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MOTION OF SEVERAL RIGID BODIES IN A COMPRESSIBLE FLUID: MIXED CASE

Š. NEC̆ASOVÁ, M. RAMASWAMY, A. ROY, AND A. SCHLÖMERKEMPER

Abstract. In this article we show local-in-time existence of a weak solution to a system of partial differential equations

describing the evolution of a compressible isentropic fluid which contains several rigid bodies. The fluid-structure

interaction is incorporated by the Navier-slip boundary condition at the interface of the fluid and the rigid bodies. At
the boundary of the fluid’s container we assume Dirichlet boundary conditions. This work follows an earlier article of

the same authors regarding the evolution of a compressible fluid that contains one rigid body and assumes Navier-slip

boundary conditions at the interface as well as at the boundary of the container. The novelties comprise a new bound on
the maximal time for which we can prove existence of weak solutions, different test functions and a different extension

of the fluid velocity from the fluid domain to the whole container.

1. Introduction

We consider a fluid in a bounded smooth domain Ω ⊂ R3, which contains several rigid bodies Si(t) ⊂ Ω, which are
also assumed to be regular, bounded domains. Their motion is modeled with the help of linear and angular momentum
and the respective balance equations. The fluid is modeled by the compressible Navier-Stokes equation and the fluid

domain is denoted by F(t) = Ω \
⋃M

i=1 Si(t), where t ∈ [0, T ) for some T > 0. The fluid occupies, at t = 0, the domain

F0 = Ω \
⋃M

i=1 S0i, where the initial position of the i-th rigid body is given by S0i, i = 1, 2, · · ·M .
The mathematical analysis of corresponding fluid-structure problems in the incompressible setting has been devel-

oped in several articles in the previous decades, see e.g. the introductory article [6] and [16, Section 1.2] for a brief
account on related literature. In particular, it was observed that the choice of the boundary conditions is crucial in
view of collisions [7, 8, 9, 17].

On the contrary, the theory of fluid-structure interaction in the compressible setting is less developed. Regarding
the evolution of a system of a rigid body in a compressible fluid with Dirichlet boundary conditions, existence of
strong solutions was studied in [1, 10, 21, 12]; the existence of a weak solution up to a collision is proved in [3]. In
[4] this result was generalized to allow also for collisions. Recently, weak-strong uniqueness regarding a system of a
compressible fluid with a rigid body was investigated [14].

The Dirichlet no-slip boundary condition fits well to various experimental observations of velocity profiles for
compressible and incompressible fluids. Still, mathematical analysis yielded the unrealistic result that rigid objects
which are immersed in a linearly viscous fluid cannot collide [11, 13]. Hence, the Navier-slip boundary condition came
into focus. At the interface between the fluid and the rigid bodies, the normal components of the respective velocity
fields are supposed to be identical. An argument in favor of the Navier-slip boundary condition is that interface
roughness influences the slip behavior of a viscous fluid, cf. e.g. [19, 20]. However, the discontinuity in the tangential
component of the velocity field causes major difficulties.

In this article we assume a mixed type of boundary conditions. We consider Navier-slip boundary conditions at the
fluid-structure interface as we did in [16], where we proved local-in-time existence of weak solutions to the problem
of compressible fluid with one rigid body in the case of Navier-slip boundary conditions at the interface and at the
boundary of the container. At the boundary of the container ∂Ω, we assume Dirichlet boundary conditions. To
overcome the mathematical difficulties related to the discontinuity of the velocity field, we rely on the techniques
developed in our earlier article [16], see below.

Before presenting the system of partial differential equations under investigation, we fix some more notation: ρF
and uF represent respectively the mass density and the velocity of the fluid; the pressure of the fluid is denoted by
pF . Further, v ⊗ w = (viwj)1⩽i,j⩽3 for any v, w ∈ R3.
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The fluid flow is assumed to be in the barotropic regime, and more specifically in the isentropic case. The constitutive
law between pF and ρF is then given by

pF = aFρ
γ
F , (1.1)

with aF > 0 and the adiabatic constant γ > 3
2 . Currently, these are the canonical assumptions which ensure existence

of a weak solution for the compressible Navier-Stokes equation, cf. e.g. [5]. The stress tensor satisfies

T(uF ) = 2µFD(uF ) + λF div uF I,

where D(uF ) = 1
2

(
∇uF +∇u⊤F

)
is the symmetric part of the gradient of the velocity uF ; here, ∇u⊤F denotes the

transpose of the matrix ∇uF . The viscosity coefficients µF , λF satisfy µF > 0 and 3λF + 2µF ⩾ 0.
The evolutionary model of the system under consideration consists of the continuity for the mass density of the

fluid, the compressible Navier-Stokes equation as well as the equations for the linear and angular momenta of the rigid
bodies. The latter involve the Eulerian velocity

uSi
(t, x) = h′i(t) + ωi(t)× (x− hi(t)), t ∈ (0, T ), x ∈ Si(t), (1.2)

with hi(t) being the centre of mass and h′i(t), ωi(t) denoting the linear and angular velocities of the rigid bodies,
i = 1, . . . ,M . Hence the domain of the ith rigid body at time t is given by

Si(t) = {hi(t) +Oi(t)x | x ∈ S0i} ,
where Oi(t) ∈ SO(3) is associated to the rotation of the rigid body:

O′
i(t)Oi(t)x = ωi(t)× x ∀ x ∈ R3, Oi(0) = I.

The initial velocity of the rigid body is given by

uSi(0, x) = uS0i := ℓ0i + ω0i × x, x ∈ S0i. (1.3)

The mass density ρSi
of the rigid bodies is governed by the transport equation

∂ρSi

∂t
+ uSi

· ∇ρSi
= 0, t ∈ (0, T ), x ∈ Si(t) with ρSi

(0, x) = ρS0i
(x), ∀ x ∈ S0i. (1.4)

Sometimes it is useful to express the mass mi, the centre of mass hi and the moment of inertia Ji(t) with the help of
the following formulae:

mi =

∫
Si(t)

ρSi
dx, (1.5)

hi(t) =
1

m

∫
Si(t)

ρSi
x dx, (1.6)

Ji(t) =

∫
Si(t)

ρSi

[
|x− hi(t)|2I− (x− hi(t))⊗ (x− hi(t))

]
dx. (1.7)

We are now in the position to present the system under investigation, a system of four coupled differential equations:

∂ρF
∂t

+ div(ρFuF ) = 0, t ∈ (0, T ), x ∈ F(t), (1.8)

∂(ρFuF )

∂t
+ div(ρFuF ⊗ uF )− divT(uF ) +∇pF = ρFgF , t ∈ (0, T ), x ∈ F(t), (1.9)

mih
′′
i (t) = −

∫
∂Si(t)

(T(uF )− pF I)νi dΓ +

∫
Si(t)

ρSi
gSi

dx, in (0, T ), i = 1, ...,M, (1.10)

(Jiωi)
′(t) = −

∫
∂Si(t)

(x− hi(t))× (T(uF )− pF I)νi dΓ +

∫
Si(t)

(x− hi(t))× ρSi
gSi

dx, in (0, T ), i = 1, ...,M, (1.11)

where gF , gSi are the specific body forces and νi is the unit normal to ∂Si(t) which is directed to the interior of the
rigid body.
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The fluid-structure interaction is governed by the Navier-slip boundary conditions at the interface of the fluid and
the rigid bodies. We assume Dirichet boundary conditions on ∂Ω. Then the boundary conditions read

uF · νi = uSi · νi, t ∈ (0, T ), x ∈ ∂Si(t), i = 1, ...,M, (1.12)

(T(uF )νi)× νi = −α(uF − uSi
)× νi, t ∈ (0, T ), x ∈ ∂Si(t), i = 1, ...,M, (1.13)

uF = 0, t ∈ (0, T ), x ∈ ∂Ω, (1.14)

where α > 0 is a coefficient of friction. Finally, the initial conditions read

ρF (0, x) = ρF0
(x), (ρFuF )(0, x) = qF0

(x), x ∈ F0, (1.15)

hi(0) = 0, h′i(0) = ℓ0i, ωi(0) = ω0i, i = 1, ...,M. (1.16)

The main result of this article yields local-in-time existence of finite energy weak solutions to the above system.
In the remainder of this section we present the definition of a weak solution to the system and the main result. The
proof is presented in the remaining sections and the appendix; it is based on several approximations, see the end of
this section for more information on the strategy of the proof, its novelties as well as common lines with [16].

1.1. Weak formulation and main result. As is standard, we obtain the weak formulation by multiplying with
appropriate test functions and integrating by parts, which involves the boundary conditions. Since we assume Navier-
slip boundary conditions at the interfaces between the fluid and the rigid bodies, the test functions show discontinuities
across the fluid-solid interface. The set of rigid velocity fields is defined as

R(Ω) =
{
ζ : Ω → R3 | There exist V, r, a ∈ R3 such that ζ(x) = V + r × (x− a) for any x ∈ Ω

}
. (1.17)

Let D denote the set of all infinitely differentiable functions that have compact support. We then introduce, for any
T > 0, the test function space VT as follows:

VT =


ϕ ∈ C([0, T ];L2(Ω)) such that there exist ϕF ∈ D([0, T );D(Ω)), ϕSi

∈ D([0, T );R(Ω))

satisfying ϕ(t, ·) = ϕF (t, ·) on F(t), ϕ(t, ·) = ϕSi
(t, ·) on Si(t) with

ϕF (t, ·) · νi = ϕSi(t, ·) · νi on ∂Si(t) for all t ∈ [0, T ]

 , (1.18)

which allows us to present the definition of finite energy weak solutions to the system under consideration.
In the definition of a weak solution below we work with an extension of the fluid velocity uF from the fluid domain

F(t) to Ω as is defined in (4.1). Note that this is different to the corresponding extension in our earlier article due to
the Dirichlet boundary conditions at ∂Ω. The velocity fields uSi

∈ R(Ω) of the rigid bodies denote rigid extensions
from Si(t) to Ω as in (1.2). The extended solid density ρSi

is an extension from Si(t) to Ω by zero. Moreover, the
extended fluid density ρF in (1.20) is obtained by extending the density from F(t) to Ω by zero.

The initial fluid density ρF0 on Ω is obtained by extending ρF0 as in (1.15) from F0 to Ω by zero. Correspondingly,
the extended initial solid density ρS0i

in (1.24) is an extension of (1.4) from S0 to Ω by zero, as is the extended initial
momentum qF0

in (1.15). The extended initial rigid velocity field uS0i
∈ R, however, is a rigid extension from S0i to

Ω as in (1.3).

Definition 1.1. Let T > 0, and let Ω and S0i ⋐ Ω, i = 1, ...,M be regular bounded domains of R3. A triplet (S, ρ, u)
with S = ∪M

i=1Si is a bounded energy weak solution to system (1.8)–(1.16) if the following holds:

• Si(t) ⋐ Ω is a bounded domain of R3 for all t ∈ [0, T ) such that

χSi(t, x) := 1Si(t)(x) ∈ L∞((0, T )× Ω). (1.19)

• u belongs to the following space

UT =


u ∈ L2(0, T ;L2(Ω)) such that there exist uF ∈ L2(0, T ;H1

0 (Ω)), uSi ∈ L2(0, T ;R(Ω))

satisfying u(t, ·) = uF (t, ·) on F(t), u(t, ·) = uSi
(t, ·) on Si(t) with

uF (t, ·) · νi = uSi
(t, ·) · νi on ∂Si(t) for a.e t ∈ [0, T ] and any i = 1, . . . ,M

 .
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• ρ ⩾ 0, ρ ∈ L∞(0, T ;Lγ(Ω)) with γ > 3/2, ρ|u|2 ∈ L∞(0, T ;L1(Ω)), where

ρ =
M∑
i=1

[(1− 1Si
)ρF + 1Si

ρSi
], u =

M∑
i=1

[(1− 1Si
)uF + 1Si

uSi
].

