Photosynthetica, 2017 (vol. 55), issue 2

Photosynthetica 2017, 55(2):294-300 | DOI: 10.1007/s11099-016-0641-3

Effect of imazapic residues on photosynthetic traits and chlorophyll fluorescence of maize seedlings

W. C. Su1, L. L. Sun1, R. H. Wu1,*, Y. H. Ma1, H. L. Wang1, H. L. Xu1, Z. L. Yan2, C. T. Lu1,*
1 Institute of Plant Protection, Henan Academy of Agricultural Sciences, Henan Key Laboratory of Crop Pest Control, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, China
2 Institute of Agricultural Economics and Information, Henan Academy of Agricultural Sciences, Henan, China

The influence of various concentrations of imazapic residues (0-800 μg kg-1) on the growth, chlorophyll content, and photosynthetic characteristics of maize seedlings was studied in a greenhouse pot experiment. Plant height, root length, shoot dry mass, root dry mass, and total dry mass of maize declined with the increase of imazapic residue concentrations. The root/shoot ratio initially decreased and then increased in presence of imazapic, which indicated that the effects of imazapic residues on plant height and root length might differ in maize seedlings. Lowered chlorophyll content and net photosynthetic rate were observed in leaves of maize seedlings in all treatments and indicated a dose-response relationship to imazapic concentrations. Intercellular carbon dioxide concentration, transpiration rate, and stomatal conductance also declined to varying extents, but the chlorophyll a/b ratio increased gradually together with the increase of imazapic residue concentrations. Generally, the maize seedlings were negatively affected by the imazapic residues in soil. Response of root length and biomass to imazapic residues could be the important index for maize variety selection.

Keywords: chlorophyll fluorescence; gas exchange; growth characteristics; photosystem II

Received: September 30, 2015; Accepted: April 29, 2016; Published: June 1, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Su, W.C., Sun, L.L., Wu, R.H., Ma, Y.H., Wang, H.L., Xu, H.L., Yan, Z.L., & Lu, C.T. (2017). Effect of imazapic residues on photosynthetic traits and chlorophyll fluorescence of maize seedlings. Photosynthetica55(2), 294-300. doi: 10.1007/s11099-016-0641-3.
Download citation

