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Coding of separable Banach spaces

Notation

a sBS ≡ a separable Banach space

sBSs ≡ separable Banach spaces

Coding of sBSs

sBSs form a proper class

we want to find a standard Borel space / Polish space such
that each element is a code for a sBS determined uniquely up
to isomorphism / isometry

Why?

let P be a property of sBSs invariant under isomorphism /
isometry

then we may talk about the set of codes of those sBSs having
property P

we may investigate the complexity of this set (Borel, analytic,
. . . / open, Gδ, . . . )
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Example

Theorem (Szlenk, 1968; Bossard, 1993)

There is no reflexive sBS containing an isomorphic copy of every
reflexive sBS.

Proof: In a certain coding of sBSs it holds:

the set of codes of all subspaces of a fixed sBS is analytic

the set of codes of all reflexive sBSs is not analytic (Bossard,
1993)
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The ‘classical’ coding of sBSs by a standard Borel space

C ([0, 1]) contains an isometric copy of every sBS

F(C ([0, 1])) ≡ the set of all closed subsets of C ([0, 1])

F(C ([0, 1])) is equipped with the Effros-Borel structure, that is,
with the σ-algebra generated by the sets

{F ∈ F(C ([0, 1])) : F ∩ U ̸= ∅}, U ⊆ C ([0, 1]) open

Fact

F(C ([0, 1])) is a standard Borel space.

Fact

SB := {F ∈ F(C ([0, 1])) : F is linear} is a Borel subset of
F(C ([0, 1])). In particular, it is a standard Borel space.

Note that there is no canonical Polish topology on SB compatible
with the Effros-Borel structure.
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Coding of sBSs by a Polish space (Godefroy,
Saint-Raymond, 2018)

A Polish topology on F(C ([0, 1])) is called admissible if it satisfies
certain natural axioms.

Properties of admissible topologies:

The set SB := {F ∈ F(C ([0, 1])) : F is linear} is a Gδ-set. In
particular, it is a Polish space.

The Borel σ-algebra generated by an admissible topology is
the Effros-Borel structure.

For two admissible topologies, the identity function is of Baire
class 1.

Examples of admissible topologies on F(C ([0, 1]))

the Vietoris topology ‘inherited’ from F (Ĉ ([0, 1])), where a compatible

totally bounded metric on C([0, 1]) is fixed and Ĉ([0, 1]) is the corresponding metric completion

the Wijsman topology generated by the maps F ∈ F(C([0, 1])) 7→ d(F , f ),

f ∈ C([0, 1]), where d is a compatible metric on C([0, 1])
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Coding of sBSs by the Polish space of (pseudo)norms

Let V be the vector space over Q of all finitely supported
sequences of rational numbers.

Definition

Let P ⊆ RV be the set of all pseudonorms on V .
Then µ ∈ P is a code for the sBS Xµ obtained as follows:

1. extend µ to a pseudonorm on c00 (over R)
2. take the quotient (c00, µ)/{x ∈ c00 : µ(x) = 0}
3. let Xµ be the completion

Fact

P ⊆ RV is a closed set

P∞ := {µ ∈ P : Xµ is infinite-dimensional} is a Gδ-set

B := {µ ∈ P : µ is a norm on c00} is a Gδ-set

Martin Doležal Descriptive complexity of Banach spaces



Coding of sBSs by the Polish space of (pseudo)norms

Let V be the vector space over Q of all finitely supported
sequences of rational numbers.

Definition

Let P ⊆ RV be the set of all pseudonorms on V .
Then µ ∈ P is a code for the sBS Xµ obtained as follows:

1. extend µ to a pseudonorm on c00 (over R)
2. take the quotient (c00, µ)/{x ∈ c00 : µ(x) = 0}
3. let Xµ be the completion

Fact

P ⊆ RV is a closed set

P∞ := {µ ∈ P : Xµ is infinite-dimensional} is a Gδ-set

B := {µ ∈ P : µ is a norm on c00} is a Gδ-set
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Fact

For every infinite-dimensional sBS X there is µ ∈ B such that
X ≡ Xµ.