• The continuity equation is satisfied in the weak sense, i.e.

∂ρF
∂t

+ div(ρFuF ) = 0 in D′([0, T )× Ω), ρF (0, x) = ρF0
(x), x ∈ Ω. (1.20)

Also, a renormalized continuity equation holds in a weak sense, i.e.

∂tb(ρF ) + div(b(ρF )uF ) + (b′(ρF )− b(ρF )) div uF = 0 in D′([0, T )× Ω), (1.21)

for any b ∈ C([0,∞)) ∩ C1((0,∞)) satisfying

|b′(z)| ⩽ cz−κ0 , z ∈ (0, 1], κ0 < 1, |b′(z)| ⩽ czκ1 , z ⩾ 1, −1 < κ1 <∞. (1.22)

• The transport of Si by the rigid vector field uSi
holds (in the weak sense)

∂χSi

∂t
+ div(uSi

χSi
) = 0 in (0, T )× Ω, χSi

(0, x) = 1S0i
(x), x ∈ Ω. (1.23)

• The densities ρSi
of the rigid bodies Si satisfy (in the weak sense)

∂ρSi

∂t
+ div(uSi

ρSi
) = 0 in (0, T )× Ω, ρSi

(0, x) = ρS0i
(x), x ∈ Ω. (1.24)

• Balance of linear momentum holds in a weak sense, i.e. for all ϕ ∈ VT the following relation holds:

−
T∫

0

∫
F(t)

ρFuF · ∂
∂t
ϕF −

M∑
i=1

T∫
0

∫
Si(t)

ρSi
uSi

· ∂
∂t
ϕSi

−
T∫

0

∫
F(t)

(ρFuF ⊗ uF ) : ∇ϕF +

T∫
0

∫
F(t)

(T(uF )− pF I) : D(ϕF )

+ α

M∑
i=1

T∫
0

∫
∂Si(t)

[(uF − uSi)× ν] · [(ϕF − ϕSi)× ν]

=

T∫
0

∫
F(t)

ρFgF · ϕF +
M∑
i=1

T∫
0

∫
Si(t)

ρSi
gSi

· ϕSi
+

∫
F0

(ρFuF · ϕF )(0) +
∫
S0i

(ρSi
uSi

· ϕSi
)(0). (1.25)

• The following energy inequality holds for almost every t ∈ (0, T ):

E(t) +

t∫
0

∫
F(τ)

(
2µF |D(uF )|2 + λF |div uF |2

)
+ α

M∑
i=1

t∫
0

∫
∂Si(τ)

|(uF − uSi
)× νi|2

⩽

t∫
0

∫
F(τ)

ρFgF · uF +
M∑
i=1

t∫
0

∫
Si(τ)

ρSi
gSi

· uSi
+ E0. (1.26)

where E(t) and E0 are given by

E(t) =

∫
F(t)

1

2
ρF |uF (t, ·)|2 +

M∑
i=1

∫
Si(t)

1

2
ρSi |uSi(t, ·)|2 +

∫
F(t)

aF
γ − 1

ργF

E0 =

∫
F0

1

2

|qF0
|2

ρF0

+
M∑
i=1

∫
S0i

1

2
ρS0i

|uS0i
|2 +

∫
F0

aF
γ − 1

ργF0
.
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We recall that equation (1.20) is different from the continuity equation in [4] since we assume Navier-slip boundary
conditions at the interface of the fluid and the rigid bodies. Note that the better regularity uF ∈ L2(0, T ;H1

0 (Ω)) of
the extended fluid velocity is needed for the continuity equation to hold true in Ω.

Our main assertion reads as follows:

Theorem 1.2. Let Ω and S0i ⋐ Ω be regular bounded domains of R3, i = 1, ...,M . Assume that for some σ > 0,

min(dist(S0i(t), ∂Ω), dist(S0i(t),S0j(t)) > 2σ, i ̸= j, i, j = 1, ...,M.

Let gF , gSi
∈ L∞((0, T )× Ω) and the pressure pF be determined by (1.1) with γ > 3/2. Assume that the initial data

satisfy

ρF0 ∈ Lγ(Ω), ρF0 ⩾ 0 a.e. in Ω, ρS0i ∈ L∞(Ω), ρS0i > 0 a.e. in S0i, (1.27)

qF0 ∈ L
2γ

γ+1 (Ω), qF01{ρF0
=0} = 0 a.e. in Ω,

|qF0
|2

ρF0

1{ρF0
>0} ∈ L1(Ω), (1.28)

uS0i
= ℓ0i + ω0i × x ∀ x ∈ Ω with ℓ0i, ω0i ∈ R3. (1.29)

Then there exists T > 0 (depending only on ρF0 , ρS0i , qF0 , uS0i , gF , gSi , dist(S0i, ∂Ω), dist(S0i,S0j), i ̸= j) such that
a bounded energy weak solution to (1.8)–(1.16) exists on [0, T ). Moreover,

Si(t) ⋐ Ω, min(dist(Si(t), ∂Ω), dist(Si(t),Sj(t))) ⩾
3σ

2
, ∀ t ∈ [0, T ], i ̸= j, i, j = 1, ...,M.

Our method as in [16] relies on a combination of (i) the theory of compressible fluids [15, 5] in terms of a renormalized
continuity equations, an effective viscous flux and an artificial pressure and (ii) methods developed for penalization of
the discontinuity in the velocity field [8, 2], which is needed due to the fluid-structure interaction. In particular, this
involves a regularized fluid velocity and several approximation schemes, which require a careful selection of the test
functions. The construction is done in such a way that the solution and the test functions do not show a discontinuity
at the level of the approximation but recover a discontinuity in the last limit process.

In this article we deal with the setting of several rigid bodies in a compressible fluid; in [16] one rigid body in a
compressible fluid was considered. Hence all test functions need to be adapted. Similarly, the bound on the maximal
time for which we can prove existence of weak solutions has changed, cf. (3.16). Another change compared to [16] is
related to the Dirichlet boundary conditions at ∂Ω instead of the Navier-slip boundary conditions that was assumed

earlier. This results in dealing with spaces like W k,p
0 instead of W k,p. Due to the Dirichlet boundary condition at ∂Ω,

the extension of the fluid velocity field from F(t) to Ω had to be modified, cf. (4.1). All the other parts of the proof
could be adapted from [16] to the current setting, which is outlined in the following sections in more detail.

2. Approximate Solutions

We begin with the introduction of the approximation scheme in the three levels together with stating the existence
propositions for every levels of approximation schemes. Further we prove the existence of the appropriate schemes.
We start with the δ-level of approximation via an artificial pressure together with the penalization. We will study the
following approximate problem:

Let δ > 0. Find a triplet (Sδ, ρδ, uδ) with Sδ =
⋃M

i=1 Sδ
i such that

• Sδ
i (t) ⋐ Ω are bounded, regular domains for all t ∈ [0, T ], i = 1, ...,M with

χδ
Si
(t, x) = 1Sδ

i (t)
(x) ∈ L∞((0, T )× Ω) ∩ C([0, T ];Lp(Ω)), ∀ 1 ⩽ p <∞. (2.1)

• The velocity field uδ ∈ L2(0, T ;H1
0 (Ω)), and the density function ρδ ∈ L∞(0, T ;Lβ(Ω)), ρδ ⩾ 0 satisfy

∂ρδ

∂t
+ div(ρδuδ) = 0 in D′([0, T )× Ω). (2.2)
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• For all ϕ ∈ H1(0, T ;L2(Ω)) ∩ Lr(0, T ;W 1,r
0 (Ω)), where r = max

{
β + 1, β+θ

θ

}
, β ⩾ max{8, γ} and θ = 2

3γ − 1

with ϕ|t=T = 0, the following holds:

−
T∫

0

∫
Ω

ρδ
(
uδ · ∂

∂t
ϕ+ uδ ⊗ uδ : ∇ϕ

)
+

T∫
0

∫
Ω

(
2µδD(uδ) : D(ϕ) + λδ div uδI : D(ϕ)− pδ(ρδ)I : D(ϕ)

)

+ α
M∑
i=1

T∫
0

∫
∂Sδ

i (t)

[(uδ − P δ
Si
uδ)× νi] · [(ϕ− P δ

Si
ϕ)× ν]

+
1

δ

T∫
0

∫
Ω

M∑
i=1

χδ
Si
(uδ − P δ

Si
uδ) · (ϕ− P δ

Si
ϕ) =

T∫
0

∫
Ω

ρδgδ · ϕ+

∫
Ω

(ρδuδ · ϕ)(0), (2.3)

where P δ
Si

is defined in (2.9) below.

• χδ
Si
(t, x) satisfies (in the weak sense)

∂χδ
Si

∂t
+ P δ

Si
uδ · ∇χδ

Si
= 0 in (0, T )× Ω, χδ

Si
|t=0 = 1S0i

in Ω. (2.4)

• ρδχδ
Si
(t, x) satisfies (in the weak sense)

∂

∂t
(ρδχδ

Si
) + P δ

Si
uδ · ∇(ρδχδ

Si
) = 0 in (0, T )× Ω, (ρδχδ

Si
)|t=0 = ρδ01S0i

in Ω. (2.5)

• Initial data are given by

ρδ(0, x) = ρδ0(x), ρδuδ(0, x) = qδ0(x), x ∈ Ω. (2.6)

Above we have used the following quantities:

• The specific body force is defined as

gδ =
M∑
i=1

[(1− χδ
Si
)gF + χδ

Si
gSi

].

• The artificial pressure is given by

pδ(ρ) = aδργ + δρβ , with aδ = aF

M∑
i=1

(1− χδ
Si
), (2.7)

where aF > 0 and γ and β are exponents (by abuse of notation) and they satisfy γ > 3/2, β ⩾ max{8, γ}.
• The viscosity coefficients are given by

µδ =
M∑
i=1

[(1− χδ
Si
)µF + δ2χδ

Si
], λδ =

M∑
i=1

[(1− χδ
Si
)λF + δ2χδ

Si
] so that µδ > 0, 2µδ + 3λδ ⩾ 0. (2.8)

• The orthogonal projection onto rigid fields, P δ
Si

: L2(Ω) → L2(Sδ
i (t)) ∩R(Sδ

i (t)), is such that, for all t ∈ [0, T ]

and u ∈ L2(Ω), it is given by

P δ
Si
u(t, x) =

1

mδ
i

∫
Ω

ρδχδ
Si
u+

(Jδ
i )

−1

∫
Ω

ρδχδ
Si
((y − hδi (t))× u) dy

× (x− hδi (t)), ∀x ∈ Ω, (2.9)
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where hδi , m
δ
i and Jδ

i are defined as

hδi (t) =
1

mδ
i

∫
R3

ρδχδ
Si
x dx, mδ

i =

∫
R3

ρδχδ
Si
dx,

Jδ
i (t) =

∫
R3

ρδχδ
Si

[
|x− hδi (t)|2I− (x− hδi (t))⊗ (x− hδi (t))

]
dx.

We get a weak solution of problem (1.8)–(1.16) in the sense of Definition 1.1 as a limit of the solution (Sδ, ρδ, uδ) of
system (2.1)–(2.6) as δ → 0.

Let us state the existence result of the approximate system:

Proposition 2.1. Let Ω and S0i ⋐ Ω, i = 1, ...,M be regular bounded domains of R3. Assume that for some σ > 0,

min(dist(S0i(t), ∂Ω), dist(S0i(t),S0j(t)) > 2σ, i ̸= j, i, j = 1, ...,M.

