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Abstract

It is known that rational approximations of elementary analytic functions (exp, log,

trigonometric, and hyperbolic functions, and their inverse functions) are computable in the

weak complexity class TC0. We show how to formalize the construction and basic properties

of these functions in the corresponding theory of bounded arithmetic, VTC 0.

1 Introduction

The complexity class1 TC0 is a weak subclass of polynomial time and logarithmic space; we

can think of TC0, conflated with the corresponding function class, as the complexity class of

elementary integer arithmetic operations: +, −, ·, bx/yc, and < are TC0-computable, with

· and bx/yc being TC0-complete (under AC0 Turing reductions). Iterated addition
∑

i<n xi
and multiplication

∏
i<n xi are also TC0-complete. (The TC0-computability of

∏
i<n xi and

bx/yc was a difficult problem, finally settled by Hesse, Allender, and Barrington [7].) Apart

from integers, TC0 can compute the corresponding operations in various related structures: Q,

Q(i), and other number fields, or polynomial rings. Using iterated sums and products, TC0 can

compute approximations of analytic functions given by power series with TC0-computable coef-

ficients [19, 20, 13, 7], such as the elementary analytic functions [1, 17]: exp, log, trigonometric,

hyperbolic, inverse trigonometric, and inverse hyperbolic functions.

One of the basic themes in proof complexity is that for many complexity classes C, we can

associate to C a theory of bounded arithmetic T whose reasoning power is captured by C: the

axiom schemata of T that provide the bulk of its deductive capabilities (induction, comprehen-

sion, minimization, . . . ) are postulated for formulas that express predicates computable in C,

while the provably total computable functions of T (of suitable syntactic shape) are exactly

∗Supported by grant 19-05497S of GA ČR. The Institute of Mathematics of the Czech Academy of Sciences

is supported by RVO: 67985840.
1Originally defined by Hajnal et al. [6] in a non-uniform setting, but in this paper we always mean the

DLOGTIME-uniform version of the class, which gives a robust notion of “fully uniform” TC0 with several

equivalent definitions across various computational models (cf. [2]).
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the C-functions. We may consider T to be a formalization of feasible reasoning of complex-

ity C: what properties of concepts from C are derivable if we restrict our deductions to only

use C-predicates and C-computable objects, shunning any higher-level reasoning?

In this paper, we are interested in feasible reasoning of complexity TC0. The basic theory

of bounded arithmetic corresponding to TC0 is the Zambella-style two-sorted theory VTC 0

introduced by Nguyen and Cook [15], or equivalently (up to the RSUV isomorphism), the

Buss-style one-sorted theory2 ∆b
1-CR of Johannsen and Pollett [12]. It turns out that VTC 0 is

quite powerful when it comes to proving properties of TC0-computable arithmetic operations,

even though this can be rather challenging to prove. Notably, as shown in Jeřábek [9] by

formalizing a variant of the Hesse–Allender–Barrington algorithm, VTC 0 proves the existence

of iterated products
∏
i<n xi satisfying the defining recurrence∏

i<0

xi = 1,
∏

i<n+1

xi = xn
∏
i<n

xi,

and of integer division satisfying ybx/yc ≤ x < y
(
bx/yc + 1

)
. Earlier, Jeřábek [8] formalized

in VTC 0 (augmented with an iterated multiplication axiom, redundant by [9]) approximation

of complex roots of constant-degree univariate polynomials; as a consequence, VTC 0 includes

IOpen (quantifier-free induction in the language of ordered rings) on the binary number sort,

and even the RSUV translation of Σb
0 induction and minimization in Buss’s language.

We continue the investigation of the power of VTC 0, shifting the focus from integer (or

rational) operations to real and complex analytic functions. As we already mentioned, a vast

number of such functions can be approximated by TC0 functions, and it’s not clear to what

extent we can develop a general theory of such functions in VTC 0; in this paper, we start with

the most notorious examples—the elementary analytic functions: exp, trigonometric functions

(sin, cos, tan, . . . ), hyperbolic functions (sinh, cosh, tanh, . . . ), and their inverse functions (log,

arcsin, arsinh, . . . ). We mostly concentrate on complex exp and log, as the other functions can

be defined in terms of these.

It would be extremely laborious to work directly in the language of VTC 0 all the time,

expressing everything in terms of rational approximations. We follow a different approach—

we present the constructions and arguments model-theoretically, considering an extension of

a given model M � VTC 0 to a larger structure where we can define the elementary analytic

functions properly as bona fide functions: the model itself gives the ordered ring of “integers”

ZM, its fraction field is the ordered field of “rationals” QM, and the completion of QM (in

the sense of ordered, topological, or valued field theory) gives the “reals” RM and “complex

numbers” CM = RM(i). (The completion RM was already used as a technical tool in [8], but

here we make it the central structure of interest, along with CM.) We still need to consider

rational approximations so that we have a way of translating our results back into the language

of VTC 0, and in particular, so that we can refer to the newly constructed functions in more

sophisticated arguments that employ induction or related axiom schemata of VTC 0, which only

hold for properties expressible by TC0 formulas in M.

2Earlier, Johannsen and Pollett [11] defined a theory C0
2 that might be more convenient to work with; C0

2 is a

∀∃Σb1-conservative extension of ∆b
1-CR. Johannsen [10] introduced an extension C0

2 [div ] of C0
2 , which is however

essentially identical to C0
2 by results of [9].
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The very fact that rational or Gaussian rational (i.e., Q(i)) approximations of exp and log

on suitable domains are TC0-computable ensures that they are representable as provably total

computable functions in VTC 0. But by itself, this only means that for each standard rational

input, VTC 0 proves that the function has the right value, which is a very low bar to clear: e.g.,

it does not even imply that the approximations converge to a unique real or complex value.

What we really need is that the functions can be represented in such a way that VTC 0 proves

the most fundamental properties they have in the real world.

What these properties are is a judgement call. We consider the most salient properties of

exp to be the identity exp(z + w) = exp z expw, and the shape of its domain, codomain, and

preimages: real exp is an increasing bijection from RM
L (the logarithmically bounded reals)

onto RM
>0; complex exp maps RM

L + iRM to CM
6=0, and there is a constant π such that exp is

2πi-periodic, and maps RM
L + i(−π, π] bijectively onto CM

6=0. (Actually, we also define exp z

when Re z is negative, but not logarithmically bounded, putting exp z = 0.) Of these, the most

difficult to prove will be the surjectivity of exp, including the existence of π; we will need to

construct log to prove this. The main properties of log are that it is a bijection from CM
6=0 onto

RM
L + i(−π, π], and a right inverse of exp, i.e., exp log z = z (which implies the surjectivity of

exp, as mentioned).

Our construction of exp is fairly straightforward, using the common power series (though we

will need the existence of π and the 2πi-periodicity of exp to extend its domain from RM
L +iRM

L to

RM
L + iRM). The proof of exp(z+w) = exp z expw is not very difficult either. The construction

of log is much more complicated, as a power series only defines it on a neighbourhood of 1; we

will need to extend it in several stages to eventually define it on all of CM
6=0. It will also take

us a lot of work to prove the key right-inverse property exp log z = z: the basic strategy of our

argument is to show log zw = log z+logw under suitable restrictions on z and w, which ensures

that log exp z obeys Cauchy’s functional equation log exp(z+w) = log exp z+ log expw (again,

under certain conditions on z, w); coupled with the asymptotic expansion of exp near 0 and log

near 1, we will derive log exp z = z for small enough z, and use the injectivity of log to infer

exp log z = z.

After we finish with exp and log, we proceed to define and show basic properties of com-

plex powering zw (with n
√
z as a special case), iterated multiplication

∏
j<n zj for sequences of

Gaussian rationals zj ∈ QM(i), and last but not least, the promised hyperbolic, trigonometric,

inverse hyperbolic, and inverse trigonometric functions.

Our principal motivation for developing the theory of exp, log, and other elementary analytic

functions in VTC 0 is that it is intrinsically interesting. However, we also have one specific

application concerning models of arithmetic in mind. Recall that an integer part of an ordered

field R is a discretely ordered subring D such that all elements of R can be approximated

within distance 1 in D; Shepherdson [23] proved that a model of arithmetic is an integer part

of a real-closed field iff it satisfies IOpen.

An (ordered) exponential field is an ordered field 〈R,+, ·, <〉 endowed with an ordered group

isomorphism exp: 〈R,+, <〉 → 〈R>0, ·, <〉. Ressayre [21] introduced the notion of an exponential

integer part (EIP) of an exponential field 〈R, exp〉, which is essentially an integer part of R whose

positive part is closed under exp (here, we should think of exp as 2x rather than the usual ex).
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In view of Shepherdson’s characterization, we may wonder when is a model of arithmetic an

EIP of a real-closed exponential field (RCEF), and in particular, whether this implies EXP (the

totality of the usual 2n function) or at least some nontrivial consequences of EXP . Note that

the definition of EIP does not require exp to extend the usual 2n.

Using our results on the construction of exp, we can show that the property of being an EIP

of a RCEF has few (if any) first-order consequences: every countable model of VTC 0 is an EIP

of a RCEF, and every model of VTC 0 has an elementary extension to an EIP of a RCEF. Notice

that this is still nontrivial: while an M � VTC 0 is an integer part of RM which is a real-closed

field, the natural exp or 2x function we construct is an isomorphism 〈RM
L ,+, <〉 ' 〈RM

>0, ·, <〉
rather than 〈RM,+, <〉 ' 〈RM

>0, ·, <〉, hence there is additional work needed. Since this is

somewhat tangential to the main part of the present—already long—article, we relegate these

results to a follow-up paper.

This paper is organized as follows. After this Introduction, Section 2 includes preliminaries

on VTC 0, its models, and approximation of real-valued functions. Section 3 is the core of the

paper in which we construct exp and log and prove their fundamental properties: it starts with

a summary of the main results, followed by a construction of exp in Section 3.1 and a construc-

tion of log in several steps in Sections 3.2–3.6. In Section 4, we introduce complex powering

and iterated multiplication of Gaussian rationals, and in Section 5, we treat trigonometric,

hyperbolic, inverse trigonometric, and inverse hyperbolic functions. Concluding remarks are

presented in Section 6. Appendix A gives tedious formal details of proofs of the existence of

TC0 approximations of exp and log.

2 Preliminaries

We work with two-sorted (second-order) theories of bounded arithmetic in the style of Zam-

bella [25]. Our main reference for these theories is Cook and Nguyen [4], including a detailed

treatment of VTC 0, however we present the main definitions here in order to fix notation.

The language L2 = 〈0, S,+, ·,≤,∈, ‖·‖〉 of two-sorted bounded arithmetic is a first-order

language with equality with two sorts of variables, one for natural numbers (called small or

unary numbers), and one for finite sets of small numbers, which can also be interpreted as large

or binary numbers so that X represents
∑

u∈X 2u. The standard convention is that variables

of the first sort are written with lowercase letters x, y, z, . . . , and variables of the second sort

with uppercase letters X,Y, Z, . . . ; while we adhere to this convention in the introductory

material here, we will not follow it in the rest of the paper (we will mostly work with binary

numbers of various kind, and generally write them all in lower case in accordance with common

mathematical practice). The symbols 0, S,+, ·,≤ of L2 denote the usual arithmetic operations

and relation on the unary sort; x ∈ X is the elementhood predicate, also written as X(x), and

the intended meaning of the ‖X‖ function is the least unary number strictly greater than all

elements of X. This function is usually denoted as |X|, however we reserve the latter symbol

for the absolute value function, which we will use much more often. We write x < y as an

abbreviation for x ≤ y ∧ x 6= y.
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Bounded quantifiers are introduced by

∃x ≤ t ϕ ⇐⇒ ∃x (x ≤ t ∧ ϕ),

∃X ≤ t ϕ ⇐⇒ ∃X
(
‖X‖ ≤ t ∧ ϕ

)
,

where t is a term of unary sort not containing x or X (resp.), and similarly for universal bounded

quantifiers. A formula is ΣB
0 if it contains no second-order quantifiers, and all its first-order

quantifiers are bounded. A formula is ΣB
i if it consists of i alternating blocks of bounded

quantifiers, the first of which is existential, followed by a ΣB
0 formula.

The theory V 0 in L2 can be axiomatized by the basic axioms

x+ 0 = x x+ Sy = S(x+ y)

x · 0 = 0 x · Sy = x · y + x

Sy ≤ x→ y < x ‖X‖ 6= 0→ ∃x
(
x ∈ X ∧ ‖X‖ = Sx

)
x ∈ X → x < ‖X‖ ∀x (x ∈ X ↔ x ∈ Y )→ X = Y

and the comprehension schema

(ϕ-COMP) ∃X ≤ x ∀u < x
(
u ∈ X ↔ ϕ(u)

)
for ΣB

0 formulas ϕ, possibly with parameters not shown (but with no occurrence of X). We

denote the set X whose existence is postulated by ϕ-COMP as {u < x : ϕ(u)}. Using COMP ,

V 0 proves the (unary number) induction and minimization schemata

ϕ(0) ∧ ∀x
(
ϕ(x)→ ϕ(x+ 1)

)
→ ∀x ϕ(x),(ϕ-IND)

ϕ(x)→ ∃y
(
ϕ(y) ∧ ∀z < y ¬ϕ(z)

)
(ϕ-MIN )

for ΣB
0 formulas ϕ.

Following [4], a set X codes a sequence (indexed by small numbers) of sets whose uth

element is X [u] =
{
x : 〈u, x〉 ∈ X

}
, where 〈x, y〉 = 1

2(x + y)(x + y + 1) + y. Likewise, we can

code sequences of small numbers using X(u) = ‖X [u]‖. While we stick to the official notation in

formal contexts such as when stating axioms, elsewhere we will generally write X = 〈Xi : i < n〉
to indicate that X codes a sequence of length n whose ith element is Xi. The theory VTC 0

extends V 0 by the axiom

∀n,X ∃Y
[
Y (0) = 0 ∧ ∀i < n

(
(i /∈ X → Y (i+1) = Y (i)) ∧ (i ∈ X → Y (i+1) = Y (i) + 1)

)]
,

asserting that for any set X, there is a sequence Y supplying the counting function Y (i) =

card(X ∩ {0, . . . , i− 1}).
TC0 was originally introduced by Hajnal et al. [6] as a non-uniform class, but we define it as

the class of languages L ⊆ {0, 1}∗ recognizable by a DLOGTIME-uniform family of polynomial-

size constant-depth circuits using ¬ and unbounded fan-in ∧, ∨, and Majority gates; equiv-

alently, it consists of languages computable by O(log n)-time threshold Turing machines with

O(1) thresholds, or by constant-time TRAM with polynomially many processors [18]. In terms
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of descriptive complexity, a language is in TC0 iff the corresponding class of finite structures is

definable in FOM, first-order logic with majority quantifiers [2].

In connection with bounded arithmetic, it is convenient to consider not just the complexity of

languages, but of predicates P (X1, . . . , Xn, x1, . . . , xm) with several inputs, where Xi ∈ {0, 1}∗

as usual, and xi ∈ N are written in unary. It is straightforward to generalize TC0 and similar

classes to this context, see [4, §IV.3] for details. Likewise, we consider computability of functions.

A function F : ({0, 1}∗)n × Nm → {0, 1}∗ is a TC0 function if ‖F (X1, . . . , Xn, x1, . . . , xm)‖ ≤
p
(
‖X1‖, . . . , x1, . . .

)
for some polynomial p, and the bit-graph

{
〈 ~X, ~x, i〉 : bit

(
F ( ~X, ~x), i

)
= 1
}

is a TC0 predicate; a unary number function f : ({0, 1}∗)n × Nm → N is a TC0 function if

f( ~X, ~x) ≤ p
(
‖X1‖, . . . , x1, . . .

)
, and the graph

{
〈 ~X, ~x, y〉 : f(~x, ~X) = y

}
is TC0. The class of

TC0 functions is denoted FTC0. We note that by results of [7], class K of Constable [3] consists

exactly of TC0 functions ({0, 1}∗)n → {0, 1}∗ where the inputs and output are interpreted as

natural numbers written in binary.

All TC0 functions have provably total ΣB
1 definitions in VTC 0. More precisely, as shown in

[4, §IX.3], VTC 0 has a conservative extension VTC 0 by ΣB
1 -definable functions such that every

TC0 function is represented by a function symbol in VTC 0, and VTC 0 proves comprehension,

induction, and minimization for ΣB
0 formulas in the expanded language of VTC 0; we will call

such formulas TC0 formulas, and identify VTC 0 with VTC 0, using TC0 functions freely when

working in VTC 0 or in its models.

TC0 can define (as TC0 functions) +, −, ·, and < on binary natural numbers, and prove

that they form a non-negative part of a discretely ordered ring; in fact, they satisfy IOpen

(induction for open formulas in the language of ordered rings, which entails integer division) by

the results of [8, 9].

If M � VTC 0, we denote by 〈NM, 0, 1,+, ·, <〉 the second sort of M interpreted as a set

of binary natural numbers along with with its arithmetic structure. We extend it with neg-

ative numbers to form the discretely ordered ring 〈ZM, 0, 1,+, ·, <〉 (the integers of M). Let

〈QM, 0, 1,+, ·, <〉 (the rationals of M) be the fraction field of ZM, let 〈RM, 0, 1,+, ·, <〉 (the reals

of M) be the completion (see below for more details) of QM, which is a real-closed field by [8, 9],

and let 〈CM, 0, 1,+, ·〉 (the complex numbers of M) be its algebraic closure, i.e., CM = RM(i)

where i2 = −1. We also consider the field QM(i) of Gaussian rationals of M. The structures

ZM, QM, and QM(i) are interpretable in M, by formulas independent of M (albeit with non-

absolute equality in the cases of QM and QM(i), as we do not know how to reduce fractions to

lowest terms in VTC 0), but in general, RM and CM are not (e.g., it is easy to show that RM

is always uncountable; moreover, if M has countable cofinality, then |RM| = |M|ω).

The completion of an ordered field 〈F,+, ·, <〉 can be described in several equivalent ways.

The purely order-theoretic way is as follows (cf. [22]). A cut in F is a pair 〈A,B〉 of sets such

that F = A ∪ B, inf{b − a : b ∈ B, a ∈ A} = 0, and B has no least element; F is complete if

maxA exists for every cut 〈A,B〉. The completion of F is a complete ordered field 〈F̂ ,+, ·, <〉
such that F is a dense subfield of F̂ (i.e., every non-degenerate interval of F̂ intersects F ). The

completion of F is unique up to F -isomorphism; it can be explicitly constructed by endowing

the set of all cuts of F with suitable structure.

