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Computational Complexity

Study of computation resources, time, space, randomness, ...,
required to compute problems

Guide the design of efficient algorithms for concrete problems

Goal: Present a theory of fine-grained computational
complexity and its progress

Notes: Complexity is a function of the problem instance size
parameters.
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Some Ingredients of a Complexity Theory

Problems and classes of problems

Algorithms and design techniques

Notions of reduction and complexity relationships among
problems

Hard and complete problems

Conjectures

(Conditional) Lower Bounds
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Reductions

Problem A is reducible to problem B by a reduction f if x ∈ A
if and only if f (x) ∈ B.

To obtain meaningful complexity relationships between A and
B, we need to limit the computational power of f

A reduction is polynomial-time if f is polynomial-time
computable,

Under polynomial-time reductions, if A reduces to B and B is
polynomial-time computable, then so is A.

Contrapositively, if A is not polynomial-time computable, then
B is also not polynomial-time computable.
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NP Theory

Problems: Satisfiability, Max Independent Set,
Hamiltonian Path, Colorability, Clique,
Factoring, Graph Isomorphism, Primality, . . .

Classes: P, NP, coNP, L, . . .

Notions of complexity relationships: Polynomial time
reductions

Complexity relationships: The following problems (and many
others) are polynomially equivalent.
k-sat for k ≥ 3, Colorability, Vertex Cover,
Independent Set, Clique, · · ·
Completeness: 3-sat is complete for NP.

Complexity conjecture: P 6= NP.

Conditional lower bounds: None of the NP-complete problems
have a polynomial time algorithm (under the conjecture
P 6= NP).
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What is fine-grained complexity?

Theory and techniques to reason about

exact worst-case complexities of deterministic or randomized
algorithms that output exact solutions and
complexity relationships among them.

What improvements can we expect over exhaustive search or
standard algorithms?

What are the obstructions that limit improvements?

What principles explain the exact complexities of problems?

Similar to NP-theory but differs from NP-theory in the
following respects

Problem-centric rather than complexity class-centric.
Strives to determine the complexity as exactly as possible.
Requires fine-grained reductions

Paturi Fine-grained Complexity



Computational Complexity What is Fine-grained Complexity? Problems in P Algorithms Polynomial Method for Orthogonal Vectors Algorithm NP-complete Problems NP-complete Problems Sparsification Lemma SNP Exponential Time Hypothesis Strong Exponential Time Hypothesis Explanatory Power of SETH Some ConclusionsOrthogonal Vectors Problem 3-sum Problem

Problems in P
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Orthogonal Vectors Problem

Orthogonal Vectors (Bipartite version): Given two sequences
A1, . . . ,An and B1, . . . ,Bn of sets with elements from a universe of
size d , do there exist i and j such that Ai ∩ Bj = ∅.
If the sets are thought of as characteristic vectors in {0, 1}d ,
Ai ∩ Bj = ∅ is equivalent to the proposition that the vectors Ai

and Aj are orthogonal.

Complexity parameters: n and d

Straightforward algorithm solves it in time O(n2 log d).
Another straightforward algorithm takes O(2dn) time.

O(n
2− 1

O(log c) ) algorithm where d = c log n by Abboud and
Williams, Yu (2015), Chan and Williams (2016).
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3-sum Problem

3-sum: Given a sequence of integers x1, x2, . . . , xn where
xi ∈ [0, 1, . . . , d − 1], do there exist i , j and k such that
xi + xj = xk?

Complexity parameters: n and d

Straightforward algorithm solves it in time O(n2 log d).

O(n2 log log2 d/ log2 d) algorithm by Baran, Demaine,
Pǎtraşcu, 2005
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Algorithms
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Polynomial Method for Orthogonal Vectors

Orthogonal Vectors (Bipartite version): Given two sequences
A1, . . . ,An and B1, . . . ,Bn of sets with elements from a universe of
size d , do there exist i and j such that Ai ∩ Bj = ∅.

Theorem (Abboud, Williams, and Yu, 2015)

For vectors of dimension d = c log n, the bipartite

Orthogonal Vectors problems can solved in n
2− 1

O(log c) time
by a randomized algorithm that is correct with high probability.

Sketch:

Find a suitable meta problem which has an improved
algorithm over straightforward evaluation

Reduce the problem to the meta problem by approximating it
as a polynomial.