Let gF , gSi
∈ L∞((0, T )× Ω) and

δ > 0, γ > 3/2, β ⩾ max{8, γ}. (2.10)

Further, let the pressure pδ be determined by (2.7) and the viscosity coefficients µδ, λδ be given by (2.8). Assume that
the initial conditions satisfy

ρδ0 ∈ Lβ(Ω), ρδ0 ⩾ 0 a.e. in Ω, ρδ01S0i
∈ L∞(Ω), ρδ01S0i

> 0 a.e. in S0i, (2.11)

qδ0 ∈ L
2β

β+1 (Ω), qδ01{ρδ
0=0} = 0 a.e. in Ω,

|qδ0|2

ρδ0
1{ρ0>0} ∈ L1(Ω). (2.12)

Let the initial energy

Eδ[ρδ0, q
δ
0] =

∫
Ω

(
1

2

|qδ0|2

ρδ0
1{ρδ

0>0} +
aδ(0)

γ − 1
(ρδ0)

γ +
δ

β − 1
(ρδ0)

β

)
:= Eδ

0

be uniformly bounded with respect to δ. Then there exists T > 0 (depending only on Eδ
0 , gF , gSi , dist(S0, ∂Ω),

dist(S0i,S0j), i ̸= j) such that system (2.1)–(2.6) admits a weak solution (Sδ, ρδ, uδ), which satisfies the following
energy inequality for almost every t ∈ (0, T ):

Eδ[ρδ, qδ] +

T∫
0

∫
Ω

(
2µδ|D(uδ)|2 + λδ|div uδ|2

)
+ α

M∑
i=1

T∫
0

∫
∂Sδ

i (t)

|(uδ − P δ
Si
uδ)× νi|2

+
1

δ

M∑
i=1

T∫
0

∫
Ω

χδ
Si
|uδ − P δ

Si
uδ|2 ⩽

T∫
0

∫
Ω

ρδgδ · uδ + Eδ
0 . (2.13)

Moreover,

min(dist(Sδ
i (t), ∂Ω), dist(Sδ

i (t),Sδ
j (t))) ⩾ 2σ, ∀ t ∈ [0, T ], i ̸= j, i, j = 1, ...,M,

and the solution satisfies the following properties:

(1) For θ = 2
3γ − 1, s = γ + θ,

∥(aδ)1/sρδ∥Ls((0,T )×Ω) + δ
1

β+θ ∥ρδ∥Lβ+θ((0,T )×Ω) ⩽ c. (2.14)

(2) The couple (ρδ, uδ) satisfies the identity

∂tb(ρ
δ) + div(b(ρδ)uδ) + [b′(ρδ)ρδ − b(ρδ)] div uδ = 0 (2.15)

a.e. in (0, T )× Ω for any b ∈ C([0,∞)) ∩ C1((0,∞)) satisfying (1.22).
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To show Proposition 2.1, we introduce a problem with another level of approximation: the ε-level approximation
is obtained introducing the dissipation in the continuity accompanied by the artificial pressure in the momentum

equation. Our aim is to find a triplet (Sε, ρε, uε) with Sε =
⋃M

i=1 Sε
i such that we can obtain a weak solution

(Sδ, ρδ, uδ) of the system (2.1)–(2.6) as a weak limit of the sequence (Sε, ρε, uε) as ε → 0. For ε > 0, the triplet is
supposed to satisfy:

• Sε
i (t) ⋐ Ω are bounded, regular domains for all t ∈ [0, T ], i = 1, ..,M with

χε
Si
(t, x) := 1Sε

i (t)
(x) ∈ L∞((0, T )× Ω) ∩ C([0, T ];Lp(Ω)), ∀ 1 ⩽ p <∞. (2.16)

• The velocity field uε ∈ L2(0, T ;H1
0 (Ω)) and the density function ρε ∈ L∞(0, T ;Lβ(Ω)) ∩ L2(0, T ;H1(Ω)),

ρε ⩾ 0 satisfy
∂ρε

∂t
+ div(ρεuε) = ε∆ρε in (0, T )× Ω,

∂ρε

∂ν
= 0 on ∂Ω. (2.17)

• For all ϕ ∈ H1(0, T ;L2(Ω)) ∩ Lβ+1(0, T ;W 1,β+1
0 (Ω)) with ϕ|t=T = 0, where β ⩾ max{8, γ}, the following

holds:

−
T∫

0

∫
Ω

ρε
(
uε · ∂

∂t
ϕ+ uε ⊗ uε : ∇ϕ

)
+

T∫
0

∫
Ω

(
2µεD(uε) : D(ϕ) + λε div uεI : D(ϕ)− pε(ρε)I : D(ϕ)

)

+

T∫
0

∫
Ω

ε∇uε∇ρε · ϕ+ α
M∑
i=1

T∫
0

∫
∂Sε

i (t)

[(uε − P ε
Si
uε)× νi] · [(ϕ− P ε

Si
ϕ)× νi]

+
1

δ

T∫
0

∫
Ω

M∑
i=1

χε
Si
(uε − P ε

Si
uε) · (ϕ− P ε

Si
ϕ) =

T∫
0

∫
Ω

ρεgε · ϕ+

∫
Ω

(ρεuε · ϕ)(0). (2.18)

• χε
Si
(t, x) satisfies (in the weak sense)

∂χε
Si

∂t
+ P ε

Si
uε · ∇χε

Si
= 0 in (0, T )× Ω, χε

Si
|t=0 = 1S0i

in Ω. (2.19)

• ρεχε
Si
(t, x) satisfies (in the weak sense)

∂

∂t
(ρεχε

Si
) + P ε

Si
uε · ∇(ρεχε

Si
) = 0 in (0, T )× Ω, (ρεχε

Si
)|t=0 = ρε01S0i

in Ω. (2.20)

• The initial data are given by

ρε(0, x) = ρε0(x), ρεuε(0, x) = qε0(x) in Ω,
∂ρε0
∂ν

∣∣
∂Ω

= 0. (2.21)

Above we have used the following quantities:

• The specific body force is defined as

gε =

M∑
i=1

[(1− χε
Si
)gF + χε

Si
gSi ]. (2.22)

• The artificial pressure is given by

pε(ρ) = aεργ + δρβ , with aε = aF

M∑
i=1

(1− χε
Si
), (2.23)

where aF , δ > 0, and the exponents γ and β satisfy γ > 3/2, β ⩾ max{8, γ}.
• The viscosity coefficients are given by

µε =
M∑
i=1

[(1− χε
Si
)µF + δ2χε

Si
], λε =

M∑
i=1

[(1− χε
S)λF + δ2χε

Si
] so that µε > 0, 2µε + 3λε ⩾ 0. (2.24)
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• P ε
Si

: L2(Ω) → L2(Sε
i (t))∩R(Sε(t)) is the orthogonal projection onto rigid fields; it is defined as in (2.9) with

χδ
Si

is replaced by χε
Si
.

Proposition 2.2. Let Ω and S0i ⋐ Ω, i = 1, ...,M be regular bounded domains of R3. Assume that for some σ > 0,

min(dist(S0i(t), ∂Ω), dist(S0i(t),S0j(t)) > 2σ, i ̸= j, i, j = 1, ...,M.

Let gF , gSi
∈ L∞((0, T )×Ω) and β, δ, γ be given as in (2.10). Further, let the pressure pε be determined by (2.23)

and the viscosity coefficients µε, λε be given by (2.24). The initial conditions satisfy, for some ρ, ρ > 0,

0 < ρ ⩽ ρε0 ⩽ ρ in Ω, ρε0 ∈W 1,∞(Ω), qε0 ∈ L2(Ω). (2.25)

Let the initial energy

Eε[ρε0, q
ε
0] =

∫
Ω

(
1

2

|qε0|2

ρε0
1{ρε

0>0} +
aε(0)

γ − 1
(ρε0)

γ +
δ

β − 1
(ρε0)

β

)
:= Eε

0

be uniformly bounded with respect to δ and ε. Then there exists T > 0 (depending only on Eε
0, gF , gSi

, dist(S0i, ∂Ω),
dist(S0i,S0j), i ̸= j )) such that system (2.16)–(2.21) admits a weak solution (Sε, ρε, uε), which satisfies the following
energy inequality for almost every t ∈ (0, T ):

Eε[ρε, qε] +

T∫
0

∫
Ω

(
2µε|D(uε)|2 + λε|div uε|2

)
+ δεβ

T∫
0

∫
Ω

(ρε)β−2|∇ρε|2

+ α

M∑
i=1

T∫
0

∫
∂Sε

i (t)

|(uε − P ε
Si
uε)× νi|2 +

1

δ

T∫
0

∫
Ω

M∑
i=1

χε
Si
|uε − P δ

Si
uε|2 ⩽

T∫
0

∫
Ω

ρεgε · uε + Eε
0 . (2.26)

Moreover,

min(dist(Sε
i (t), ∂Ω), dist(Sε

i (t),Sε
j (t))) ⩾ 2σ, ∀ t ∈ [0, T ], i ̸= j, i, j = 1, ...,M,

and the solution satisfies

∂tρ
ε, ∆ρε ∈ L

5β−3
4β ((0, T )× Ω),

√
ε∥∇ρε∥L2((0,T )×Ω) + ∥ρε∥Lβ+1((0,T )×Ω) + ∥(aε)

1
γ+1 ρε∥Lγ+1((0,T )×Ω) ⩽ c, (2.27)

where c is a positive constant depending on δ but independent of ε.

To solve the problem (2.16)–(2.21), we introduce another level of approximation - N -level approximation which is
obtained via a Faedo-Galerkin approximation scheme.

Let {ek}k⩾1 ⊂ D(Ω) is a basis of L2(Ω). We denote by XN the following space:

XN = span(e1, . . . , eN ).

XN is a finite dimensional space with scalar product induced by the scalar product in L2(Ω). As XN is finite

dimensional, norms on XN induced by W k,p
0 norms, k ∈ N, 1 ⩽ p ⩽ ∞ are equivalent. We also assume that⋃

N

XN is dense in W 1,p
0 (Ω), for any 1 ⩽ p <∞.

The aim is to find a triplet (SN , ρN , uN ) with SN = ∪M
i=1SN

i satisfying:

• SN
i (t) ⋐ Ω are bounded, regular domains for all t ∈ [0, T ], i = 1, ...,M with

χN
Si
(t, x) := 1SN

i (t)(x) ∈ L∞((0, T )× Ω) ∩ C([0, T ];Lp(Ω)), ∀ 1 ⩽ p <∞. (2.28)

• The velocity field uN (t, ·) =
N∑

k=1

αk(t)ek with (α1, α2, . . . , αN ) ∈ C([0, T ])N and the density function ρN ∈

L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)), ρN > 0 satisfies

∂ρN

∂t
+ div(ρNuN ) = ε∆ρN in (0, T )× Ω,

∂ρN

∂ν
= 0 on ∂Ω. (2.29)
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• For all ϕ ∈ D([0, T );XN ), the following holds:

−
T∫

0

∫
Ω

ρN
(
uN · ∂

∂t
ϕ+ uN ⊗ uN : ∇ϕ

)
+

T∫
0

∫
Ω

(
2µND(uN ) : D(ϕ) + λN div uN I : D(ϕ)− pN (ρN )I : D(ϕ)

)
T∫

0

∫
Ω

ε∇uN∇ρN · ϕ+ α
M∑
i=1

T∫
0

∫
∂SN

i (t)

[(uN − PN
Si
uN )× νi] · [(ϕ− PN

Si
ϕ)× νi]

+
1

δ

T∫
0

∫
Ω

M∑
i=1

χN
Si
(uN − PN

Si
uN ) · (ϕ− PN

Si
ϕ) =

T∫
0

∫
Ω

ρNgN · ϕ+

∫
Ω

(ρNuN · ϕ)(0). (2.30)

• χN
Si
(t, x) satisfies (in the weak sense)

∂χN
Si

∂t
+ PN

Si
uN · ∇χN

Si
= 0 in (0, T )× Ω, χN

Si
|t=0 = 1S0i

in Ω. (2.31)

• ρNχN
Si
(t, x) satisfies (in the weak sense)

∂

∂t
(ρNχN

Si
) + PN

Si
uN · ∇(ρNχN

Si
) = 0 in (0, T )× Ω, (ρNχN

Si
)|t=0 = ρN0 1S0i

in Ω. (2.32)

• The initial data are given by

ρN (0) = ρN0 , uN (0) = uN0 in Ω,
∂ρN0
∂ν

∣∣∣
∂Ω

= 0. (2.33)

Above we have used the following quantities:

• The specific body force is defined as

gN =
M∑
i=1

[(1− χN
Si
)gF + χN

Si
gSi

]. (2.34)

• The artificial pressure is given by

pN (ρ) = aNργ + δρβ , with aN =
M∑
i=1

aF (1− χN
Si
), (2.35)

where aF , δ > 0 and the exponents γ and β satisfy γ > 3/2, β ⩾ max{8, γ}.
• The viscosity coefficients are given by

µN =

M∑
i=1

[(1− χN
Si
)µF + δ2χN

Si
], λN =

M∑
i=1

[(1− χN
Si
)λF + δ2χN

Si
] so that µN > 0, 2µN + 3λN ⩾ 0. (2.36)

• PN
Si

: L2(Ω) → L2(SN
i (t)) ∩ R(SN

i (t)) is the orthogonal projection onto rigid fields; it is defined as in (2.9)

with χδ
Si

replaced by χN
Si
.