We will most often use a topological description of F̂ (see [24]). The interval topology makes
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F a topological field, and therefore a uniform space3 with a fundamental system of entourages

U = {Uε : ε ∈ F>0}, where Uε = {〈x, y〉 ∈ F 2 : |x − y| ≤ ε}. F is complete as a uniform space

if every Cauchy net in F converges. Here, a net is an indexed set A = {ai : i ∈ I} ⊆ F where

〈I,≤〉 is a directed poset; A is a Cauchy net if for every U ∈ U , there exists i0 ∈ I such that

〈ai, aj〉 ∈ U for all i, j ≥ i0, and A converges to a ∈ F , written a = limi∈I ai, if for every U ∈ U ,

there exists i0 ∈ I such that 〈ai, a〉 ∈ U for all i ≥ i0. (In our applications, I will usually be a

totally ordered set such as 〈LM,≤〉.) The completion of F is a complete uniform space F̂ such

that F is a (topologically) dense subspace of F̂ ; it is again unique up to F -isomorphism. The

key property of F̂ is that every uniformly continuous function from F to a complete uniform

space S extends uniquely to a uniformly continuous function F̂ → S. The ring operations on

F extend to continuous operations on F̂ that make it a topological ring. For ordered fields F ,

the completion F̂ is in fact an ordered field, and coincides with the order-theoretic completion

of F as above.

Apart from the ordered fields QM and RM, we will also consider QM(i) and CM as topologi-

cal fields; in particular, CM is the completion of QM(i). We will commonly use the consequences

that a Cauchy net in QM(i) has a unique limit in CM, and that any uniformly continuous

function D → CM, D ⊆ QM(i), has a unique uniformly continuous extension to a function

D → CM.

If an ordered field F is archimedean (which for our QM happens only when M is the

standard model), it embeds in R, and its completion is just R. Otherwise, F is a valued field

with valuation ring {x ∈ F : ∃n ∈ N |x| ≤ n}, and F̂ can be described as the valued field

completion of F ; see [5] and [8, §6] for details.

The unary number sort of M embeds (via a TC0 function) into NM as an initial segment

of logarithmic numbers, which we denote LM. We define the logarithmically bounded integers,

reals, etc., by

CM
L = {z ∈ CM : ∃n ∈ LM |z| ≤ n},

RM
L = RM ∩CM

L , QM
L = QM ∩CM

L , and ZM
L = ZM ∩CM

L .

We also write RM
>0 = {x ∈ RM : x > 0}, CM

6=0 = {z ∈ CM : z 6= 0}, etc. We define the open

and closed disks DM
r (z0) = {z ∈ CM : |z − z0| < r}, DM

r (z0) = {z ∈ CM : |z − z0| ≤ r} for

z0 ∈ CM, r ∈ RM
>0.

We will usually work with a fixed model M � VTC 0, in which case we will omit the M

superscripts to simplify the notation; we do this for the rest of this section as well.

When manipulated (as inputs or outputs) by TC0 functions, elements of Z, Q, and Q(i) are

represented in binary in the expected way (i.e., rationals are represented by fractions of binary

integers, and Gaussian rationals by their real and imaginary parts), while elements of L or ZL

are represented as unary integers. However, we do not introduce a standard representation

for elements of QL or QL(i); they will be treated as elements of Q or Q(i), and if needed,

the function will explicitly take another input enforcing the logarithmic restriction (such as an

element of L bounding the absolute value).

Some of our results will state the existence of TC0 functions with certain properties. Even

3We require all uniform spaces and topological groups to be Hausdorff.
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though we otherwise work relative to a fixed model M � VTC 0, such statements are always

meant to be uniform: i.e., interpreted as “there is a specific function symbol of VTC 0 such that

for every model M � VTC 0, etc.”

If n is a unary natural number, 2n is represented as a binary number by the set {n}. Thus,

we can define a TC0 function 2n : L → N satisfying 21 = 2 and 2n+m = 2n2m. Much more

generally, given a sequence 〈xj : j < n〉 coded in M, where xj ∈ Z and n ∈ L, there is a TC0

definition of
∑

j<n xj and (due to [9])
∏
j<n xj satisfying∑

j<0

xj = 0,
∑
j<n+1

xj = xn +
∑
j<n

xj ,∏
j<0

xj = 1,
∏

j<n+1

xj = xn ·
∏
j<n

xj .

We can extend these operations to coded sequences of rational fractions by∑
j<n

pj
qj

=

∑
j<n pj

∏
l 6=j ql∏

j<n qj
,

∏
j<n

pj
qj

=

∏
j<n pj∏
j<n qj

.

We can further extend
∑

to coded sequences of Gaussian rationals with∑
j<n

(xj + iyj) =
∑
j<n

xj + i
∑
j<n

yj .

Defining
∏

for such sequences is problematic, as the obvious formula requires a sum of 2n

terms; we will see later how to do it using exp and log, but at this point, we can at least define

powering using

(x+ iy)n =
∑

m≤n/2

(
n

2m

)
(−1)mxn−2my2m + i

∑
m<n/2

(
n

2m+ 1

)
(−1)mxn−2m−1y2m+1.

We can extend zn to a function C × L → C as follows: for a fixed n ∈ L, zn is uniformly

continuous on Dr(0) ∩Q(i) for each r ∈ R>0, as

|z − w| ≤ δ =⇒ |zn − wn| =
∣∣∣(z − w)

∑
j<n

zjwn−1−j
∣∣∣ ≤ (n− 1)rn−1δ

using Lemma 2.1 below. Thus, it has a unique continuous extension to each Dr(0), and therefore

a unique continuous extension to C, which we still denote zn. For z 6= 0, we also define

z−n = 1/zn. Powering satisfies the basic identities z0 = 1, z1 = z, zn+m = znzm, znm = (zn)m,

and (zw)n = znwn: for z, w ∈ Q(i), this either holds immediately, or can be proved by induction

on m; then we use the density of Q(i) in C, observing that both sides of each identity are

continuous in z. (For (zw)n = znwn, we do it in two steps: first as a function of z ∈ C with

fixed w ∈ Q(i), then as a function of w ∈ C for fixed z ∈ C.) It is also easy to check that xn is

increasing on R>0 for n > 0, and decreasing for n < 0.
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If z = x + iy ∈ C, the absolute value |z| =
√
x2 + y2 =

√
zz is well-defined as an element

of R. However, if z ∈ Q(i), we do not necessarily have |z| ∈ Q. This is a hindrance to its use

in arguments by induction, bounded sums and products, etc. For this reason, we consider the

predicate |z| ≤ r for z = x+ iy ∈ Q(i) and r ∈ Q, defined by

|z| ≤ r ⇐⇒ r ≥ 0 ∧ r2 ≥ x2 + y2(= zz).

Lemma 2.1

(i) Let z, w ∈ Q(i) and r, s ∈ Q. If |z| ≤ r and |w| ≤ s, then |z + w| ≤ r + s and |zw| ≤ rs.

(ii) Let 〈zi : i < n〉 and 〈ri : i < n〉 be sequences of elements of Q(i) and Q (respectively)

coded in M. If |zi| ≤ ri for each i < n, then
∣∣∑

i<n zi
∣∣ ≤∑i<n ri.

(iii) Let z ∈ Q(i) and r ∈ Q. If |z| ≤ r, then |zn| ≤ rn for each n ∈ L.

Proof: (i): |zw| ≤ rs follows immediately from (zw)zw = (zz)(ww). Write z = x + iy and

w = u+ iv. Since

(xu+ yv)2 ≤ (xu+ yv)2 + (xv − yu)2 = (x2 + y2)(u2 + v2) ≤ r2s2,

we have xu+ yv ≤ rs, thus

(x+ u)2 + (y + v)2 = x2 + y2 + u2 + v2 + 2(xu+ yv) ≤ r2 + s2 + 2rs = (r + s)2,

which means |z + w| ≤ r + s.

(ii) and (iii) follow from (i) by induction on n. 2

It will be most convenient for us to present constructions and arguments in a model-theoretic

way, working directly with functions f : C→ C and the like. However, we need to keep in mind

that R and C are not definable in M, and most of their elements cannot be represented as

objects of M. Since we are ultimately interested in what is provable in the theory VTC 0,

we need a way of restating properties of C-valued functions as first-order properties of M.

Moreover, we want these properties to be definable by low-complexity (TC0) formulas so that

they can be used in induction arguments, comprehension instances, etc. We will accomplish

this by means of approximation by TC0 functions. We formalize this concept as follows.

Consider f : D → C, where D ⊆ C is such that D ∩Q(i) is dense in D. An additive TC0

approximation of f is a TC0 function f+ : Q(i)× L→ Q(i) such that

|f+(z, n)− f(z)| ≤ 2−n

for all z ∈ D∩Q(i) and n ∈ L. A multiplicative TC0 approximation of f is f× : Q(i)×L→ Q(i)

such that

|f×(z, n)− f(z)| ≤ 2−n|f(z)|

for all z ∈ D ∩Q(i) and n ∈ L; i.e., if f(z) = 0, then f×(z, n) = 0, and if f(z) 6= 0, then∣∣∣∣f×(z, n)

f(z)
− 1

∣∣∣∣ ≤ 2−n.

Multiplicative approximation is stronger than additive approximation in the following sense.
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Lemma 2.2 For any function f : D → C, D ⊆ C, the following are equivalent.

(i) f has a multiplicative TC0 approximation f×.

(ii) f has an additive TC0 approximation f+, and there exists a TC0 function h : Q(i) → L

(with unary output) such that

f(z) 6= 0 =⇒ |f(z)| ≥ 2−h(z)

for all z ∈ D ∩Q(i).

Proof:

(i) → (ii): Observe that |f(z)| ≤ 2|f×(z, 1)|. This allows us to define a TC0 function

t : Q(i)→ L such that |f(z)| ≤ 2t(z) for all z ∈ D∩Q(i): given z, we compute |f×(z, 1)|2 ∈ Q≥0,

and using integer division and the length function, we compute t′ =
∥∥d|f×(z, 1)|2e

∥∥ ∈ L so that

2t
′
> |f×(z, 1)|2; then t(z) = 1 + dt′/2e works. Thus, f+(z, n) = f×

(
z, n + t(z)

)
is an additive

approximation of f .

Likewise, |f×(z, 1)| ≤ 3
2 |f(z)|. Thus, if f(z) 6= 0, then f×(z, 1) 6= 0, and a similar argument

as above gives us a TC0 function h′ such that 2h
′(z) ≥ |f×(z, 1)|−2; then h(z) = 1 + dh′/2e

satisfies |f(z)| ≥ 2−h(z).

(ii)→ (i): First, given z ∈ D ∩Q(i), we can decide in TC0 whether f(z) = 0, as

f(z) = 0 =⇒
∣∣f+(z, h(z) + 2

)∣∣ ≤ 1
42−h(z),

f(z) 6= 0 =⇒
∣∣f+(z, h(z) + 2

)∣∣ ≥ |f(z)| − 1
42−h(z) ≥ 3

42−h(z).

Thus,

f×(z, n) =

{
0 if f(z) = 0,

f+
(
z, n+ h(z)

)
otherwise

gives a multiplicative TC0 approximation of f . 2

In practice, TC0 approximation functions will often need additional inputs. For example,

to compute a TC0 approximation of exp z, it is not enough to have z (in binary) as input, as

the output may be exponentially large; we will also require a bound r ∈ L (in unary) such

that |z| ≤ r, or at least Re z ≤ r. We will employ the following terminology. For a function

f : D → C as above, and a property P (z, r), we will say that a TC0 function f+(z, r, n) is an

additive approximation of f(z) parametrized by r such that P (z, r) if

P (z, r) =⇒ |f+(z, r, n)− f(z)| ≤ 2−n

for all z ∈ D∩Q(i) and r, n ∈ L; analogously for multiplicative approximation. We also require

that for every z ∈ D ∩Q(i), there exists r ∈ L such that P (z, r).

The following facts are useful for basic manipulation of multiplicative approximations.

Lemma 2.3 Let z, w ∈ C and ε, δ ∈ R≥0.

(i) If |z − 1| ≤ ε and |w − 1| ≤ δ, then |zw − 1| ≤ ε+ δ + εδ.
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(ii) If |z2 − 1| ≤ 2ε− ε2 and Re z ≥ 0, then |z − 1| ≤ ε.

(iii) If |z − 1| ≤ ε/(1 + ε), then |z−1 − 1| ≤ ε.

(iv) Let z = x+ iy and w = u+ iv with x, y, u, v ∈ R. Assuming x, y 6= 0,∣∣∣u
x
− 1
∣∣∣ ≤ ε ∧ ∣∣∣v

y
− 1
∣∣∣ ≤ ε =⇒

∣∣∣w
z
− 1
∣∣∣ ≤ ε.

Proof:

(i): |zw − 1| ≤ |zw − w|+ |w − 1| ≤ |w|ε+ δ ≤ (1 + δ)ε+ δ using Lemma 2.1.

(ii): Put r = |1− z|. We have |1 + z| ≥ 2− r by Lemma 2.1, hence

2ε− ε2 ≥
∣∣1− z2∣∣ = |1− z| |1 + z| ≥ r(2− r).

Thus, (1− ε)2 ≤ (1− r)2, i.e., r ≤ min{ε, 2− ε} or r ≥ max{ε, 2− ε}. Since Re z ≥ 0, we have

|1 + z| ≥ r; thus, if r ≥ 2 − ε and r > ε, we have
∣∣1− z2∣∣ = r|1 + z| > ε|1 + z| ≥ ε(2 − ε), a

contradiction. Hence the only possibility is r ≤ ε.
(iii): We have |z| ≥ 1− ε/(1 + ε) = 1/(1 + ε), hence |z−1 − 1| = |z − 1|/|z| ≤ ε.
(iv): |w − z|2 = |u− x|2 + |v − y|2 ≤ ε2|x|2 + ε2|y|2 = ε2|z|2. 2

3 Exponential and logarithm

In this section, which is the main part of the paper, we will construct functions exp and log

on suitable subsets of CM, and verify their basic properties. Since especially the construction

of log will be somewhat complicated, proceeding in several stages, we will need many technical

lemmas along the way, which will be mixed with bits and pieces of the intended end results. To

help the reader not lose track of what is going on, we start by collecting the most useful results

and stating them in one place upfront.

Let us fix a model M � VTC 0 for the duration of this section. Put

R↓L = {x ∈ R : ∃n ∈ L x ≤ n} = RL ∪R<0.

We are going to define functions

exp: R↓L + iR→ C

(in Lemma 3.56, following up on Definition 3.3 and Lemmas 3.5 and 3.9) and

log : C6=0 → CL

(in Definition 3.34, following up on Definition 3.12, Lemmas 3.14, 3.19, and 3.21, and Definitions

3.27 and 3.24, and renamed to log in view of Lemma 3.58), as well as a constant π ∈ R>0 and

the argument function arg : C6=0 → RL (in Definition 3.38).

Theorem 3.1 The functions exp and log have the following properties.

(i) For all z, w ∈ dom(exp), exp(z + w) = exp z expw, and exp z = exp z.
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(ii) exp � RL + iR is a surjective group homomorphism 〈RL + iR,+, 0,−〉 → 〈C6=0, ·, 1,−1〉
with kernel 2πiZ.

(iii) exp z = 0 iff Re z ∈ R↓L r RL.

(iv) log maps C6=0 onto RL + i(−π, π], and it is a right inverse of exp, i.e., exp log z = z for

all z ∈ C6=0. Also, log exp z = z for all z ∈ RL + i(−π, π].

(v) exp � RL is an ordered group isomorphism 〈RL,+, 0,−, <〉 → 〈R>0, ·, 1,−1, <〉 whose

inverse is log � R>0.

(vi) exp is continuous, and it is uniformly continuous on (−∞, r] + iR for each r ∈ L; log is

continuous on CrR≤0 and on {z 6= 0 : Im z ≥ 0}, and for each ε ∈ R>0, it is uniformly

continuous on
{
z : |z| ≥ ε ∧ (Re z ≥ 0 ∨ Im z ≥ 0 ∨ Im z ≤ −ε)

}
.

(vii) |exp z| = exp Re z for all z ∈ dom(exp), and log z = log|z|+ i arg z for all z ∈ C6=0.

(viii) arg maps the quadrant {z 6= 0 : Re z, Im z ≥ 0} to
[
0, π2

]
, {z 6= 0 : Re z ≤ 0, Im z ≥ 0}

to
[
π
2 , π

]
, {z 6= 0 : Re z ≥ 0, Im z ≤ 0} to

[
−π

2 , 0
]
, and {z : Re z ≤ 0, Im z < 0}

to
(
−π,−π

2

]
. In each quadrant, it increases or decreases in tandem with Re sgn z and

Im sgn z as determined in Lemma 3.40, where sgn z = z/|z|.

(ix ) If |z| ≤ 3
2 , then

∣∣exp z − (1 + z)
∣∣ ≤ |z|2. If |z| ≤ 1

2 , then
∣∣log(1 + z)− z

∣∣ ≤ |z|2.

(x ) If z ∈ CL and n ∈ ZL, then expnz = (exp z)n.

(xi) If z ∈ C and n ∈ L>0 is such that n ≥ max
{

2|z|, |z|2
}

, then∣∣∣∣∣
(
1 + z

n

)n
exp z

− 1

∣∣∣∣∣ ≤ 2|z|2

n
.

(xii) For all x ∈ R↓L, expx ≥ 1 +x. Consequently, exp �R↓L is convex: for all x, y ∈ R↓L and

t ∈ [0, 1],

(y − x) expx ≤ exp y − expx ≤ (y − x) exp y,

exp
(
(1− t)x+ ty

)
≤ (1− t) expx+ t exp y.

(xiii) exp z has TC0 additive approximation E+(z, r, n) for z ∈ Q↓L+iQ, parametrized by r ∈ L

such that Re z ≤ r, and TC0 multiplicative approximation E×(z, r, n) for z ∈ QL + iQ,

parametrized by r ∈ L such that |Re z| ≤ r. For z ∈ Q(i) r {0}, log z has TC0 additive

approximation L+(z, n) and TC0 multiplicative approximation L×(z, n).

Proof: Lemmas 3.10 and 3.56 ensure (i), (iii) (by definition), and that exp is a group homomor-

phism 〈RL+iR,+〉 → 〈C6=0, ·〉 whose kernel includes 2πiZ. By Corollary 3.42, log maps C6=0 to

RL+i(−π, π], and exp log z = z by Corollary 3.50, which also implies that exp: RL+iR→ C6=0

is surjective, and log is injective. Conversely, log exp z = z for z ∈ RL + i(−π, π] by Corol-

lary 3.49, hence log : C6=0 → RL + i(−π, π] is surjective, and exp is injective on RL + i(−π, π],
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which implies the kernel of exp is exactly 2πiZ: if exp(z) = 1, we may write z = w + 2πi n for

some n ∈ Z and w ∈ RL + i(−π, π]; then expw = 1, hence w = 0. This gives (ii) and (iv).

(v) follows from Lemma 3.10 and (iv), using the fact that log � R>0 is real-valued due to

Lemma 3.36. (vi) is stated in Lemmas 3.56, 3.35, and 3.59. (vii) follows from Lemmas 3.10

and 3.39.

(viii) follows from Lemma 3.40: e.g., if z0, z1 ∈ C6=0 are such that Re zj ≥ 0 ≥ Im zj , then

arg z0 < arg z1 iff Re sgn z0 < Re sgn z1 iff Im sgn z0 < Im sgn z1 by Lemma 3.40 (i), (iv), and (v);

in particular, −π
2 = arg(−i) ≤ arg zj ≤ arg 1 = 0.

(ix) follows from Lemmas 3.10, 3.19, and 3.58; (x) is Lemma 3.52, (xi) is Proposition 3.55,

and (xii) is Lemma 3.11 (with trivial extension to R↓L).