Optimize the parameters.
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Orthogonal Vectors Algorithm: Details

Partition inputs A and B into n
s blocks A1, . . . ,Ap,B1, . . . ,Bq

of size s d-dimensional vectors each where d = c log n.

Let OV(x1, . . . , xs , y1, . . . , ys) = 1 iff ∃i , j xi and yj are
orthogonal.

Construct a polynomial P with a small number of monomials
to approximate OV. P[P produces the correct output] ≥ 2/3.

For each pair of blocks of inputs Ai and Bj , construct an
approximate polynomial hi ,j for computing OV on Aj and Bj .

Evaluate each polynomial hj ,j in time s2poly log(s) time using
fast matrix-multiplication.

Choose s = 2ε log n/ log d

Overall time complexity of n
2− 1

O(log c)poly log n

Probability of correctness greater than 2/3.

Repeat the experiment O(log n) times to get the probability
of correctness arbitrarily close to 1.
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Boolean Expressions to GF(2) Polynomials

Let a1, . . . , as , b1, . . . , bs be d-dimensional 0,1 vectors.

Let OV(a1, . . . , as , b1, . . . , bs) = 1 if and only if
∃i , j ai and bj are orthogonal .

OV(a1, . . . , as , b1, . . . , bs) =
∨
i ,j

∧
p

(āi ,p ∨ b̄j ,p)

=
∨
i ,j

∧
p

(1⊕ ai ,pbj ,p)

Approximate
∨

and
∧

by GF(2) polynomials, controlling for
the number of monomials.

Small circuit complexity of OV yields a polynomial
approximation with a small number of monomials.
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Approximating
∧

and
∨

by GF(2) Polynomials

Let g(~x) =
∨q

i=1 fi (~x)

Let g̃(~x) =
⊕q

i=1 ri fi (~x) where ri are randomly chosen 0,1
values.

Pri [g̃(~x) = g(~x)] ≥ 1/2 for any ~x .

If g(~x) = 0, then g̃(~x) = 0.
If g(~x) = 1, then P[g̃(~x) = 1] = 1/2.

Let h(~x) =
∨t

j=1 g̃j(~x)

P[g(~x) = h(~x)] ≥ 1− 2−t .

h(~x) can be written as a degree-t GF(2) polynomial in terms
of g̃j .
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Approximating
∧

and
∨

by GF(2) Polynomials

Approximation of
∧

is similar due to De Morgan’s law:
g(~x) =

∧q
i=1 fi (~x) = 1⊕ (

∨q
i=1 f̄i (~x))

Note: OV(a1, . . . , as , b1, . . . , bs) =
∨

i ,j

∧
p(1⊕ ai ,pbj ,p)

Approximate the inner
∧

with t = 2 log s and the outer
∨

with t = 2 to obtain the final polynomial h.

Verify P[h is correct] ≥ 2/3.

Verify that the number of monomials in h is
s4(d + 1)2 log s < nε when s = ε log n/ log d .
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Efficient Polynomial Evaluation on a Rectangle of Inputs

Lemma (Williams 2014)

Given a polynomial P(x1, . . . , xk , y1, . . . , yk) over F2 with at most
m0.1 monomials and inputs A = {a1, . . . , am} ⊆ {0, 1}k and
B = {b1, . . . , bm} ⊆ {0, 1}k , P can be evaluated on all pairs
(ai , bj) ∈ A× B in O(m2poly(logm)) time.

Proof:

Reduce the problem to fast rectangular matrix multiplication.
by constructing two matrices MA and MB from P =

∑
u mu.

Rows of MA are indexed by ai and the columns are indexed by
mu =

∏
l xl

∏
p yp = mx

um
y
u

MA(ai ,mu) = mx
u(ai ).

Rows of MB are indexed by mu of P and the columns are
indexed by bi .
MB(mu, bq) = mu(bq).
Observe MAMB(ai , bq) =

∑
u m

x
u(ai )m

y
u(bq) = P(aj , bq).
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Fast Matrix Multiplication

Lemma (Coppersmith 1982)

For all sufficiently large N, multiplication of an N × N0.172 matrix
with an N0.172 × N can be performed in O(N2 log2 N) arithmetic
operations.
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Polynomial Method for Orthogonal Vectors— Key
Ideas

Load balancing

Approximation by polynomials

Fast matrix multiplication - meta algorithm for evaluating
polynomials
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Problems in NP
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Satisfiability Problem

Input: a formula or circuit F on n Boolean variables,
x1, x2, . . . , xn.