A weak solution (Sε, ρε, uε) to the system (2.16)–(2.21) is obtained through the limit of (SN , ρN , uN ) as N → ∞. The
existence result of the approximate solution of the Faedo-Galerkin scheme reads:

Proposition 2.3. Let Ω and S0 ⋐ Ω be regular bounded domains of R3, i = 1, ...,M . Assume that for some σ > 0,

min(dist(S0i(t), ∂Ω), dist(S0i(t),S0j(t)) > 2σ, i ̸= j, i, j = 1, ...,M.

Let gF , gSi
∈ L∞((0, T )×Ω) and β, δ, γ be given by (2.10). Further, let the pressure pN be determined by (2.35) and

the viscosity coefficients µN , λN be given by (2.36). The initial conditions are assumed to satisfy

0 < ρ ⩽ ρN0 ⩽ ρ in Ω, ρN0 ∈W 1,∞(Ω), uN0 ∈ XN . (2.37)
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Let the initial energy

EN (ρN0 , q
N
0 ) =

∫
Ω

(
1

ρN0
|qN0 |21{ρ0>0} +

aN (0)

γ − 1
(ρN0 )γ +

δ

β − 1
(ρN0 )β

)
:= EN

0

be uniformly bounded with respect to N, ε, δ. Then there exists T > 0 (depending only on EN
0 , gF , gSi

, ρ, ρ,

dist(S0i, ∂Ω), dist(S0i,S0j), i ̸= j) such that the problem (2.28)–(2.33) admits a solution (SN , ρN , uN ) and it sat-
isfies the energy inequality:

EN [ρN , qN ] +

T∫
0

∫
Ω

(
2µN |D(uN )|2 + λN |div uN |2

)
+ δεβ

T∫
0

∫
Ω

(ρN )β−2|∇ρN |2

+ α
M∑
i=1

T∫
0

∫
∂SN

i (t)

|(uN − PN
Si
uN )× νi|2 +

M∑
i=1

1

δ

T∫
0

∫
Ω

χN
Si
|uN − PN

Si
uN |2 ⩽

T∫
0

∫
Ω

ρNgN · uN + EN
0 .

Moreover,

min(dist(SN
i (t), ∂Ω), dist(SN

i (t),SN
j (t))) ⩾ 2σ, ∀ t ∈ [0, T ], i ̸= j, i, j = 1, ...,M.

3. Existence proofs of Approximate solutions

In this section, we present the proofs or the sketch of the proof of the existence results of the three approximation
levels. Let us begin with the N -level approximation in Section 3.1 and the limit as N → ∞ in Section 3.2, which gives
existence at the ε-level.

3.1. Solution of the Faedo-Galerkin approximation. In this subsection, we construct a solution (SN , ρN , uN ) to
the problem (2.28)–(2.33).

Proof of Proposition 2.3. The idea is to apply the Galerkin approximation as a fixed point problem and then used the
Schauder’s fixed point theorem to it. We set

BR,T = {u ∈ C([0, T ];XN ), ∥u∥L∞(0,T ;L2(Ω)) ⩽ R},

for R and T positive which will be fixed in Step 3.

Step 1: Continuity equation and transport of the body.
For a given u ∈ BR,T , we solve ρ as the solution to

∂ρ

∂t
+ div(ρu) = ε∆ρ in (0, T )× Ω,

∂ρ

∂ν
= 0 on ∂Ω, ρ(0) = ρN0 , 0 < ρ ⩽ ρN0 ⩽ ρ, (3.1)

and let χS be a solution of the transport equation

∂χSi

∂t
+ PSiu · ∇χS = 0, χSi |t=0 = 1S0i , (3.2)

and
∂

∂t
(ρχSi

) + PSi
u · ∇(ρχSi

) = 0, (ρχSi
)|t=0 = ρN0 1S0i, (3.3)

where PSiu ∈ R(Ω) and it is given by (5.2).
Since ρN0 ∈W 1,∞(Ω), u ∈ BR,T in (3.1), we can use [18, Proposition 7.39, Page 345] to conclude that ρ > 0 and

ρ ∈ L2(0, T ;H2(Ω)) ∩ C([0, T ];H1(Ω)) ∩H1(0, T ;L2(Ω)).

Moreover, using the theory of the transport equation, see Proposition 5.1, we get

χSi
∈ L∞((0, T )× Ω) ∩ C([0, T ];Lp(Ω)), ∀ 1 ⩽ p <∞,

ρχSi
∈ L∞((0, T )× Ω) ∩ C([0, T ];Lp(Ω)), ∀ 1 ⩽ p <∞.
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Further, we define

µ =
M∑
i=1

[(1− χSi
)µF + δ2χSi

], λ =
M∑
i=1

[(1− χSi
)λF + δ2χS ] so that µ > 0, 2µ+ 3λ ⩾ 0,

g =
M∑
i=1

[(1− χSi
)gF + χSi

gSi
], p(ρ) = aργ + δρβ with a =

M∑
i=1

aF (1− χSi
).

Step 2: Momentum equation.

For a given u ∈ BR,T , let us consider the following equation satisfied by ũ : [0, T ] 7→ XN :

−
T∫

0

∫
Ω

ρ
(∂ũ
∂t

· ej + (u · ∇ej) · ũ
)
+

T∫
0

∫
Ω

(
2µD(ũ) : D(ej) + λdiv ũI : D(ej)− p(ρ)I : D(ej)

)

+

T∫
0

∫
Ω

ε∇ũ∇ρ · ej + α
M∑
i=1

T∫
0

∫
∂SN

i (t)

[(ũ− PSi
ũ)× νi] · [(ej − PSi

ej)× νi]

+
1

δ

M∑
i=1

T∫
0

∫
Ω

χSi
(ũ− PSi

ũ) · (ej − PSi
ej) =

T∫
0

∫
Ω

ρg · ej , (3.4)

where ρ, χSi are defined as in Step 1. We can write

ũ(t, ·) =
N∑
i=1

gi(t)ei, ũ(0) = uN0 =
N∑
i=1

∫
Ω

u0 · ei

 ei.

The coefficients {gi} of ũ satisfy the ordinary differential equation,

N∑
i=1

ai,jg
′
i(t) +

N∑
i=1

bi,jgi(t) = fj(t), gi(0) =

∫
Ω

uN0 · ei, (3.5)

where ai,j , bi,j and fj are given by

ai,j =

T∫
0

∫
Ω

ρeiej ,

bi,j =

T∫
0

∫
Ω

ρ(u · ∇ej) · ei +
T∫

0

∫
Ω

(
2µD(ei) : D(ej) + λdiv eiI : D(ej)

)
+

T∫
0

∫
Ω

ε∇ej∇ρ · ei

+ α
M∑
k=1

T∫
0

∫
∂Sk(t)

[(ei − PSk
ei)× νk] · [(ej − PSk

ej)× νk] +
1

δ

T∫
0

∫
Ω

χSk
(ei − PSk

ei) · (ej − PSk
ej),

fj =

T∫
0

∫
Ω

ρg · ej +
T∫

0

∫
Ω

p(ρ)I : D(ej).

Let us stress that the positive lower bound of ρ in [18, Proposition 7.39, Page 345] guarantees the invertibility of
the matrix (ai,j(t))1⩽i,j⩽N . Using the regularity of ρ ([18, Proposition 7.39, Page 345]), of χS and of the propagator
associated to PSu (Proposition 5.1) we can conclude the continuity of (ai,j(t))1⩽i,j⩽N , (bi,j(t))1⩽i,j⩽N , (fi(t))1⩽i⩽N .
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The existence and uniqueness theorem for ordinary differential equations gives that system (3.5) has a unique solution
defined on [0, T ] and therefore equation (3.4) has a unique solution

ũ ∈ C([0, T ];XN ).

Step 3: The map N .

Let us introduce a map

N : BR,T → C([0, T ], XN )

u 7→ ũ,

where ũ satisfies (3.4). From the existence of ũ ∈ C([0, T ];XN ) in the problem (3.4), we have that N is well-defined
from BR,T to C([0, T ];XN ). Now we establish the fact that N maps BR,T to itself for suitable R and T .

We fix

0 < σ < min(
1

2
dist(S0i, ∂Ω),

1

2
dist(S0i,S0j)), i ̸= j.

Given u ∈ BR,T , we want to estimate ∥ũ∥L∞(0,T ;L2(Ω)). Using a simple integration by parts we obtain :

t∫
0

∫
Ω

ρũ′ · ũ = −1

2

t∫
0

∫
Ω

∂ρ

∂t
|ũ|2 + 1

2
(ρ|ũ|2)(t)− 1

2
ρ0|u0|2, (3.6)

T∫
0

∫
Ω

ρ(u · ∇)ũ · ũ = −1

2

T∫
0

∫
Ω

div(ρu)|ũ|2, (3.7)

∫
Ω

∇(ργ) · ũ =
γ

γ − 1

∫
Ω

∇(ργ−1) · ρũ = − γ

γ − 1

∫
Ω

ργ−1 div(ρũ) =
1

γ − 1

d

dt

∫
Ω

ργ − εγ

γ − 1

∫
Ω

ργ−1∆ρ

=
1

γ − 1

d

dt

∫
Ω

ργ + εγ

∫
Ω

ργ−2|∇ρ|2 ⩾
1

γ − 1

d

dt

∫
Ω

ργ .