(xiii): Lemmas 3.46 and 3.57 (proved in Lemma A.1) give E+, E×, and L+ (called LC

there). The existence of L× follows from Lemma 2.3: we only need to exhibit a TC0 function

h : Q(i) r {0} → L such that |log z| ≥ 2−h(z) for all z 6= 0, 1. If 0 < |z − 1| ≤ 1
2 , we have

|log z| ≥ |z − 1| − |z − 1|2 ≥ |z − 1|2 by (ix), hence it suffices to put h(z) =
∥∥⌈|z − 1|−2

⌉∥∥ using

integer division and the length function. We claim that if |z − 1| ≥ 1
2 , then |log z| > 1

3 , hence

we can just take h(z) = 2: indeed, if |log z| ≤ 1
3 , then

|z − 1| = |exp log z − 1| ≤ |log z|+ |log z|2 ≤ 4
9 <

1
2

by (iv) and (ix). 2

We omit listing some useful properties that can be inferred from the above: in particular, (ii)

and (iv) imply Lemma 3.43; we mention though that they also imply a variant of Lemma 3.37

(i) and (ii) with a perhaps clearer geometric meaning:

Corollary 3.2 If z, w ∈ C6=0 satisfy arg z + argw ∈ (−π, π], then log zw = log z + logw. 2

Further facts of interest that will be proved in this section are the bounds on π in Proposi-

tion 3.44, bounds on e = exp 1 in Lemma 3.54, and properties of the complex square root

function in §3.5.

We should comment on the decision to put exp z = 0 for Re z ∈ R↓L r RL, rather than

leaving it undefined. This violates the basic property that exp z 6= 0 for all z. However, it

retains other fundamental properties of exp, in particular exp(z + w) = exp z expw, and the

monotonicity of exp on the reals. Conceptually, it seems to be the right thing to do, as |exp z|
drops down to 0 as Re z → −∞ for Re z ∈ RL. (By the same reasoning, we could also define

exp z =∞ when Re z > RL, but we prefer to keep functions finite.)

Perhaps the best technical reason for this definition stems from point (xiii). Recall that our

overarching goal is to explore what is provable in the theory VTC 0, which cannot directly talk

about C-valued functions such as exp or log; from this viewpoint, the TC0 approximations of

these functions are more fundamental than the functions themselves, which are just figments of

our imagination. Now, additive approximation E+(z, r, n) of exp z is most naturally presented

with a parameter r ∈ L such that Re z ≤ r as indicated, as this is exactly what is needed to

keep the approximation efficiently computable. However, there is no way for a TC0 function to

distinguish inputs z with Re z ∈ Q↓LrQL from those where Re z ∈ QL is merely very small; the
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approximating function is bound to output (approximately) 0 for both. Thus, the exponential

function determined by limn→∞E+(z, r, n) will be defined even for Re z ∈ Q↓LrQL, assigning

such z the value 0. We chose to make our official exponential function agree with this.

In any case, a skeptical reader is free to restrict the exp function to RL + iR.

3.1 Exponential

Our first task is relatively straightforward: define a function exp: CL → C6=0 using the power

series ∑
n

zn

n!
,

and (among other basic properties) prove the homomorphism property

exp(z + w) = exp z expw

by means of the standard argument exploiting the binomial theorem.

We start by defining partial sums of this power series, which we will then use to define exp

on QL(i).

Definition 3.3 We define a function e : Q(i)× L→ Q(i) by

e(z, n) =
∑
j<n

zj

j!
.

Lemma 3.4 n! ≥ 2
(
1
4(n+ 1)

)n
for all n ∈ L, n ≥ 1.

Proof: By induction on n. The statement holds for n = 1. If n ≥ 2, the induction hypothesis

for m = bn/2c gives

n! ≥ m! (m+ 1)n−m ≥ 2
(m+ 1)n

4m
= 2

(2m+ 2)n

4m2n
≥ 2

(n+ 1)n

4n
.

2

Lemma 3.5 If z ∈ QL(i), then {e(z, n) : n ∈ L} is a Cauchy net. Thus, we can define a

function expQL(i) : QL(i)→ C by

expQL(i) z = lim
n∈L
n→∞

e(z, n).

Proof: Assume |z| ≤ r ∈ L. If 2r ≤ n ≤ m ∈ L, we have

∣∣e(z,m)− e(z, n)
∣∣ =

∣∣∣∣m−1∑
j=n

zj

j!

∣∣∣∣ ≤ m−1∑
j=n

rj

j!
≤ rn

n!

∑
j<m−n

( r
n

)j
≤ rn

n!

∑
j<m−n

2−j ≤ 2
rn

n!
,

using Lemma 2.1 and (n+ j)! ≥ n!nj . Thus, if n,m ≥ max{8r, t}, then∣∣e(z,m)− e(z, n)
∣∣ ≤ (4r

n

)n
≤ 2−n ≤ 2−t

by Lemma 3.4. 2
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We are going to extend the domain of expQL(i) first to CL, and later to R↓L + iR. Formally,

we distinguish these functions by subscripts, but since they give the same values whenever they

are defined, we may write just exp unless the distinction becomes important.

Lemma 3.6 Let z ∈ Q(i) and r ∈ QL. If |z| ≤ r, then |exp z| ≤ exp r.

Proof: For any n ∈ L, we have

|e(z, n)| =
∣∣∣∣∑
j<n

zj

j!

∣∣∣∣ ≤∑
j<n

rj

j!
≤ exp r

by Lemma 2.1. The result follows by taking the limit n→∞. 2

Lemma 3.7 If z ∈ D3/2(0) ∩Q(i), then∣∣exp z − (1 + z)
∣∣ ≤ |z|2.

Proof: For any n ∈ L, n ≥ 2,∣∣∣∣e(z, n)− (1 + z)

z2

∣∣∣∣ =

∣∣∣∣n−1∑
j=2

zj−2

j!

∣∣∣∣ ≤ n−1∑
j=2

3j−2

2j−2j!
≤

n−1∑
j=2

21−j ≤ 1

using Lemma 2.1 and j! ≥ 2 · 3j−2 for j ≥ 2, thus∣∣e(z, n)− (1 + z)
∣∣ ≤ |z|2.

Taking the limit, a similar inequality holds for exp z. 2

Lemma 3.8 For any z, w ∈ QL(i),

exp(z + w) = exp z expw.

Proof: For any n ∈ L, we have

e(z, n)e(w, n) =
∑
j,k<n

zjwk

j! k!
,

while

e(z + w, 2n) =
∑
l<2n

(z + w)l

l!
=
∑
l<2n

∑
j+k=l

(
l

j

)
zjwk

l!
=

∑
j+k<2n

zjwk

j! k!
,

hence

e(z + w, 2n)− e(z, n)e(w, n) =

2n−1∑
j=n

zj

j!

∑
k<2n−j

wk

k!
+

2n−1∑
k=n

wk

k!

∑
j<2n−k

zj

j!
.

Fix r ∈ L such that |z|, |w| ≤ r. Then Lemma 2.1 gives∣∣e(z + w, 2n)− e(z, n)e(w, n)
∣∣ ≤ 2

2n−1∑
j=n

rj

j!

∑
k<2n−j

rk

k!
≤ 2 exp(r)

2n−1∑
j=n

rj

j!
.

Thus, for all n ≥ 8r, we have∣∣e(z + w, 2n)− e(z, n)e(w, n)
∣∣ ≤ 21−n exp r

by the proof of Lemma 3.5. The result follows by taking the limit n→∞. 2
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Lemma 3.9 The restrictions expQL(i) � Dr(0) ∩Q(i) are uniformly continuous for all r ∈ L.

Thus, expQL(i) has a unique extension to a continuous function expCL
: CL → C.

Proof: Let δ ∈ Q, 0 < δ ≤ 1. Then any z, w ∈ Dr(0) ∩Q(i) such that |w − z| ≤ δ satisfy

|expw − exp z| =
∣∣(exp(w − z)− 1

)
exp z

∣∣ ≤ (δ + δ2) exp r ≤ 2δ exp r

by Lemmas 3.6, 3.7, and 3.8, thus expQL(i) � Dr(0) ∩Q(i) is indeed uniformly continuous. It

follows that it has a unique continuous extension expr : Dr(0) → C. Uniqueness ensures that

expr = exps �Dr(0) whenever r ≤ s, hence expCL
=
⋃
r expr is a well-defined function CL → C,

and it is continuous as its restrictions to all Dr(0) are continuous. Conversely, any continuous

extension of expQL(i) to CL must coincide with expr on Dr(0) for each r, hence it equals expCL
.

2

The main take-away from Section 3.1 is the next summary lemma.

Lemma 3.10

(i) The function expCL
is a group homomorphism 〈CL,+, 0,−〉 → 〈C 6=0, ·, 1,−1〉 commuting

with z.

(ii) The restriction expRL
= expCL

�RL is an embedding of ordered groups 〈RL,+, 0,−, <〉 →
〈R>0, ·, 1,−1, <〉.

(iii) For all z ∈ CL, |expCL
z| = expRL

Re z.

(iv) If z ∈ D3/2(0), then
∣∣exp z − (1 + z)

∣∣ ≤ |z|2.

Proof:

(i): For any w ∈ QL(i), the set

Hw =
{
z ∈ CL : exp(z + w) = exp z expw

}
is closed due to the continuity of exp, and includes QL(i) by Lemma 3.8. Since QL(i) is dense

in CL, we see that Hw = CL, i.e.,

(1) exp(z + w) = exp z expw

for all z ∈ CL and w ∈ QL(i). Using the same density argument once more, QL(i) ⊆ Hw for

each w ∈ CL by (1) (with arguments swapped), hence Hw = CL, i.e., (1) holds for all z, w ∈ CL.

This shows that exp is a group homomorphism as indicated in (i), provided that the codomain

is right, i.e., exp z 6= 0 for all z ∈ CL. This, too, follows from (1), as exp z exp(−z) = exp 0 = 1.

We have e(z, n) = e(z, n) for all z ∈ QL(i) and n ∈ L, hence exp z = exp z by taking limits.

Using density of QL(i) ⊆ CL again, the same holds for all z ∈ CL.

(ii): Let x ∈ RL. Since expx = expx by (i), we have expx ∈ R. If x ∈ QL(i), x > 0, then

e(x, n) is non-decreasing in n, hence expx ≥ e(x, 2) = 1 + x. By density, expx ≥ 1 + x for all
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x ∈ RL, x > 0, hence expx > 1. Since expx exp(−x) = 1 by (i), this ensures expx > 0 for all

x ∈ RL, and it implies that exp is strictly increasing on RL: if x < y, we have

exp(y) = exp(y − x) expx > expx

as exp(y − x) > 1 and expx > 0. In particular, expRL
is injective, and it is an ordered group

homomorphism.

(iii): |exp z|2 = exp z exp z = exp(z + z) = exp(2 Re z) = (exp Re z)2 using (i).

(iv): By Lemma 3.7 and the density of D3/2(0) ∩Q(i) in D3/2(0). 2

The main remaining problem now is to prove that expCL
is surjective (onto C6=0); conse-

quently, expRL
is an ordered group isomorphism, and there is a constant π such that expCL

is 2πi-periodic, which will enable its extension to RL + iR. Let us first mention a few failed

approaches so that we understand that the problem is nontrivial.

Considering the real case for simplicity, the most obvious idea how to find for a given

x ∈ R>0 a preimage y ∈ RL such that exp y = x is to show, for any integer n > 0, that there

is an integer m such that exp(m/n) ≤ x ≤ exp
(
(m + 1)/n

)
, using the monotonicity of exp.

On closer inspection, this argument amounts to induction on m for the formula exp(m/n) ≤ x;

thus, to make it work in VTC 0, we actually need to use rational approximations of exp rather

than the function itself, and even so, it only works for n ∈ L, which implies m ∈ ZL. Thus,

we can only determine logarithmically many most significant bits of y, which is insufficient to

construct it as an element of R.

We could use binary search to determine y with precision 2−n rather than n−1, but this is an

inherently sequential algorithm taking us outside TC0; likewise for more sophisticated iterative

methods such as Newton iteration, which parallelize better, but still need a non-constant number

of sequential iterations. In [8], we formalized a form of the Lagrange inversion theorem, which

can in principle be used to invert any function f given by power series, such as exp; however, the

core argument in [8, Thm. 5.1] (or even the definition of the inverse series) only works when f is

a constant-degree polynomial, as it relies on bounded sums with nO(d) terms, where d = deg f .

We will solve the problem by constructing in an ad hoc way a function log : C6=0 → CL, and

proving its various properties, eventually showing exp log z = z. This will take us the next few

subsections.

But before we leave, let us present some bounds on expRL
that express its convexity.

Lemma 3.11

(i) For all x ∈ RL, expx ≥ 1 + x.

(ii) For all x, y ∈ RL, (y − x) expx ≤ exp y − expx ≤ (y − x) exp y.

(iii) For all x, y ∈ RL and t ∈ [0, 1], exp
(
(1− t)x+ ty

)
≤ (1− t) expx+ t exp y.

Proof:

(i): By density, it suffices to prove the result for x ∈ QL. We have shown expx ≥ 1 + x for

x ≥ 0 in the proof of Lemma 3.10 (ii). Moreover, if 0 ≤ x < 1, then

e(x, n) =
∑
j<n

xj

j!
≤
∑
j<n

xj ≤ 1

1− x
,
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hence expx ≤ (1−x)−1, and exp(−x) ≥ 1−x. Thus, expx ≥ 1+x also holds when −1 < x ≤ 0;

if x ≥ −1, then expx ≥ 0 ≥ 1 + x.

(ii): We have exp y−expx =
(
exp(y−x)−1

)
expx ≥ (y−x) expx by (i); the other inequality

follows by swapping x and y.

(iii): Put w = (1− t)x+ ty. Then

(1− t) expx+ t exp y ≥ (1− t)
(
1− t(y − x)

)
exp t+ t

(
1 + (1− t)(y − x)

)
exp t = exp t

using (ii). 2

3.2 Logarithm near 1

We intend to construct a logarithm function which is a right inverse of exp, implying that exp

is surjective. Defining log will be more complicated than exp, largely due to the fact that exp

is entire, whereas log has a branching singularity at the origin. Thus, a power series will only

give us log in a circular neighbourhood of 1: this will be the topic of the present subsection. We

will then extend it to C6=0 (with a branch cut along the negative real axis) in several stages:

• Using the function 2n : L→ N, we extend it to R>0 (Section 3.3).

• Combining R>0 with the neighbourhood of 1, we extend it to a sector {x+ iy : |y| < cx}
for a suitable c (Section 3.4).

• Using
√
z (treated in Section 3.5), we can increase the angle of the sector. We iterate this

a few times to cover C6=0 (Section 3.6).

We will rely on restricted forms of the identity log zw = log z + logw (which does not quite

hold, due to the branch cut) to make sure that the successive extensions fit together well, and

to eventually derive exp log z = z.

We start with the power series for log, or rather, for the function − log(1− z).

Definition 3.12 We define a function λ : Q(i)× L→ Q(i) by

λ(z, n) =
n∑
j=1

zj

j
.

We write x <∗ y if x ≤ y− h−1 for some h ∈ L>0, and we put D∗r(z0) = {z ∈ C : |z− z0| <∗ r},
(a, b)∗ = {x ∈ R : a <∗ x <∗ b}, [a, b)∗ = {x ∈ R : a ≤ x <∗ b}, etc.

Lemma 3.13 If h ∈ L>0, then (1− h−1)h ≤ 1
2 .

Proof: hh =
∑

j≤h
(
h
j

)
(h− 1)j ≥ (h− 1)h + h(h− 1)h−1 ≥ 2(h− 1)h. 2

Lemma 3.14 If z ∈ D∗1(0)∩Q(i), then {λ(z, n) : n ∈ L} is a Cauchy net. Thus, we can define

a function Λ: D∗1(0) ∩Q(i)→ C by

Λ(z) = lim
n∈L
n→∞

λ(z, n).
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Proof: Assume |z| ≤ 1− h−1, where h ∈ L, and let n ≤ m ∈ L. Then

∣∣λ(z,m)− λ(z, n)
∣∣ =

∣∣∣∣ m∑
j=n+1

zj

j

∣∣∣∣ ≤ m∑
j=n+1

(1− h−1)j

j
≤ (1− h−1)n+1

n+ 1

∑
j<m−n

(1− h−1)j

≤ h

n+ 1
(1− h−1)n+1 ≤ 2−t

if n+ 1 ≥ ht, using Lemmas 2.1 and 3.13. 2

Lemma 3.15 If z ∈ D1/2(0) ∩Q(i), then

|Λ(z)− z| ≤ |z|2.

Proof: For any n ∈ L, n ≥ 2,∣∣∣∣λ(z, n)− z
z2

∣∣∣∣ =

∣∣∣∣n−1∑
j=2

zj−2

j

∣∣∣∣ ≤ n−1∑
j=2

1

2j−2j
≤

n−1∑
j=2

21−j ≤ 1

using Lemma 2.1, which gives the result by taking the limit n→∞. 2

We are now heading to prove the identity Λ(z) + Λ(w) = Λ(z + w − zw), which will yield

log(z) + log(w) = log(zw); this is the most technical part of the construction of log. We will

need the next lemma as an ingredient in the proof; it effectively means that ∇nf = 0 for any

polynomial f of degree < n (expressed as a linear combination of the falling factorials x
h
,

h < n, rather than the usual monomials xh), where (∇f)(x) = f(x)−f(x−1) is the backwards

difference operator.

Lemma 3.16 For all h < n ∈ L and x ∈ Q,∑
k≤n

(
n

k

)
(−1)k(x− k)

h
= 0,

where x
h

=
∏
j<h(x− j).

Proof: Fix x ∈ Q and m ∈ L>0; we will prove

(2)
∑

k≤m+h

(
m+ h

k

)
(−1)k(x+ h− k)

h
= 0

by induction on h ∈ L. For h = 0, we have∑
k≤m

(
m

k

)
(−1)k(x− k)

0
=
∑
k≤m

(
m

k

)
(−1)k = (1− 1)m = 0.
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Assuming (2) holds for h, and writing m′ = m+ h, x′ = x+ h, we obtain∑
k≤m′+1

(
m′ + 1

k

)
(−1)k(x′ + 1− k)

h+1

=
∑
k≤m′

(
m′

k

)
(−1)k(x′ + 1− k)

h+1
+
∑
k≤m′

(
m′

k

)
(−1)k+1(x′ − k)

h+1

=
∑
k≤m′

(
m′

k

)
(−1)k(x′ + 1− k)(x′ − k)

h −
∑
k≤m′

(
m′

k

)
(−1)k(x′ − k)

h
(x′ − k − h)

= (h+ 1)
∑
k≤m′

(
m′

k

)
(−1)k(x′ − k)

h
= 0

using
(
m′+1
k

)
=
(
m′

k

)
+
(
m′

k−1
)

and the induction hypothesis. 2

Lemma 3.17 Let r, s ∈ Q>0 be such that (1 + r)(1 + s) <∗ 2. Then

Λ(z) + Λ(w) = Λ(z + w − zw)

for all z ∈ Dr(0) ∩Q(i) and w ∈ Ds(0) ∩Q(i).