References

  1. Aichele T.M., Penner D.: Adsorption, desorption, and degradation of imidazolinones in soil. - Weed Technol. 19: 154-159, 2005. Go to original source...
  2. Bao S.D.: Soil and Agricultural Chemistry Analysis. Pp. 25-108. Agricult. Publ., Beijing 2000.
  3. Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  4. Bigot A., Fontaine F., Clément C. et al.: Effect of the herbicide flumioxazin on photosynthetic performance of grapevine (Vitis vinifera L.). - Chemosphere 67: 1243-1251, 2007. Go to original source...
  5. Eliason R., Schoenau J.J., Szmigielski A.M. et al.: Phytotoxicity and persistence of flucarbazone-sodium in soil. - Weed Sci. 52: 857-862, 2004. Go to original source...
  6. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochim. Biophys. Acta 990: 87-92, 1989. Go to original source...
  7. Grey T.L., Prostko E.P., Bednarz C.W. et al.: Cotton (Gossypium hirsutum) response to simulated imazapic residues. - Weed Technol. 19: 1045-1049, 2005. Go to original source...
  8. Hu H.J., Shi Z.S., Lv X.L. et al.: [Effect of herbicide nicosulfuron on photosynthesis traits and chlorophyll fluorescence parameters of wax maize.] - J. Maize Sci. 22: 77-80, 2014. [In Chinese]
  9. Huang C.Y., Chen T.B., Wang Y.S. et al.: [Study on safety of imidazolinone herbicides to succeeding crops.] - Chin. J. Pestic. Sci. 3: 29-34, 2001. [In Chinese]
  10. Lazár D.: Parameters of photosynthetic energy partitioning. - J. Plant Physiol. 175: 131-147, 2015. Go to original source...
  11. Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. - Methods Enzymol. 148: 350-382, 1987. Go to original source...
  12. Matocha M.A., Grichar W.J., Senseman S.A. et al.: The persistence of imazapic in peanut (Arachis hypogaea) crop rotations. - Weed Technol. 17: 325-329, 2003. Go to original source...
  13. Monks C.D., Banks P.A.: Rotational crop response to chlorimuron, clomazone, and imazaquin applied the previous year. - Weed Sci. 39: 629-633, 1991. Go to original source...
  14. Moyer J.R., Esau R.: Imidazolinone herbicide effects on following rotational crops in southern Alberta. - Weed Technol. 10: 100-106, 1996. Go to original source...
  15. Radwan D.E.M.: Salicylic acid induced alleviation of oxidative stress caused by clethodim in maize (Zea mays L.) leaves. - Pestic. Biochem. Phys. 102: 182-188, 2012. Go to original source...
  16. Radwan D.E.M., Soltan D.M.: The negative effects of clethodim in photosynthesis and gas-exchange status of maize plants are ameliorated by salicylic acid pretreatment. - Photosynthetica 50: 171-179, 2012. Go to original source...
  17. Ralph P.J.: Herbicide toxicity of Halophila ovalis assessed by chlorophyll a fluorescence. - Aquat. Bot. 66: 141-152, 2000. Go to original source...
  18. Renner K.A., Meggitt W.F., Penner D.: Response of corn (Zea mays L.) cultivars to imazaquin. - Weed Sci. 36: 625-628, 1988. Go to original source...
  19. Sousa C.P., Bacarin M.A., Pinto J.J.O.: Growth of residual herbicide (Imazethapyr plus Imazapic) bio-indicators sown in rotation with Clearfield rice. - Planta Daninha 30: 105-111, 2012. Go to original source...
  20. Sousa C.P., Pinto J.J.O., Martinazzo E.G. et al.: Chlorophyll a fluorescence in rice plants exposed of herbicides of group imidazolinone. - Planta Daninha 32: 141-150, 2014. Go to original source...
  21. Su S.Q., Song S.Z.: [China Weed Chemical Control.] Pp. 183-187. China Agr. Press, Beijing 1996. [In Chinese]
  22. Su W.C., Sun L.L., Wu R.H. et al.: [Sensitivity of succeeding crops to simulated imazapic residue in laboratory.] - Agrochemicals 53: 260-262, 2014. [In Chinese]
  23. Su W.C., Sun L.L., Zhang Q. et al.: [Effects of Imazapic residues on the growth and photosynthetic parameters of wheat seedlings as succeeding crop.] - J. Triticeae Crop 33: 1226-1231, 2013. [In Chinese]
  24. Wang Z.G., Zhou L.Y., Guo W.S. et al.: [Effects of herbicides on photosynthesis and chlorophyll fluorescence parameters in wheat leaves.] - J. Agro Environ. Sci. 30: 1037-1043, 2011. [In Chinese]
  25. Wiatrak P.J., Wright D.L., Marois J.J.: Influence of imazapic herbicide simulated carryover on cotton growth, yields, and lint quality. - Crop Manage. 8: doi:10.1094/CM-2009-0720-01-RS, 2009. Go to original source...
  26. Wixson M.B., Shaw D.R.: Effects of soil-applied AC 263,222 on crops rotated with soybean (Glycine max). - Weed Technol. 6: 276-279, 1992. Go to original source...
  27. Xia X.J., Huang Y.Y., Wang L. et al.: Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. - Pestic. Biochem. Physiol. 86: 42-48, 2006. Go to original source...
  28. Yin X.L., Jiang L., Song N.H. et al.: Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon. - J. Agr. Food Chem. 56: 4825-4831, 2008. Go to original source...
  29. Yordanova E., Georgieva K., Gorinova N. et al.: Influence of the herbicide chlortoluron on photosynthetic activity in transgenic tobacco plants. - Photosynthetica 39: 313-316, 2001. Go to original source...
  30. Yuan X., Guo P., Qi X. et al.: Safety of herbicide sigma broad on Radix isatidis (Isatis indigotica Fort.) seedlings and their photosynthetic physiological responses. - Pestic. Biochem. Physiol. 106: 45-50, 2013 Go to original source...