Proof: Let f1, f2, . . . be linearly independent vectors in X such
that span(f1, f2, . . .) = X .
Define µ : V → R by

µ

(∑
i∈F

αiei

)
:=

∥∥∥∥∥∑
i∈F

αi fi

∥∥∥∥∥
X

.
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Three ways of coding infinite-dimensional sBSs by a Polish space:
(a) SB∞ with an admissible topology, (b) P∞, (c) B.

Theorem (Informal statement)

For a given class of Banach spaces, the Borel complexity of the set
of the corresponding codes depends only a little on the choice of
the coding.

Theorem (Formal statement)

There is a continuous map φ : SB∞ → P∞ such that
Y ≡ Xφ(Y ), Y ∈ SB∞.

There is a Baire class 1 map ψ : P∞ → B such that
Xµ ≡ Xψ(µ), µ ∈ P∞.

There is a Baire class 1 map χ : B → SB∞ such that
Xµ ≡ χ(µ), µ ∈ B.

From now on we use the coding B only.
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Relationship to finite representability

Definition

Let X ,Y be Banach spaces. We say that X is finitely
representable in Y if for every finite-dimensional subspace E ⊆ X
and every ε > 0 there exists an isomorphic embedding T : E → Y
such that ∥T∥∥T−1∥ ≤ 1 + ε.

For a sBS X we denote by ⟨X ⟩B≡ the set {µ ∈ B : Xµ ≡ X}.

Fact

Let X be a sBS. Then

⟨X ⟩B≡ = {µ ∈ B : Xµ is finitely representable in X}.
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Complexity of isometry classes and isomorphism classes

For a sBS X we denote

⟨X ⟩B≡ = {µ ∈ B : Xµ ≡ X}
⟨X ⟩B≃ = {µ ∈ B : Xµ ≃ X}

Fact

Let X be a sBS. Then ⟨X ⟩B≡ is a Borel set.

Fact

Let X be a sBS. Then ⟨X ⟩B≃ is an analytic set but not necessarily
Borel.
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Complexity of isometry classes and isomorphism classes

For a sBS X we denote

⟨X ⟩B≡ = {µ ∈ B : Xµ ≡ X}
⟨X ⟩B≃ = {µ ∈ B : Xµ ≃ X}

Fact

Let X be a sBS. Then ⟨X ⟩B≡ is a Borel set.

Proof:

the relation of linear isometry is Borel bireducible with an
orbit equivalence relation (Melleray, 2007)

orbit equivalence relations have Borel equivalence classes

Fact

Let X be a sBS. Then ⟨X ⟩B≃ is an analytic set but not necessarily
Borel.

Proof: These spaces do not have a Borel isomorphism class:
C (2ω), Lp([0, 1]) (1 < p <∞, p ̸= 2), c0, . . .
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Hilbert space and isometry classes

Theorem

ℓ2 is the unique, up to isometry, infinite-dimensional sBS X such
that ⟨X ⟩B≡ is a closed set.

Note that ⟨X ⟩B≡ is never an open set.

Proof: ℓ2 is characterized by the parallelogram law

2∥x∥2 + 2∥y∥2 = ∥x + y∥2 + ∥x − y∥2, x , y ∈ ℓ2.

Thus ⟨ℓ2⟩B≡ is a closed set.

Now suppose that ⟨X ⟩B≡ is a closed set.
By Dvoretzky’s theorem, ℓ2 is finitely representable in X .
So ⟨X ⟩B≡ contains all µ ∈ B for which Xµ ≡ ℓ2.

On the other hand, all elements of ⟨X ⟩B≡ = ⟨X ⟩B≡ are codes for
spaces isometric to X .
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Hilbert space and isomorphism classes

Theorem

ℓ2 is the unique, up to isomorphism, infinite-dimensional sBS X
such that ⟨X ⟩B≃ is an Fσ set.