Conjunctive formulas:
∧

i Ci where Ci is a disjunction of
literals. (xi ∨ x̄2 ∨ x3)∧ (x̄1 ∨ x6 ∨ x8 ∨ x̄3)∧ · · · ∧ (x̄6 ∨ x5 ∨ x2).

x̄i is the Boolean complement of xi . xi , x̄i are called literals.

Check if F is satisfiable: does there exist an assignment of
Boolean values for x1, . . . , xn which satisfies all the clauses.

Decidable in |F |2n time by exhaustive search.

Can we improve upon the exhaustive search? Can we obtain a
|F |2n(1−µ) bound for µ > 0?

µ is a called the satisfiability savings. µ can be a function of
the parameters of the class of formulas/circuits and n, the
number of variables.
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Satisfiability for Conjunctive Formulas

Cnf-Sat: Conjunction of disjunctions of literals

k-sat: Conjunction of disjunctions of literals where each
disjunction contains at most k literals.

k-sat is NP-complete for k ≥ 3. How fast can we solve
k-sat for k ≥ 3? What is the savings over exhaustive search?

Several algorithmic approaches have been developed.
Backtracking algorithms (also known as DPLL algorithms)
Local search algorithms
Polynomial method

Best known results are due to PPSZ-style algorithms which
themselves is based on PPZ algorithm.‘
PPZ — Paturi, Pudlák and Zane (1997)
PPSZ — Paturi, Pudlák, Saks and Zane (1998/2005)

PPZ is a DPLL - style algorithm with random ordering of
variables
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PPZ Algorithm

Algorithm PPZ:

1 Let F be a k-cnf and σ a random permutation on variables
2 for i = 1, · · · , n
3 if there is a unit clause for the variable σ(i)
4 then set the variable σ(i) so that the clause true
5 else set the variable σ(i) randomly
6 Simplify F
7 if F is satisfied, output the assignment

Theorem

PPZ finds a satisfying assignment in time poly(n)2n(1− 1
k

) with
constant success probability.
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Isolated Solutions and Critical Clauses

A satisfying solution for F is isolated if all its distance 1
neighbors are not solutions.

Let F be a k-cnf and x be an isolated satisfying solution of x .

For each variable i and isolated solution x , F must have a
clause with exactly one true literal corresponding to the
variable i at solution x .

Such clause is called a critical clause for the variable i at the
solution x .

F = (x1∨ x̄2∨x3)∧ (x̄1∨x2∨x3)∧ (x1∨x2∨ x̄3)∧ (x̄1∨ x̄2∨ x̄3)

For the isolated solution x1 = 0, x2 = 0, x3 = 0,
F = (0 ∨ 1 ∨ 0) ∧ (1 ∨ 0 ∨ 0) ∧ (0 ∨ 0 ∨ 1) ∧ (1 ∨ 1 ∨ 1)
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PPZ Analysis

Lemma

Algorithm PPZ outputs x with probability at least 1
n2−n+I (x)/k for

any satisfying solution x with I (x) many neighbors which are not
solutions.

Proof Sketch:

E1 — for at least I (x)/k variables, the critical variable appears
as the last variable among the variables in the critical clause

E2 — values assigned to the variables in the for loop agree
with x

P(E1) ≥ 1/n

P(E2|E1) ≥ 2−n+I (x)/k

P(x is output by PPZ) ≥ 1
n2−n+I (x)/k
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PPZ Analysis

Let S be the set of satisfying solutions of F .

For x ∈ S , define value(x) = 2−n+I (x)

Fact:
∑

x∈S value(x) ≥ 1

P(∃x ∈ Sx is output by PPZ) ≥
∑
x∈S

1

n
2−n+I (x)/k

=
1

n
2−n+n/k

∑
x∈S

2(−n+I (x))/k

≥ 1

n
2−n+n/k
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Improved Exponential Time Algorithms for k-sat

A lot of effort has gone into improving k-sat.
Scheder (2021), Hertli (2012), P, Pudák, Saks, Zane
(1998/2005), Schöning (1999), P, Pudlák, Zane (1997), Rolf
(2003), Iwama and Tamaki (2004), · · · , Monien and
Speckenmeyer (1985)

Current best approach— PPSZ: PPZ combined with
resolution. Nontrivial analysis.

