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1 Introduction
i

There is a vast number of recent studies concerning the motion of a rigid body immersed in/or
containing a compressible viscous fluid. We focus on the situation when the body is “small”
therefore its influence on the fluid motion is expected to be negligible. By small we mean that the
body is contained in a ball with a small radius. The problem is mathematically more challenging
in the case of planar (2d) flows, where even small objects may have large capacity.

The motion of a small object immersed in an inviscid (Euler) incompressible fluid is studied
by Iftimie, Lopes Filho, and Nussenzveig Lopes [12]. Similar problems again in the framework of
inviscid fluids have been considered by Glass, Lacave, and Sueur [8], [9]. The asymptotic behavior
of solutions of the incompressible Euler equations in the exterior of a single smooth obstacle when
the obstacle becomes very thin tending to curve has been studied by Lacave [14].

In the context of viscous Newtonian fluids, the flow around a small rigid obstacle was studied
by Iftimie et al. [13]. Lacave [15] studies the limit of a viscous fluid flow in the exterior of a thin
obstacle shrinking to a curve.

Finally, let us mention results in planar domains, where the body does not influence the flow
in the asymptotic limit. Dashti and Robinson [3] consider the viscous fluid-rigid disc system,
where the disc is not rotating. Lacave and Takahashi [16] consider a single disk moving under the
influence of a viscous fluid. They proved convergence towards the Navier-Stokes equations as the
size of the solid tends to zero, its density is constant and the initial data small. Finally, He and
Iftimie [10] extend the above result to a general shape of the body and to the initial velocities not
necessarily small.

To the best of our knowledge, the problem of negligibility of a small rigid body immersed in
a planar viscous compressible fluid is completely open. Bravin and Nečasová [2] addressed the
problem in the 3d setting, where the capacity of the object in a suitable Sobolev norm is small
enough.

1.1 Problem formulation

Neglecting completely the possible thermal effects as well as the external body forces, we consider
the isentropic compressible fluid in the low Mach number regime governed by the following system
of equations:

Navier–Stokes system.

∂t%+ divx(%u) = 0, (1.1) i1

∂t(%u) + divx(%u⊗ u) +
1

ε2m
∇xp = divxS(∇xu), (1.2) i2
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S(∇xu) = µ
(
∇xu +∇t

xu− divxuI
)

+ λdivxuI, µ > 0, λ ≥ 0,
(1.3) i3

p = p(%) = a%γ, γ > 1, a > 0. (1.4) i4

The fluid is confined to a bounded planar domain Ω ⊂ R2 and the momentum equation (1.2)
satisfied in

Ωε,t = Ω \Bε,t, t ∈ (0, T ), (1.5) i8

where
Bε,t =

{
x ∈ R2

∣∣∣ |x− hε(t)| ≤ ε
}
, (1.6) i5

hε ∈ W 1,∞([0, T ];R2), ε|h′ε(t)| → 0 uniformly for a.a. t ∈ (0, T ) as ε→ 0. (1.7) i6

The ball Bε,t is the part of the plane containing the rigid object at the time t. Note carefully that,
in general, we do not require Bε,t ⊂ Ω. Finally, we impose the no-slip boundary conditions

u|∂Ω = 0. (1.8) i7

1.2 Main results

Below, we formulate the main hypotheses imposed on the fluid motion. It is convenient to consider
the density % = %ε as well as the velocity u = uε to be defined on the whole physical space
(0, T )×R2. Accordingly, we set

% = %ε(t, x) = % − a positive constant whenever x ∈ R2 \ Ω,

u = uε(t, x) = 0 if x ∈ R2 \ Ω. (1.9) i9

Throughout the whole text, we assume the following:

(H1)
hε ∈ W 1,∞([0, T ];R2); (1.10) hreg

(H2) (%ε,uε), %ε ≥ 0 is a weak renormalized solution of the equation of continuity (1.1), meaning∫ T