(3.8)

Similarly, ∫
Ω

∇(ρβ) · ũ =
1

β − 1

d

dt

∫
Ω

ρβ + εβ

∫
Ω

ρβ−2|∇ρ|2. (3.9)

We multiply equation (3.4) by gj , add these equations for j = 1, 2, ..., N , use the relations (3.6)–(3.9) and the continuity
equation (3.1) to obtain the following energy estimate:

∫
Ω

(1
2
ρ|ũ|2 + a

γ − 1
ργ +

δ

β − 1
ρβ
)
+

T∫
0

∫
Ω

(
2µ|D(ũ)|2 + λ| div ũ|2

)
+ δεβ

T∫
0

∫
Ω

ρβ−2|∇ρ|2

+α
M∑
k=1

T∫
0

∫
∂Sk(t)

|(ũ−PSk
ũ)×ν|2+1

δ

T∫
0

∫
Ω

χSk
|ũ−PSk

ũ|2 ⩽

T∫
0

∫
Ω

ρg·ũ+
∫
Ω

(
1

2

ρN0
|qN0 |2

1{ρ0>0}+
a

γ − 1
(ρN0 )γ+

δ

β − 1
(ρN0 )β

)

⩽
√
ρT

(
1

2ε̃
∥g∥2L∞(0,T ;L2(Ω)) +

ε̃

2
∥√ρũ∥2L∞(0,T ;L2(Ω))

)
+

∫
Ω

(
1

2

ρN0
|qN0 |2

1{ρ0>0} +
a

γ − 1
(ρN0 )γ +

δ

β − 1
(ρN0 )β

)
. (3.10)

An appropriate choice of ε̃ in (3.10) gives us

∥ũ∥2L∞(0,T ;L2(Ω)) ⩽
4ρ

ρ
T 2∥g∥2L∞(0,T ;L2(Ω)) +

4

ρ
EN

0 ,

where ρ and ρ are the upper and lower bounds of ρ. In order to get ∥ũ∥L∞(0,T ;L2(Ω)) ⩽ R, we need

R2 ⩾
4ρ

ρ
T 2∥g∥2L∞(0,T ;L2(Ω)) +

4

ρ
EN

0 . (3.11)
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Moreover, we have to verify that for T small enough and for any u ∈ BR,T ,

inf
u∈BR,T

(dist(Si(t), ∂Ω),dist(Si(t),Sj(t)) ⩾ 2σ > 0 (3.12)

holds. We can write Si(t) = ηit,0(S0i) with the isometric propagator ηit,s (see equation (5.3) for the precise definition)
associated to the rigid field PSi

u = h′i(t) + ωi(t)× (y− hi(t)). From [8, Proposition 4.6, Step 2], we conclude: proving
(3.12) is equivalent to establishing the following bound:

sup
t∈[0,T ]

|∂tηit,0(t, y)| <
min(dist(S0, ∂Ω),dist(Si(t),Sj(t))− 2σ

T
, t ∈ [0, T ], y ∈ S0i. (3.13)

We have

|∂tηit,0(t, y)| = |PSi
u(t, ηit,0(t, y))| ⩽ |h′i(t)|+ |ωi(t)||y − hi(t)|.

Furthermore, if ρ is the upper bound of ρ, then for u ∈ BR,T

M∑
i=1

|h′i(t)|2 + Ji(t)ωi(t) · ωi(t) =
M∑
i=1

∫
Si(t)

ρSi |PSiu(t, ·)|2 ⩽
∫
Ω

ρ|u(t, ·)|2 ⩽ ρR2 (3.14)

for any R and t ∈ (0, T ). As Ji(t) is congruent to Ji(0), they have the same eigenvalues and we have

λ0i|ωi(t)|2 ⩽ Ji(t)ωi(t) · ωi(t),

where λ0i is the smallest eigenvalue of Ji(0). Observe that for t ∈ [0, T ], y ∈ S0i,

|h′i(t)|+ |ωi(t)||y − hi(t)| ⩽
√
2(|h′i(t)|2 + |ωi(t)|2|y − hi(t)|2)1/2 ⩽

√
2max{1, |y − hi(t)|}(|h′i(t)|2 + |ωi(t)|2)1/2

⩽ C0

(
|h′i(t)|2 + Ji(t)ωi(t) · ωi(t)

)1/2
,

(3.15)

where C0 =
√
2max{1,|y−hi(t)|}

min{1,λ0i}1/2 . Thus, with the help of (3.14)–(3.15) and the relation of R in (3.11), we can conclude

that any

T <
min(dist(S0i, ∂Ω),dist(S0i,S0j))− 2σ

C0|ρ|1/2[ 4ρρ T 2∥g∥2L∞(0,T ;L2(Ω)) +
4
ρE

N
0 ]1/2

(3.16)

satisfies the relation (3.12). Thus, we choose T satisfying (3.16) and fix it. Then we choose R as in (3.11) to conclude
that N maps BR,T to itself.

Step 4: Continuity of N .

We will show that if a sequence {uk} ⊂ BR,T is such that uk → u in BR,T , then N (uk) → N (u) in BR,T .

As span(e1, e2, ..., eN ) is a finite dimensional subspace of D(Ω), we have uk → u in C([0, T ];D(Ω)). Given {uk} ⊂
BR,T , we have that ρk ∈ L2(0, T ;H2(Ω)) ∩C([0, T ];H1(Ω)) ∩H1(0, T ;L2(Ω)) is the solution to (3.1), χk

Si
is bounded

in L∞((0, T )×R3) satisfying (3.2) and {ρkχk
Si
} is a bounded sequence in L∞((0, T )×R3) satisfying (3.3). We apply

Proposition 5.2 to obtain

χk
Si

→ χSi
weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lp

loc(R
3)), ∀ 1 ⩽ p <∞,

P k
Si
uk → PSi

u strongly in C([0, T ];C∞
loc(R3)),

ηk,it,s → ηit,s strongly in C1([0, T ]2;C∞
loc(R3)).

We use the continuity argument as in Step 2 to conclude

aki,j → ai,j , bki,j → bi,j , fkj → fj strongly in C([0, T ]),

and so we obtain

N (uk) = ũk → ũ = N (u) strongly in C([0, T ];XN ).

Step 5: Compactness of N .
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If ũ(t) =
N∑
i=1

gi(t)ei, we can view (3.5) as

A(t)G′(t) +B(t)G(t) = F (t),

where A(t) = (ai,j(t))1⩽i,j⩽N , B(t) = (bi,j(t))1⩽i,j⩽N , F (t) = (fi(t))1⩽i⩽N , G(t) = (gi(t))1⩽i⩽N . We deduce

|g′i(t)| ⩽ R|A−1(t)||B(t)|+ |A−1(t)||F (t)|.

Thus, we obtain

sup
t∈[0,T ]

(
|gi(t)|+ |g′i(t)|

)
⩽ C.

It also implies

sup
u∈BR,T

∥N (u)∥C1([0,T ];XN ) ⩽ C.

The C1([0, T ];XN )-boundedness of N (u) allows us to apply the Arzela-Ascoli theorem to obtain compactness of N in
BR,T .

Now we are in a position to apply Schauder’s fixed point theorem to N to conclude the existence of a fixed point
uN ∈ BR,T . Then we define ρN satisfying the continuity equation (2.29) on (0, T ) × Ω, and χN

Si
= 1SN

i
is the

corresponding solution to the transport equation (2.31) on (0, T ) × R3. It only remains to justify the momentum
equation (2.30). We multiply equation (3.4) by ψ ∈ D([0, T )) to obtain:

−
T∫

0

∫
Ω

∂uN

∂t
· ψ(t)ej + (uN · ∇(ψ(t)ej)) · uN

)
+

T∫
0

∫
Ω

ε∇(ψ(t)ej)∇ρN · uN

+

T∫
0

∫
Ω

(
2µND(uN ) : D(ψ(t)ej) + λN div uN I : D(ψ(t)ej)− pN (ρN )I : D(ψ(t)ej)

)

+α
M∑
i=1

T∫
0

∫
∂SN

i (t)

[(uN −PN
Si
uN )× νi] · [(ψ(t)ej −PN

Si
ψ(t)ej)× νi] +

1

δ

T∫
0

∫
Ω

M∑
i=1

χSi
(uN −PN

S⟩
uN ) · (ψ(t)ej −PN

Si
ψ(t)ej)

=

T∫
0

∫
Ω

ρNgN · ψ(t)ej , (3.17)

Using the integration by parts we have the following identities:

T∫
0

ρN
∂uN

∂t
· ψ(t)ej = −

T∫
0

∂ρN

∂t
uN · ψ(t)ej −

T∫
0

ρNuN · ψ′(t)ej − (ρNuN · ψej)(0), (3.18)

∫
Ω

ρN (uN · ∇(ψ(t)ej)) · uN = −
∫
Ω

div(ρNuN )(ψ(t)ej · uN )−
∫
Ω

ρN (uN · ∇)uN · ψ(t)ej . (3.19)

Thus we can use the relations (3.18)–(3.19) and continuity equation (2.29) in the identity (3.17) to obtain equation
(2.30) for all ϕ ∈ D([0, T );XN ). □

3.2. Convergence of the Faedo-Galerkin scheme and the limiting system. In Proposition 2.3, we have already
constructed a solution (SN , ρN , uN ) to the problem (2.28)–(2.33). In this section, we establish Proposition 2.2 by
passing to the limit in (2.28)–(2.33) as N → ∞ to recover the solution of (2.16)–(2.21), i.e. of the ε-level approximation.
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Proof of Proposition 2.2. If we replace ϕ by uN in (2.30), then as in (3.10), we derive

EN [ρN , qN ] +

T∫
0

∫
Ω

(
2µN |D(uN )|2 + λN |div uN |2

)
+ δεβ

T∫
0

∫
Ω

(ρN )β−2|∇ρN |2

+
M∑
i=1

α

T∫
0

∫
∂SN

i (t)

|(uN − PN
Si
uN )× ν|2 + 1

δ

T∫
0

∫
Ω

M∑
i=1

χN
Si
|uN − PN

Si
uN |2 ⩽

T∫
0

∫
Ω

ρNgN · uN + EN
0 , (3.20)

where

EN [ρN , qN ] =

∫
Ω

(1
2
ρN |uN |2 + aN

γ − 1
(ρN )γ +

δ

β − 1
(ρN )β

)
.

Following the idea of the footnote in [18, Page 368], the initial data (ρN0 , u
N
0 ) is constructed in such a way that

ρN0 → ρε0 in W 1,∞(Ω), ρN0 u
N
0 → qε0 in L2(Ω)

and∫
Ω

(
1

2
ρN0 |uN0 |21{ρN

0 >0} +
aN

γ − 1
(ρN0 )γ +

δ

β − 1
(ρN0 )β

)
→
∫
Ω

(
1

2

|qε0|2

ρε0
1{ρε

0>0} +
aε

γ − 1
(ρε0)

γ +
δ

β − 1
(ρε0)

β

)
as N → ∞.

(3.21)
Precisely, we approximate qε0 by a sequence qN0 satisfying (2.37) and such that (3.21) is valid. It is sufficient to take

uN0 = PN (
qε0
ρε
0
), where by PN we denote the orthogonal projection of L2(Ω) onto XN . Proposition 2.3 is valid with

these new initial data.
The construction of ρN imply that ρN > 0. Thus the energy estimate (3.20) yields that up to a subsequence

(1) uN → uε weakly-∗ in L∞(0, T ;L2(Ω)) and weakly in L2(0, T ;H1(Ω)),
(2) ρN → ρε weakly-∗ in L∞(0, T ;Lβ(Ω)),
(3) ∇ρN → ∇ρε weakly in L2((0, T )× Ω).

We follow the similar analysis as for the fluid case explained in [18, Section 7.8.1, Page 362] to conclude that

• ρN → ρε in C([0, T ];Lβ
weak(Ω)) and ρ

N → ρε strongly in Lp((0, T )× Ω), ∀ 1 ⩽ p < 4
3β,

• ρNuN → ρεuε weakly in L2(0, T ;L
6β

β+6 ) and weakly-∗ in L∞(0, T ;L
2β

β+1 ).

We also know that χN
Si

is a bounded sequence in L∞((0, T )×R3) satisfying (2.31) and {ρNχN
Si
} is a bounded sequence

in L∞((0, T )× R3) satisfying (2.32). We use Proposition 5.3 to conclude

χN
Si

→ χε
Si

weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lp
loc(R

3)), ∀ 1 ⩽ p <∞, (3.22)

with χε
Si

satisfying (2.19) along with (2.16). Thus, we have recovered the transport equation for the body (2.19).

