GSRC-3 publications

2021

  • Otava, T.; Šála, M.; Li, F.; Fanfrlík, J.; Devkota, K.; Perveen, S.; Chau, I.; Pakarian, P.; Hobza, P.; Vedadi, M.; Boura, E.; Nencka, R. The Structure-Based Design of SARS-CoV-2 nsp14 Methyltransferase Ligands Yields Nanomolar Inhibitors. ACS Infect. Dis. 2021, 7, 2214-2220. https://doi.org/10.1021/acsinfecdis.1c00131
  • Dejmek, M.; Konkoľová, E.; Eyer, L.; Straková, P.; Svoboda, P.; Šála, M.; Krejčová, K.; Růžek, D.; Boura, E.; Nencka, R. Non-Nucleotide RNA-Dependent RNA Polymerase Inhibitor That Blocks SARS-CoV-2 Replication. Viruses 2021, 13. https://doi.org/10.3390/v13081585
  • Vankova, K.; Rahm, M.; Choutka, J.; Pohl, R.; Parkan, K. Facile Approach to C-glucosides by Using a Protecting-Group-Free Hiyama Cross-Coupling Reaction: High-Yielding Dapagliflozin Synthesis. Chem. - Eur. J. 2021, 27, 10488-10488. https://doi.org/10.1002/chem.202101995
  • Tehrani, Z. A.; Rulisek, L.; Cerny, J. Molecular dynamics simulations provide structural insight into binding of cyclic dinucleotides to human STING protein. J. Biomol. Struct. Dyn. 2021. https://doi.org/10.1080/07391102.2021.1942213
  • Polidarova, M. P.; Brehova, P.; Kaiser, M. M.; Smola, M.; Dracinsky, M.; Smith, J.; Marek, A.; Dejmek, M.; Sala, M.; Gutten, O.; Rulisek, L.; Novotna, B.; Brazdova, A.; Janeba, Z.; Nencka, R.; Boura, E.; Pav, O.; Birkus, G. Synthesis and Biological Evaluation of Phosphoester and Phosphorothioate Prodrugs of STING Agonist 3 ',3 '-c-Di(2 ' F,2 ' dAMP). J. Med. Chem. 2021, 64, 7596-7616. https://doi.org/10.1021/acs.jmedchem.1c00301
  • Nguyen, V. H.; Tichý, M.; Rožánková, S.; Pohl, R.; Downey, A. M.; Doleželová, E.; Tloušťová, E.; Slapničková, M.; Zíková, A.; Hocek, M. Synthesis and anti-trypanosomal activity of 3′-fluororibonucleosides derived from 7-deazapurine nucleosides. Bioorg. Med. Chem. Lett. 2021, 40, 127957. https://doi.org/10.1016/j.bmcl.2021.127957
  • Smola, M.; Gutten, O.; Dejmek, M.; Kozisek, M.; Evangelidis, T.; Tehrani, Z. A.; Novotna, B.; Nencka, R.; Birkus, G.; Rulisek, L.; Boura, E. Ligand Strain and Its Conformational Complexity Is a Major Factor in the Binding of Cyclic Dinucleotides to STING Protein. Angew. Chem., Int. Ed. 2021, 60, 10172-10178. https://doi.org/10.1002/anie.202016805
  • Perlíková, P.; Krajczyk, A.; Doleželová, E.; Slapničková, M.; Milisavljevic, N.; Slavětínská, L. P.; Tloušt’ová, E.; Gurská, S.; Džubák, P.; Hajdúch, M.; Zíková, A.; Hocek, M. Synthesis and Antitrypanosomal Activity of 6-Substituted 7-Methyl-7-deazapurine Nucleosides. ACS Infect. Dis. 2021, 7, 917-926. https://doi.org/10.1021/acsinfecdis.1c00062
  • Gutten, O.; Jurecka, P.; Tehrani, Z. A.; Budesinsky, M.; Rezac, J.; Rulisek, L. Conformational energies and equilibria of cyclic dinucleotides in vacuo and in solution: computational chemistry vs. NMR experiments dagger. Phys. Chem. Chem. Phys. 2021, 23, 7280-7294. https://doi.org/10.1039/d0cp05993e