0

∫
R2

[
%ε∂tϕ+ %εuε · ∇xϕ

]
dx dt = −

∫
R2

%0,εϕ(0, ·) dx,∫ T

0

∫
R2

[
b(%ε)∂tϕ+ b(%ε)uε · ∇xϕ+ (b(%ε)− b′(%ε)%ε) divxuεϕ

]
dx dt

= −
∫
R2

b(%ε,0)ϕ(0, ·) dx,

(1.11) i10

for any ϕ ∈ C1
c ([0, T )×R2) and any b ∈ C1[0,∞), b′ ∈ Cc[0,∞);
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(H3) (%ε,uε) is a weak solution of the momentum equation (1.2) in the fluid domain ∪t∈(0,T )Ωε,t,
meaning

uε ∈ L2(0, T ;W 1,2
0 (Ω;R2)), (1.12) i11

and ∫ T

0

∫
Ω

[
%εuε · ∂tϕ + %εuε ⊗ uε : ∇xϕ +

1

ε2m
p(%ε)divxϕ

]
dx dt

=

∫ T

0

∫
Ω

S(∇xuε) : ∇xϕ dx dt−
∫

Ω

%ε,0uε,0 ·ϕ(0, ·) dx (1.13) i12

for any ϕ ∈ C1
c (∪0≤t<TΩε,t;R

2) ∩ C1
c ([0, T )× Ω;R2);

(H4) The energy inequality∫
Ω

1

2
%ε|uε|2(τ, ·) dx+

1

ε2m

∫
Ωε,τ

(
P (%ε)− P ′(%)(%ε − %)− P (%)

)
(τ, ·) dx

+

∫ τ

0

∫
Ω

S(∇xuε) : ∇xuε dx dt

≤
∫

Ω

1

2
%ε,0|uε,0|2 dx+

1

ε2m

∫
ΩF,ε,0

(
P (%ε,0)− P ′(%)(%ε,0 − %)− P (%)

)
dx (1.14) i13

holds for a.a. τ ∈ (0, T ), where P is the pressure potential,

P (%) =
a

γ − 1
%γ, and Ωε,0 ⊂ ΩF ,ε,0.

In (1.14), ΩF ,ε,0 is the fluid domain at the initial time, meaning

ΩF ,ε,0 \ B0, B0 ⊂ Bε,0 the initial position of the rigid body.

Our main result reads as follows:

mT1 Theorem 1.1. Let Ω ⊂ R2 be a bounded domain of class C3. Let (%ε,uε)ε>0 satisfy the
hypotheses (H1)–(H4). In addition, suppose

%ε,0 ≥ 0 a.e. in Ω,
1

ε2m

∫
ΩF,ε,0

(
P (%ε,0)− P ′(%)(%ε,0 − %)− P (%)

)
dx→ 0, (1.15) i14

where

min

{
m;

2m

γ

}
> 3. (1.16) i14A
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uε,0 → u0 weakly in L2(Ω;R2),

∫
Ω

%ε,0|uε,0|2 dx→
∫

Ω

%|u0|2 dx as ε→ 0,

where u0 ∈ W 2,∞(Ω), divxu0 = 0, u0|∂Ω = 0; (1.17) i15

ε|h′ε(t)| → 0 uniformly for a.a. t ∈ (0, T ) (1.18) i16

as ε→ 0.
Then

sup
τ∈[0,T ]

‖%ε(τ, ·)− %‖Lγ(Ωε,τ ) → 0 with γ as in (1.4), (1.19) i17

uε → u in L2(0, T ;W 1,2
0 (Ω;R2)) (1.20) i18

as ε→ 0, where u is the (unique) classical solution of the incompressible Navier–Stokes system

divxu = 0,

%∂tu + %divx(u⊗ u) +∇xΠ = µ∆xu,

u|∂Ω = 0,

u(0, ·) = u0 (1.21) i19

in (0, T )× Ω.

The hypotheses (1.15), (1.17) correspond to the well prepared data in the low Mach number
limit, cf. Masmoudi [17]. Moreover, as u0 belongs to the class (1.17), the standard maximal
regularity theory yields a strong solution of the Navier–Stokes system (1.21), unique in the class

u ∈ Lp(0, T ;W 2,p(Ω;R2)), ∂tu ∈ Lp(0, T ;Lp(Ω;R2)),

∇xΠ ∈ Lp(0, T ;Lp(Ω;R2)), 1 ≤ p <∞ (1.22) i20

see e.g. Gerhardt [7], von Wahl [18]. The solution is classical in (0, T )×Ω as a consequence of the
interior regularity estimates.

The hypotheses of Theorem 1.1 are satisfied if (%ε,uε) is a weak solution of the fluid–structure
interaction problem of a single rigid body immersed in a viscous compressible fluid in the sense
of [5] (see also Desjardins and Esteban [4]) or if the motion of the body is prescribed as in [6]. A
detailed proof is given in Appendix 5.