Proof: Since |z +w − zw| ≤ r + s+ rs <∗ 1 by Lemma 2.1, Λ(z +w − zw) is defined. For any

n ∈ L>0, we have

λ(z, n) + λ(w, n)− λ(z + w − zw, n)

=
n∑
j=1

zj

j
+

n∑
k=1

wk

k
−

∑
j,k,l

0<j+k+l≤n

(
j + k + l

j, k, l

)
(−1)lzj+lwk+l

j + k + l

= −
∑
j,k,l

0<j+l,k+l
j+k+l≤n

(
j + k + l

j, k, l

)
(−1)lzj+lwk+l

j + k + l
.

We claim that∑
j,k,l

0<j+l,k+l≤n

(
j + k + l

j, k, l

)
(−1)lzj+lwk+l

j + k + l
=

n∑
a,b=1

zawb
∑
l≤a,b

(
a+ b− l

a− l, b− l, l

)
(−1)l

a+ b− l
= 0 :

indeed, if w.l.o.g. a ≤ b, Lemma 3.16 gives

∑
l≤a,b

(
a+ b− l

a− l, b− l, l

)
(−1)l

a+ b− l
=
∑
l≤a

(a+ b− 1− l)!
(a− l)! (b− l)! l!

(−1)l

=
1

a!

∑
l≤a

(
a

l

)
(−1)l(a+ b− 1− l)a−1 = 0.

20



Thus,

λ(z, n) + λ(w, n)− λ(z + w − zw, n) =
∑
j,k,l

j+l,k+l≤n<j+k+l

(
j + k + l

j, k, l

)
(−1)lzj+lwk+l

j + k + l
.

By Lemma 2.1,

∣∣λ(z, n) + λ(w, n)− λ(z + w − zw, n)
∣∣ ≤ ∑

j,k,l
j+l,k+l≤n<j+k+l

(
j + k + l

j, k, l

)
rj+lsk+l

j + k + l

≤ 1

n+ 1

∑
j,k,l

n<j+k+l≤2n

(
j + k + l

j, k, l

)
rj+lsk+l

=
1

n+ 1

2n∑
a=n+1

(r + s+ rs)a

≤ (r + s+ rs)n+1

(n+ 1)(1− r − s− rs)
.

By assumption, we can fix h ∈ L such that r + s+ rs ≤ 1− h−1. Then for all n, t ∈ L,

n+ 1 ≥ ht =⇒
∣∣λ(z, n) + λ(w, n)− λ(z + w − zw, n)

∣∣ ≤ h

n+ 1
(1− h−1)n+1 ≤ 2−t

using Lemma 3.13. The result follows by taking the limit n→∞. 2

Lemma 3.18 Let h ∈ L>0 and r ∈ Q>0. Then for all z, w ∈ D1−h−1(0) ∩Q(i),

|z − w| ≤ r =⇒ |Λ(z)− Λ(w)| ≤ hr.

Proof: For any n ∈ L, we have

|λ(z, n)− λ(w, n)| =
∣∣∣∣ n∑
j=1

zj − wj

j

∣∣∣∣ =

∣∣∣∣(z − w)
n∑
j=1

1

j

∑
k<j

zkwj−1−k
∣∣∣∣

≤ r
n∑
j=1

(1− h−1)j−1 ≤ hr.

The result follows by taking the limit n→∞. 2

The next lemma (and definition) is the main result of Section 3.2.

Lemma 3.19 There is a unique continuous function

logD : D∗1(1)→ C

such that logD z = −Λ(1− z) for all z ∈ D∗1(1) ∩Q(i). It satisfies

(3)
∣∣logD(1 + z)− z

∣∣ ≤ |z|2
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for z ∈ D1/2(0). If r, s ∈ Q>0 are such that (1 + r)(1 + s) <∗ 2, then

(4) logD zw = logD z + logD w

for all z ∈ Dr(1) and w ∈ Ds(1). In particular, (4) holds for all z, w ∈ D2/5(1).

Proof: As in the proof of Lemma 3.9, the existence and uniqueness of logD follows from the

uniform continuity of Λ �D1−h−1(0)∩Q(i) for every h ∈ L>0, which was proved in Lemma 3.18.

Properties (3) and (4) for z, w ∈ Q(i) follow from Lemmas 3.15 and 3.17; this implies the

general case using the density of Q(i) in C, similarly to the proof of Lemma 3.10. 2

As in the case of exp, we will define several versions of log on various domains, distinguished

by subscripts. (The D in logD refers to the disk D∗1(1).) Again, we will sometimes drop the

subscript if it can be inferred from the context, but we have to be more careful than before,

because the variants of log do not a priori agree on their common domains (though we will

eventually prove they do, in Lemma 3.58).

3.3 Real logarithm

We now start extending logD to further domains, first to R>0. The idea is simple: using the

function 2n : L → N (or rather, ZL → Q), we can write any x ∈ R>0 as x = 2nx′ with

n ∈ ZL and x′ ∈
[
1
2 , 1
]
, and put logR x = logD x

′ + n log 2 for a suitably defined log 2. We will

actually ensure this defining identity to hold for x′ from a larger interval; the resulting interval

overlap will assist us in proving that logR is well behaved, such as that it satisfies the identity

logR xy = logR x+ logR y. We begin with a definition of `2 = log 2.

Lemma 3.20 The constant `2 = − logD
1
2 = Λ

(
1
2

)
satisfies

logD 2x = logD x+ `2

for all x ∈
(
1
3 ,

3
4

)∗
.

Proof: First, if x ∈
(
1
3 ,

2
3

)∗
, we have

logD 2x+ logD
1
2 = logD x

by (4) with r = |1 − 2x| <∗ 1
3 and s = 1

2 . Next, if x ∈
[
1
2 ,

3
4

)∗
, let y = 2

3 − h
−1 for sufficiently

large h ∈ L. Then

logD 2x+ logD y = logD 2xy = logD x+ logD 2y = logD x+ logD y + `2 :

the first equality follows from (4) with r = 2x− 1 <∗ 1
2 and s = 1− y = 1

3 +h−1; we can choose

h such that (1 + r)(1 + s) <∗ 2. The second inequality follows from (4) with r = 1− x ≤ 1
2 and

s = 2y − 1 <∗ 1
3 . 2
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Lemma 3.21 There is a unique continuous function logR : R>0 → RL such that

logR 2nx = logD x+ n`2

for all n ∈ ZL and x ∈
(
1
3 ,

3
2

)∗
.

Proof: Every x ∈ R>0 can be written as 2nx′ for some n ∈ ZL and x′ ∈
[
1
2 , 1
]
. Since λ(z, n) ∈ Q

for z ∈ Q, Λ maps D∗1(0) ∩Q to R, hence logD maps D∗1(1) ∩R to R. Moreover, (3) implies

that logD maps
[
1
2 ,

3
2

]
to
[
−3

4 ,
3
4

]
. Thus, logD x

′ + n`2 ∈ RL.

Assume 2nx = 2my for some n,m ∈ ZL and x, y ∈
(
1
3 ,

3
2

)∗
, x < y. Then 2n−m = y/x ∈(

1, 92
)
, hence n = m+ 1, y = 2x, and x ∈

(
1
3 ,

3
4

)∗
, or n = m+ 2, y = 4x, and x ∈

(
1
3 ,

3
8

)∗
. Thus,

logD x+ n`2 = logD y +m`2

using Lemma 3.20.

The continuity of logD ensures that logR is continuous on
(
1
32n, 322n)∗ for each n ∈ ZL.

These open sets cover R>0, hence logR is continuous. 2

While we eventually want to show that logR is an inverse of expRL
, we will be content for

now with proving that it is an ordered group embedding 〈R>0, ·, <〉 → 〈RL,+, <〉.

Lemma 3.22 The function logR is strictly increasing (hence injective).

Proof: We first show that logD is strictly increasing on
[
1
2 , 1
]
. Let 1

2 ≤ x < y ≤ 1, and consider

u = x/y ∈
[
1
2 , 1
)
. We have logD u ≤ (u− 1) + (u− 1)2 = u(u− 1) < 0 by (3), thus

logD x = logD u+ logD y < logD y

by (4), as long as u >∗ 2
3 : then r = |1− y| ≤ 1

2 and s = 1− u <∗ 1
3 , thus (1 + r)(1 + s) <∗ 2. It

follows that logD is strictly increasing on
[
1
2 ,

3
4

)∗
and on

(
2
3 , 1
]∗

, hence on
[
1
2 , 1
]
.

Now, let x, y ∈ R>0, and assume x < y. Write x = 2nx′ and y = 2my′ with n,m ∈ ZL and

x′, y′ ∈
(
1
2 , 1
]
. The previous part ensures that logR is strictly increasing on [2n−1, 2n], hence

logR x < logR y if m = n. If m > n, we have

logR y > (m− 1)`2 ≥ n`2 ≥ logR x

as logD maps
(
1
2 , 1
]

to (−`2, 0]. 2

Lemma 3.23 For all x, y ∈ R>0,

logR xy = logR x+ logR y.

Proof: Write x = 2nx′ and y = 2my′, where n,m ∈ ZL and x′, y′ ∈
[
3
5 ,

6
5

]
⊆
(
1
3 ,

3
2

)∗
. Then

xy = 2n+mx′y′, where x′y′ ∈
[
9
25 ,

36
25

]
⊆
(
1
3 ,

3
2

)∗
. It follows that

logR xy = (n+m)`2 + logD x
′y′ = n`2 + logD x

′ +m`2 + logD y
′ = logR x+ logR y

using (4), as |1− x′|, |1− y′| ≤ 2
5 . 2
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3.4 Logarithm in a sector

The next extension of log is to an angular sector by means of log z = logR|z|+ logD
(
z/|z|

)
, as

long as z/|z| is close enough to 1.

Definition 3.24 We define the complex sign function sgn: C6=0 →
{
z : |z| = 1

}
by sgn z =

z/|z|. We consider the sector

S =
{
z ∈ C6=0 : |sgn z − 1| <∗ 1

}
.

We define a continuous function logS : S → CL by

logS z = logR|z|+ logD sgn z.

Let us clarify the geometry of S:

Lemma 3.25 Let z = x+ iy ∈ C6=0. Then

z ∈ S ⇐⇒ x

|z|
>∗

1

2
⇐⇒ x > 0 ∧ |y|

|z|
<∗
√

3

2
⇐⇒ x > 0 ∧ |y|

x
<∗
√

3.

Proof: We have z ∈ S iff |sgn z − 1|2 <∗ 1, where

|sgn z − 1|2 =

(
z − |z|

)(
z − |z|

)
|z|2

=
2|z|2 − (z + z)|z|

|z|2
= 2

(
1− x

|z|

)
,

which proves the first equivalence. The rest follows easily, using x2 + y2 = |z|2. 2

Basic properties of logS are easy to establish by combining the properties of logD and logR:

Lemma 3.26

(i) If z, w ∈ S and
(
1 + |sgn z − 1|

)(
1 + |sgnw − 1|

)
<∗ 2, then

logS zw = logS z + logS w.

In particular, this holds if z = x+ iy and w = u+ iv satisfy |y/z|, |v/w| ≤ 2
5 .

(ii) If z = x+ iy ∈ S satisfies |y/z| ≤ 2
5 , then logS z

−1 = − logS z.

(iii) For any x ∈ R>0, logS x = logR x.

(iv) If z ∈ D2/5(1), then logS z = logD z.

Proof:

(i): We have sgn zw = sgn z sgnw, hence the identity follows from (4) and Lemma 3.23.

If |y/z| ≤ 0.4, then x2/|z|2 ≥ 1 − 0.42 = 0.84, hence x/|z| ≥ 0.916, and |sgn z − 1|2 =

2
(
1 − x/|z|

)
≤ 0.168, thus |sgn z − 1| ≤ 0.41. Likewise, |v/w| ≤ 0.4 implies |sgnw − 1| ≤ 0.41,

hence
(
1 + |sgn z − 1|

)(
1 + |sgnw − 1|

)
≤ 1.412 <∗ 2.
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(ii): Write z−1 = u + iv. Since z−1 = z/|z|2, we have v/|z−1| = −y/|z|, hence logS z +

logS z
−1 = 0 by (i).

(iii) is immediate, as sgnx = 1 for x ∈ R>0.

(iv): Assume |z−1| ≤ 2
5 . The triangle inequality (Lemma 2.1) implies |z| ∈

[
3
5 ,

7
5

]
⊆
(
1
3 ,

3
2

)∗
,

thus

logS z = logR|z|+ logD sgn z = logD|z|+ logD sgn z,

and
∣∣|z| − 1

∣∣ ≤ 2
5 . Moreover,

2

5
≥ |z − 1| =

∣∣∣∣ z|z|
(
|z| − z

|z|

)∣∣∣∣ =

∣∣∣∣|z| − z

|z|

∣∣∣∣ ≥ |y||z| ,
hence |sgn z − 1| ≤ 0.41 by the proof of (i). Thus,

logD|z|+ logD sgn z = logD z

by (4). 2

3.5 Complex square root

The idea for our final extension of log is to widen the domain of logS by several iterations of

log z = 2 log
√
z (each of which doubles the angle of the sector) until it covers all of C6=0. To do

that, we need first to define carefully the complex square root function with the right branch

cut, and establish its properties.

Definition 3.27 We define the lopsided sign function sgn+ : R→ {−1, 1} by

sgn+ y =

{
1 if y ≥ 0,

−1 if y < 0,

and the complex square root function
√

: C→ C for z = x+ iy by

√
z =

√
|z|+ x

2
+ i

√
|z| − x

2
sgn+ y.

Lemma 3.28

(i) For all z ∈ C,
(√
z
)2

= z and sgn+ Im
√
z = sgn+ Im z.

(ii) For any z ∈ C r R<0,
√
z =
√
z.

(iii) The restrictions
√

� C r R<0 and
√

� {z : Im z ≥ 0} are continuous.

Proof:

(i): Write
√
z = u+ iv. We have u2 − v2 = x and

2uv = 2

√
|z|2 − x2

4
sgn+ y = |y| sgn+ y = y,
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thus (u+ iv)2 = z. Clearly, sgn+ v = sgn+ y if v 6= 0; otherwise, y = v = 0.

(ii): For z ∈ R≥0,
√
z ∈ R; for z /∈ R, the only difference between

√
z and

√
z is that sgn+ y

is negated.

(iii): Being a composition of continuous functions,
√

� {z : Im z ≥ 0} is continuous.

Thus, in view of (ii),
√

� {z /∈ R<0 : Im z ≤ 0} is continuous, which we can glue with√
� {z /∈ R<0 : Im z ≥ 0} to get the continuity of

√
� C r R<0. 2

The next lemma elucidates how we can use
√

to enlarge the defining sector of log.

Lemma 3.29 Let z ∈ C and w =
√
z.

(i) Rew ≥ 0, with strict inequality if z /∈ R≤0.

(ii) If Re z ≥ 0, then |Imw| ≤ Rew, with strict inequality if Re z > 0.

(iii) If |Im z| ≤ Re z, then |Imw| ≤ 2
5 |w|.

Proof: (i) and (ii) are immediate from the definition.

(iii): Write z = x + iy and w = u + iv. We have x ≥ 0 and 2x2 ≥ |z|2, hence x ≥ 7
10 |z|. It

follows that v2 = 1
2

(
|z| − x

)
≤ 3

20 |z| =
3
20 |w|

2, thus |v| ≤ 2
5 |w|. 2

As we already mentioned, a crucial property of log we need to show is log zw = log z+ logw

under suitable restrictions on z, w. Extending this identity from logS to full log will require

multiplicativity of the square root function, thus let us establish some convenient conditions

under which the latter holds.

Lemma 3.30 If z, w ∈ C are such that Re z ≥ 0 and Rew > 0, then
√
zw =

√
z
√
w.

Proof: Since (
√
z
√
w)2 = zw, we have

√
z
√
w = ±

√
zw; we only need to check that the sign

is correct. Write
√
z = x + iy,

√
w = u + iv. We have x ≥ |y| and u > |v| by Lemma 3.29,

hence Re
(√
z
√
w
)

= xu − yv > 0 (unless x = y = 0, thus z = 0), which means, in view of

Lemma 3.29 (i), that
√
zw 6= −

√
z
√
w. Thus,

√
zw =

√
z
√
w as required. 2

We can, in fact, formulate a comprehensive criterion for multiplicativity of
√

. (One can

check that the sufficient condition below is also necessary up to exchanging z and w, though we

will not need this.)

Lemma 3.31 Let z, w ∈ C be such that sgn+ Im zw ∈ {sgn+ Im z, sgn+ Imw} and z /∈ R<0.

Then
√
zw =

√
z
√
w.

Proof: Write
√
z = x + iy,

√
w = u + iv. Assume first that sgn+ Im z 6= sgn+ Imw; say,

Im z ≥ 0 > Imw. Then y ≥ 0 > v by Lemma 3.28, and x ≥ 0, u > 0 by Lemma 3.29, hence

Re
(√
z
√
w
)

= xu− uv > 0 unless x = y = 0 (in which case z = 0 = zw). Thus,
√
zw =

√
z
√
w

using Lemma 3.29.

Next, assume Im z, Imw, Im(zw) < 0. Then x, u > 0 > y, v by Lemmas 3.28 and 3.29, thus

Im
(√
z
√
w
)

= xv + yu < 0, which implies
√
zw =

√
z
√
w using Lemma 3.28.

Finally, if Im z, Imw, Im zw ≥ 0, we have x, u, y, v ≥ 0, hence Im
(√
z
√
w
)

= xv+ yu ≥ 0. If

the inequality is strict, we get
√
zw =

√
z
√
w using Lemma 3.28 again. Otherwise xv = yu = 0:
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thus, x = 0 (in which case either z = 0 = zw or z ∈ R<0, but the latter is ruled out), or

u = v = 0 (in which case w = 0 = zw), or y = v = 0 (in which case z, w, zw ∈ R≥0). 2

Corollary 3.32 If z ∈ C r R<0, then
√
z−1 =

(√
z
)−1

.

Proof: Im z and Im z−1 have opposite signs. 2

Remark 3.33 We can restate Lemma 3.31 in the following symmetric form: if z0, z1, z2 ∈ C

are such that z0z1z2 = 1, then
√
z0
√
z1
√
z2 = 1, unless sgn+ z0 = sgn+ z1 = sgn+ z2 and at most

one zj is in R>0. Lemma 3.37 (ii) below can also be stated like this.

3.6 Full complex logarithm

In this section, we are going to finish the definition of log (and, eventually, exp), and prove the

remaining desired properties of log and exp, such as the right inverse property exp log z = z.

Definition 3.34 We put 4
√
z =

√√
z, 8
√
z =

√
4
√
z, and define logC : C6=0 → CL by

logC z = 8 logS
8
√
z.

Note that 8
√
z ∈ S by Lemmas 3.29 and 3.25.

In fact, we have even 4
√
z ∈ S for all z 6= 0, hence already 4 logS

4
√
z would define log on all of

C6=0. The purpose of the extra iteration of
√

is to facilitate our proof of log zw = log z+logw

below.