  • Vavrina, Z.; Gutten, O.; Smola, M.; Zavrel, M.; Tehrani, Z. A.; Charvat, V.; Kozisek, M.; Boura, E.; Birkus, G.; Rulisek, L. Protein-Ligand Interactions in the STING Binding Site Probed by Rationally Designed Single-Point Mutations: Experiment and Theory. Biochemistry 2021, 60, 607-620. https://doi.org/10.1021/acs.biochem.0c00949
  • Milisavljevic, N.; Konkolová, E.; Kozák, J.; Hodek, J.; Veselovská, L.; Sýkorová, V.; Čížek, K.; Pohl, R.; Eyer, L.; Svoboda, P.; Růžek, D.; Weber, J.; Nencka, R.; Bouřa, E.; Hocek, M. Antiviral Activity of 7-Substituted 7-Deazapurine Ribonucleosides, Monophosphate Prodrugs, and Triphoshates against Emerging RNA Viruses. ACS Infect. Dis. 2021, 7, 471-478. https://doi.org/10.1021/acsinfecdis.0c00829

2020

  • Dinesh, D. C.; Chalupska, D.; Silhan, J.; Koutna, E.; Nencka, R.; Veverka, V.; Boura, E. Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PLOS Pathog. 2020, 16. https://doi.org/10.1371/journal.ppat.1009100
  • Veselovská, L.; Pohl, R.; Tloušt′ová, E.; Gurská, S.; Džubák, P.; Hajdúch, M.; Hocek, M. Pyrido-Fused Deazapurine Bases: Synthesis and Glycosylation of 4-Substituted 9H-Pyrido[2′,3′:4,5]- and Pyrido[4′,3′:4,5]pyrrolo[2,3-d]pyrimidines. ACS Omega 2020, 5, 26278-26286. https://doi.org/10.1021/acsomega.0c04302
  • Veselovská, L.; Kudlová, N.; Gurská, S.; Lišková, B.; Medvedíková, M.; Hodek, O.; Tloušťová, E.; Milisavljevic, N.; Tichý, M.; Perlíková, P.; Mertlíková-Kaiserová, H.; Trylčová, J.; Pohl, R.; Klepetářová, B.; Džubák, P.; Hajdúch, M.; Hocek, M. Synthesis and Cytotoxic and Antiviral Activity Profiling of All-Four Isomeric Series of Pyrido-Fused 7-Deazapurine Ribonucleosides. Chem. - Eur. J. 2020, 26, 13002-13015. https://doi.org/10.1002/chem.202001124
  • Fleuti, M.; Bártová, K.; Slavětínská, L. P.; Tloušt’ová, E.; Tichý, M.; Gurská, S.; Pavliš, P.; Džubák, P.; Hajdúch, M.; Hocek, M. Synthesis and Biological Profiling of Pyrazolo-Fused 7-Deazapurine Nucleosides. J. Org. Chem. 2020, 85, 10539-10551. https://doi.org/10.1021/acs.joc.0c00928
  • Konkolova, E.; Dejmek, M.; Hrebabecky, H.; Sala, M.; Boserle, J.; Nencka, R.; Boura, E. Remdesivir triphosphate can efficiently inhibit the RNA-dependent RNA polymerase from various flaviviruses. Antiviral Res. 2020, 182. https://doi.org/10.1016/j.antiviral.2020.104899
  • Konkolova, E.; Klima, M.; Nencka, R.; Boura, E. Structural analysis of the putative SARS-CoV-2 primase complex. J. Struct. Biol. 2020, 211, 107548. https://doi.org/10.1016/j.jsb.2020.107548
  • Krafcikova, P.; Silhan, J.; Nencka, R.; Boura, E. Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat. Commun. 2020, 11. https://doi.org/10.1038/s41467-020-17495-9