The remaining part of the paper is devoted to the proof of Theorem 1.1. Similarly to the purely
incompressible setting studied by He and Iftimie [11] (cf. also Lacave and Takahashi [16]), the
main problem is the rather weak estimate (1.18) that does not allow for a precise identification
of the limit trajectory of the body. In addition, two new difficulties appear in the compressible
regime:

• Possible fast oscillations of acoustic (gradient) component of the velocity that cannot be a
priori excluded even for the well prepared data because of the influence of the rigid body.
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• Possible contacts of the body – intersection of the balls Bε,t– with the outer boundary ∂Ω.

To overcome the above mentioned difficulties, we proceed as follows. In Sections 2, 3 we identify
the system of equations satisfied by the limit velocity u. Due to the lack of information on ∂tuε, the
limit of the convective term as well as the kinetic energy is described in terms of the corresponding
Young measure. The limit u is therefore a generalized dissipative solution of the incompressible
Navier–Stokes system in the sense of [1]. In particular, we adapt the approximation of the test
functions introduced by He and Iftimie to the geometry of a bounded domain. Finally, in Section
4, apply the weak–strong uniqueness result proved in [1] to conclude that the limit is, in fact, a
strong solution of the Navier–Stokes system whereas the associated Young–measure reduces to a
parametrized family of Dirac masses.

2 Identifying the limit, the equation of continuity, energy

balance
I

It follows from the hypotheses (1.15), (1.17) that the initial energy on the right–hand side of the
energy inequality (1.14) is bounded uniformly for ε → 0. Applying Korn–Poincaré inequality we
get, up to a suitable subsequence,

uε → u weakly in L2(0, T ;W 1,2
0 (Ω;R2)). (2.1) I1

Next, %ε satisfies the renormalized equation of continuity (1.11). Moreover, the energy inequal-
ity (1.14) yields

%ε → % in (0, T )× Ω in measure.

In particular, we may perform the limit in (1.11) obtaining

b′(%)%divxu = 0,

yielding
divxu = 0. (2.2) I3

Finally, using the hypotheses (1.17), (1.18) and the property of weak lower semi–continuity of
convex functionals, we perform the the limit in the energy inequality obtaining∫

Ω

1

2
%|u|2(τ, ·) dx+ E(τ) + µ

∫ τ

0

∫
Ω

∇xu : ∇xu dx dt ≤
∫

Ω

1

2
%|u0|2 dx (2.3) I4

for a.a. τ ∈ (0, T ). Here, C(τ) ∈ L∞(0, T ) is the so called total energy defect defined as

E(τ) = lim inf
ε→0

∫
Ω

1

2
%ε|uε|2(τ, ·) dx−

∫
Ω

1

2
%|u|2(τ, ·) dx ≥ 0 for a.a. τ ∈ (0, T ). (2.4) I4a
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3 Identifying the limit, the momentum equation
II

The next and more delicate step is to perform the limit ε → 0 in the momentum equation (1.2).
To eliminate the singular pressure term, we consider the test functions

ϕε ∈ C1
c (∪0≤t<TΩε,t;R

2) ∩ C1
c ([0, T )× Ω;R2), divxϕε = 0. (3.1) I6

Accordingly, the weak formulation (1.13) gives rise to∫ T

0

∫
Ω

[
%εuε · ∂tϕε + %εuε ⊗ uε : ∇xϕε

]
dx dt =

∫ T

0

∫
Ω

S(∇xuε) : ∇xϕε dx dt

−
∫

Ω

%0,εu0,ε ·ϕε(0, ·) dx. (3.2) I5

3.1 Some useful estimates

Note that (3.2) is relevant only on the fluid part ∪t∈[0,T ]Ωε,t, where the energy inequality (1.14)
yields uniform bounds on the density. This motivates the following decomposition of any measur-
able functions v:

v = [v]ess + [v]res,

where
[v]ess = v1 1

2
%≤v≤2%.

Thanks to the energy inequality (1.14), we get

[%ε]essuε bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;Lq(Ω)) for any 1 ≤ q <∞. (3.3) I7

Moreover, by the energy inequality,

[%ε]ess → % in measure in ((0, T )× Ω); (3.4) I8

whence we conclude

[%ε]essuε → %u weakly -(*) in L∞(0, T ;L2(Ω;R2)), and weakly in L2(0, T ;Lq(Ω;R2)) for any 1 ≤ q <∞.
(3.5) I9

In addition, we also have
%εuε = (%ε − %)uε + %uε,

where, thanks to the energy inequality (1.14),∫
Ωε,τ

|%ε − %||uε| dx
<∼ ‖%ε(τ, ·)− %‖(Lγ+L2)(Ωε,τ )‖uε‖W 1,2

0 (Ω;R2)