Note that ⟨X ⟩B≃ is never an open/closed set.
We do not know whether ⟨X ⟩B≃ can be a Gδ set but the only
candidate is the Gurarĭı space.

Proof: By Kwapień’s theorem, ℓ2 is the unique (up to
isomorphism) sBS that has type 2
(∃C > 0 ∀x1, . . . , xn ∈ X :

(
E
∥∥∑n

i=1 ±xi
∥∥2

)1/2
≤ C

(∑n
i=1 ∥xi∥2

)1/2) and cotype 2
(∃C > 0 ∀x1, . . . , xn ∈ X :

(∑n
i=1 ∥xi∥2

)1/2
≤ C

(
E
∥∥∑n

i=1 ±xi
∥∥2

)1/2).
‘Having type/cotype 2’ are Fσ conditions.
So ⟨ℓ2⟩B≃ is an Fσ set.

The other implication is based on the solution to the homogeneous
subspace problem (Komorowski, Tomczak-Jaegermann, 1995;
Gowers, 2002).
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Martin Doležal Descriptive complexity of Banach spaces



The Gurarĭı space

Definition

The Gurarĭı space is the unique, up to isometry, sBS G such that
for every ε > 0, every finite-dimensional Banach spaces A ⊆ B and
every isometric embedding e : A → G there is an extension
f : B → G of e such that f is an ε-isometric embedding.

Theorem

The isometry class ⟨G⟩B≡ is a dense Gδ set.

We do not know the descriptive complexity of the isomorphism
class ⟨G⟩B≃.
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The isometry class of Lp

Theorem

For every 1 ≤ p <∞, p ̸= 2, the isometry class ⟨Lp([0, 1])⟩B≡ is a
Gδ-complete set.

Proof:

The class of Lp,1+ sBSs is a Gδ set (A sBS X is called an Lp,1+-space if for

every finite-dimensional E ⊆ X and ε > 0 there is a finite-dimensional E ⊆ F ⊆ X and a linear

isomorphism T : F → ℓnp with ∥T∥∥T−1∥ ≤ 1 + ε.)

An Lp,1+ sBS X is isometric to Lp([0, 1]) if and only if

∀x ∈ SX ∀ε > 0 ∀δ > 0 ∃x1, x2 ∈ X :

(x1, x2)
1+ε∼ ℓ2p and ∥21/px − x1 − x2∥ < δ.
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The isometry class of ℓp

Theorem

For every 1 ≤ p <∞, p ̸= 2, the isometry class ⟨ℓp⟩B≡ is an
Fσδ-complete set.

Proof:

The class of Lp,1+ sBSs is a Gδ set.

An Lp,1+ sBS X is isometric to ℓp if and only if

∀x ∈ SX ∀δ ∈ (0, 1) ∃ε > 0 ∃N ∈ N ∀x1, . . . , xN ∈ X :

(N1/pxi )
N
i=1

1+ε∼ ℓNp ⇒ ∥x −
N∑
i=1

xi∥ > δ.
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The isometry class of c0

Theorem

The isometry class ⟨c0⟩B≡ is an Fσδ-complete set.

Proof:

The class of L∞,1+ sBSs is a Gδ set (A sBS X is called an L∞,1+-space if for

every finite-dimensional E ⊆ X and ε > 0 there is a finite-dimensional E ⊆ F ⊆ X and a linear

isomorphism T : F → ℓn∞ with ∥T∥∥T−1∥ ≤ 1 + ε.)

Let 0 < ε < 1. An L∞,1+ sBS X is isometric to c0 if and only
if

(BX∗)′2ε = (1− ε)BX∗ ,

where F ′
ε =

{
x∗ ∈ F : U ∋ x∗ is w∗-open ⇒ diam(U ∩ F ) ≥ ε

}
is the Szlenk derivative.

Let ε > 0. The mapping

F 7→ F ′
ε, F ⊂ X ∗ is w∗-compact,

is of Baire class 2.
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