3-sat — 20.386n

4-sat — 20.554n

k-sat — 2(1−µk/(k−1))n where µk ≈ 1.6 for large k.

Under mild assumptions, µk ≤ 2 for PPSZ-style algorithms
Scheder and Talebanfard (2020)
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NP-complete Graph Problems

Hamiltonian Path: Given a graph G = (V ,E ), is there a
hamiltonian path?

k-Colorability: Given a graph G = (V ,E ), is G colorable
with k or fewer colors?

Colorability: Given a graph G = (V ,E ) and an integer k ,
is G colorable with k or fewer colors?

Max Independent Set: Given a graph G = (V ,E ) and an
integer k, does G have an independent set of size at least k?

Complexity parameters: the number of vertices: n = |V |, the
number of edges: m = |E |, the range of edge weights: d
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Motivating Questions for Fine-grained Complexity

Is there an ε > 0 such that Orthogonal Vectors problem
can be computed in time n2−ε for d = ω(log n)?

Is there an ε > 0 such that 3-sum problem can be computed
in time n2−ε for d = ω(log n)?

Is s3 = 0, where sk = inf{δ|∃ 2δn algorithm for k-sat}?
Is s∞ = 1, where s∞ = limk→∞ sk?.

Paturi Fine-grained Complexity



Computational Complexity What is Fine-grained Complexity? Problems in P Algorithms Polynomial Method for Orthogonal Vectors Algorithm NP-complete Problems NP-complete Problems Sparsification Lemma SNP Exponential Time Hypothesis Strong Exponential Time Hypothesis Explanatory Power of SETH Some ConclusionsSatisfiability Problem PPZ Algorithm PPZ Analysis Further Improvements NP-complete Graph Problems Motivating Questions

Relationships among Problems

If Orthogonal Vectors problem can be solved in time
n2−ε for some ε > 0 for d = ω(log n), does there exists δ > 0
such that k-sat can be solved in time 2(1−δ)n for all k?

If 3-sat is solvable in subexponential time, is 4-sat solvable
in subexponential time?

Do improved algorithms for 3-sat imply improved algorithms
for 3-Colorability or vice versa?
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Fine-grained Reductions

More generally, what ’fine-grained’ reductions are possible
among these problems?

Assume that problem A has a conjectured complexity TA(n)
and problem B TB(n).

Assume that the complexity of A improved to T
(1−ε)
A (n) for

ε > 0.
Can we infer if there will be an improvement in the complexity
of B?
Reductions from B to A that enable the transfer of the
improvement are fine-grained reductions.

Paturi Fine-grained Complexity



Computational Complexity What is Fine-grained Complexity? Problems in P Algorithms Polynomial Method for Orthogonal Vectors Algorithm NP-complete Problems NP-complete Problems Sparsification Lemma SNP Exponential Time Hypothesis Strong Exponential Time Hypothesis Explanatory Power of SETH Some ConclusionsSatisfiability Problem PPZ Algorithm PPZ Analysis Further Improvements NP-complete Graph Problems Motivating Questions

An Obstacle for Developing a Theory of Fine-grained
Complexity

Lack of reductions that preserve the complexity parameter

In the least, we need reductions that preserve the complexity
parameter linearly.
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Example: An Obstacle for a Reduction from 3-sat to
3-Colorability

If 3-Colorability has a subexponential time (2εn for
arbitrarily small ε) algorithm, does it imply a subexponential
time algorithms for 3-sat?

In the standard reduction from 3-sat of n variables and m
clauses to 3-Colorability, we get a graph on O(n + m)
vertices and O(n + m) edges.

Complexity parameter increases polynomially, thus preventing
any useful conclusion about 3-sat.
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Subexponential Time

Definition (Subexponential Time)

A problem is computable in time subexponential in the complexity
parameter n if there is an effectively computable monotone
increasing function g(n) = ω(1) such that the problem on instance
x with complexity parameter n is computable in time
poly(|x |)2n/g(n).
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Subexponential Time Reductions

Definition (Subexponential Time Reductions)

Let P and P ′ be problems with complexity parameters p and p′

respectively. P is subexponential time reducible to P ′ if there exists
a collection of reductions {Rε} such that ∀ε > 0, ∃c(ε) such that

1 Rε takes an instance x of P and outputs instances yi of P ′ for
1 ≤ i ≤ 2εn where |yi | ≤ poly(|xi |) and p′(yi ) ≤ c(ε)p(x).