<∼ εmin{m, 2m
γ
}‖uε(τ, ·)‖W 1,2

0 (Ω;R2)

(3.6) II9
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for any τ ∈ [0, T ].
Similarly,

[%ε]essuε ⊗ uε is bounded in L1(0, T ;Lq(Ω;Rd×d)) ∩ L∞(0, T ;L1(Ω;Rd×d))

for any 1 ≤ q <∞; (3.7) I9a

whence, by interpolation,

[%ε]essuε ⊗ uε → %u⊗ u weakly in Lr((0, T ;L2(Ω;R2)) for some r > 1. (3.8) I9b

The tensor %u⊗ u ∈ Rd×d
sym is positively semi–definite and

%u⊗ u− %u⊗ u ≥ 0. (3.9) I9c

Indeed, for any d ∈ Rd:

[%u⊗ u− %u⊗ u] : (d⊗ d) = lim
ε→0
|
√

[%ε]essuε · d|2 − |
√
%u · d|2.

Thus the desired conclusion (3.9) follows from (2.1), (3.4) and weak lower–semicontinuity of convex
functions. Finally, as

[%ε]ess|uε|2 ≤ %ε|uε|2,

we get

0 ≤
∫

Ω

trace
[
%u⊗ u− %u⊗ u

]
dx ≤ 2E, (3.10) I9d

where E is the total energy defect appearing on the left–hand side of the energy inequality (2.3).
As for the residual components, we deduce from the energy inequality∫

Ωε,τ

[%ε]
γ
res(τ, ·) dx

<∼ ε2m, 0 ≤ τ ≤ T. (3.11) I10

Consequently, by Hölder’s inequality,∫
Ωε;τ

[%ε]res|uε| dx
<∼ ε

2m
γ ‖uε(τ, ·)‖Lq(Ω;Rd),

1

γ
+

1

q
= 1, (3.12) I11

and, similarly, ∫
Ωε;τ

[%ε]res|uε ⊗ uε| dx
<∼ ε

2m
γ ‖uε(τ, ·)‖2

Lq(Ω;Rd),
1

γ
+

2

q
= 1 (3.13) I12

for a.a. τ ∈ (0, T ).
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3.2 Constructing a suitable class of test functions
TF

Our goal is to approximate a test function

ϕ ∈ C∞c ([0, T ]× Ω;R2), divxϕ = 0,

by a suitable family of admissible test functions (ϕε)ε>0 in (3.2).
The test function are obtained following the construction of He and Iftimie [10, 11], specifically,

ϕ̃ε = ∇⊥x (ηε(x− hε(t))Ψε),

with the potential Ψε,
∇⊥x Ψε = ϕ normalized as Ψε(t,hε(t)) = 0.

The cut-off functions ηε near the disk D(hε(t), ε) are smooth and satisfy the following properties
(see [10, Lemma 3]):

|ηε| ≤ 1, ηε(y) = 0 if |y| ≤ ε, ηε(y) = 1 if |y| ≥ α(ε)ε, (3.14) I13

|∇xηε(y)| <∼ 1

ε

1

log(α(ε))
, |∇2

xηε(y)| <∼ 1

ε2
. (3.15) I13a

where α(ε) is chosen in such a way that

α(ε)→∞, α(ε)ε(1 + |h′ε(t)|)→ 0 as ε→ 0. (3.16) I13b

As shown in [10, Lemma 5], the functions ϕ̃ε enjoy the following properties:

ϕ̃ε, ∇xϕ̃ε ∈ Cc(([0, T ]×Rd) \ ∪t∈[0,T ]Bε,t), ∂tϕ̃ε ∈ L∞((0, T )×R2;R2), (3.17) I16

dist[hε(τ); ∂Ω] > εα(ε) ⇒ ϕ̃ε(τ, ·)|∂Ω = 0, (3.18) I16a

ϕ̃ε → ϕ strongly in L∞(0, T ;W 1,2(R2;R2)) as ε→ 0. (3.19) I17

Unfortunately, the functions ϕ̃ε do not vanish on ∂Ω unless dist[h(t); ∂Ω] > εα(ε). To remedy
this, we consider a convex combination

ϕε = χε(t)ϕ̃ε + (1− χε(t))ϕ for suitable 0 ≤ χε(t) ≤ 1, χε ∈ W 1,∞(0, T ).

