt + C’15||thh — VxU”%g + 025h27

0

where Cy depends on r, C(r,7), 0, and C;. We have completed the proof. O

C Relative energy norm

In this section we show how to control the errors in the conservative variables by the relative energy.

Lemma C.1. Let v > 1 and (r,U) satisfy

1 —
r=— min r, 7=2 max r, U= max |U|
2 (t2)eQr (tx)EQr (t,2)€Qr

for some positive constants w,r,7T.

o If 0> 0 and [, 0" dz < Ey hold, then

lo=7rller +lfm = M| = S (€(e, ulr,U))* + (E(e, ulr,U))~ fory < 2; (C.1a)
lo=7llzz +[lm — M| = S (€0, ulr,U))> fory =2, (C.1b)

where m = pu and M = rU.

e [n addition, let o < 0. Then

[SIE

lo = 7llzz + [[m — M|2 S (€(¢, ulr,U)) (C2)

Proof. First, by the triangular inequality and Lemma B.3 we obtain for v < 2 that

lo =7l <lle =) las(@lz + (0 = P Ls(@llz £ 1o = ) less(@)lz2 + (@ = ) Ls(@) |12
1/ 1/
< (B(elr) " + lelli + l1rl) i) £ (BLelr)"” + ( [, 1l dx) + ( [ 1t >dx)

< (E(ofr) % + (E(or) " < (€(0, ulr, U)) ' + (&(0, ulr, U)) "

where leg(0) and 1,(0) are given in Lemma B.3. Further, utilizing the above estimate with the
triangular inequality, Holder’s inequality, and the L” bound on p, we find

Im = M| 2 < llo(w =) 2 +le=nUl 2 S IVallmlvew— Ul +llo—rllolU] =

d
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1/2 1
<ol lolw = URIE + o =l [T s S (€0, ulr, U)) + (€(0, ulr, U))

~Y

which proves (C.1a).
Next, again by the triangular inequality and Lemma B.3 we observe for v > 2 that

lo = 7llz2 < ll(e = r)less(0)l[ 22 + [I(2 = 7)1res ()| 2

< (E(olr)" + ( /T pars dx) e ( /T (0 daz> "

1/2

S @)+ ([ 0 terar) 5 @)

where we have used the fact that ¢ < o7 for large o with v > 2. Further, it is easy to check that

I~ M| 2 < llotw—U)| =+~ U =

S Vel [lVelw = U2 + [lo = rll2]|U|| 2
1/2 1/2 1/2
< el llelw = UPIE + Nl = il U = S (€0, ulr,U))

which proves (C.1b).
When assuming an upper bound on p, we derive via Lemma B.3 that

lo = Iz < 10 = ) less(0)llz2 + (0 = M lres(@) 122 S (B(0]r) " + [ Lues(@) 122 S (E(a]r))"?

which implies

lm — M2 < [lo(w —U)|2 + [[(e — P)U |2 |/el Vet — U)|lz2 + lo = 7]l 2| U || e
< (&g, ulr, U))?.

~Y

Combining the above two estimates we get (C.2) and complete the proof. O

D Derivation of the relative energy

In this section we show the relative energy inequality (3.5). We start with the reformulation of the
relative energy.

E(on, up|r,U) = /]I‘d (%Qh ouy, — U|* + P(on) — P'(r)(on —7) — P(r)) dz = ZTi,

where

1 1
T = / ~on [Touan|* + P(on) ) dz, 1; = / on (5 [U[* = P'(r) ) da,
Td 2 Td 2
e 7= [ P) - P()) de
Td Td

Next, we collect the energy estimate (2.13), and set the test function ¢ = (% |U|2 — P/(T)) in the
consistency formulation (2.15a), as well as ¢ = —U in the consistency formulation (2.15b) to get
respectively the following

- 1 T T T )
Th];_y = [/ (§Qh Tou) + P(Qh)) dx] < —u/ / Vpuy|? doedt — V/ / |divjuy|? dzdt,
Td =0 0 Jrd 0 Jrd

26



T

[Ta)io = /Td Qh\(% U* - P’(r))j dz

TV
test function in (2.15a) -0

_ [ Ul
I (m /

/ / (0nO P’ (1) + onllguy, - V. P'(r)) dadt — e, (1, At, h, P'(r)),
Td

) dadt + e, (7, At, h, U /2)

T

[T3]tT:o: /QhHQuh‘ (=U) dz
Td ——

test function in (2.15b) =0

— /d (QhHQuh . 8tU + QhHQuh X HQuh . VxU + phdlsz) dxdt
0 T

+/ / (uVpuy : VU + vdivyupdiv,U) dadt + e, (1, At, b, =U).
0o Jr

d

Moreover, the term T} reads

T

T, = [ /T (P - P)) dx] _ /0 ' [ 0P(r) = Plr) st

t=0

Summing up the above terms we get (3.5)

[&(on, up|r, U / / \thh\ + v |divyuy| ) dzdt

. 2
< / / <Qhat | ‘
Td

l; ) dzdt + ¢, (1, At, b, |U|? /2)
/ / (@0P () + oiTlqun - Vo P'(r)) dadt — e (r, At P'(r)
T

+ onllguy -V,

/ / (QhHQ’LLh 8tU+ QhHQuh X HQuh V U —l—phdlva) dxdt

=
=
&

+/ / (uVruy : V.U + vdivyupdiv,U) dedt + e, (1, At, h, —U)
0o Jrd
—l—/ / O (rP'(r) — P(r)) dadt.
o Jrd
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