We start with a few basic properties that follow either directly from the definition, or from

properties of logS and
√

.

Lemma 3.35 The restrictions logC � C r R<0 and logC � {z : Im z ≥ 0} are continuous.

Proof: This follows from Lemma 3.28 (iii) and the continuity of logS . 2

Lemma 3.36 If z ∈ C6=0 and |Im z| ≤ Re z, then logC z = logS z.

Consequently, logC z = logR z for z ∈ R>0, and logC z = logD z for z ∈ D2/5(1).

Proof: By Lemma 3.29, w =
√
z satisfies |Imw| ≤ 2

5 |w|, hence logS z = 2 logS w by Lemma 3.26.

Iterating this argument, we obtain logS z = 8 logS
8
√
z = logC z. The rest follows by Lemma 3.26

(iii) and (iv). 2

We will improve Lemma 3.36 in Lemma 3.58.

Lemma 3.37

(i) If z, w ∈ C are such that Re z ≥ 0 and Rew > 0, then

(5) logC zw = logC z + logCw.

(ii) If z, w ∈ C6=0 satisfy sgn+ Im zw ∈ {sgn+ Im z, sgn+ Imw} and z /∈ R<0, then (5) holds.
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(iii) For all z ∈ C6=0, logC z = 2 logC
√
z.

(iv) If z ∈ C r R≤0, then logC z
−1 = − logC z and logC z = logC z.

(v) If |z| = 1, then logC z ∈ iRL.

Proof:

(ii): The assumption implies
√
zw =

√
z
√
w by Lemma 3.30. Moreover, sgn+ Im

√
z =

sgn+ Im z and
√
z /∈ R<0, and similarly for w and zw, hence the original assumptions continue

to hold with
√
z,
√
w in place of z, w; thus, we can iterate the argument, eventually obtaining

8
√
zw = 8

√
z 8
√
w. By Lemma 3.29,

∣∣Im 8
√
z
∣∣ ≤ 2

5

∣∣ 8
√
z
∣∣, and similarly for 8

√
w, hence

logS
8
√
z + logS

8
√
w = logS

(
8
√
z 8
√
w
)

= logS
8
√
zw

by Lemma 3.26. Multiplying by 8 yields (5).

(iii) follows from (ii) using Lemma 3.28 (i).

The proofs of (i) and the first identity in (iv) are similar to (ii), using Lemma 3.30 and

Corollary 3.32 in place of Lemma 3.31.

In order to prove logC z = logC z for z /∈ R≤0, we first observe that λ(z, n) = λ(z, n) for

all z ∈ Q(i) and n ∈ L, hence Λ(z) = Λ(z) for z ∈ D∗1(0) ∩Q(i), and logD z = logD z for all

z ∈ D∗1(1) by density. Since logR is real and sgn z = sgn z, we obtain logS z = logS z for all

z ∈ S. This implies logC z = logC z for z /∈ R≤0 for all z ∈ C r R≤0 using Lemma 3.28 (ii).

(v): If z 6= −1, we have logC z = logC z = logC z
−1 = − logC z, hence logC z is purely

imaginary. The case z = −1 follows using (iii). 2

We now make a short detour: we define the argument function and establish its monotonicity

properties. Besides being useful in its own right, our immediate goal here is to prove that logC is

injective (which will be instrumental in deriving exp log z = z from log exp z = z): the injectivity

of logR ensures that Re logC z = logR|z| distinguishes numbers with different absolute values,

and arg will give us a handle on numbers with the same absolute value. It will also help us

establish the image of logC.

Definition 3.38 If z ∈ C6=0, we define arg z = Im logC z. Let π = arg(−1).

Lemma 3.39 For any z ∈ C6=0, arg z = arg sgn z, and logC z = logR|z|+ i arg z.

Proof: We have logC z = logR|z| + logC sgn z by Lemma 3.37 (ii), which implies Im logC z =

Im logC sgn z, and Re logC z = logR|z| using Lemma 3.37 (v). 2

Lemma 3.40 Let z, w ∈ C6=0.

(i) If z /∈ R<0, then arg z−1 = arg z = − arg z.

(ii) If Re z ≥ 0 or Im z < 0, then arg iz = arg z + π
2 .

(iii) If Im z ≥ 0 and z /∈ R>0, then arg z > 0.

(iv) If Re z,Rew ≥ 0, then arg z < argw iff Im sgn z < Im sgnw.
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(v) If Im z, Imw ≥ 0, then arg z < argw iff Re sgn z > Re sgnw.

(vi) arg z = argw iff sgn z = sgnw.

Proof:

(i) is immediate from 3.37 (iv).

(ii): We observe that arg i = π
2 by Lemma 3.37 (iii), and apply Lemma 3.37 (ii): we have

Im i > 0 and i /∈ R<0; if Im z < 0, then sgn+ Im iz ∈ {1,−1} trivially, and if Re z ≥ 0, then

sgn+ Im iz = 1.

(iii): We may assume |z| = 1. Then i arg z = logC z = 8 logS w = 8 logD w, where w = 8
√
z =

u+ iv satisfies 0 < v ≤ 2
5 by Lemma 3.28 (i) and Lemma 3.29, thus |w− 1| ≤ 0.41 by the proof

of Lemma 3.26 (i), whence Im logD w ≥ v − |w − 1|2 = v + 2u − 2 using Lemma 3.19. Since

v ≥ 5
2v

2, we have (2− v)2 = 4− 4v + v2 ≤ 4− 9v2 < 4u2, thus 2− v < 2u, i.e., v + 2u− 2 > 0.

(iv): We may assume |z| = |w| = 1. Write z = x+ iy and w = u+ iv, thus x, u ≥ 0.

If v > y ≥ 0, then x2 = 1− y2 > 1− v2 = u2, thus x > u ≥ 0, and Imwz = xv − yu > 0. It

follows that

argw − arg z = argw + arg z = argwz > 0

using (i), (iii), and Lemma 3.37 (i).

If 0 ≥ v > y, then argw = − argw > − arg z = arg z using the previous part (with z and w

swapped) and (i).

If v > 0 > y, then argw > arg 1 > arg z by the previous two cases. This completes the proof

of the right-to-left implication in (iv).

If y > v, then arg z > argw by what we have already proved. If y = v, then x2 = u2, thus

x = u, i.e., z = w and arg z = argw.

(v): We have z = iz′, w = iw′ for some z′, w′, which satisfy Re z′,Rew′ ≥ 0, Im sgn z′ =

−Re sgn z′, Im sgnw′ = −Re sgnw′, and arg z < argw iff arg z′ < argw′ by (ii), hence the

result follows from (iv).

(vi): We have sgn+ arg z = sgn+ Im z by (iii) and (i). Thus, if arg z = argw, then either

Im z, Imw ≥ 0, in which case sgn z = sgnw by (v), or Im z, Imw < 0, which reduces to the

previous case by (i). 2

Corollary 3.41 The function logC is injective.

Proof: If logC z = logCw, then logR|z| = logR|w| and arg z = argw by Lemma 3.39. The

former implies |z| = |w| by Lemma 3.10, while the latter implies sgn z = sgnw by Lemma 3.40.

Thus, z = w. 2

Corollary 3.42 For any z ∈ C6=0, arg z ∈ (−π, π] and logC z ∈ RL + i(−π, π].

Proof: If Im z ≥ 0, we have 0 ≤ arg z ≤ π by Lemma 3.40 (v). If Im z < 0, then 0 < arg z =

− arg z < π using Lemma 3.40 (i). 2

Let us prove a yet another version of (5), this time indicating exactly how much it may be

off in cases where it does not hold.
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Lemma 3.43 For all z, w ∈ C6=0,

logC z + logCw − logC zw ∈ {−2πi, 0, 2πi}.

Proof: We first observe that logC(−z) = logC z+πi when Im z < 0 or z ∈ R>0 by Lemma 3.37

(ii), hence

logC(−z) = logC z ± πi

for all z ∈ C6=0. Now, given z, w ∈ C6=0, let z′ = ±z and w′ = ±w be such that Re z′ > 0, or

Re z′ = 0 and Im z′ > 0, and similarly for w′. Then

logC z
′ + logCw

′ = logC z
′w′

by Lemma 3.37 (i) (unless Re z′ = Rew′ = 0, i.e., z′, w′ ∈ iR>0, in which case the identity

holds as well). Since 0 or 2 of z′, w′, z′w′ are negated as compared to z, w, zw (resp.),

logC z + logCw − logC zw is a sum of 0 or 2 terms of the form ±πi, which gives the result. 2

One application is to estimate the value of π, which we indicate below (without actually

carrying out the computation with standard rationals in the proof). The same argument can

establish in VTC 0 all true inequalities of the form q < π < r where q, r ∈ Q are standard.

Proposition 3.44 3.1 < π < 3.2.

Proof: Let z = 1 + 1
100 i. We have

∣∣logC z − 1
100 i

∣∣ ≤ 1
10000 by Lemmas 3.36 and 3.19, hence

arg z ∈ [0.0099, 0.0101]. One can check Im zn > 0 for n = 1, . . . , 314, thus logC z
314 = 314 logC z

by repeated use of Lemma 3.37 (ii), which implies π ≥ 314 arg z ≥ 3.1086 by Corollary 3.42.

On the other hand, Im z315 < 0, thus arg z315 < 0 by Lemma 3.40; in view of Lemma 3.43 and

Corollary 3.42, this means −π < logC z
315 = 315 arg z − 2π, thus π < 315 arg z ≤ 3.1815. 2

We now come to the crucial Cauchy functional equation for log exp z.

Lemma 3.45 If z ∈ RL + i(−1, 1), then Re expCL
z > 0. Consequently,

(6) logC expCL
(z + w) = logC expCL

z + logC expCL
w

for all z, w ∈ RL + i(−1, 1).

Proof: Let z = x + iy with x ∈ RL and y ∈ (−1, 1). We have
∣∣exp iy − (1 + iy)

∣∣ ≤ y2 by

Lemma 3.10, hence |Re exp iy − 1| ≤ y2 < 1. Thus, Re exp z = expxRe exp iy > 0.

Assuming the same holds for w, we have

log exp(z + w) = log(exp z expw) = log exp z + log expw

by Lemmas 3.10 and 3.37. 2
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We are heading towards a proof of log exp z = z when z is sufficiently small. To this end,

we intend to use the identity log exp 2−nz = 2−n log exp z for n ∈ L. This appears to follow “by

induction on n” from (6), but there is an obstacle to formalizing this idea: z, exp z, and log exp z

are elements of the completion CM, which is too big to be definable in M, hence we cannot

use induction directly. Instead, we need to argue about Gaussian rational approximations of

exp z and log exp z for z ∈ QL(i); moreover, we need to make sure these approximations are

computable by TC0 functions so that the induction formula has the right complexity for VTC 0.

On a more fundamental level, we need such approximations so that the facts we prove about

exp, log, and other functions C→ C can be transferred back to the language of VTC 0. This is

the goal of the next lemma.

Lemma 3.46 We can construct TC0 functions ECL
(z, r, n), SRR(x, n), A×(z, n), A+(z, n),

SRC(z, n), LD(z, r, n), LR(x, n), LC(z, n), and LE (z, r, n) with the following properties.

(i) ECL
(z, r, n) is a multiplicative approximation of expCL

z for z ∈ QL(i), parametrized by

r ∈ L such that |z| ≤ r.

(ii) SRR(x, n) is a multiplicative approximation of
√
x for x ∈ Q>0.

(iii) A×(z, n) and A+(z, n) are multiplicative and additive (respectively) approximations of

|z| ∈ R for z ∈ Q(i).

(iv) SRC(x, n) is a multiplicative approximation of
√
z for z ∈ Q(i) r {0}.

(v) LD(z, r, n) is an additive approximation of logD z for z ∈ D∗1(1) ∩Q(i), parametrized by

r ∈ L such that |z − 1| ≤ 1− r−1.

(vi) LR(x, n) is an additive approximation of logR x for x ∈ Q>0.

(vii) LC(z, n) is an additive approximation of logC z for z ∈ Q(i) r {0}.

(viii) LE (z, r, n) is an additive approximation of logC expCL
z for z ∈ QL(i) satisfying |Im z| <

1, parametrized by r ∈ L such that |z| ≤ r.

Proof sketch: We employ the e(z, n) function to construct ECL
(z, r, n). The results of [8] give

SRR(x, n), which we use to construct A×, A+, and SRC(z, n). We define LD(z, r, n) using the

λ(z, n) function, combine it with the integer length function to get LR(x, n), and we construct

LC(z, n) from LD, LR, and SRC. Finally, we compose ECL
and LC to get LE (z, r, n).

The tedious but mostly unenlightening details have been moved to the appendix: see

Lemma A.1. 2

Lemma 3.47 For all z ∈ RL + i(−1, 1) and n ∈ L,

logC expCL
2−nz = 2−n logC expCL

z.
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Proof: In view of Lemmas 3.45 and 3.35, both sides are continuous in z (for fixed n), hence it

suffices to prove the result for z ∈ QL(i) by density. Fix z ∈ Q(i) and r ∈ L such that |z| ≤ r

and |Im z| < 1, and t ∈ L; we will prove the TC0 formula

(7)
∣∣LE (2−nz, r, t)− 2−nLE (z, r, t)

∣∣ ≤ 3 · 2−t

by induction on n ∈ L. The statement for n = 0 is trivial. Assuming (7) holds for n, we have∣∣log exp 2−nz − 2−nLE (z, r, t)
∣∣ ≤ 4 · 2−t

by Lemma 3.46. Since log exp 2−nz = 2 log exp 2−(n+1)z by (6),∣∣log exp 2−(n+1)z − 2−(n+1)LE (z, r, t)
∣∣ ≤ 2 · 2−t,

hence ∣∣LE (2−(n+1)z, r, t)− 2−(n+1)LE (z, r, t)
∣∣ ≤ 3 · 2−t

by Lemma 3.46.

In view of Lemma 3.46, (7) implies∣∣log exp 2−nz − 2−n log exp z
∣∣ ≤ 4 · 2−t + 2−t−n ≤ 5 · 2−t.

Since t ∈ L is arbitrary, we obtain log exp 2−nz = 2−n log exp z. 2

In the real world, all continuous solutions of Cauchy’s functional equation are linear. Armed

with Lemma 3.47, we use a similar argument to derive log exp z = z from the asymptotic

estimate log exp z = z +O(z2) for small z.

Lemma 3.48 For all z ∈ RL + i(−1, 1), logC expCL
z = z.

Proof: For any n ∈ L, we have

log exp z − z = 2n
(
log exp 2−nz − 2−nz

)
by Lemma 3.47. Assume |z| ≤ r. If 2n ≥ 4r, then∣∣exp 2−nz − (1 + 2−nz)

∣∣ ≤ 2−2nr2 ≤ 1
42−nr

by Lemma 3.10 (iv), hence ∣∣exp 2−nz − 1
∣∣ ≤ 5

42−nr ≤ 5
16 <

2
5 ,

whence ∣∣log exp 2−nz − (exp 2−nz − 1)
∣∣ ≤ |exp 2−nz − 1|2 ≤ 25

162−2nr2

by Lemmas 3.36 and 3.19. Consequently,∣∣log exp 2−nz − 2−nz
∣∣ ≤ 25

162−2nr2 + 2−2nr2 = 41
162−2nr2,

and

|log exp z − z| ≤ 41
162−nr2.

Since n ∈ L can be arbitrarily large, this implies log exp z = z. 2
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Corollary 3.49 For all z ∈ RL + i(−π, π], logC expCL
z = z.

Proof: Using Proposition 3.44, we have w = 1
4z ∈ RL + i(−1, 1), hence

log exp z = log
(
(expw)4

)
= 4 log expw + 2πi n = z + 2πi n

for some n ∈ {−3, . . . , 3} by Lemmas 3.10, 3.43, and 3.48. Since both log exp z and z are in

RL + i(−π, π] due to Corollary 3.42, the only possibility is n = 0. 2

We have everything ready to derive the crucial right inverse property:

Corollary 3.50 For all z ∈ C6=0, expCL
logC z = z.

Proof: We have logC z ∈ RL + i(−π, π] by Corollary 3.42, hence

logC expCL
logC z = logC z

by Corollary 3.49, and expCL
logC z = z by Corollary 3.41. 2

A useful property to know is that we can compute powers by means of exp and log, namely

zn = exp(n log z). It follows “by induction on n” from Corollary 3.50, but again, this takes a bit

of work to formalize, as we have to carry out the induction argument using TC0 approximations.

In Section 4, we will use this property to justify the definition of complex exponentiation via

zw = exp(w log z).

Lemma 3.51 {z : expCL
z ∈ Q(i)} is dense in CL.

Proof: For any z ∈ CL and 0 < δ ≤ 4
5 , the image of Bδ(z) under exp includes

{exp z expw : w ∈ Bδ(0)} ⊇ {w exp z : logw ∈ Bδ(0)} ⊇ {w exp z : w ∈ Bδ/2(1)}

using Lemma 3.10, Corollary 3.50, and Lemmas 3.19 and 3.36. 2

Lemma 3.52 If z ∈ CL and n ∈ ZL, then expCL
nz = (expCL

z)n. In particular, we have

expCL
(n logCw) = wn for all w ∈ C6=0.

Proof: Without loss of generality, fix n > 0. In view of Lemma 3.51, we may assume w :=

exp z ∈ Q(i) as both sides are continuous in z. For any t ∈ L such that 2t ≥ 8n + 42, fix

z′ ∈ Q(i) such that |z′ − z| ≤ 2−t; we will prove

(8)

∣∣∣∣ECL
(mz′, t)

wm
− 1

∣∣∣∣ ≤ (6m+ 1)2−t

by induction on m ≤ n. The statement holds for m = 0. For the induction step, we have∣∣∣∣ expmz′

ECL
(mz′, t)

− 1

∣∣∣∣ ≤ 1

2t − 1
≤ 2−t + 2 · 2−2t,∣∣∣∣exp((m+ 1)z′)

wm+1

wm

expmz′
− 1

∣∣∣∣ =

∣∣∣∣exp z′

w
− 1

∣∣∣∣ =
∣∣exp(z′ − z)− 1

∣∣ ≤ 2−t + 2−2t,∣∣∣∣ECL
((m+ 1)z′, t)

exp((m+ 1)z′)
− 1

∣∣∣∣ ≤ 2−t
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by Lemma 3.46 (i), Lemmas 2.3 and 3.10, hence assuming (8) for m < n,∣∣∣∣expmz′

wm
− 1

∣∣∣∣ ≤ (6m+ 2)2−t + (6m+ 3)2−2t + (12m+ 2)2−3t ≤ (6m+ 3)2−t,∣∣∣∣exp((m+ 1)z′)

wm+1
− 1

∣∣∣∣ ≤ (6m+ 4)2−t + (6m+ 4)2−2t + (6m+ 3)2−3t ≤ (6m+ 5)2−t,∣∣∣∣ECL
((m+ 1)z′, t)

wm+1
− 1

∣∣∣∣ ≤ (6m+ 6)2−t + (6m+ 5)2−2t ≤ (6m+ 7)2−t

using Lemma 2.3.

By the first part of the induction step, (8) for m = n gives∣∣∣∣expnz′

wn
− 1

∣∣∣∣ ≤ (6n+ 3)2−t.