First observe that, similarly to ϕε,

‖χε(t)ϕ̃ε + (1− χε)ϕ‖L∞(0,T ;W 1,2(Ω;R2))
<∼ 1,

and

ϕε−ϕ =
(
χε(t)ϕ̃ε+(1−χε)ϕ

)
−ϕ = χε(ϕ̃ε−ϕ)→ 0 in L∞(0, T ;W 1,2(Ω;R2)) as ε→ 0. (3.20) I20

9



Next, we compute the approximation error in the time derivative

∂t

(
χε(t)ϕ̃ε + (1− χε)ϕ

)
− ∂tϕ = χε(t)(∂tϕ̃ε − ∂tϕ) + χ′ε(t)(ϕ̃ε −ϕ),

where the former error term
χε(t)(∂tϕ̃ε − ∂tϕ)

can be controlled in W−1,2 exactly as in He and Iftimie [11] since χ is independent of x. As for the
latter, we have

χ′ε(t)(ϕ̃ε −ϕ) = χ′ε(t)∇⊥x
(

[ηε(x− h(t))− 1]Ψε

)
= ∇⊥x

[
χ′ε(t)

(
[ηε(x− h(t))− 1]Ψε

)]
,

where, in accordance with (3.14),

‖χ′ε(t)[ηε(x− h(t))− 1]Ψε‖2
L2(Ω)

<∼ |χ′ε(t)|2ε2α2(ε). (3.21) I14b

Thus if
|χ′ε(t)|

<∼ |h′ε(t)|, (3.22) I14

the latter error vanishes in W−1,2 for ε→ 0 as a consequence of (3.16).
For δ > 0 fixed, let ϕ ∈ C1([0, T )× Ω) be given such that

ϕ(t, x) = 0 whenever dist[x, ∂Ω] ≤ 2δ. (3.23) I15

Finally, we choose

χε(t) = Hδ

(
dist[hε(t); ∂Ω]

)
, 0 ≤ Hδ ≤ 1, Hδ(z) = 0 for z ≤ δ

2
, Hδ(z) = 1 for z ≥ δ,

where Hδ is a Lipschitz function. We claim that the test functions

ϕε = χε(t)ϕ̃ε + (1− χε(t))ϕ

vanish both on the boundary ∂Ω and on the balls Bε,t, t ∈ [0, T ]. First, by construction, the
function

χεϕ̃ε

vanishes on Bε,t for any t ∈ [0, T ]. Moreover, if χε > 0, then, in view of (3.16),

dist[hε(t), ∂Ω] >
δ

2
> εα(ε) for ε small enough.

It follows from (3.18) that χεϕε|∂Ω = 0.
Second, obviously (1 − χε)ϕ|∂Ω = 0. Next, if χε < 1, we have dist[hε(t); ∂Ω] < δ. Thus, in

view of (3.23), (1− χε)ϕ(t, ·)|Bε,t = 0 as soon as ε < δ.
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3.3 Asymptotic limit

The function ϕε constructed in Section 3.2 represents a legitimate test function for the momentum
balance (3.2). Our goal is to perform the limit ε→ 0.

Step 1: Viscous term. In view of hypothesis (1.17), (2.1), and (2.2), it follows from (3.20) that∫ T

0

∫
Ω

S(∇xuε) : ∇xϕε dx dt−
∫

Ω

%0,εu0,ε ·ϕε(0, ·) dx

→ µ

∫ T

0

∫
Ω

∇xu : ∇xϕ dx dt−
∫

Ω

%u0 ·ϕ(0, ·) dx (3.24) A1

for any ϕ ∈ C∞c ([0, T )× Ω;Rd), divxϕ = 0.

Step 2: Convective term. We can write∫ T

0

∫
Ω

%εuε⊗uε : ∇xϕε dx dt =

∫ T

0

∫
Ω

[%ε]essuε⊗uε : ∇xϕε dx dt+

∫ T

0

∫
Ω

[%ε]resuε⊗uε : ∇xϕε dx dt

We use (3.8) to obtain∫ T

0

∫
Ω

[%ε]essuε ⊗ uε : ∇xϕε dx dt→
∫ T

0

∫
Ω

%u⊗ u : ∇xϕ dx dt

+

∫ T

0

∫
Ω

(
%u⊗ u− %u⊗ u

)
: ∇xϕ dx dt. (3.25) A2

Step 3: Time derivative. Using the same arguments as in [11] combined with (3.21), we get∫
Ω