From (3.22) and the definitions of gN and gε in (2.34) and (2.22), it follows that

gN → gε weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lp
loc(R

3)) ∀ 1 ⩽ p <∞. (3.23)

These convergence results give us the possibility to pass to the limit N → ∞ in (2.29) to achieve (2.17). Now let us
concentrate on the limit of the momentum equation (2.30). The four most difficult terms are:

AN
i (t, ek) =

∫
∂SN

i (t)

[(uN − PN
Si
uN )× νi] · [(ek − PN

Si
ek)× νi], BN (t, ek) =

∫
Ω

ρNuN ⊗ uN : ∇ek,

CN (t, ek) =

∫
Ω

ε∇uN∇ρN · ek, DN (t, ek) =

∫
Ω

(ρN )βI : D(ek), 1 ⩽ k ⩽ N.
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To analyze the term AN
i (t, ek), we do a change of variables to rewrite it in a fixed domain and use the convergence

results from Proposition 5.2 for the projection and the isometric propagator:

PN
Si
uN → P ε

Si
uε weakly- ∗ in L∞(0, T ;C∞

loc(R3)),

ηNt,s → ηεt,s weakly- ∗ in W 1,∞((0, T )2;C∞
loc(R3)).

We follow a similar analysis as in [8, Page 2047–2048] to conclude that AN
i converges weakly in L1(0, T ) to

Ai(t, ek) =

∫
∂Sε

i (t)

[(uε − P ε
Si
uε)× ν] · [(ek − P ε

Si
ek)× νi].

We proceed as explained in the fluid case [18, Section 7.8.2, Page 363–365] to analyze the limiting process for the other
terms BN (t, ek), C

N (t, ek), D
N (t, ek). The limit of BN (t, ek) follows from the fact [18, Equation (7.8.22), Page 364]

that

ρNuN ⊗ uN → ρεuε ⊗ uε weakly in L2(0, T ;L
6β

4β+3 (Ω)). (3.24)

To obtain the limit of CN (t, ek), we apply [18, Equation (7.8.26), Page 365]:

ε∇uN∇ρN → ε∇uε∇ρε weakly in L2(0, T ;L
5β−3
4β (Ω)),

and the limit of DN (t, ek) is obtained by using [18, Equation (7.8.8), Page 362]:

ρN → ρε strongly in Lp(0, T ; Ω), 1 ⩽ p <
4

3
β. (3.25)

Thus, using the above convergence results for BN , CN , DN and the fact that⋃
N

XN is dense in W 1,p
0 (Ω),

we can conclude the following weak convergences in L1(0, T ):

BN (t, ϕN ) → B(t, ϕε) =

∫
Ω

ρεuε ⊗ uε : ∇ϕε,

CN (t, ϕN ) → C(t, ϕε) =

∫
Ω

ε∇uε∇ρε · ϕε,

DN (t, ϕN ) → D(t, ϕε) =

∫
Ω

(ρε)βI : D(ϕε).

Thus we have achieved (2.18) as a limit of equation (2.30) as N → ∞. Hence, we have established the existence of a
solution (Sε, ρε, uε) to system (2.16)–(2.21). Now we establish energy inequality (2.26) and estimates independent of
ε:

• The weak convergence of ρN |uN |2 in (3.24) and strong convergence of ρN in (3.25) ensure that, up to a
subsequence,∫

Ω

(1
2
ρN |uN |2 + aN

γ − 1
(ρN )γ +

δ

β − 1
(ρN )β

)
→
∫
Ω

(1
2
ρε|uε|2 + aε

γ − 1
(ρε)γ +

δ

β − 1
(ρε)β

)
in D′((0, T )). (3.26)

• Due to the weak lower semicontinuity of convex functionals, the weak convergence of uN in L2(0, T ;H1(Ω)),
the strong convergence of χN

S in C([0, T ];Lp(Ω)) and the strong convergence of PN
S in C([0, T ];C∞

loc(R3)), we
obtain

T∫
0

ψ

∫
Ω

(
2µε|D(uε)|2 + λε|div uε|2

)
⩽ lim inf

N→∞

T∫
0

ψ

∫
Ω

(
2µN |D(uN )|2 + λN |div uN |2

)
, (3.27)
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T∫
0

ψ

∫
Ω

χε
Si
|uε − P δ

Si
uε|2 ⩽ lim inf

N→∞

T∫
0

ψ

∫
Ω

χN
Si
|uN − PSi

uN |2, (3.28)

where ψ is a smooth non-negative function on (0, T ).
• Using the fact that ∇ρN → ∇ρ strongly in L2((0, T ) × Ω) (by [18, Equation (7.8.25), Page 365]), strong
convergence of ρN in (3.25) and Fatou’s lemma, we have

T∫
0

ψ

∫
Ω

(ρε)β−2|∇ρε|2 ⩽ lim inf
N→∞

T∫
0

ψ

∫
Ω

(ρN )β−2|∇ρN |2. (3.29)

• For passing to the limit in the boundary terms, we follow the idea of [8]. We introduce the extended velocities
UN , UN

Si
to whole R3 associated to EuN , PN

Si
uN respectively. They are defined by:

EuN (t, ηNt,0(y)) = JηN
t,0

∣∣∣
y
UN (t, y), PN

Si
uN (t, ηNt,0(y)) = JηN

t,0

∣∣∣
y
UN
Si
(t, y)

where E : H1(Ω) → H1(R3) is the extension operator and JηN
t,0

is the Jacobian matrix of ηNt,0. According to [8,

Lemma A.2], we have the weak convergences of UN , UN
Si

to Uε, Uε
Si

in L2(0, T ;H1
loc(R3)). These facts along

with the lower semicontinuity of the L2-norm yield

T∫
0

ψ

∫
∂Sε

i (t)

|(uε − P ε
Si
uε)× ν|2 =

T∫
0

ψ

∫
∂S0i

|(Uε − Uε
Si
)× ν|2 ⩽ lim inf

N→∞

T∫
0

ψ

∫
∂S0i

|(UN − UN
Si
)× ν|2

= lim inf
N→∞

T∫
0

ψ

∫
∂SN

i (t)

|(uN − PSiu
N )× ν|2. (3.30)

In the above, the first and the last equality in (3.30) follows from the change of variables formula.
• Regarding the term on the right hand side of (3.20), the weak convergence of uN in L2(0, T ;H1(Ω)), the strong
convergence of ρN in (3.25) and the strong convergence of gN in (3.23) yield

T∫
0

ψ

∫
Ω

ρNgN · uN →
T∫

0

ψ

∫
Ω

ρεgε · uε, as N → ∞. (3.31)

We can obtain the following differential form of energy inequality by using the above results (3.26)–(3.31):

d

dt
Eε[ρε, qε] +

∫
Ω

(
2µε|D(uε)|2 + λε|div uε|2

)
+ δεβ

∫
Ω

(ρε)β−2|∇ρε|2

+ α
M∑
i=1

∫
∂Sε

i (t)

|(uε − P ε
Si
uε)× νi|2 + 1

δ

M∑
i=1

∫
Ω

χε
Si
|uε − P δ

Si
uε|2 ⩽

∫
Ω

ρεgε · uε in D′((0, T )). (3.32)

Since, Eε[ρε, qε] ∈ L∞((0, T )), we can apply the if and only if relation between differential and integral form of energy
inequality as stated in [18, Equation (7.1.27)-(7.1.28), Page 317]. Hence, we have established energy inequality (2.26)
holds for almost every t ∈ (0, T ):

Eε[ρε, qε] +

T∫
0

∫
Ω

(
2µε|D(uε)|2 + λε|div uε|2

)
+ δεβ

T∫
0

∫
Ω

(ρε)β−2|∇ρε|2

+ α
M∑
i=1

T∫
0

∫
∂Sε

i (t)

|(uε − P ε
Si
uε)× ν|2 + 1

δ

M∑
i=1

T∫
0

∫
Ω

χε
Si
|uε − P δ

Si
uε|2 ⩽

T∫
0

∫
Ω

ρεgε · uε + Eε
0 , (3.33)
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where

Eε[ρε, qε] =

∫
Ω

(
1

2

|qε|2

ρε
+

aε

γ − 1
(ρε)γ +

δ

β − 1
(ρε)β

)
.

We obtain as in [18, Equation (7.8.14), Page 363]:

∂tρ
ε, ∆ρε ∈ L

5β−3
4β ((0, T )× Ω).

Regarding the
√
ε∥∇ρε∥L2((0,T )×Ω) estimate in (2.27), we have to multiply (2.17) by ρε and integrate by parts to

obtain

1

2

∫
Ω

|ρε(t)|2+ε
T∫

0

∫
Ω

|∇ρε(t)|2 =
1

2

∫
Ω

|ρε0|2−
1

2

T∫
0

∫
Ω

|ρε|2 div uε ⩽ 1

2

∫
Ω

|ρε0|2+
√
T∥|ρε∥2L∞(0,T ;L4(Ω))∥div u

ε∥L2(0,T ;L2(Ω)).

Now, the pressure estimates ∥ρε∥Lβ+1((0,T )×Ω) and ∥ρε∥Lγ+1((0,T )×Ω) in (2.27) can be derived by means of the test
function ϕ(t, x) = ψ(t)Φ(t, x) with Φ(t, x) = B[ρε −m] in (2.18), where

ψ ∈ D(0, T ), m = |Ω|−1

∫
Ω

ρε,

and B is the Bogovskii operator related to Ω (for details about B, see [18, Section 3.3, Page 165]). After taking this
special test function and integrating by parts, we obtain

T∫
0

ψ

∫
Ω

(
aε(ρε)γ + δ(ρε)β

)
ρε =

T∫
0

ψ

∫
Ω

(
aε(ρε)γ + δ(ρε)β

)
m+

T∫
0

2ψ

∫
Ω

µεD(uε) : D(Φ) +
T∫

0

ψ

∫
Ω

λερε div uε

−m

T∫
0

ψ

∫
Ω

λε div uε +

T∫
0

ψ

∫
Ω

ε∇uε∇ρε · Φ+ α

T∫
0

ψ

M∑
i=1

∫
∂Sε

i (t)

[(uε − P ε
Si
uε)× νi] · [(Φ− P ε

Si
Φ)× νi]

+
1

δ

T∫
0

ψ

∫
Ω

M∑
i=1

χε
Si
(uε − P ε

Si
uε) · (Φ− P ε

Si
Φ) +

T∫
0

ψ

∫
Ω

ρεgε · Φ. (3.34)

We see that all the terms can be estimated as in [18, Section 7.8.4, Pages 366–368] except the penalization term. Using
Hölder’s inequality and bounds from energy estimate (2.26), the penalization term can be dealt with in the following
way

T∫
0

ψ

∫
Ω

χε
Si
(uε − P ε

Si
uε) · (Φ− P ε

Si
Φ) ⩽ |ψ|C[0,T ]

 T∫
0

∫
Ω

χε
Si
|(uε − P ε

Si
uε)|2

1/2

∥Φ∥L2((0,T )×Ω) ⩽ C|ψ|C[0,T ], (3.35)

where in the last inequality we have used ∥Φ∥L2(Ω) ⩽ c∥ρε∥L2(Ω) and the energy inequality (2.26). Thus, we have an
improved regularity of the density and we have established the required estimates of (2.27).