Since ∣∣∣∣ expnz

expnz′
− 1

∣∣∣∣ =
∣∣exp

(
n(z − z′)

)
− 1
∣∣ ≤ n2−t + n22−2t,

Lemma 2.3 implies∣∣∣expnz

wn
− 1
∣∣∣ ≤ (7n+ 3)2−t + (7n2 + 3n)2−2t + (6n3 + 3n2)2−3t ≤ 8n2−t.

Since t ∈ L can be arbitrarily large, we obtain expnz = wn. 2

Apart from its intrinsic value, we have a few applications for Lemma 3.52: it enables us to

extend the definition of exp to RL+iR by exploiting its 2πi-periodicity, and it implies numerical

bounds on e based on the approximation
(
1 + 1

n

)n
. We start with the latter.

Definition 3.53 Let e = exp 1.

Lemma 3.54 Let n ∈ L, n > 0.

(i)
(
1 + 1

n

)n ≤ e ≤ (1 + 1
n

)n+1
.

(ii) 2n ≤ expn ≤ 4n.

(iii) 2.7 < e < 2.8.

Proof:

(i): We have 1 + 1
n ≤ exp 1

n by Lemma 3.11, thus
(
1 + 1

n

)n ≤ exp 1 = e by Lemma 3.52 and

the monotonicity of xn. Likewise, Lemma 3.11 gives 1 − 1
n+1 ≤ exp

(
− 1
n+1

)
, thus

(
1 + 1

n

)
=(

1− 1
n+1

)−1 ≥ exp 1
n+1 , which implies

(
1 + 1

n

)n+1 ≥ e.
(ii) follows from 2 = (1 + 1)1 ≤ e ≤ (1 + 1)2 = 4 and Lemma 3.52.

(iii): One can check that 2.7048 < 1.01100 ≤ e ≤ 1.01101 < 2.7319. 2
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We can generalize Lemma 3.54 (i) to a form of the alternative definition

exp z = lim
n→∞

(
1 +

z

n

)n
.

Notice that we could not have actually used this expression to define exp, as it has relative

error proportional to n−1, hence it only determines logarithmically many most significant bits

of exp z rather than its precise value.

Proposition 3.55 If z ∈ C and n ∈ L>0 are such that n ≥ max
{

2|z|, |z|2
}

, then∣∣∣∣∣
(
1 + z

n

)n
expCL

z
− 1

∣∣∣∣∣ ≤ 2|z|2

n
.

Proof: Let w = n log
(
1 + z

n

)
− z. We have |w| ≤ 1

n |z|
2 ≤ 1 by Lemma 3.19, hence |expw− 1| ≤

|w|+ |w|2 ≤ 2|w| by Lemma 3.10, and(
1 +

z

n

)n
= exp

(
n log

(
1 +

z

n

))
= exp(z + w) = exp z expw

by Lemma 3.52. 2

We now define our final extension of exp; since it will not be modified any further, it will

not carry any subscript. Recall that R↓L = {x ∈ R : ∃n ∈ Lx ≤ n} = RL ∪R<0.

Lemma 3.56 There is a unique function exp: R↓L + iR→ C such that

exp(z + 2πin) = expCL
z

for all z ∈ CL and n ∈ Z, and exp z = 0 when Re z /∈ RL. It satisfies

(9) exp(z + w) = exp z expw

for all z, w ∈ R↓L + iR. For each r ∈ L, exp is uniformly continuous on (−∞, r] + iR.

Proof: Any z ∈ RL + iR can be written as z′ + 2πin for n ∈ Z and z′ ∈ RL + i(−π, π] ⊆ CL;

on the other hand, if z+2πin = z′+2πin′, where z, z′ ∈ CL and n, n′ ∈ Z, we have n−n′ ∈ ZL,

thus

expCL
z′ = expCL

(
2πi(n− n′)

)
expCL

z = (−1)2(n−n
′) expCL

z = expCL
z

using Lemmas 3.10 and 3.52 (note that logC(−1) = πi by Lemma 3.39). This shows the

existence and uniqueness of exp.

If Re z /∈ RL or Rew /∈ RL, then the same holds for z +w, hence both sides of (9) equal 0.

Otherwise, (9) follows from Lemma 3.10.

If Re z,Rew ≤ r and |w − z| ≤ 1, we have

|expw − exp z| = |exp z||expCL
(w − z)− 1| ≤ 2 expRL

(r)|w − z|

by (9) and Lemma 3.10 (iv), using that |expCL
z| = expRL

Re z ≤ expRL
r by Lemma 3.10 (iii),

(ii) (if Re z /∈ RL, this bound holds trivially). 2
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We also extend our TC0 approximation to exp. Notice that we cannot define multiplicative

approximation of exp by a TC0 formula on a domain with real part crossing the RL boundary,

as this would give us a TC0 definition of QL inside Q, and therefore of L inside N, contradicting

induction.

Lemma 3.57 There are TC0 functions E×(z, r, n) and E+(z, r, n) with the following properties.

(i) E×(z, r, n) is a multiplicative approximation of exp z for z ∈ QL + iQ, parametrized by

r ∈ L such that |Re z| ≤ r.

(ii) E+(z, r, n) is an additive approximation of exp z for z ∈ Q↓L + iQ, parametrized by r ∈ L

such that Re z ≤ r.

Proof sketch: We use LC(−1, . . .) to compute P ≈ π, and N ∈ Z close to 1
2π Im z. Then we

define E×(z, r, n) as ECL
(z − 2PNi, . . .). For E+(z, r, n), we use E×(z, . . .) if Re z is not too

negative, and 0 otherwise. Details are again presented in Lemma A.1 in the appendix. 2

By Lemma 3.36, logR ⊆ logC, but we do not know yet whether logC extends logD and logS
on the entirety of their domains. Let us remedy this now; since this establishes that all our logX
functions agree whenever they are defined, it justifies that we officially rename logC to just log.

Lemma 3.58 logD ⊆ logC and logS ⊆ logC.

Proof: It is enough to prove the claim for logD: then for all z ∈ S,

logS z = logR|z|+ logD sgn z = logC|z|+ logC sgn z = logC z

using Lemma 3.37. Moreover, by the continuity of logC and logD, it suffices to show that logC
agrees with logD on Q(i).

Thus, let z ∈ Q(i)∩D1−h−1(0), where h ∈ L, h ≥ 2; we will show logD(1+z) = logC(1+z).

Put n = 2h2. For each j < n,
∣∣ j
nz
∣∣ ≤ 1− h−1, thus

∣∣1 + j
nz
∣∣ ≥ h−1, and∣∣∣∣∣1 + j+1

n z

1 + j
nz
− 1

∣∣∣∣∣ =

∣∣∣∣ z

n+ jz

∣∣∣∣ ≤ h

n
|z| ≤ h

n
=

1

2h
.

Since (2− h−1)
(
1 + (2h)−1

)
= 2− (2h2)−1 <∗ 2 and (2h)−1 ≤ 2

5 , we obtain

logD
(
1 + j+1

n z
)
− logD

(
1 + j

nz
)

= logD

(
1 +

z

n+ jz

)
= logC

(
1 +

z

n+ jz

)
= logC

(
1 + j+1

n z
)
− logC

(
1 + j

nz
)

using Lemmas 3.19, 3.36, and 3.37, thus

(10) logD
(
1 + j+1

n z
)
− logC

(
1 + j+1

n z
)

= logD
(
1 + j

nz
)
− logC

(
1 + j

nz
)
.
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Fix t ∈ L; we will prove

(11)
∣∣LD(1 + j

nz, t
)
− LC

(
1 + j

nz, t
)∣∣ ≤ (4j + 2)2−t

by induction on j ≤ n. Since logD 1 = 0 = logC 1, the base case j = 0 follows immediately from

Lemma 3.46. Assuming (11) holds for some j < n, Lemma 3.46 and (10) give∣∣logD
(
1 + j+1

n z
)
− logC

(
1 + j+1

n z
)∣∣ =

∣∣logD
(
1 + j

nz
)
− logC

(
1 + j

nz
)∣∣

≤ (4j + 4)2−t,∣∣LD(1 + j+1
n z, t

)
− LC

(
1 + j+1

n z, t
)∣∣ ≤ (4j + 6)2−t.

Taking (11) for j = n, Lemma 3.46 implies∣∣logD(1 + z)− logC(1 + z)
∣∣ ≤ (4n+ 4)2−t.

Since t ∈ L can be chosen arbitrarily large, we obtain logD(1 + z) = logC(1 + z). 2

To tie a one more loose end, Lemma 3.56 gives a useful result on uniform continuity of exp,

but for log, we only have the rather unsatisfactory Lemma 3.18. Let us state a better result for

the sake of completeness.

Lemma 3.59 For every ε ∈ R>0, log is uniformly continuous on{
z ∈ C : |z| ≥ ε ∧ (Re z ≥ 0 ∨ Im z ≥ 0 ∨ Im z ≤ −ε)

}
.

Proof: We claim that if z, w belong to the indicated set, then for all 0 < δ ≤ 1,

|z − w| ≤ ε

2
δ =⇒ |log z − logw| ≤ δ.

First, we observe ∣∣∣w
z
− 1
∣∣∣ =
|z − w|
|z|

≤ εδ/2

ε
≤ δ

2
,

∣∣∣log
w

z

∣∣∣ ≤ δ,
using Lemma 3.19. Thus, it suffices to show

(12) log z + log
w

z
= logw.

If Re z ≥ 0, then (12) is true by Lemma 3.37 (i), as Re(w/z) > 0; if Rew ≥ 0, we may swap

z and w, noting that log(z/w) = − log(w/z) by Lemma 3.37 (iv). Thus, it remains to consider

the case Re z,Rew < 0. Then either Im z, Imw ≥ 0, or Im z, Imw ≤ −ε: we cannot have, say,

Im z ≥ 0 and Imw ≤ −ε, as |z − w| < ε.

Assume Im z, Imw ≥ 0. Then sgn+
(
zwz
)

= sgn+ z, hence (12) follows from Lemma 3.37 (ii),

unless z ∈ R<0. Again, we may swap z and w if necessary, obtaining (12) unless w ∈ R<0 as

well; but if z, w ∈ R<0 and w/z ∈ R>0, then (12) is also true.

If Im z, Imw ≤ −ε, we obtain (12) by applying the previous part to z, w in place of z, w,

using Lemma 3.37 (iv). 2
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4 Complex powers and iterated multiplication

Having completed our treatment of exp and log, we come to applications. The first one is a

definition of powering. We have so far defined the powering function zn for z ∈ C6=0 and n ∈ ZL

(and for z = 0 and n ∈ L); we can now extend it to all exponents in CL.

Definition 4.1 If z ∈ C6=0 and w ∈ CL, let zw = exp(w log z).

Notice that this definition provides an alternative notation for exponentiation: ew = expw.

We will use this notation also when Rew ∈ R↓LrRL (even though we did not bother to define

zw in such circumstances).

Proposition 4.2 Let z, z′ ∈ C6=0 and w,w′ ∈ CL.

(i) If w ∈ ZL, then zw agrees with the previous definition. In particular, z0 = 1 and z1 = z.

(ii) zw+w
′

= zwzw
′

and z−w = 1/zw.

(iii) If arg z + arg z′ ∈ (−π, π], then (zz′)w = zwz′w.

(iv) If Im(w log z) ∈ (−π, π], then (zw)w
′

= zww
′
. In particular, this holds when w ∈ (−1, 1],

or when z ∈ R>0 and w ∈ RL.

Proof:

(i) and (ii) follow from Theorem 3.1 (i), (iv), and (x).

(iii) follows from Corollary 3.2.

(iv): If Im(w log z) ∈ (−π, π], then log zw = w log z by Theorem 3.1 (iv), thus (zw)w
′

=

exp(w′w log z) = zww
′
. If w ∈ RL, then Im(w log z) = w arg z, which is in (−π, π] if w ∈ (−1, 1]

or arg z = 0. 2

The usefulness of the general definition of zw is limited, as log z is conceptually a multivalued

function (only defined up to integer multiples of 2πi), thus zw should be only defined up to

multiplying by integer powers of exp(2πiw); this explains why Proposition 4.2 (iii) and (iv)

hold only under unsightly side conditions. The definition is better-behaved for:

• w ∈ ZL, when it is independent of the branch of log, as exp(2πiw) = 1; in this case, it

coincides with the previous definition using iterated multiplication.

• z ∈ R>0, in which case the choice of the branch log z ∈ R is canonical.

Another interesting case is w = 1/n, n ∈ L>0:

Definition 4.3 If z ∈ C6=0 and n ∈ L>0, let n
√
z = z1/n. We also put n

√
0 = 0.

Proposition 4.4 Let z, z′ ∈ C, n,m ∈ L>0, and w ∈ CL.

(i) 1
√
z = z and 2

√
z =
√
z.

(ii) ( n
√
z)w = zw/n. In particular, ( n

√
z)n = z and m

√
n
√
z = nm

√
z.
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(iii) If zz′ = 0 or arg z + arg z′ ∈ (−π, π], then n
√
zz′ = n

√
z n
√
z′.

Proof: (ii) and (iii) follow from Proposition 4.2. (i): 1
√
z = z is clear, and

√
z = exp log

√
z = exp

(
1
2 log z

)
= 2
√
z

by Lemma 3.37 (iii). 2

The second application we promised in Section 2 is an extension of the definition of iter-

ated multiplication
∏
j<n zj to coded sequences 〈zj : j < n〉 of Gaussian rationals zj ∈ Q(i).

Basically, we want to put ∏
j<n

zj = exp
(∑
j<n

log zj

)
,

but we cannot do this directly as log zj /∈ Q(i) in general, hence the sum is meaningless. We

can use an approximation L+(zj , t) instead of log zj , but then we have another problem—how

to determine the exact result. For this reason, we first define
∏
j<n zj for Gaussian integers

zj ∈ Z[i], in which case we can round a sufficiently good approximation to an exact result.

Definition 4.5 We put bxe =
⌊
x+ 1

2

⌋
for x ∈ R, and bze = bRe ze+ ibIm ze for z ∈ C.

If 〈zj : j < n〉 is a sequence of Gaussian integers zj = xj + iyj , xj , yj ∈ Z, we define

∏
j<n

zj =

{
0, if zj = 0 for some j < n,⌊
E×
(∑

j<n L+(zj , t), r, t
)⌉
, otherwise,

where r = 1 +
∑

j

∥∥|xj |+ |yj |∥∥ and t = r + 3 + ‖n‖.
If 〈zj : j < n〉 is a sequence of Gaussian rationals zj = wj/xj , where wj ∈ Z[i] and xj ∈ Z>0,

we define ∏
j<n

zj =

∏
j<nwj∏
j<n xj

.

Observe that
∏
j<n zj is defined by a TC0 function, and

∏
j<0 zj = 1, as |E×(0, r, t)−1| < 1

2 .

Theorem 4.6 For any sequence 〈zj : j ≤ n〉 of Gaussian rationals,∏
j<n+1

zj = zn
∏
j<n

zj .

Proof: It suffices to prove the result for zj ∈ Z[i]r{0}. Put rj =
∥∥|xj |+ |yj |∥∥, r = 1+

∑
j≤n rj ,

and t = r+ 3 + ‖n+ 1‖ as in the definition of
∏
j<n+1 zj ; notice that 1 ≤ |zj | ≤ |xj |+ |yj | ≤ 2rj ,

hence 0 ≤ Re log(zj) ≤ rj using Theorem 3.1 (vii) and Lemma 3.54. Thus,∣∣∣Re
∑
j<m

L+(zj , t)
∣∣∣ ≤∑

j<m

rj +m2−t ≤ r

for all m ≤ n + 1, which ensures that the usage of E× in the definition of
∏
j<n+1 zj is sound,

and more generally, that it makes sense to define

wm = E×

(∑
j<m

L+(zj , t), r, t
)
, m ≤ n+ 1.
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We will prove

m > 0 =⇒ bwme = zm−1bwm−1e,(13)

|bwme| ≤ 2
∑
j<m rj ,(14) ∣∣∣∣ wmbwme − 1

∣∣∣∣ ≤ (4m+ 1)2−t(15)

for all m ≤ n + 1 by induction on m. For m = 0, |w0 − 1| ≤ 2−t < 1
2 , thus bw0e = 1, which

gives the claim. Assume (13)–(15) hold for m ≤ n, we will prove them for m+ 1. We have∣∣∣∣exp
∑

j<m L+(zj , t)

bwme
− 1

∣∣∣∣ ≤ (4m+ 2)2−t +O(m2−2t)

by (15), the properties of E×, and Lemma 2.3, while |L+(zm, t)− log(zm)| ≤ 2−t gives∣∣∣∣expL+(zm, t)

zm
− 1

∣∣∣∣ =
∣∣exp

(
L+(zm, t)− log zm

)
− 1
∣∣ ≤ 2−t +O(2−2t),

using Theorem 3.1 (ix). Thus,∣∣∣∣exp
∑

j≤m L+(zj , t)

zmbwme
− 1

∣∣∣∣ ≤ (4m+ 3)2−t +O(m2−2t),∣∣∣∣ wm+1

zmbwme
− 1

∣∣∣∣ ≤ (4m+ 4)2−t +O(m2−2t) ≤ (4m+ 5)2−t,

using again Lemma 2.3 and the approximation property of E×. Since (14) and |zm| ≤ 2rm imply∣∣zmbwme∣∣ ≤ 2
∑
j≤m rj ≤ 2r−1,

we obtain ∣∣wm+1 − zmbwme
∣∣ ≤ (4n+ 5)2r−1−t ≤ 2r+1+‖n+1‖−t ≤ 2−2,

thus, in view of zmbwme ∈ Z[i],

bwm+1e = zmbwme.

This gives (13), (14), and (15) for m+ 1.

Now, (13) for m = n+ 1 shows∏
j<n+1

zj = bwn+1e = znbwne.

Moreover, putting r′ = 1 +
∑

j<n rj , t
′ = r′ + 3 + ‖n‖, and

w′m = E×

(∑
j<m

L+(zj , t
′), r′, t′

)
, m ≤ n,

the same argument as above shows

bw′0e = 1, ∀0 < m ≤ n bw′me = zm−1bw′m−1e,

which implies bwme = bw′me by induction on m ≤ n. Thus,

bwne = bw′ne =
∏
j<n

zj ,

completing the proof. 2
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5 Trigonometric and hyperbolic functions

Armed with complex exponential and logarithm, we can easily define trigonometric and hyper-

bolic functions and their inverses in the usual way. We present the definitions and a few basic

properties below, mostly to indicate the effects of our setup with (possibly) L 6= N on domains

of the functions, but we will skip many routine details (which are generally easy to verify using

Theorem 3.1); since we deal with 24 functions here, we cannot afford to give each the same level

of attention we spent on exp and log.