%uε · ∂tϕε dx
<∼ ‖uε‖W 1,2

0 (Ω;R2)‖∂tϕε‖W−1,2(Ω;R2) → 0 in L2(0, T ). (3.26) A3

Step 4: Remaining terms. The final step is to show∫ T

0

∫
Ωε,t

(%ε − %)uε · ∂tϕε dx dt→ 0,∫ T

0

∫
Ωε,t

[%ε]resuε ⊗ uε : ∇xϕε dx dt→ 0. (3.27) A4

A direct manipulation reveals

‖∇xϕε‖L∞((0,T )×Ω;R2×2)
<∼ ‖∇2ηε‖L∞(R2) + 1,

‖∂tϕε‖L∞((0,T )×Ω;R2×2)
<∼ (1 + |h′ε(t)|)(‖∇2ηε‖L∞(R2) + 1). (3.28) A5

Consequently, in view of (3.15) and (3.6), (3.13), the desired conclusion (3.27) follows as soon as

min

{
m;

2m

γ

}
> 3. (3.29) A6
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4 Proof of the main result
C

Summarizing the results obtained in the preceding section we may infer that limit velocity

u ∈ L∞(0, T ;L2(Ω;R2)) ∩ L2(0, T ;W 1,2
0 (Ω;R2))

solves the following problem:

divxu = 0, u|∂Ω = 0;∫ T

0

∫
Ω

[
%u · ∂tϕ + %u⊗ u : ∇xϕ dx dt = µ

∫ T

0

∫
Ω

∇xu : ∇xϕ dx dt−
∫

Ω

%u0 ·ϕ(0, ·) dx

−
∫ T

0

∫
Ω

R : ∇xϕ dx dt (4.1) C1

for any ϕ ∈ C1
c ([0, T )× Ω);∫

Ω

1

2
%|u|2(τ, ·) dx+ E(τ) + µ

∫ τ

0

∫
Ω

|∇xu| dx dt ≤
∫

Ω

1

2
%|u0|2 dx (4.2) C2

for a.a. τ ∈ (0, T ). Here, the tensor R = %u⊗ u− %u⊗u is positively semi–definite and satisfies
(3.10), specifically

0 ≤
∫

Ω

trace[R] dx ≤ 2E for a.a. τ ∈ (0, T ). (4.3) C3

Consequently, the limit function u is a dissipative solution of the Navier–Stokes system (1.21) in
the sense of [1]. As the initial velocity is regular, the same problem admits a strong solution in
the class (1.22). Thus applying the weak–strong uniqueness result [1, Theorem 2.6. and Remark
2.5] we conclude that u coincides with the strong solution of (1.21).

Finally, as the strong solution satisfies the energy equality, its follows from (4.2) that E = 0,
and ∫ T

0

∫
Ω

S(∇xuε) : ∇xuε dx dt→ µ

∫ T

0

∫
Ω

|∇xu|2 dx

yielding the strong convergence claimed in (1.20).
Theorem 1.1 has been proved.

5 Appendix
Ap

Our main result (Theorem 1.1) is valid whenever (%ε,uε)ε>0 satisfy the hypotheses (H1) – (H4)
along with the conditions (1.15)–(1.20). These hypotheses (see (1.10)–(1.14)) are satisfied if (%ε,uε)
is a weak solution of the fluid–structure interaction problem of a single rigid body immersed in a
viscous compressible fluid in the sense of [5] (see also Desjardins and Esteban [4]) or if the motion
of the body is prescribed as in [6]. Let the rigid body Sε(t) be a regular, bounded domain and

12



moving inside Ω ⊂ R2. The motion of the rigid body is governed by the balance equations for
linear and angular momentum. We assume that the fluid domain Fε(t) = Ω \ Sε(t) is filled with
a viscous isentropic compressible fluid. Initially, the domain of the rigid body is given by Sε,0
included in the ball Bε,0 and Fε,0 is the domain of the fluid. Let hε be the position of the centre
of mass and βε be the angle of rotation of the rigid body. The solid domain at time t is given by

Sε(t) = hε(t) +Rβε(t)Sε,0,

where Rβε is the rotation matrix, defined by

Rβε =

(
cos βε − sin βε
sin βε cos βε

)
.