2 x ∈ L(P) if and only if yi ∈ L(P ′) for some i .

3 Rε runs in time poly(|x |)2εp(x).
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Sparsification Lemma

Lemma (Sparsification Lemma)

∃ algorithm A ∀k ≥ 2, ε ∈ (0, 1], φ ∈k-cnf with n variables,
Ak,ε(φ) outputs φ1, . . . , φs ∈k-cnf in 2εn time such that

1 s ≤ 2εn; Sat(φ) =
⋃

i Sat(φi ), where Sat(φ) is the set of
satisfying assignments of φ

2 ∀i ∈ [s] each literal occurs ≤ O(kε )3k times in φi .

Branching on variables alone would require setting almost all
the variables resulting in a large tree.
Branch on frequently occurring subclauses rather than just on
variables.
Clause branching results in less information, and as a result
the tree does not grow too much.
To control for the growth of new clauses, start with small
clauses and look for longest subclauses with required
frequency Paturi Fine-grained Complexity
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Reducing 3-sat to 3-Colorability under SERF

Apply Sparsification Lemma to the given 3-cnf φ.

Consider each 3-cnf φi with linearly many clauses and reduce
it to a graph with linearly many vertices.

Now, a subexponential time algorithm for 3-Colorability
implies a subexponential time algorithm for 3-sat.
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Reducing 4-sat to 3-sat under Subexponential-time
Reductions

Let ε > 0 be arbitrary.

Apply Sparsification Lemma to the given 4-cnf φ to obtain a
disjunction of 2εn φi in time 2εn where each φi has linearly
many clauses.

Reduce 4-cnf φi to a 3-sat formula with only linearly many
new variables.
(l1 ∨ l2 ∨ l3 ∨ l4) = ∃y(l1 ∨ l2 ∨ y)(ȳ ∨ l3 ∨ l4)

Now, a subexponential time algorithm for 3-sat implies a
subexponential time algorithm for φi .

Since ε > 0 is arbitrary, φ can be solved in
subexponential-time.
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SNP

SNP — class of properties expressible by a series of second
order existential quantifiers, followed by a series of first order
universal quantifiers, followed by a basic formula
—Papadimitriou and Yannakakis 1991

SNP includes k-sat and k-Colorability for k ≥ 3.
∃S∀(y1, . . . , yk)∀(s1, . . . , sk)[R(s1,...,sk )(y1, . . . , yk) =⇒
∧1≤i≤kSsi (yi ), where si ∈ {+,−} and S is a subset of [n].

Vertex Cover,Clique, Independent Set and
k-Set Cover are in size-constrained SNP.

Hamiltonian Path is SNP-hard.
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Completeness of 3-sat in SNP

Theorem (IPZ 1997)

3-sat admits a subexponential-time algorithm if and only if every
problem in (size-constrained) SNP admits one.

Proof Sketch: Show that every problem in SNP is strongly
many-one reducible to k-sat for some k. Complexity
parameter is the number of Boolean existential quantifiers.

Reduce k-sat to the union of subexponentially many
linear-size k-sat using Sparsification Lemma.

Reduce each linear-size k-sat to 3-sat with linearly many
variables.
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Exponential Time Hypothesis (ETH)

Let sk = inf{δ|∃2δn algorithm for k-sat};
3-sat has a subexponential time algorithm =⇒ sk = 0 for
all k and s∞ = 0. Moreover, all problems in SNP have
subexponential time algorithms.

Our plan is to make progress by assuming this statement

Exponential Time Hypothesis (ETH) — s3 > 0
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Explanatory Burden of ETH

We have very little understanding of exponential time
algorithms.

For ETH to be useful,

it must be able to provide an explanation for the known
complexities of various problems,
ideally, by providing lower bounds that match the upper
bounds from the best known algorithms.

ETH will be useful if it helps factor out the essential difficulty
of dealing with exponential time algorithms for NP-complete
problems.
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Explanatory Value of ETH — I

All the following results assume ETH.