Definition 5.1 We introduce the following functions, where we write x = Re z:

sinh: RL + iR→ C, sinh z = 1
2

(
ez − e−z

)
,

sin : R + iRL → C, sin z = 1
i sinh iz,

cosh: RL + iR→ C, cosh z = 1
2

(
ez + e−z

)
,

cos : R + iRL → C, cos z = cosh iz,

tanh: C r iπ
(
1
2 + Z

)
→ C, tanh z =


sinh z

cosh z
, x ∈ RL

sgnx, x /∈ RL

 =


1− e−2z

1 + e−2z
, x ≥ 0,

e2z − 1

e2z + 1
, x ≤ 0,

tan: C r π
(
1
2 + Z

)
→ C, tan z = 1

i tanh iz,

coth: C r iπZ→ C, coth z =


cosh z

sinh z
, x ∈ RL

sgnx, x /∈ RL

 =


1 + e−2z

1− e−2z
, x ≥ 0,

e2z + 1

e2z − 1
, x ≤ 0,

cot : C r πZ→ C, cot z = i coth iz,

sech: C r iπ
(
1
2 + Z

)
→ C, sech z =


1

cosh z
, x ∈ RL

0, x /∈ RL

 =


2e−z

1 + e−2z
, x ≥ 0,

2ez

e2z + 1
, x ≤ 0,

sec : C r π
(
1
2 + Z

)
→ C, sec z = sech iz,

csch: C r iπZ→ C, csch z =


1

sinh z
, x ∈ RL

0, x /∈ RL

 =


2e−z

1− e−2z
, x ≥ 0,

2ez

e2z − 1
, x ≤ 0,

csc : C r πZ→ C, csc z = i csch iz.

Definition 5.2 A function f is p-periodic if f(z + pn) = f(z) for all z ∈ dom(f) and n ∈ Z,

and p-antiperiodic if f(z + pn) = (−1)nf(z) for all z ∈ dom(f) and n ∈ Z (which implies it is

2p-periodic).
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Proposition 5.3 Each of the 12 functions f from Definition 5.1 satisfies f(z) = f(z), whence

f maps R ∩ dom(f) to R. The functions sin, cos, sec, and csc are π-antiperiodic; sinh, cosh,

sech, and csch are πi-antiperiodic; tan and cot are π-periodic; tanh and coth are πi-periodic.

The functions cos, cosh, sec, and sech are even, while the remaining 8 functions are odd.

Proof: Straightforward consequence of exp z = exp z and the πi-antiperiodicity of exp, which

follow from Theorem 3.1. 2

We now turn to inverse trigonometric and hyperbolic functions. Similar to log, these func-

tions are multivalued, and it is a somewhat arbitrary decision how to choose their branch cuts;

we will define them in such a way that they extend the most natural choices of inverse real

trigonometric and hyperbolic functions.

Definition 5.4 We introduce the functions below:

arsinh: C→ RL + i
[
−π

2 ,
π
2

]
, arsinh z = log

(
z +

√
z2 + 1

)
,

arcsin : C→
[
−π

2 ,
π
2

]
+ iRL, arcsin z = 1

i arsinh iz,

arcosh: C→ RL,≥0 + i(−π, π], arcosh z = log
(
z +
√
z + 1

√
z − 1

)
,

arccos : C→ [0, π] + iRL, arccos z = π
2 − arcsin z,

artanh: C r {±1} → RL + i
(
−π

2 ,
π
2

]
, artanh z = 1

2 log
(
1+z
1−z
)
,

arctan: C r {±i} →
(
−π

2 ,
π
2

]
+ iRL, arctan z = 1

i artanh iz,

arcoth: C r {±1} → RL + i
(
−π

2 ,
π
2

]
, arcoth z = 1

2 log
(
z+1
z−1
)
,

arccot : C r {±i} → [0, π) + iRL, arccot z = π
2 − arctan z,

arsech: C6=0 → RL,≥0 + i(−π, π], arsech z = arcosh z−1,

arcsec : C6=0 → [0, π] + iRL, arcsec z = arccos z−1,

arcsch: C6=0 → RL + i
[
−π

2 ,
π
2

]
, arcsch z = arsinh z−1,

arccsc : C6=0 →
[
−π

2 ,
π
2

]
+ iRL, arccsc z = arcsin z−1.

To see that the indicated codomains of these functions are valid, we need the following:

Lemma 5.5 For all z ∈ C, Re
(
z +
√
z2 + 1

)
≥ 0 and

∣∣z +
√
z + 1

√
z − 1

∣∣ ≥ 1.

Proof: Putting z0,1 =
√
z2 + 1 ± z, we have z0z1 = 1, i.e., z1 = z0/|z0|2. Using Lemma 3.29,

we obtain sgn+ Re z0 = sgn+ Re z1 = sgn+ Re(z0 + z1) = sgn+ Re
√
z2 + 1 = 1.

Observe that if z0 and z1 belong to the same quadrant, then |z0 + z1| ≥ |z0 − z1|: writing

zj = xj + iyj , we have |z0 + z1|2 = (x0 + x1)
2 + (y0 + y1)

2 ≥ (x0 − x1)2 + (y0 − y1)2 = |z0 − z1|2

as x0x1 + y0y1 ≥ 0.

Lemmas 3.28 and 3.29 give Re
√
z ± 1 ≥ 0 and sgn+ Im

√
z ± 1 = sgn+ Im z, hence∣∣√z + 1 +

√
z − 1

∣∣ ≥ ∣∣√z + 1−
√
z − 1

∣∣
by the observation above. Since

(√
z + 1±

√
z − 1

)2
= 2z ± 2

√
z + 1

√
z − 1, we obtain∣∣z +

√
z + 1

√
z − 1

∣∣ ≥ ∣∣z −√z + 1
√
z − 1

∣∣ .
In view of

(
z+
√
z + 1

√
z − 1

)(
z−
√
z + 1

√
z − 1

)
= 1, this shows

∣∣z +
√
z + 1

√
z − 1

∣∣ ≥ 1. 2
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g B(g) X(g) domR(g) imR(g) f−1(z)

arsinh ±i(1,∞) ±
(
RL,<0 + iπ2

)
R RL w + 2πiZ

πi− w + 2πiZ

arcsin ±(1,∞) ±
(
π
2 + iRL,>0

)
[−1, 1]

[
−π

2 ,
π
2

]
w + 2πZ

π − w + 2πZ

arcosh (−∞, 1) i(−π, 0) [1,∞) RL,≥0 ±w + 2πiZ

arccos ±(1,∞) (π + iRL,>0)

∪ iRL,<0

[−1, 1] [0, π] ±w + 2πZ

artanh ±[1,∞) iπ2 (−1, 1) RL w + πiZ

arctan ±i[1,∞) π
2 R

(
−π

2 ,
π
2

)
w + πZ

arcoth [−1, 1] 0 ±(1,∞) RL,6=0 w + πiZ

arccot ±i[1,∞) 0 R (0, π) w + πZ

arsech (−∞, 0]

∪ (1,∞)

i(−π, 0) ∪
{
iπ2
}

(0, 1] RL,≥0 ±w + 2πiZ

arcsec (−1, 1) (π + iRL,>0)

∪ iRL,<0 ∪
{
π
2

} ±[1,∞) [0, π] r
{
π
2

}
±w + 2πZ

arcsch i(−1, 1) ±
(
RL,<0 + iπ2

)
∪ {0}

R6=0 RL,6=0 w + 2πiZ

πi− w + 2πiZ

arccsc (−1, 1) ±
(
π
2 + iRL,>0

)
∪ {0}

±[1,∞)
[
−π

2 ,
π
2

]
r {0} w + 2πZ

π − w + 2πZ

Table 1: Properties of inverse hyperbolic and trigonometric functions (see Proposition 5.6)

The functions as presented in Definition 5.4 are not quite surjective. Their precise ranges

as well as the complete structure of preimages of trigonometric and hyperbolic functions in the

complex and real cases are described below.

Proposition 5.6 Let f : dom(f) → cod(f) be a hyperbolic or trigonometric function from

Definition 5.1, g : dom(g)→ cod(g) the corresponding function from Definition 5.4, and B(g),

X(g), domR(g), imR(g) the corresponding sets in Table 1. Let domR(f) = dom(f) ∩R if f is

trigonometric, and domR(f) = dom(f) ∩RL if it is hyperbolic.

(i) The function g is continuous in C rB(g).

(ii) The image of g is cod(g)rX(g). We have f(g(z)) = z for all z ∈ dom(g), and g(f(z)) = z

for all z ∈ cod(g) rX(g).

(iii) f maps domR(f) onto domR(g), and g maps domR(g) onto imR(g).
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(iv) If g(z) = w, then f−1(z) is the set described in the last column of Table 1.

Proof: Left to the reader. 2

Using Theorem 3.1, it is routine to prove all standard trigonometric identities. The following

is just an example.

Proposition 5.7 For all z, w ∈ R + iRL,

sin2 z + cos2 z = 1,(16)

sin(z + w) = sin z cosw + cos z sinw.(17)

Proof:

sin z cosw + cos z sinw =
(eiz − e−iz)(eiw + e−iw) + (eiz + e−iz)(eiw − e−iw)

4

=
2eizeiw − 2e−ize−iw

4

=
ei(z+w) − e−i(z+w)

2
= sin(z + w).

We leave (16) to the reader. 2

In order to work with the functions introduced in this section in inductive arguments and

other reasoning within VTC 0, we need their TC0 approximations. We start with the inverse

functions which are relatively straightforward to approximate.

Proposition 5.8 Each of the 12 functions g(z) from Definition 5.4 has additive and multi-

plicative TC0 approximations for z ∈ Q(i) ∩ dom(g).

Proof: We only sketch the arguments, leaving details to the reader. Let us start with additive

approximations.

For artanh z, we can just take 1
2L+

(
1+z
1−z , n

)
; similarly for arcoth z.

Using an additive approximation for
√
z (which exists by Lemmas 3.46 and 2.2), we can com-

pute an additive approximation to z +
√
z2 + 1. In view of

(
z +
√
z2 + 1

)(
z −
√
z2 + 1

)
= −1,

we can bound this value away from 0, hence we can compute a multiplicative approximation of

z +
√
z2 + 1 using Lemma 2.2 (making sure that its sgn+ Im is correct so that we do not inad-

vertently cross the branch cut of log). Plugging it into L+, we obtain an additive approximation

of arsinh z. A similar argument applies to arcosh z.

The remaining functions reduce to these four, either directly, or using an additive approxi-

mation for π
2 such as ImL+(i, n).

In order to construct multiplicative approximations using Lemma 2.2, it suffices to bound

g(z) away from 0 (except for the at most one z where g(z) is exactly 0). Let f be the hyperbolic

or trigonometric function whose inverse g is. Since f(g(z)) = z, g(z) is close to 0 only if z is in

the f -image of a small neighbourhood of 0. If f is sinh, sin, tanh, or tan, then g(z) = 0 only if

z = 0, and Theorem 3.1 (ix) implies that there is a constant c > 0 such that |f(w)−w| ≤ c|w|2
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for |w| ≤ c. Thus, |g(z)| ≥ min{c1|z|, c2} for some constants c1, c2 > 0. If f is coth, cot, csch,

or csc, then likewise |g(z)| ≥ min{c1|z|−1, c2} (here, g(z) is never 0).

For cosh, we can use the definitions of expQL(i) and expCL
to prove there is a constant c > 0

such that
∣∣ew − (1 + w + 1

2w
2)
∣∣ ≤ c|w|3 for |w| ≤ c, thus

∣∣coshw − (1 + 1
2w

2)
∣∣ ≤ c|w|3, and

|arcosh z| ≥ min{c1|z− 1|1/2, c2} for some constants c1, c2 > 0. Similarly for arccos, arsech, and

arcsec. 2

We now turn to approximation of hyperbolic and trigonometric functions. Many of these

functions run into rough spots (singularities or zeros) near integer multiples of π, iπ, π
2 , or

iπ2 , hence we will need to parameterize their approximations to bound them away from the

problematic points. Let us introduce some notation to this end.

Definition 5.9 For any z ∈ C and α ∈ C6=0, we put

dist(z, αZ) = min
{
|z − αn| : n ∈ Z

}
=
∣∣z − αbRe(z/α)e

∣∣,
dist(z, αZ 6=0) = min

{
|z − αn| : n ∈ Z6=0

}
=

{
min

{
|z − α|, |z + α|

}
, |Re(z/α)| ≤ 1

2 ,

dist(z, αZ), otherwise.

(The expressions on the right-hand side exhibit that the minima exist.) More generally, if

β ∈ C, let dist(z, β + αZ) = dist(z − β, αZ).

Lemma 5.10 For any α ∈ Q(i) r {0} and β ∈ Q(i), there are additive TC0 approximations

Dπ(β+αZ)(z) of dist
(
z, π(β + αZ)

)
, and DπαZ 6=0

(z) of dist(z, παZ 6=0) for z ∈ Q(i).

Proof: Similarly to Lemma A.1 (ix), let m ∈ L be such that 2m ≥ |x| + |y| + c for a suitable

constant c (depending on α, β), and put

P = ImL+(−1, n+m),

N =
⌊
Re
(
α−1

( z
P
− β

))⌉
,

Dπ(β+αZ)(z, n) = min
{
A+

(
z − P (β + α(N + k)), n+ 1

)
: k ∈ {−1, 0, 1}

}
.

Write N ′ =
⌊
Re
(
α−1

(
z
π − β

))⌉
, so that dist

(
z, π(β +αZ)

)
= |z− π(β +αN ′)|. Since |P − π| ≤

2−(n+m), we have∣∣∣Re
(
α−1

( z
P
− β

))
− Re

(
α−1

( z
π
− β

))∣∣∣ =

∣∣∣∣Re
(P − π)z

απP

∣∣∣∣ ≤ 1

as long as 2c|α|π2 ≥ 1 or so. Thus, N −N ′ ∈ {−1, 0, 1}. Moreover, for k ∈ {−1, 0, 1},∣∣β + α(N + k)
∣∣ ≤ |β|+ |α|(∣∣∣α−1 ( z

π
− β

)∣∣∣+
5

2

)
≤ 2|β|+ 5

2
|α|+

∣∣∣ z
π

∣∣∣ ≤ 2−(m+1),

hence∣∣A+

(
z − P (β + α(N + k))

)
− |z − π(β + α(N + k))|

∣∣ ≤ 2−(n+1) + |P − π|
∣∣β + α(N + k)

∣∣
≤ 2−(n+1) + 2−(n+m)2−(m+1) = 2−n.

Consequently,
∣∣dist(z, π(β + αZ))−Dπ(β+αZ)(z, n)

∣∣ ≤ 2−n.

The argument for dist(z, παZ 6=0) is similar. 2
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f additive parameter multiplicative parameter

sinh |Re z| ≤ r z /∈ iQ or DπiZ 6=0
(z, r + 1) ≥ 2−r

sin |Im z| ≤ r z /∈ Q or DπZ 6=0
(z, r + 1) ≥ 2−r

cosh |Re z| ≤ r z /∈ iQ or Dπi( 1
2
+Z)(z, r + 1) ≥ 2−r

cos |Im z| ≤ r z /∈ Q or Dπ( 1
2
+Z)(z, r + 1) ≥ 2−r

tanh z /∈ iQ or Dπi( 1
2
+Z)(z, r + 1) ≥ 2−r z /∈ iQ or Dπ

2
iZ 6=0

(z, r + 1) ≥ 2−r

tan z /∈ Q or Dπ( 1
2
+Z)(z, r + 1) ≥ 2−r z /∈ Q or Dπ

2
Z6=0

(z, r + 1) ≥ 2−r

coth z /∈ iQ or DπiZ 6=0
(z, r + 1) ≥ 2−r z /∈ iQ or Dπ

2
iZ 6=0

(z, r + 1) ≥ 2−r

cot z /∈ Q or DπZ 6=0
(z, r + 1) ≥ 2−r z /∈ Q or Dπ

2
Z6=0

(z, r + 1) ≥ 2−r

sech z /∈ iQ or Dπi( 1
2
+Z)(z, r + 1) ≥ 2−r |Re z| ≤ r

sec z /∈ Q or Dπ( 1
2
+Z)(z, r + 1) ≥ 2−r |Im z| ≤ r

csch z /∈ iQ or DπiZ 6=0
(z, r + 1) ≥ 2−r |Re z| ≤ r

csc z /∈ Q or DπZ 6=0
(z, r + 1) ≥ 2−r |Im z| ≤ r

Table 2: TC0 approximation of hyperbolic and trigonometric functions

Proposition 5.11 If f is any of the 12 functions from Definition 5.1, then f has an additive

TC0 approximation F+(z, r, n) and a multiplicative TC0 approximation F×(z, r, n), parametrized

by r ∈ L that satisfies conditions specified in Table 2 (the parameter of F× is subject to conditions

from both the additive and multiplicative columns). The additive approximation is defined for

all z ∈ Q(i)∩dom(f), while the multiplicative approximation excludes z 6= 0 such that f(z) = 0,

if any.

Proof: An additive approximation of sinh z is given by 1
2

(
E+(z, r, n)− E+(−z, r, n)

)
. We can

construct a multiplicative approximation using Lemma 2.2—it suffices to bound sinh z away

from 0 by a TC0 function of z = x+ iy and r. If, say, |x| ≥ 1
4 , then

|sinh z| ≥
∣∣|ez| − |e−z|∣∣

2
=
e|x| − e−|x|

2
≥ e1/4 − e−1/4

2
> 0.

Write y = πN + y0 and z = πN + z0, where N ∈ Z and |y0| ≤ π
2 . (Note that we cannot directly

compute N , y0, or z0.) We have

|Im sinh z| = ex + e−x

2
sin|y0| ≥ sin|y0|.

Since sin t = Im eit is increasing on
[
0, π2

]
by Theorem 3.1 (viii), |Im sinh z| ≥ sin 1

4 > 0 if, say,

|y0| ≥ 1
4 .

In the remaining case, we have |z0| = dist(z, πiZ) ≤ 1
2 . Theorem 3.1 (ix) easily implies

|sinh z0 − z0| ≤ |z0|2, thus |sinh z| = |sinh z0| ≥ 1
2 |z0|. Now, if x 6= 0, then |z0| ≥ |x| > 0, while
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if x = 0 and N = 0, then |z0| = |y| > 0 (unless z = 0, in which case sinh z = 0). Finally,

if x = 0 and N 6= 0, then our assumption DπiZ6=0
(z, r + 1) ≥ 2−r on the parameter r implies

|z0| ≥ 2−(r+1). Thus, all in all, if z 6= 0, we can lower bound |sinh z| by a constant or one of
1
2 |x|,

1
2 |y|, or 2−(r+2).

The arguments for sin, cosh, and cos are similar.

In view of Lemma 2.3 (iii), the reciprocal of a suitable multiplicative approximation of

cosh z gives a multiplicative approximation of sech z; by Lemma 2.2, this also gives an additive

approximation with the same parametrization. For additive approximation, we can get rid of

the |Re z| ≤ r condition on r by observing that if |Re z| ≥ n (including the case Re z /∈ RL),

then |sech z| ≤ 2−n, hence we can take 0 for the approximation; otherwise, we can use the

original approximation with max{r, n} in place of r. A similar argument applies to sec, csch,

and csc.