The evolution of this fluid-structure system can be described by the following equations

∂%ε
F

∂t
+ div(%ε

Fuε
F) = 0, t ∈ (0, T ), x ∈ Fε(t), (5.1) mass:comfluid

∂

∂t
(%ε
Fuε

F) + div(ρFε uε
F ⊗ uε

F)− div S(∇xuε
F) +

1

ε2m
∇pF = 0, t ∈ (0, T ), x ∈ Fε(t), (5.2) momentum:comfluid

mεh
′′
ε(t) = −

∫
∂Sε(t)

(
S(∇xuε

F)− 1

ε2m
pFε I)νε dΓ, in (0, T ), (5.3) linear momentumcomp:body

Jεβ
′′
ε (t) = −

∫
∂Sε(t)

(S(∇xuε
F)− 1

ε2m
pFε I)νε · (x− hε(t))⊥ dΓ, in (0, T ), (5.4) angular momentumcomp:body

the boundary conditions

uε
F = h′ε(t) + β′ε(t)(x− hε(t))⊥, for t ∈ (0, T ), x ∈ ∂Sε(t), (5.5) boundarycomp-1

uε
F = 0, on (t, x) ∈ (0, T )× ∂Ω, (5.6) boundarycomp-3

and the initial conditions

%ε
F(0, x) = %F0(x), (%ε

Fuε
F)(0, x) = qF0(x), ∀ x ∈ Fε,0, (5.7) initial cond

hε(0) = 0, h′ε(0) = `0, βε(0) = 0, β′ε(0) = ω0. (5.8) initial cond:comp

In the above, the outward unit normal to ∂Fε(t) is denoted by νε(t, x). For all x = (x1, x2) ∈ R2,
we denote by x⊥, the vector (−x2, x1). Moreover, the constants mε and Jε are the mass and the
moment of inertia of the rigid body.

We want to state the existence result of the fluid-rigid body interaction system (5.1)–(5.8). To
do so, we extend the density and the velocity in the following way:

%ε(t, x) =


%ε
F(t, x), x ∈ Fε(t),

%ε
S(t, x), x ∈ Sε(t),

%, x ∈ R2 \ Ω,

uε(t, x) =


uε
F(t, x), x ∈ Fε(t),

h′ε(t) + β′ε(t)(x− hε(t))⊥, x ∈ Sε(t),
0, x ∈ R2 \ Ω.

(5.9) ext:vru
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%ε,0(x) =


%F0(x), x ∈ Fε,0,
%Sε (0, x), x ∈ Sε,0,
%, x ∈ R2 \ Ω,

qε,0(x) =


qF0 , x ∈ Fε,0,
%Sε (0, x)(`0 + ω0 × x), x ∈ Sε,0,
0, x ∈ R2 \ Ω.

(5.10) ext:vru0

We have the following existence result for the system (5.1)–(5.8) following [5, Theorem 4.1]:

Theorem 5.1. Let Ω ⊂ R2 be a bounded domain and the pressure pF be given by the isentropic
constitutive law

pF = p(%F) = a(%F)γ, γ > 1, a > 0.

Let the initial data (%0, q0) be defined by (5.10) satisfying

%0 ∈ Lγ(Ω), %0 ≥ 0 a.e. in Ω, (5.11) init

qF01{ρF0=0} = 0 a.e. in Ω,
|qF0|2

ρF0

1{ρF0>0} ∈ L1(Ω). (5.12) init1

Then the system (5.1)–(5.8) admits a variational solution (%ε, ) in the following sense:

%ε ≥ 0, %ε ∈ L∞(0, T ;Lγ(Ω)), uε ∈ L2(0, T ;W 1,2
0 (Ω;R2)), (5.13)

uε = h′ε(t) + β′ε(t)(x− h(t))⊥ in Sε(t), (5.14)

T∫
0

∫
R2

[
%ε
∂φ

∂t
+ (%εuε) · ∇φ

]
dx dt = 0, (5.15) weak density

T∫
0

∫
R2

[
b(%ε)

∂φ

∂t
+ (b(%ε)uε) · ∇φ+ (b(%ε)− b′(%ε)%ε) divuε φ

]
dx dt = 0, (5.16) renormalized

for any φ ∈ C1
c ([0, T )×R2) and any b ∈ C1[0,∞), b′ ∈ Cc[0,∞);

T∫
0

∫
R2

[
(%εuε) ·

∂ϕ

∂t
+ (%εuε ⊗ uε) : ∇xϕ +

1

ε2m
a%ε

γ divϕ

]
dx dt =

T∫
0

∫
R2

S(∇xuε) : ∇xϕ dx dt,

(5.17) continuity weak

for any ϕ ∈ C∞c ((0, T )×Ω), with D(ϕ) = 0 in a neighborhood of Sε(t) where Dϕ = 1
2

(∇xϕ +∇t
xϕ);

The following energy inequality holds for a.e. t ∈ [0, T ]:∫
Ω

1

2
%ε|uε|2(τ, ·) dx+

∫
Ω

1

ε2m

(
P (%ε)− P ′(%)(%ε − %)− P (%)

)
(τ, ·) dx+

∫ τ

0

∫
Ω

S(∇xuε) : ∇xuε dx dt

≤
∫
{%ε,0>0}

1

2

|qε,0|2

%ε,0
dx+

1

ε2m

∫
Ω

(
P (%ε,0)− P ′(%)(%ε,0 − %)− P (%)

)
dx, (5.18) fsi:energy

where P is the pressure potential

P (%) =
a

γ − 1
%γ.