None of the problems in (size-constrained) SNP have a
subexponential time algorithm

Furthermore, SNP-hard problems such as
Hamiltonian Path cannot have a subexponential time
algorithm.
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Explanatory Value of ETH — II

We follow the nice summary provided by Lokshtanov, Marx
and Saurabh (2011).

Subexponential time lower bounds: There is no 2o(
√
n)

algorithm for Vertex Cover, 3-Colorability, and
Hamiltonian Path for planar graphs.

Lower bounds for FPT problems: There is no 2o(k)nO(1)

algorithm to decide whether the graph has a vertex cover of
size at most k .
Similar results hold for the problems
Feedback Vertex Set and Longest Path. Cai and
Juedes (2003)

Lower bounds for W [1]-complete problems: There is no
f (k)no(k) algorithm for Clique or Independent Set.
Chen, Chor, Fellows, Huang, Juedes, Kanj, and Xia (2005,
2006)
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SETH — Strong Exponential Time Hypothesis

Theorem (IP, 1999)

If ETH is true, sk increases infinitely often

Let s∞ = limk→∞ sk .

Conjecture:
Strong Exponential Time Hypothesis (SETH): s∞ = 1
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SETH and Its Equivalent Statements

Theorem

The following statements are equivalent:

∀ε < 1, ∃k, k-sat, the satisfiability problems for n-variable
k-cnf formulas, cannot be computed in time O(2εn) time.

∀ε < 1, ∃k, k-Hitting Set, the Hitting Set problem for
set systems over [n] with sets of size at most k, cannot be
computed in time O(2εn) time.

∀ε < 1, ∃k, k-Set Splitting, the Set Splitting problem
for set systems over [n] with sets of size at most k, cannot be
computed in time O(2εn) time.

— Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto, P,
Saurabh, Wahlstrom, 2012
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Explanatory Power of SETH

Under SETH, we will show that there is no ε > 0 such that
Orthogonal Vectorsproblem has a n2−ε algorithm for
d = ω(log n).

Reduce k-sat to Orthogonal Vectors

Each clause of a k-cnf corresponds to a coordinate of the
vector.

Assume that the variables come in two colors. For each color
and for each setting of variables of the color, we will derive a
vector from the set of clauses.

Let Ci = (x1 ∨ x̄2 ∨ y1 ∨ ∨y2). α is a setting for the x
variables and β a setting for the y variables.

Define ai (α) = ¬(x1 ∨ x̄2)(α) and bi = ¬(x1 ∨ x̄2)(β)

Ci is false under (α, β) if and only if ai (α)bi (β) = 1
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Reducing k-sat to Orthogonal Vectors

Assume that the Orthogonal Vectors problem can be
solved in time n2−ε for ε > 0 for d = ω(log n).

Let ε′ = ε/3 and φ be a k-cnf with n variables for k > 0.

Sparsify φ in 2ε
′n time into 2ε

′n many k-sat instances φi with
at most cε′n many clauses.

For each φi , construct two families L and R of sets which are
subsets of a universe of size cε′n where |L| = |R| = N = 2n/2.

φi is satisfiable if and only if there is a pair of sets A ∈ L and
B ∈ R such that A ∩ B = ∅.

Total time for solving the satisfiability of φ is
2ε

′n + N2−ε2ε
′n ≈ 2(1−ε/6)n

Since k is arbitrary, this implies that SETH is false.

Conclusion: If SETH, there is no ε > 0 such that
Orthogonal Vectors problem can be solved in time n2−ε

for a universe of size ω(log n).
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Conclusions

If Orthogonal Vectors problem can be solved in time
n2−ε for some ε > 0 for d = ω(log n), does there exists δ > 0
such that k-sat can be solved in time 2(1−δ)n for all k?
Yes

If 3-sat is solvable in subexponential time, is 4-sat solvable
in subexponential time?
Yes

Do improved algorithms for 3-sat imply improved algorithms
for 3-Colorability or vice versa?
Yes (due to Sparsification Lemma)

Is there an ε > 0 such that Orthogonal Vectors problem
can be computed in time n2−ε for d = ω(log n)?
No, if SETH is true.
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Open Problems

Prove or disprove ETH

Prove or disprove SETH

Assuming ETH or other suitable assumption, prove

a specific lower bound on s3

s∞ = 1 (SETH)

Assuming SETH, can we prove a 2n lower bound on
Colorability?
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Thank You
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