  • Choutka, J.; Kratochvil, M.; Zyka, J.; Pohl, R.; Parkan, K. Straightforward synthesis of protected 2-hydroxyglycals by chlorination-dehydrochlorination of carbohydrate hemiacetals. Carbohyd. Res. 2020, 496. https://doi.org/10.1016/j.carres.2020.108086
  • Yang, C.; Pohl, R.; Tichý, M.; Gurská, S.; Pavliš, P.; Džubák, P.; Hajdúch, M.; Hocek, M. Synthesis, Photophysical Properties, and Biological Profiling of Benzothieno-Fused 7-Deazapurine Ribonucleosides. J. Org. Chem. 2020, 85, 8085-8101. https://doi.org/10.1021/acs.joc.0c00927
  • Kopruluoglu, C.; Dejmek, M.; Sala, M.; Ajani, H.; Hrebabecky, H.; Fanfrlik, J.; Jorda, R.; Dracinsky, M.; Prochazkova, E.; Sacha, P.; Krystof, V.; Hobza, P.; Lepsik, M.; Nencka, R. Optimization of norbornyl-based carbocyclic nucleoside analogs as cyclin-dependent kinase 2 inhibitors. J. Mol. Recognit. 2020, 33. https://doi.org/10.1002/jmr.2842
  • Houštecká, R.; Hadzima, M.; Fanfrlík, J.; Brynda, J.; Pallová, L.; Hánová, I.; Mertlíková-Kaiserová, H.; Lepšík, M.; Horn, M.; Smrčina, M.; Majer, P.; Mareš, M. Biomimetic Macrocyclic Inhibitors of Human Cathepsin D: Structure–Activity Relationship and Binding Mode Analysis. J. Med. Chem. 2020, 63, 1576-1596. https://doi.org/10.1021/acs.jmedchem.9b01351
  • Procházková, E.; Hřebabecký, H.; Dejmek, M.; Šála, M.; Šmídková, M.; Tloušťová, E.; Zborníková, E.; Eyer, L.; Růžek, D.; Nencka, R. Could 5′-N and S ProTide analogues work as prodrugs of antiviral agents? Bioorg. Med. Chem. Lett. 2020, 30, 126897. https://doi.org/10.1016/j.bmcl.2019.126897

2019

  • Novotna, B.; Vanekova, L.; Zavrel, M.; Budesinsky, M.; Dejmek, M.; Smola, M.; Gutten, O.; Tehrani, Z. A.; Polidarova, M. P.; Brazdova, A.; Liboska, R.; Stepanek, I.; Vavrina, Z.; Jandusik, T.; Nencka, R.; Rulisek, L.; Boura, E.; Brynda, J.; Pav, O.; Birkus, G. Enzymatic Preparation of 2 '-5 ',3 '-5 '-Cyclic Dinucleotides, Their Binding Properties to Stimulator of Interferon Genes Adaptor Protein, and Structure/Activity Correlations. J. Med. Chem. 2019, 62, 10676-10690. https://doi.org/10.1021/acs.jmedchem.9b01062
  • Malnuit, V.; Smoleń, S.; Tichý, M.; Poštová Slavětínská, L.; Hocek, M. Synthesis of Cyclic and Acyclic Nucleoside Phosphonates and Sulfonamides Derived from 6-(Thiophen-2-yl)-7-fluoro-7-deazapurine. Eur. J. Org. Chem. 2019, 5409-5423. https://doi.org/10.1002/ejoc.201900509
  • Klejch, T.; Keough, D. T.; Chavchich, M.; Travis, J.; Skácel, J.; Pohl, R.; Janeba, Z.; Edstein, M. D.; Avery, V. M.; Guddat, L. W.; Hocková, D. Sulfide, sulfoxide and sulfone bridged acyclic nucleoside phosphonates as inhibitors of the Plasmodium falciparum and human 6-oxopurine phosphoribosyltransferases: Synthesis and evaluation. Eur. J. Med. Chem. 2019, 183, 111667. https://doi.org/10.1016/j.ejmech.2019.111667

2018