14



Remark 5.2. Let us mention that the specific form of the energy inequality (1.14) follows from
[5, Lemma 3.2] and (5.18).

We can verify the hypotheses (H1)–(H4) and apply Theorem 1.1 under certain conditions to
obtain the following result in the framework of fluid-rigid body interaction:

fsi:mT1 Theorem 5.3. Let Ω ⊂ R2 be a bounded domain of class C3 and (%0, q0) satisfy (5.11)–(5.12).
Assume that Sε,0 ⊂ Bε,0,

• 1

ε2m

∫
Ωε,0

(
P (%ε,0)− P ′(%)(%ε,0 − %)− P (%)

)
dx→ 0, where min

{
m;

2m

γ

}
> 3. (5.19) fsi:i14

•
∫
{%ε,0>0}

1

2

|qε,0|2

%ε,0
dx→

∫
Ω

%|u0|2 dx as ε→ 0, where u0 ∈ W 2,∞(Ω), divxu0 = 0, u0|∂Ω = 0.

(5.20) fsi:i15

• The mass mε verifies that
mε

ε2
→∞ as ε→ 0. (5.21) fsi:i16

Then

sup
τ∈[0,T ]

‖%ε(τ, ·)− %‖(L2+Lγ)(Ω) → 0, (5.22) fsi:i17

uε → u in L2(0, T ;W 1,2
0 (Ω;R2)) (5.23) fsi:i18

as ε→ 0, where u is the (unique) classical solution of the incompressible Navier–Stokes system

divxu = 0,

%∂tu + %divx(u⊗ u) +∇xΠ = µ∆xu,

u|∂Ω = 0,

u(0, ·) = u0 (5.24) fsi:i19

in (0, T )× Ω.

Remark 5.4. We want to point out that as observed by He and Iftimie [11], assumption (1.18)
holds for the fluid–structure interaction problem if the condition (5.21) satisfies. Observe that the
condition (5.21) implies inf %Sε → ∞, where %Sε is the density of the rigid body immersed in the
fluid.
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FKNNS [6] E. Feireisl, O. Kreml, Š. Nečasová, J. Neustupa, and J. Stebel. Weak solutions to the
barotropic Navier-Stokes system with slip boundary conditions in time dependent domains.
J. Differential Equations, 254(1):125–140, 2013.

Gerh [7] C. Gerhardt. Lp-estimates for solutions to the instationary Navier-Stokes equations in dimen-
sion two. Pacific J. Math., 79(2):375–398, 1978.

MR3295721 [8] O. Glass, C. Lacave, and F. Sueur. On the motion of a small body immersed in a two-
dimensional incompressible perfect fluid. Bull. Soc. Math. France, 142(3):489–536, 2014.

MR3452278 [9] O. Glass, C. Lacave, and F. Sueur. On the motion of a small light body immersed in a two
dimensional incompressible perfect fluid with vorticity. Comm. Math. Phys., 341(3):1015–
1065, 2016.

MR3992086 [10] J. He and D. Iftimie. A small solid body with large density in a planar fluid is negligible. J.
Dynam. Differential Equations, 31(3):1671–1688, 2019.

MR4311107 [11] J. He and D. Iftimie. On the small rigid body limit in 3D incompressible flows. J. Lond.
Math. Soc., 104(2):668–687, 2021.

MR1974460 [12] D. Iftimie, M. C. Lopes Filho, and H. J. Nussenzveig Lopes. Two dimensional incompressible
ideal flow around a small obstacle. Comm. Partial Differential Equations, 28(1-2):349–379,
2003.

MR2244381 [13] D. Iftimie, M. C. Lopes Filho, and H. J. Nussenzveig Lopes. Two-dimensional incompressible
viscous flow around a small obstacle. Math. Ann., 336(2):449–489, 2006.

MR2542717 [14] C. Lacave. Two dimensional incompressible ideal flow around a thin obstacle tending to a
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