A multiplicative approximation of tanh z can be computed by dividing multiplicative ap-

proximations of sinh z and cosh z. We get rid of the |Re z| ≤ r condition in the same way as

for sech: if |Re z| ≤ n, we proceed with max{r, n} in place of r, otherwise sgn Re z can serve as

approximation (since this is ±1 rather than 0, it works as a multiplicative approximation as well

as additive, unlike the case of sech). For additive approximation, we can relax the condition

on r near πiZ: if DπiZ(z, n + 2) ≤ 2−(n+1), then |tanh z| ≤ 2−n, hence we can approximate

it with 0; otherwise, we can proceed with max{r, n + 1} in place of r. Thus, for z ∈ iQ, we

only need to assume Dπi( 1
2
+Z)(z, r + 1) ≥ 2−r rather than Dπ

2
iZ(z, r + 1) ≥ 2−r. Again, the

arguments for tan, coth, and cot are analogous. 2

In the standard model, the picture becomes much simpler: multiplicative approximations

are defined on full domains as f(z) = 0 with z 6= 0 is impossible (i.e., π is irrational and L = N),

and more importantly, we do not need the D...(z, r + 1) ≥ 2−r conditions on the parameters,

as we can compute r ∈ L with these properties from z alone. The reason is that π has a finite

irrationality measure: i.e., there is a constant µ such that∣∣∣∣pq − π
∣∣∣∣ ≥ 1

qµ

for all but finitely many pairs 〈p, q〉 ∈ Z2
>0, which ensures that

dist

(
p

q
, πZ6=0

)
= N

∣∣∣∣ pqN − π
∣∣∣∣ ≥ N

(qN)µ
≈ 1

q

(
π

p

)µ−1
,

where N ∈ Z>0 is the integer closest to p/(qπ). This was originally proved by Mahler [14];

the current best bound µ ≤ 7.1032 . . . is due to Zeilberger and Zudilin [26]. We do not know

whether VTC 0 can prove that π has a finite irrationality measure, or even the simpler and more

fundamental property that π is irrational.

In fact, it turns out that the latter seemingly weaker property would be sufficient. First,

observe that in the argument above, we do not quite need the finiteness of the irrationality

measure: it would be enough if π has a finite “quasipolynomial irrationality measure”, i.e., a

constant ν such that ∣∣∣∣pq − π
∣∣∣∣ = Ω

(
2−(log q)

ν)
.
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Below, “VTC 0 proves . . . ” means, more precisely, “. . . holds for all models of VTC 0”.

Proposition 5.12 If VTC 0 proves that π /∈ Q, then there is a constant ν such that VTC 0

proves

∀p, q ∈ Z≥2

∣∣∣∣pq − π
∣∣∣∣ ≥ 2−‖q‖

ν
,

and consequently, that there is a TC0-computable lower bound on dist(z, πZ 6=0).

Proof: The irrationality of π is equivalent to

∀p, q ∈ Z>0 ∃n ∈ L

∣∣∣∣pq − P (n)

∣∣∣∣ ≥ 21−n,

where P (n) = ImL+(−1, n) is an additive TC0 approximation of π. This is a ∀∃ΣB
0 statement

in the language of VTC 0, thus if it is provable in VTC 0, then VTC 0 proves

∀p, q ∈ Z>0 ∃n ≤
(
‖p‖+ ‖q‖

)c ∣∣∣∣pq − P (n)

∣∣∣∣ ≥ 21−n

for some constant c by Parikh’s theorem, which implies

∀p, q ∈ Z>0

∣∣∣∣pq − π
∣∣∣∣ ≥ 2−(‖p‖+‖q‖)

c
.

Now, if p ≥ 4q, then
∣∣p
q − π

∣∣ ≥ 4− π ≥ 1
2 ; otherwise, ‖p‖ ≤ ‖q‖+ 2. This allows the bound to

be restated in terms of q alone, using a possibly larger constant ν > c. 2

Question 5.13 Does VTC 0 prove that π is irrational?

There are some fairly elementary proofs of the irrationality of π, in particular the proof of

Niven [16]. This proof can be formalized in I∆0 + EXP with no difficulty, but it essentially

relies on the totality of exponentiation, and it is unclear how to prove the result in any weaker

theory.

6 Conclusion

Even though it has taken us some effort, we have successfully formalized in VTC 0 the construc-

tion of complex exp and log as well as other elementary analytic functions, and we have shown

that they share basic properties enjoyed by the prototypes of these functions in the real world,

adjusted in expected ways to an environment where integer exponentiation is not necessarily

total. We also managed to extend the definition of iterated multiplication to Gaussian ratio-

nals. We may consider these results as further evidence that VTC 0 is a robust and somewhat

unexpectedly powerful theory.

This is not to say that no problems remain. We already identified one missing fundamental

piece of the puzzle, namely Question 5.13: can VTC 0 prove that π is irrational? In view of

Proposition 5.12, this is really asking for a feasible proof that π has a certain Diophantine

inapproximability property a little weaker than finite irrationality measure.
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This paper is a modest start of investigation of analytic functions in models of VTC 0, and

it opens various possibilities of how it could be extended. We treated the elementary analytic

functions which are an important but small group of functions; there are many other functions

of interest (“special functions”) that might deserve similar attention, such as Γ(z), ζ(z), Bessel

functions, the error function, elliptic functions, etc. [1, 17]. An intriguing problem is whether

we can formulate in VTC 0 some form of a general theory of analytic functions, i.e., basic

results of complex analysis. Can VTC 0 understand differentiation and integration (or even

simple differential equations such as Pfaffian chains)? We leave these open-ended questions for

possible future work.

A Detailed construction of TC0 approximations

Here are the full proofs of Lemmas 3.46 and 3.57.

Lemma A.1 We can construct TC0 functions ECL
(z, r, n), SRR(x, n), A×(z, n), A+(z, n),

SRC(z, n), LD(z, r, n), LR(x, n), LC(z, n), LE (z, r, n), E×(z, r, n), and E+(z, r, n) with the

following properties.

(i) ECL
(z, r, n) is a multiplicative approximation of expCL

z for z ∈ QL(i), parametrized by

r ∈ L such that |z| ≤ r.

(ii) SRR(x, n) is a multiplicative approximation of
√
x for x ∈ Q>0.

(iii) A×(z, n) and A+(z, n) are multiplicative and additive (respectively) approximations of

|z| ∈ R for z ∈ Q(i).

(iv) SRC(x, n) is a multiplicative approximation of
√
z for z ∈ Q(i) r {0}.

(v) LD(z, r, n) is an additive approximation of logD z for z ∈ D∗1(1) ∩Q(i), parametrized by

r ∈ L such that |z − 1| ≤ 1− r−1.

(vi) LR(x, n) is an additive approximation of logR x for x ∈ Q>0.

(vii) LC(z, n) is an additive approximation of logC z for z ∈ Q(i) r {0}.

(viii) LE (z, r, n) is an additive approximation of logC expCL
z for z ∈ QL(i) satisfying |Im z| <

1, parametrized by r ∈ L such that |z| ≤ r.

(ix ) E×(z, r, n) is a multiplicative approximation of exp z for z ∈ QL + iQ, parametrized by

r ∈ L such that |Re z| ≤ r.

(x ) E+(z, r, n) is an additive approximation of exp z for z ∈ Q↓L + iQ, parametrized by r ∈ L

such that Re z ≤ r.
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Proof:

(i): We know that
∣∣e(z,max{8r, n})− exp z

∣∣ ≤ 2−n from the proof of Lemma 3.5, hence∣∣∣∣e(z,max{8r, n})
exp z

− 1

∣∣∣∣ ≤ 2−n|exp(−z)| ≤ 2−n exp r

using Lemmas 3.6 and 3.8. Thus, the crude bound

exp r ≤ 2−8r + e(r, 8r) ≤ 2−8r +
∑
j<8r

rj ≤ r8r ≤ 28r
2

shows that it suffices to take ECL
(z, r, n) = e(z, n+ 8r2).

(ii): In view of [8, Thm. 6.8], the existence of SRR is a consequence of [8, Prop. 3.7]. An

explicit description can be given as follows. Let x ∈ Q>0. Similarly to the proof of Lemma 2.2,

we can compute m ∈ ZL (in unary) such that 2
5 ≤ 2−2mx ≤ 8

5 by a TC0 function. Putting

u = 1− 2−2mx, we apply [8, Thm. 5.5] to the polynomial h(y) = −y2 + y− u
4 (writing y instead

of x for the indeterminate to avoid clash with our x), whose root is y = 1
2

(
1 −
√

1− u
)
, i.e.,√

x = 2m(1− 2y). Since α = |u| ≤ 3
5 , we obtain

|y − yN | ≤
5

2

(
3

5

)N
,

where

yN =
N∑
j=1

bj

(u
4

)N
=

N∑
j=1

(
2(j − 1)

j − 1

)
1

j

(u
4

)j
.

Since (1− 2y)2 ≥ 2
5 , we have |1− 2y| ≥ 5

8 , hence∣∣∣∣2m(1− 2yN )√
x

− 1

∣∣∣∣ =

∣∣∣∣2(y − yN )

1− 2y

∣∣∣∣ ≤ 8

(
3

5

)N
.

Thus, we may take SRR(x, n) = 2m(1− 2y2(n+3)).

(iii): We can put A×(z, n) = SRR(x2+y2, n) and A+(z, n) = A×(z, n+m), where z = x+iy,

and m ∈ L is such that 2m ≥ |x|+ |y|.
(iv): Write z = x+ iy, and assume first x ≥ 0. Note that

√
z =

√
|z|+ x

2
+ i

y

2

√
|z|+x

2

as y = Im
(
(
√
z)2
)

= 2 Re
√
z Im

√
z. Put

r = A×(z, n+ 1),

u = SRR

(
1
2(r + x), n+ 1

)
,

SRC(z, n) = u+ i
y

2u
.

We have ∣∣∣∣∣ 1
2(r + x)
1
2(|z|+ x)

− 1

∣∣∣∣∣ =

∣∣∣∣ r − |z||z|+ x

∣∣∣∣ =
|z|
|z|+ x

∣∣∣∣ r|z| − 1

∣∣∣∣ ≤ 2−(n+1).
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Put n′ = n+ 2 and ε = 2−n
′
+ 2−2n

′
. Since

2ε− ε2 = 2 · 2−n′ + 2−2n
′ − 2 · 2−3n′ − 2−4n

′ ≥ 2 · 2−n′ = 2−(n+1),

Lemma 2.3 implies∣∣∣∣∣∣
√

1
2(r + x)√
1
2(|z|+ x)

− 1

∣∣∣∣∣∣ ≤ ε,∣∣∣∣∣∣ u√
1
2(|z|+ x)

− 1

∣∣∣∣∣∣ ≤ 2−(n+1) + ε+ 2−(n+1)ε

= 3 · 2−n′ + 3 · 2−2n′ + 2 · 2−3n′ ≤ 4 · 2−n′ = 2−n.

If y = 0, we are done. Otherwise,

(1 + 2−n)(3 · 2−n′ + 3 · 2−2n′ + 2 · 2−3n′) = 3 · 2−n′ + 15 · 2−2n′ + 14 · 2−3n′ + 8 · 2−4n′ ≤ 2−n

as long as n′ ≥ 4, i.e., n ≥ 2; thus,∣∣∣∣∣∣∣
y/2u

y
/

2
√

1
2(|z|+ x)

− 1

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
√

1
2(|z|+ x)

u
− 1

∣∣∣∣∣∣ ≤ 2−n

by Lemma 2.3 (iii), and ∣∣∣∣SRC(z, n)√
z

− 1

∣∣∣∣ ≤ 2−n

by Lemma 2.3 (iv).

If Re z < 0, we may take SRC(z, n) = iSRC(−z, n) sgn+ y.

(v): By the proof of Lemma 3.14, LD(z, r, n) = −λ(1− z, nr) works.

(vi): Given x ∈ Q>0, we can compute m ∈ ZL such that 2m ≥ x > 2m−1 as in (ii). Put

x′ = 2−mx ∈
(
1
2 , 1
]
, so that

logR x = logD x
′ +m`2 = logD x

′ −m logD
1
2 .

Thus, it suffices to take LR(x, n) = LD(x′, 2, n+ 1)−mLD(12 , 2, n+ |m|).
(vii): Let z = x+ iy ∈ Q(i) r {0}. We have

logC z = 8 logS
8
√
z = 8 logR

∣∣ 8
√
z
∣∣+ 8 logD sgn 8

√
z.

Put z1 = SRC(z, n + 7), z2 = SRC(z1, n + 7), z3 = SRC(z2, n + 7), x = SRR(z3z3, n + 7),

w = z3/x, and

LC(z, n) = 8LR(x, n+ 5) + 8LD(w, n+ 5).

Write n′ = n+ 7, ε = 2−n
′
+ 4 · 2−2n′ , and δ = 2 · 2−n′ + 6 · 2−2n′ . Notice that

2−n
′
+ ε+ 2−n

′
ε = 2 · 2−n′ + 5 · 2−2n′ + 4 · 2−3n′ ≤ δ
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and

2ε− ε2 = 2 · 2−n′ + 7 · 2−2n′ − 8 · 2−3n′ − 16 · 2−4n′ ≥ δ.

Thus, using Lemma 2.3, ∣∣∣∣ z1√z − 1

∣∣∣∣ ≤ 2−n
′ ≤ δ ≤ 2ε− ε2

implies ∣∣∣∣√z14
√
z
− 1

∣∣∣∣ ≤ ε,
whence ∣∣∣∣ z24

√
z
− 1

∣∣∣∣ ≤ 2−n
′
+ ε+ 2−n

′
ε ≤ δ.

Repeating the same argument, we obtain∣∣∣∣ z38
√
z
− 1

∣∣∣∣ ≤ δ.
Using

∣∣|z| − 1
∣∣ ≤ |z − 1|, we get∣∣∣∣ x

| 8
√
z|
− 1

∣∣∣∣ ≤ 2−n
′
+ δ + 2−n

′
δ ≤ 3 · 2−n′ + 9 · 2−2n′ ,

hence ∣∣logR x− logR| 8
√
z|
∣∣ =

∣∣logR
(
x/| 8
√
z|
)∣∣

≤ 3 · 2−n′ + 9 · 2−2n′ + (3 · 2−n′ + 9 · 2−2n′)2

≤ 4 · 2−n′ = 2−n−5

using Lemma 3.23 and (3), and∣∣LR(x, n+ 5)− logR| 8
√
z|
∣∣ ≤ 2−n−4.

Using similar arguments, we obtain
∣∣w/ sgn z3 − 1

∣∣ ≤ 2−n
′

+ O(2−2n
′
),
∣∣w/ sgn 8

√
z − 1

∣∣ ≤
3 · 2−n′ +O(2−2n

′
), and

∣∣logD w − logD sgn 8
√
z
∣∣ ≤ 3 · 2−n′ +O(2−2n

′
) ≤ 2−n−5, whence∣∣LD(w, n+ 5)− logD sgn 8

√
z
∣∣ ≤ 2−n−4,

which implies |LC(z, n)− logC z| ≤ 8(2−n−4 + 2−n−4) = 2−n.

(viii): We put LE (z, r, n) = LC

(
ECL

(z, r, n+ 2), n+ 1
)
. By (i), we have

ECL
(z, r, n+ 2) = (1 + w) exp z

for some w such that |w| ≤ 2−(n+2). We have Re exp z > 0 by Lemma 3.45, and trivially

Re(1 + w) > 0, thus∣∣logCECL
(z, r, n+ 2)− logC exp z

∣∣ = |logD(1 + w)| ≤ 2−(n+2) + 2−2(n+2) ≤ 2−(n+1)
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by Lemmas 3.37 and 3.36 and (3), while∣∣LE (z, r, n)− logCECL
(z, r, n+ 2)

∣∣ ≤ 2−(n+1)

by (vii).

(ix): We compute m ∈ L such that m ≥ 3 and 2m ≥ |Im z|, and put

P = ImLC(−1, n+m+ 1),

N =

⌊
Im z

2P

⌉
,

E×(z, r, n) = ECL
(z − 2PNi, r + 4, n+ 2).

Put w = z − 2PNi. We have |π − P | ≤ 2−n−m−1 by (vii), thus |Imw| ≤ P ≤ 4 using

Proposition 3.44, and |w| ≤ r + 4. Consequently,∣∣∣∣E×(z, r, n)

expw
− 1

∣∣∣∣ ≤ 2−n−2

by (i). Moreover,

∣∣2(π − P )N
∣∣ ≤ 2−n−m

(
|Im z|

2P
+

1

2

)
≤ 2−n−m

2m

4
= 2−n−2

using Proposition 3.44, hence∣∣∣∣expw

exp z
− 1

∣∣∣∣ =
∣∣exp(−2PNi)− 1

∣∣ =
∣∣expCL

(
2(π − P )Ni

)
− 1
∣∣

≤
∣∣2(π − P )N

∣∣+
∣∣2(π − P )N

∣∣2 ≤ 2−n−1

using Lemma 3.10 (iv), and∣∣∣∣E×(z, r, n)

exp z
− 1

∣∣∣∣ ≤ 2−n−1 + 2−n−2 + 2−2n−3 ≤ 2−n

by Lemma 2.3 (i).

(x): We put

E+(z, r, n) =

{
E×
(
z,max{n, r}, n+ 2r

)
if −n ≤ Re z ≤ r,

0 otherwise.

If Re z ≤ −n, we have

|exp z| = exp Re z ≤ exp(−n) ≤ 2−n

by Lemmas 3.10 and 3.54 (this bound holds trivially if Re z /∈ RL). If −n ≤ Re z ≤ r, (ix) gives∣∣E×(z,max{n, r}, n+ 2r
)
− exp z

∣∣ ≤ 2−n−2r|exp z| ≤ 2−n−2r exp r ≤ 2−n

using Lemmas 3.10 and 3.54 again. 2
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[13] Alexis Maciel and Denis Thérien, Efficient threshold circuits for power series, Information

and Computation 152 (1999), no. 1, pp. 62–73.

[14] Kurt Mahler, On the approximation of π, Proceedings of the Koninklijke Nederlandse Aka-

demie van Wetenschappen, Series A: Mathematical Sciences 56 (1953), no. 1, pp. 30–42.

54



[15] Phuong Nguyen and Stephen A. Cook, Theories for TC 0 and other small complexity

classes, Logical Methods in Computer Science 2 (2006), no. 1, article no. 3, 39 pp.

[16] Ivan Niven, A simple proof that π is irrational, Bulletin of the Americal Mathematical

Society 53 (1947), no. 6, p. 509.

[17] Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark (eds.),

NIST handbook of mathematical functions, Cambridge University Press, Cambridge, 2010.

[18] Ian Parberry and Georg Schnitger, Parallel computation with threshold functions, Journal

of Computer and System Sciences 36 (1988), no. 3, pp. 278–302.

[19] John H. Reif, Logarithmic depth circuits for algebraic functions, SIAM Journal on Com-

puting 15 (1986), no. 1, pp. 231–242.

[20] John H. Reif and Stephen R. Tate, On threshold circuits and polynomial computation,

SIAM Journal on Computing 21 (1992), no. 5, pp. 896–908.

[21] Jean-Pierre Ressayre, Integer parts of real closed exponential fields, in: Arithmetic, proof

theory, and computational complexity (P. Clote and J. Kraj́ıček, eds.), Oxford Logic Guides
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