  • Tokarenko, A.; Lišková, B.; Smoleń, S.; Táborská, N.; Tichý, M.; Gurská, S.; Perlíková, P.; Frydrych, I.; Tloušt’ová, E.; Znojek, P.; Mertlíková-Kaiserová, H.; Poštová Slavětínská, L.; Pohl, R.; Klepetářová, B.; Khalid, N.-U.-A.; Wenren, Y.; Laposa, R. R.; Džubák, P.; Hajdúch, M.; Hocek, M. Synthesis and Cytotoxic and Antiviral Profiling of Pyrrolo- and Furo-Fused 7-Deazapurine Ribonucleosides. J. Med. Chem. 2018, 61, 9347-9359. https://doi.org/10.1021/acs.jmedchem.8b01258
  • Ghosh, K.; Perlíková, P.; Havlíček, V.; Yang, C.; Pohl, R.; Tloušťová, E.; Hodek, J.; Gurská, S.; Džubák, P.; Hajdúch, M.; Hocek, M. Isomeric Naphtho-Fused 7-Deazapurine Nucleosides and Nucleotides: Synthesis, Biological Activity, Photophysical Properties and Enzymatic Incorporation to Nucleic Acids. Eur. J. Org. Chem. 2018, 5092-5108. https://doi.org/10.1002/ejoc.201800165
  • Tichý, M.; Smoleń, S.; Deingruber, T.; Džubák, P.; Pohl, R.; Slavětínská, L. P.; Hajdúch, M.; Hocek, M. Thienopyrrolo[2, 3-d]pyrimidines, New Tricyclic Nucleobase Analogues: Synthesis and Biological Activities. ChemistrySelect 2018, 3, 9144-9149. https://doi.org/10.1002/slct.201802190
  • Sebera, J.; Dubankova, A.; Sychrovsky, V.; Ruzek, D.; Boura, E.; Nencka, R. The structural model of Zika virus RNA-dependent RNA polymerase in complex with RNA for rational design of novel nucleotide inhibitors. Sci. Rep. 2018, 8. https://doi.org/10.1038/s41598-018-29459-7
  • Choutka, J.; Pohl, R.; Parkan, K. MOP and EE Protecting Groups in Synthesis of alpha- or beta-Naphthyl-C-Glycosides from Glycals. ACS Omega 2018, 3, 7875-7887. https://doi.org/10.1021/acsomega.8b00901
  • Milisavljevič, N.; Perlíková, P.; Pohl, R.; Hocek, M. Enzymatic synthesis of base-modified RNA by T7 RNA polymerase. A systematic study and comparison of 5-substituted pyrimidine and 7-substituted 7-deazapurine nucleoside triphosphates as substrates. Org. Biomol. Chem. 2018, 16, 5800-5807. https://doi.org/10.1039/C8OB01498A
  • Slavíčková, M.; Janoušková, M.; Šimonová, A.; Cahová, H.; Kambová, M.; Šanderová, H.; Krásný, L.; Hocek, M. Turning Off Transcription with Bacterial RNA Polymerase through CuAAC Click Reactions of DNA Containing 5-Ethynyluracil. Chem. - Eur. J. 2018, 24, 8311-8314. https://doi.org/10.1002/chem.201801757
  • Hánová, I.; Brynda, J.; Houštecká, R.; Alam, N.; Sojka, D.; Kopáček, P.; Marešová, L.; Vondrášek, J.; Horn, M.; Schueler-Furman, O.; Mareš, M. Novel Structural Mechanism of Allosteric Regulation of Aspartic Peptidases via an Evolutionarily Conserved Exosite. Cell Chem. Biol. 2018, 25, 318-329.e4. https://doi.org/10.1016/j.chembiol.2018.01.001
  • Eyer, L.; Nencka, R.; de Clercq, E.; Seley-Radtke, K.; Růžek, D. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antiviral Chem. Chemother. 2018, 26, 2040206618761299. https://doi.org/10.1177/2040206618761299