The only remaining thing is to check the following fact: there exists T small enough such that if

min(dist(S0i(t), ∂Ω), dist(S0i(t),S0j(t)) > 2σ, i ̸= j, i, j = 1, ...,M,

then

min(dist(Sε
i (t), ∂Ω), dist(Sε

i (t),Sε
j (t))) ⩾ 2σ, ∀ t ∈ [0, T ], i ̸= j, i, j = 1, ...,M, (3.36)

It is equivalent to establishing the following bound:

sup
t∈[0,T ]

|∂tηε,it,0(t, y)| <
min (dist(S0, ∂Ω),dist(S0i,S0j))− 2σ

T
, y ∈ S0. (3.37)
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We show as in Step 3 of the proof of Proposition 2.3 that (see (3.12)–(3.15)):

|∂tηε,it,0(t, y)| ⩽ |(hεi )′(t)|+ |ωε
i (t)||y − hεi (t)| ⩽ C0

∫
Ω

ρε|uε(t)|2
1/2

, (3.38)

where C0 =
√
2max{1,|y−h(t)|}

min{1,λ0}1/2 . Moreover, the energy estimate (3.33) yields

d

dt
Eε[ρε, qε] +

∫
Ω

(
2µε|D(uε)|2 + λε|div uε|2

)
⩽
∫
Ω

ρεgε · uε ⩽ Eε[ρε, qε] +
1

2γ1

(
γ − 1

2γ

)γ1/γ

∥gε∥2γ1

L
2γ

γ−1 (Ω)
,

with γ1 = 1− 1
γ , which implies

Eε[ρε, qε] ⩽ eTEε
0 + CT∥gε∥2γ1

L∞((0,T )×Ω). (3.39)

Thus, with the help of (3.37) and (3.38)–(3.39), we can conclude that for any T satisfying

T <
min (dist(S0, ∂Ω),dist(S0i,S0j))− 2σ

C0

[
eTEε

0 + CT∥gε∥2γ1

L∞((0,T )×Ω)

]1/2 , (3.40)

the relation (3.36) holds. This completes the proof of Proposition 2.2. □

Proof of Proposition 2.1. First of all, the initial data (ρε0, q
ε
0) is constructed in such a way that

ρε0 > 0, ρε0 ∈W 1,∞(Ω), ρε0 → ρδ0 in Lβ(Ω), qε0 → qδ0 in L
2β

β+1 (Ω)

and ∫
Ω

(
|qε0|2

ρε0
1{ρε

0>0} +
a

γ − 1
(ρε0)

γ +
δ

β − 1
(ρε0)

β

)
→
∫
Ω

(
|qδ0|2

ρδ0
1{ρδ

0>0} +
a

γ − 1
(ρδ0)

γ +
δ

β − 1
(ρδ0)

β

)
as ε→ 0.

As in [16, Section 4.3] the proof can be similarly done in the following steps: limits of the transport equations, the
continuity equation, the momentum equation, limit of the pressure term, the energy inequality. Also we need to take
care of the fact that the rigid bodies are away from the boundary of the domain and they are not touching themselves.
To do so, we follow the same idea as in the proof of Proposition 2.2 (precisely, the calculations in (3.37)–(3.40)) to
conclude that there exists T small enough such that if

min(dist(S0i(t), ∂Ω), dist(S0i(t),S0j(t)) > 2σ, i ̸= j, i, j = 1, ...,M,

then
min(dist(Sδ

i (t), ∂Ω), dist(Sδ
i (t),Sδ

j (t))) ⩾ 2σ, ∀ t ∈ [0, T ], i ̸= j, i, j = 1, ...,M. (3.41)

□

4. Proof of Theorem 1.2

Proof of Theorem 1.2. The existence of a weak solution (Sδ, ρδ, uδ) to system (2.1)–(2.6) has already been established
in Proposition 2.1. We study the limiting behaviour of the solution as δ → 0 and recover a weak solution to system
(1.8)–(1.16). We mention the main steps to give an outline of the proof. For details, please see [16, Section 5].

Firstly, it is necessary to construct the approximate initial data (ρδ0, q
δ
0) satisfying (2.11)–(2.12) so that, in the limit

δ → 0, we can recover the initial data ρF0
, qF0

, ρS0i
, uS0i

satisfying the conditions (1.27)–(1.29). Next, to analyze the
behaviour of the velocity field in the fluid part, we introduce the following continuous extension operator:

Eδ
u(t) :

{
u ∈ H1

0 (Fδ(t)), u = 0 on ∂Ω
}
→ H1

0 (Ω). (4.1)

We set
uδF (t, ·) = Eδ

u(t)
[
uδ(t, ·)|Fδ

]
, (4.2)

such that

{uδF} is bounded in L2(0, T ;H1
0 (Ω)), uδF = uδ on Fδ, i.e.

M∑
i=1

(1− χδ
Si
)(uδ − uδF ) = 0. (4.3)
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Thus, the strong convergence of χδ
Si

and the weak convergence of uδF → uF in L2(0, T ;H1
0 (Ω)) yield

M∑
i=1

(1− χSi
) (u− uF ) = 0. (4.4)

We use the strong convergence of density, weak convergence of velocity, convergence of ρδχδ
Si

to analyze the limiting
behaviour of the continuity equations as δ → 0 and we obtain the transport equations (1.20), (1.24). The method of
an effective viscous flux and boundedness of oscillations of the density sequence help us to establish the renormalized
continuity equation (1.21).

It remains to check that if

min(dist(S0i(t), ∂Ω), dist(S0i(t),S0j(t)) > 2σ, i ̸= j, i, j = 1, ...,M,

then

min(dist(Si(t), ∂Ω), dist(Si(t),Sj(t))) ⩾
3σ

2
> 0, ∀ t ∈ [0, T ], i ̸= j, i, j = 1, ...,M. (4.5)

Let us introduce the following notation:

(U)σ =
{
x ∈ R3 | dist(x,U) < σ

}
,

for an open set U and σ > 0. We recall the following result [8, Lemma 5.4]: Let σ > 0. There exists δ0 > 0 such that
for all 0 < δ ⩽ δ0,

Sδ
i (t) ⊂ (Si(t))σ/4 ⊂ (Sδ

i (t))σ/2, ∀ t ∈ [0, T ], i = 1, ...,M, (4.6)

Note that condition (4.6) and the relation (3.41), i.e.,

min(dist(Sδ
i (t), ∂Ω), dist(Sδ

i (t),Sδ
j (t))) ⩾ 2σ > 0, ∀ t ∈ [0, T ], i ̸= j, i, j = 1, ...,M,

imply estimate (4.5). Thus we can conclude Theorem 1.2.
□

Proposition 4.1. Let ϕ ∈ VT and ϑ > 0. Then there exists a sequence

ϕδ ∈ H1(0, T ;L2(Ω)) ∩ Lr(0, T ;W 1,r
0 (Ω)), where r = max

{
β + 1,

β + θ

θ

}
, β ⩾ max{8, γ} and θ =

2

3
γ − 1

of the form

ϕδ =
M∑
i=1

(1− χδ
Si
)ϕF + χδ

Si
ϕδSi

(4.7)

that satisfies for all p ∈ [1,∞):

(1) ∥χδ
Si
(ϕδSi

− ϕSi
)∥Lp((0,T )×Ω)) = O(δϑ/p),

(2) ϕδ → ϕ strongly in Lp((0, T )× Ω),
(3) ∥ϕδ∥Lp(0,T ;W 1,p(Ω)) = O(δ−ϑ(1−1/p)),

(4) ∥χδ
Si
(∂t + P δ

Si
uδ · ∇)(ϕδ − ϕSi

)∥L2(0,T ;Lp(Ω)) = O(δϑ/p),

(5) (∂t + P δ
Si
uδ · ∇)ϕδ → (∂t + PSi

u · ∇)ϕ weakly in L2(0, T ;Lp(Ω)).

Proof. The idea is to write the test functions in Lagrangian coordinates through the isometric propagator ηδt,s so that

we can work on the fixed domain. Let ΦF , ΦSi
and Φδ

Si
be the transformed quantities in the fixed domain related to

ϕF , ϕSi and ϕδSi
respectively:

ϕSi(t, η
δ,i
t,0(y)) = Jηδ,i

t,0

∣∣∣
y
(ΦSi(t, y)), ϕF (t, η

δ,i
t,0(y)) = Jηδ,i

t,0

∣∣∣
y
ΦF (t, y) and ϕδSi

(t, ηδ,it,0(y)) = Jηδ,i
t,0

∣∣∣
y
Φδ

Si
(t, y), (4.8)

where Jηδ,i
t,0

is the Jacobian matrix of ηδ,it,0. Note that if we define

Φδ,i(t, y) = (1− χδ
Si
)ΦF + χδ

Si
Φδ

Si
,

then the definition of ϕδ in (4.7) gives ϕδ =
∑M

i=1 ϕ
δ,i, where

ϕδ,i(t, ηδ,it,0(y)) = Jηδ,i
t,0

∣∣∣
y
(Φδ,i(t, y)). (4.9)



22 Š. NEC̆ASOVÁ, M. RAMASWAMY, A. ROY, AND A. SCHLÖMERKEMPER

Thus, the construction of the approximation ϕδSi
satisfying

ϕδSi
(t, x) = ϕF (t, x) ∀ t ∈ (0, T ), x ∈ ∂Sδ

i (t), (4.10)

and
ϕδSi

(t, ·) ≈ ϕSi(t, ·) in Sδ
i (t) away from a δϑ neighborhood of ∂Sδ

i (t) with ϑ > 0, (4.11)

is equivalent to building the approximation Φδ
Si

so that there is no jump for the function Φδ at the interface and the
following holds:

Φδ
Si
(t, x) = ΦF (t, x) ∀ t ∈ (0, T ), x ∈ ∂S0i,

and
Φδ

Si
(t, ·) ≈ ΦSi

(t, ·) in S0i away from a δϑ neighborhood of ∂S0i with ϑ > 0.

Explicitly, we set (for details, see [8, Pages 2055-2058]):

Φδ
Si

= Φδ
Si,1 +Φδ

Si,2, (4.12)

with
Φδ

Si,1 = ΦSi
+ χ(δ−ϑz) [(ΦF − ΦSi

)− ((ΦF − ΦSi
) · ez)ez] , (4.13)

where χ : R → [0, 1] is a smooth truncation function which is equal to 1 in a neighborhood of 0 and z is a coordinate
transverse to the boundary ∂S0i = {z = 0}. Moreover, to make Φδ

Si
divergence-free in S0i, we need to take Φδ

Si,2
such

that
div Φδ

Si,2 = −div Φδ
Si,1 in S0i, Φδ

Si,2 = 0 on ∂S0i.

Observe that the explicit form (4.13) of Φδ
Si,1

yields

div Φδ
Si,2 = −div Φδ

Si,1 = −χ(δ−ϑz) div [(ΦF − ΦSi
)− ((ΦF − ΦSi

) · ez)ez] . (4.14)

Thus, the expressions (4.13)–(4.14) give us: for all p <∞,

∥Φδ
Si,1 − ΦSi

∥H1(0,T ;Lp(S0i)) ⩽ Cδϑ/p, (4.15)

∥Φδ
Si,1 − ΦSi

∥H1(0,T ;W 1,p(S0i)) ⩽ Cδ−ϑ(1−1/p), (4.16)

and

∥Φδ
Si,2∥H1(0,T ;W 1,p(S0i)) ⩽ C∥χ(δ−ϑz) div [(ΦF − ΦSi

)− ((ΦF − ΦSi
) · ez)ez] ∥H1(0,T ;Lp(S0i)) ⩽ Cδϑ/p. (4.17)

Using the decomposition (4.12) of Φδ
Si

and the estimates (4.15)–(4.16), (4.17), we obtain

∥Φδ
Si

− ΦSi
∥H1(0,T ;Lp(S0i)) ⩽ Cδϑ/p,

∥Φδ
Si

− ΦSi
∥H1(0,T ;W 1,p(S0i)) ⩽ Cδ−ϑ(1−1/p).