  • Klejch, T.; Pohl, R.; Janeba, Z.; Sun, M.; Keough, D. T.; Guddat, L. W.; Hocková, D. Acyclic nucleoside phosphonates with unnatural nucleobases, favipiravir and allopurinol, designed as potential inhibitors of the human and Plasmodium falciparum 6-oxopurine phosphoribosyltransferases. Tetrahedron 2018, 74, 5886-5897. https://doi.org/10.1016/j.tet.2018.08.014
  • Frydrych, J.; Skácel, J.; Šmídková, M.; Mertlíková-Kaiserová, H.; Dračínský, M.; Gnanasekaran, R.; Lepšík, M.; Soto-Velasquez, M.; Watts, V. J.; Janeba, Z. Synthesis of α-Branched Acyclic Nucleoside Phosphonates as Potential Inhibitors of Bacterial Adenylate Cyclases. ChemMedChem 2018, 13, 199-206. https://doi.org/10.1002/cmdc.201700715

2017

  • Tichá, A.; Stanchev, S.; Vinothkumar, K. R.; Mikles, D. C.; Pachl, P.; Began, J.; Škerle, J.; Švehlová, K.; Nguyen, M. T. N.; Verhelst, S. H. L.; Johnson, D. C.; Bachovchin, D. A.; Lepšík, M.; Majer, P.; Strisovsky, K. General and Modular Strategy for Designing Potent, Selective, and Pharmacologically Compliant Inhibitors of Rhomboid Proteases. Cell Chem. Biol. 2017, 24, 1523-1536.e4. https://doi.org/10.1016/j.chembiol.2017.09.007
  • Hřebabecký, H.; Dračínský, M.; Procházková, E.; Šála, M.; Mackman, R.; Nencka, R. Control of α/β Anomer Formation by a 2′,5′ Bridge: Toward Nucleoside Derivatives Locked in the South Conformation. J. Org. Chem. 2017, 82, 11337-11347. https://doi.org/10.1021/acs.joc.7b01000
  • Perlíková, P.; Hocek, M. Pyrrolo[2,3-d]pyrimidine (7-deazapurine) as a privileged scaffold in design of antitumor and antiviral nucleosides. Med. Res. Rev. 2017, 37, 1429-1460. https://doi.org/10.1002/med.21465
  • Konč, J.; Tichý, M.; Pohl, R.; Hodek, J.; Džubák, P.; Hajdúch, M.; Hocek, M. Sugar modified pyrimido[4,5-b]indole nucleosides: synthesis and antiviral activity. MedChemComm 2017, 8, 1856-1862. https://doi.org/10.1039/C7MD00319F
  • Sabat, N.; Smoleń, S.; Nauš, P.; Perlíková, P.; Cebová, M.; Poštová Slavětínská, L.; Hocek, M. Synthesis of 2,6-Substituted 7-(Het)aryl-7-deazapurine Nucleobases (2,4-Disubstituted 5-(Het)aryl-pyrrolo[2,3-d]pyrimidines). Synthesis 2017, 49, 4623-4650. https://doi.org/10.1055/s-0036-1588443
  • Hercik, K.; Brynda, J.; Nencka, R.; Boura, E. Structural basis of Zika virus methyltransferase inhibition by sinefungin. Arch. Virol. 2017, 162, 2091-2096. https://doi.org/10.1007/s00705-017-3345-x
  • Tichý, M.; Smoleń, S.; Tloušt’ová, E.; Pohl, R.; Oždian, T.; Hejtmánková, K.; Lišková, B.; Gurská, S.; Džubák, P.; Hajdúch, M.; Hocek, M. Synthesis and Cytostatic and Antiviral Profiling of Thieno-Fused 7-Deazapurine Ribonucleosides. J. Med. Chem. 2017, 60, 2411-2424. https://doi.org/10.1021/acs.jmedchem.6b01766
  • Downey, A. M.; Pohl, R.; Roithová, J.; Hocek, M. Synthesis of Nucleosides through Direct Glycosylation of Nucleobases with 5-O-Monoprotected or 5-Modified Ribose: Improved Protocol, Scope, and Mechanism. Chem. - Eur. J. 2017, 23, 3910-3917. https://doi.org/10.1002/chem.201604955
  • Mejdrova, I.; Chalupska, D.; Plackova, P.; Muller, C.; Sala, M.; Klima, M.; Baumlova, A.; Hrebabecky, H.; Prochazkova, E.; Dejmek, M.; Strunin, D.; Weber, J.; Lee, G.; Matousova, M.; Mertlikova-Kaiserova, H.; Ziebuhr, J.; Birkus, G.; Boura, E.; Nencka, R. Rational Design of Novel Highly Potent and Selective Phosphatidylinositol 4-Kinase III beta (PI4KB) Inhibitors as Broad-Spectrum Antiviral Agents and Tools for Chemical Biology. J. Med. Chem. 2017, 60, 100-118. https://doi.org/10.1021/acs.jmedchem.6b01465
  • Humpolickova, J.; Mejdrova, I.; Matousova, M.; Nencka, R.; Boura, E. Fluorescent Inhibitors as Tools To Characterize Enzymes: Case Study of the Lipid Kinase Phosphatidylinositol 4-Kinase III beta (PI4KB). J. Med. Chem. 2017, 60, 119-127. https://doi.org/10.1021/acs.jmedchem.6b01466
  • Špaček, P.; Keough, D. T.; Chavchich, M.; Dračínský, M.; Janeba, Z.; Naesens, L.; Edstein, M. D.; Guddat, L. W.; Hocková, D. Synthesis and Evaluation of Asymmetric Acyclic Nucleoside Bisphosphonates as Inhibitors of Plasmodium falciparum and Human Hypoxanthine–Guanine–(Xanthine) Phosphoribosyltransferase. J. Med. Chem. 2017, 60, 7539-7554. https://doi.org/10.1021/acs.jmedchem.7b00926
  • Špaček, P.; Keough, D. T.; Chavchich, M.; Dračínský, M.; Janeba, Z.; Naesens, L.; Edstein, M. D.; Guddat, L. W.; Hocková, D. Synthesis and evaluation of symmetric acyclic nucleoside bisphosphonates as inhibitors of the Plasmodium falciparum, Plasmodium vivax and human 6-oxopurine phosphoribosyltransferases and the antimalarial activity of their prodrugs. Bioorg. Med. Chem. 2017, 25, 4008-4030. https://doi.org/10.1016/j.bmc.2017.05.048
  • Lukáč, M.; Hocková, D.; Keough, D. T.; Guddat, L. W.; Janeba, Z. Novel nucleotide analogues bearing (1H-1,2,3-triazol-4-yl)phosphonic acid moiety as inhibitors of Plasmodium and human 6-oxopurine phosphoribosyltransferases. Tetrahedron 2017, 73, 692-702. http://dx.doi.org/10.1016/j.tet.2016.12.046
  • Kaiser, M. M.; Baszczyňski, O.; Hocková, D.; Poštová-Slavětínská, L.; Dračínský, M.; Keough, D. T.; Guddat, L. W.; Janeba, Z. Acyclic Nucleoside Phosphonates Containing 9-Deazahypoxanthine and a Five-Membered Heterocycle as Selective Inhibitors of Plasmodial 6-Oxopurine Phosphoribosyltransferases. ChemMedChem 2017, 12, 1133-1141. https://doi.org/10.1002/cmdc.201700293
  • Eng, W. S.; Keough, D. T.; Hockova, D.; Winzor, D. J.; Guddat, L. W. Oligomeric state of hypoxanthine−guanine phosphoribosyltransferase from Mycobacterium tuberculosis. Biochimie 2017, 135, 6-14. https://doi.org/10.1016/j.biochi.2016.12.020

2016