Furthermore, we combine the above estimates with the uniform bound of the propagator ηδ,it,0 in H1(0, T ;C∞(Ω)) to
obtain ∥∥∥Jηδ,i

t,0
|y(Φδ

Si
− ΦSi

)
∥∥∥
H1(0,T ;Lp(S0i))

⩽ Cδϑ/p, (4.18)∥∥∥Jηδ,i
t,0
|y(Φδ

Si
− ΦSi

)
∥∥∥
H1(0,T ;W 1,p(S0i))

⩽ Cδ−ϑ(1−1/p). (4.19)

Observe that due to the change of variables (4.8) and estimate (4.18):

∥χδ
Si
(ϕδSi

− ϕSi
)∥Lp((0,T )×Ω)) ⩽ C∥Jηδ,i

t,0
|y(Φδ

Si
− ΦSi

)∥Lp((0,T )×S0i) ⩽ Cδϑ/p. (4.20)

As ϕ ∈ VT , we have ϕ =
∑M

i=1(1− χSi
)ϕF + χSi

ϕSi
. We can estimate

∥ϕδ−ϕ∥Lp((0,T )×Ω)) ⩽
M∑
i=1

(
∥(χδ

Si
− χSi

)ϕF∥Lp((0,T )×Ω)) + ∥χδ
Si
(ϕδSi

− ϕSi
)∥Lp((0,T )×Ω)) + ∥(χδ

Si
− χSi

)ϕSi
∥Lp((0,T )×Ω))

)
.

We use the strong convergence of χδ
Si

and the estimate (4.20) to conclude that

ϕδ → ϕ strongly in Lp((0, T )× Ω).
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We use estimate (4.16) and the relation (4.9) to obtain

∥ϕδ∥Lp(0,T ;W 1,p(Ω)) ⩽ δ−ϑ(1−1/p).

Moreover, the change of variables (4.8) and estimate (4.18) give

∥χδ
Si
(∂t + P δ

Si
uδ · ∇)(ϕδ − ϕSi)∥L2(0,T ;Lp(Ω)) ⩽ C

∥∥∥∥ ddt
(
Jηδ,i

t,0

∣∣∣
y
(Φδ

Si
− ΦSi)

)∥∥∥∥
L2(0,T ;Lp(S0i))

⩽ C
∥∥∥Jηδ,i

t,0
|y(Φδ

Si
− ΦSi

)
∥∥∥
H1(0,T ;Lp(S0i))

⩽ Cδϑ/p.

(4.21)

The above estimate (4.21), strong convergence of χδ
Si

to χSi in C(0, T ;Lp(Ω)) and weak convergence of P δ
Si
uδ to

PSiu weakly in L2(0, T ;C∞
loc(R3)), give us

(∂t + P δ
Si
uδ · ∇)ϕδ → (∂t + PSi

u · ∇)ϕ weakly in L2(0, T ;Lp(Ω)),

where

ϕδ =
M∑
i=1

(1− χδ
Si
)ϕF + χδ

Si
ϕδSi

and ϕ =
M∑
i=1

(1− χSi)ϕF + χSiϕSi .

□

5. Appendix

In this section, we state some results regarding the transport equation that we use in our analysis. The proofs
follow directly from [16, Section 3]. We will consider the following equation:

∂χSi

∂t
+ div(PSi

uχSi
) = 0 in (0, T )× R3, χSi

|t=0 = 1S0
in R3, (5.1)

where PSiu ∈ R(Ω). Note that here R(Ω) is referring to the set of rigid fields on R3 in the spirit of (1.17). It is given
by

PSi
u(t, x) =

1

m

∫
Ω

ρχSi
u+

J−1

∫
Ω

ρχSi
((y − hi(t))× u) dy

× (x− hi(t)), ∀ (t, x) ∈ (0, T )× R3. (5.2)

Proposition 5.1. Let u ∈ C([0, T ];D(Ω)) and ρ ∈ L2(0, T ;H2(Ω))∩C([0, T ];H1(Ω)). Then the following holds true:

(1) There is a unique solution χSi ∈ L∞((0, T )× R3) ∩ C([0, T ];Lp(R3)) ∀ 1 ⩽ p <∞ to (5.1). More precisely,

χSi(t, x) = 1Si(t)(x), ∀ t ⩾ 0, ∀ x ∈ R3.

If the isometric propagator ηit,s, associated to PSiu is defined by

∂ηit,s
∂t

(y) = PSiu(t, η
i
t,s(y)), ∀ (t, s, y) ∈ (0, T )2 × R3, ηis,s(y) = y, ∀ y ∈ R3, (5.3)

then
(t, s) 7→ ηit,s ∈ C1([0, T ]2;C∞

loc(R3)).

Moreover, we also have Si(t) = ηit,0(S0i).

(2) Let ρ01S0i ∈ L∞(R3). Then there is a unique solution ρχSi ∈ L∞((0, T )×R3)∩C([0, T ];Lp(R3)), ∀ 1 ⩽ p <∞
to the following equation:

∂(ρχSi)

∂t
+ div((ρχSi

)PSi
u) = 0 in (0, T )× R3, ρχSi

|t=0 = ρ01S0i
in R3. (5.4)

Proposition 5.2. Let ρN0 ∈ W 1,∞(Ω), let ρk ∈ L2(0, T ;H2(Ω)) ∩ C([0, T ];H1(Ω)) ∩H1(0, T ;L2(Ω)) be the solution
to

∂ρk

∂t
+ div(ρkuk) = ∆ρk in (0, T )× Ω,

∂ρk

∂ν
= 0 on ∂Ω, ρk(0, x) = ρN0 (x) in Ω,

∂ρk0
∂ν

∣∣
∂Ω

= 0. (5.5)

uk → u strongly in C([0, T ];D(Ω)), χk
Si

is bounded in L∞((0, T )× R3) satisfying
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∂χk
Si

∂t
+ div(P k

Si
ukχk

Si
) = 0 in (0, T )× R3, χk

Si
|t=0 = 1S0i

in R3, (5.6)

and let {ρkχk
Si
} be a bounded sequence in L∞((0, T )× R3) satisfying

∂

∂t
(ρkχk

Si
) + div(P k

Si
uk(ρkχk

Si
)) = 0 in (0, T )× R3, ρkχk

Si
|t=0 = ρN0 1S0i

in R3, (5.7)

where P k
Si

: L2(Ω) → L2(Sk
i (t)) is the orthogonal projection to rigid fields with Sk

i (t) ⋐ Ω being a bounded, regular
domain for all t ∈ [0, T ]. Then

χk
Si

→ χSi weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lp
loc(R

3)), ∀ 1 ⩽ p <∞,

ρkχk
Si

→ ρχSi
weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lp

loc(R
3)), ∀ 1 ⩽ p <∞,

where χSi
and ρχSi

satisfy (5.1) and (5.4) with initial data 1S0i
and ρN0 1S0i

, respectively. Moreover,

P k
Si
uk → PSi

u strongly in C([0, T ];C∞
loc(R3)),

ηk,it,s → ηit,s strongly in C1([0, T ]2;C∞
loc(R3)).

Proposition 5.3. Let us assume that ρN0 ∈W 1,∞(Ω) with ρN0 → ρ0 in W 1,∞(Ω), ρN satisfies (5.5) and

ρN → ρ strongly in Lp((0, T )× Ω), 1 ⩽ p <
4

3
β with β ⩾ max{8, γ}, γ > 3/2.

Let {uN , χN
Si
} be a bounded sequence in L∞(0, T ;L2(Ω))×L∞((0, T )×R3) satisfying (5.6). Let {ρNχN

Si
} be a bounded

sequence in L∞((0, T )× R3) satisfying (5.7). Then, up to a subsequence, we have

uN → u weakly- ∗ in L∞(0, T ;L2(Ω)),

χN
Si

→ χSi
weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lp

loc(R
3)), ∀ 1 ⩽ p <∞,

ρNχN
Si

→ ρχSi weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lp
loc(R

3)), ∀ 1 ⩽ p <∞,

where χSi
and ρχSi

satisfy (5.1) and (5.4), respectively. Moreover,

PN
Si
uN → PSiu weakly- ∗ in L∞(0, T ;C∞

loc(R3)),

ηN,i
t,s → ηit,s weakly- ∗ in W 1,∞((0, T )2;C∞

loc(R3)).

Proposition 5.4. Let ρε0 ∈W 1,∞(Ω) with ρε0 → ρ0 in Lβ(Ω), ρε satisfies

∂ρε

∂t
+ div(ρεuε) = ∆ρε in (0, T )× Ω,

∂ρε

∂ν
= 0 on ∂Ω, ρε(0, x) = ρε0(x) in Ω,

∂ρε0
∂ν

∣∣
∂Ω

= 0.,

and

ρε → ρ weakly in Lβ+1((0, T )× Ω), with β ⩾ max{8, γ}, γ > 3/2. (5.8)

Let {uε, χε
Si
} be a bounded sequence in L2(0, T ;H1(Ω))× L∞((0, T )× R3) satisfying

∂χε
Si

∂t
+ div(P ε

Si
uεχε

Si
) = 0 in (0, T )× R3, χε

Si
|t=0 = 1S0i

in R3, (5.9)

and let {ρεχε
Si
} be a bounded sequence in L∞((0, T )× R3) satisfying

∂

∂t
(ρεχε

Si
) + div(P ε

Si
uε(ρεχε

Si
)) = 0 in (0, T )× R3, ρεχε

Si
|t=0 = ρε01S0i

in R3, (5.10)

where P ε
Si

: L2(Ω) → L2(Sε
i (t)) is the orthogonal projection onto rigid fields with Sε

i (t) ⋐ Ω being a bounded, regular
domain for all t ∈ [0, T ]. Then up to a subsequence, we have

uε → u weakly in L2(0, T ;H1(Ω)),

χε
Si

→ χSi weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lp
loc(R

3)) (1 ⩽ p <∞),

ρεχε
Si

→ ρχSi
weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lp

loc(R
3)) (1 ⩽ p <∞),
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with χSi and ρχSi satisfying (5.1) and (5.4), respectively. Moreover,

P ε
Si
uε → PSi

u weakly in L2(0, T ;C∞
loc(R3)),

ηε,it,s → ηit,s weakly in H1((0, T )2;C∞
loc(R3)).

Proposition 5.5. Let ρδ0 ∈ Lβ(Ω) with ρδ0 → ρ0 in Lγ(Ω), let ρδ satisfy

∂ρδ

∂t
+ div(ρδuδ) = 0 in (0, T )× Ω, ρδ(0, x) = ρδ0(x) in Ω,

and

ρδ → ρ weakly in Lγ+θ((0, T )× Ω), with γ > 3/2, θ =
2

3
γ − 1. (5.11)

Let {uδ, χδ
Si
} be a bounded sequence in L2(0, T ;L2(Ω))× L∞((0, T )× R3) satisfying

∂χδ
Si

∂t
+ div(P δ

Si
uδχδ

Si
) = 0 in (0, T )× R3, χδ

Si
|t=0 = 1S0i in R3, (5.12)

and let {ρδχδ
Si
} be a bounded sequence in L∞((0, T )× R3) satisfying

∂

∂t
(ρδχδ

Si
) + div(P δ

Si
uδ(ρδχδ

Si
)) = 0 in (0, T )× R3, ρδχδ

Si
|t=0 = ρδ01S0i

in R3, (5.13)

where P δ
Si

: L2(Ω) → L2(Sδ
i (t)) is the orthogonal projection onto rigid fields with Sδ

i (t) ⋐ Ω being a bounded, regular
domain for all t ∈ [0, T ]. Then, up to a subsequence, we have

uδ → u weakly in L2(0, T ;L2(Ω)),

χδ
Si

→ χSi
weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lp

loc(R
3)) (1 ⩽ p <∞),

ρδχδ
Si

→ ρχSi weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lp
loc(R

3)) (1 ⩽ p <∞),

with χSi
and ρχSi

satisfying (5.1) and (5.4), respectively. Moreover,

P δ
Si
uδ → PSi

u weakly in L2(0, T ;C∞
loc(R3)),

ηδ,it,s → ηit,s weakly in H1((0, T )2;C∞
loc(R3)).
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