  • Hercik, K.; Kozak, J.; Sala, M.; Dejmek, M.; Hrebabecky, H.; Zbornikova, E.; Smola, M.; Ruzek, D.; Nencka, R.; Boura, E. Adenosine triphosphate analogs can efficiently inhibit the Zika virus RNA-dependent RNA polymerase. Antiviral Res. 2016, 137, 131-133. https://doi.org/10.1016/j.antiviral.2016.11.020
  • Galeta, J.; Sala, M.; Dracinsky, M.; Vrabel, M.; Havlas, Z.; Nencka, R. Single-Step Formation of Pyrimido[4,5-d]pyridazines by a Pyrimidine-Tetrazine Tandem Reaction. Org. Lett. 2016, 18, 3594-3597. https://doi.org/10.1021/acs.orglett.6b01601
  • Plackova, P.; Sala, M.; Smidkova, M.; Dejmek, M.; Hrebabecky, H.; Nencka, R.; Thibaut, H. J.; Neyts, J.; Mertlikova-Kaiserova, H. 9-Norbornyl-6-chloropurine (NCP) induces cell death through GSH depletion-associated ER stress and mitochondrial dysfunction. Free Radical Biol. Med. 2016, 97, 223-235. https://doi.org/10.1016/j.freeradbiomed.2016.06.004
  • Sala, M.; Kogler, M.; Plackova, P.; Mejdrova, I.; Hrebabecky, H.; Prochazkova, E.; Strunin, D.; Lee, G.; Birkus, G.; Weber, J.; Mertlikova-Kaiserova, H.; Nencka, R. Purine analogs as phosphatidylinositol 4-kinase III beta inhibitors. Bioorg. Med. Chem. Lett. 2016, 26, 2706-2712. https://doi.org/10.1016/j.bmcl.2016.04.002
  • Klima, M.; Tóth, D. J.; Hexnerova, R.; Baumlova, A.; Chalupska, D.; Tykvart, J.; Rezabkova, L.; Sengupta, N.; Man, P.; Dubankova, A.; Humpolickova, J.; Nencka, R.; Veverka, V.; Balla, T.; Boura, E. Structural insights and in vitro reconstitution of membrane targeting and activation of human PI4KB by the ACBD3 protein. Sci. Rep. 2016, 6, 23641. https://doi.org/10.1038/srep23641
  • Terán, D.; Hocková, D.; Česnek, M.; Zíková, A.; Naesens, L.; Keough, D. T.; Guddat, L. W. Crystal structures and inhibition of Trypanosoma brucei hypoxanthine–guanine phosphoribosyltransferase. Sci. Rep. 2016, 6, 35894. http://dx.doi.org/10.1038/srep35894
  • Kaiser, M. M.; Poštová-Slavětínská, L.; Dračínský, M.; Lee, Y.-J.; Tian, Y.; Janeba, Z. Synthesis and biological properties of prodrugs of (S)-3-(adenin-9-yl)-2-(phosphonomethoxy)propanoic acid. Eur. J. Med. Chem. 2016, 108, 374-380. https://doi.org/10.1016/j.ejmech.2015.12.009
  • Eng, W. S.; Hocková, D.; Špaček, P.; Baszczyňski, O.; Janeba, Z.; Naesens, L.; Keough, D. T.; Guddat, L. W. Crystal Structures of Acyclic Nucleoside Phosphonates in Complex with Escherichia coli Hypoxanthine Phosphoribosyltransferase. ChemistrySelect 2016, 1, 6267-6276. https://doi.org/10.1002/slct.201601679
  • Břehová, P.; Šmídková, M.; Skácel, J.; Dračínský, M.; Mertlíková-Kaiserová, H.; Velasquez, M. P. S.; Watts, V. J.; Janeba, Z. Design and Synthesis of Fluorescent Acyclic Nucleoside Phosphonates as Potent Inhibitors of Bacterial Adenylate Cyclases. ChemMedChem 2016, 11, 2534-2546. https://doi.org/10.1002/cmdc.201600439