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Coding of separable Banach spaces

Notation
@ a sBS = a separable Banach space
@ sBSs = separable Banach spaces
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that each element is a code for a sBS determined uniquely up
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Coding of separable Banach spaces

Notation
@ a sBS = a separable Banach space
@ sBSs = separable Banach spaces

Coding of sBSs
@ sBSs form a proper class

@ we want to find a standard Borel space / Polish space such
that each element is a code for a sBS determined uniquely up
to isomorphism / isometry

Why?
@ let P be a property of sBSs invariant under isomorphism /
isometry
@ then we may talk about the set of codes of those sBSs having
property P
@ we may investigate the complexity of this set (Borel, analytic,
.../ open, Gg, ...)



Theorem (Szlenk, 1968; Bossard, 1993)

There is no reflexive sBS containing an isomorphic copy of every
reflexive sBS.

Proof: In a certain coding of sBSs it holds:
@ the set of codes of all subspaces of a fixed sBS is analytic

@ the set of codes of all reflexive sBSs is not analytic (Bossard,
1993)

O
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The ‘classical’ coding of sBSs by a standard Borel space

C([0,1]) contains an isometric copy of every sBS
F(C(]0,1])) = the set of all closed subsets of C([0,1])
(C

F(C([0,1])) is equipped with the Effros-Borel structure, that is,
with the o-algebra generated by the sets

{FeF(C(0.1]): FAU#£0}, UC C([0,1]) open
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The ‘classical’ coding of sBSs by a standard Borel space

C([0,1]) contains an isometric copy of every sBS

F(C([0,1])) = the set of all closed subsets of C([0,1])
F(C([0,1])) is equipped with the Effros-Borel structure, that is,
with the o-algebra generated by the sets

{FeF(C(0.1]): FAU#£0}, UC C([0,1]) open

F(C([0,1])) is a standard Borel space.

SB :={F € F(C([0,1])) : F is linear} is a Borel subset of
F(C([0,1])). In particular, it is a standard Borel space.

Note that there is no canonical Polish topology on SB compatible
with the Effros-Borel structure.
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Coding of sBSs by a Polish space (Godefroy,

Saint-Raymond, 2018)

A Polish topology on F(C([0,1])) is called admissible if it satisfies
certain natural axioms.

Properties of admissible topologies:
@ The set SB := {F € F(C([0,1])) : F is linear} is a Gs-set. In
particular, it is a Polish space.
@ The Borel o-algebra generated by an admissible topology is
the Effros-Borel structure.
@ For two admissible topologies, the identity function is of Baire
class 1.
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Coding of sBSs by a Polish space (Godefroy,

Saint-Raymond, 2018)

A Polish topology on F(C([0,1])) is called admissible if it satisfies
certain natural axioms.

Properties of admissible topologies:
@ The set SB := {F € F(C([0,1])) : F is linear} is a Gs-set. In
particular, it is a Polish space.
@ The Borel o-algebra generated by an admissible topology is
the Effros-Borel structure.
@ For two admissible topologies, the identity function is of Baire
class 1.

Examples of admissible topologies on F(C([0,1]))

o the Vietoris topology ‘inherited’ from F(C([0,1])), where s compatible

totally bounded metric on C([0, 1]) is fixed and €([0, 1]) is the corresponding metric completion

@ the Wijsman t0p0|0gy generated by the maps F € F(C([0, 1])) — d(F, f),

f € C([0, 1]), where d is a compatible metric on C([0, 1])

™7 = = =
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Coding of sBSs by the Polish space of (pseudo)norms

Let V be the vector space over QQ of all finitely supported
sequences of rational numbers.

Definition

Let P C RY be the set of all pseudonorms on V.
Then 1 € P is a code for the sBS X, obtained as follows:

1. extend p to a pseudonorm on cgo (over R)
2. take the quotient (cgo, it)/{x € coo : p(x) =0}
3. let X, be the completion
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Coding of sBSs by the Polish space of (pseudo)norms

Let V be the vector space over QQ of all finitely supported
sequences of rational numbers.

Definition

Let P C RY be the set of all pseudonorms on V.
Then 1 € P is a code for the sBS X, obtained as follows:

1. extend p to a pseudonorm on cgo (over R)
2. take the quotient (cgo, it)/{x € coo : p(x) =0}
3. let X, be the completion

e P CRVY is a closed set
o Po = {p € P : X, is infinite-dimensional} is a Gs-set

@ B:={ue€P:pisanormon cy} is a Gs-set
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For every infinite-dimensional sBS X there is i € B such that
X =X,.

Proof: Let fi, f, ... be linearly independent vectors in X such
that span(fi, fz,...) = X.
Define p: V — R by

0 (Z%&) = Za;fi
icF

icF

X
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Three ways of coding infinite-dimensional sBSs by a Polish space:
(a) SBs with an admissible topology, (b) P, (c) B.

Theorem (Informal statement)

For a given class of Banach spaces, the Borel complexity of the set
of the corresponding codes depends only a little on the choice of
the coding.
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Three ways of coding infinite-dimensional sBSs by a Polish space:
(a) SBy with an admissible topology, (b) P, (c) B.

Theorem (Informal statement)

For a given class of Banach spaces, the Borel complexity of the set
of the corresponding codes depends only a little on the choice of
the coding.

Theorem (Formal statement)

@ There is a continuous map ¢: SBy, — P such that
Y = X(p(y), Y € SB.

@ There is a Baire class 1 map i: Ps, — B such that
X, = X¢(M)' M € P

@ There is a Baire class 1 map x : B — SB, such that
X = x(n), p € B.
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Three ways of coding infinite-dimensional sBSs by a Polish space:
(a) SBy with an admissible topology, (b) P, (c) B.

Theorem (Informal statement)

For a given class of Banach spaces, the Borel complexity of the set
of the corresponding codes depends only a little on the choice of
the coding.

Theorem (Formal statement)

@ There is a continuous map ¢: SBy, — P such that
Y = X(p(y), Y € SB.

@ There is a Baire class 1 map i: Ps, — B such that
X, = X¢(M)' M € P

@ There is a Baire class 1 map x : B — SB, such that
X = x(n), p € B.

From now on we use the coding B only.
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Relationship to finite representability

Definition

Let X, Y be Banach spaces. We say that X is finitely
representable in Y if for every finite-dimensional subspace E C X
and every € > 0 there exists an isomorphic embedding T : E — Y
such that || T||T7Y <1 +e.

For a sBS X we denote by (X)Z the set {u € B: X, = X}.

Let X be a sBS. Then

(X)B = {p € B: X, is finitely representable in X}.
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Complexity of isometry classes and isomorphism classes

For a sBS X we denote
o (X)B={ueB:X, =X}

o (X)B={ueB:X,~X}

Let X be a sBS. Then (X)E is a Borel set.

Let X be a sBS. Then (X)E is an analytic set but not necessarily
Borel.
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Complexity of isometry classes and isomorphism classes
For a sBS X we denote
o (X)B={ueB:X, =X}
o (X)B={ueB:X,~X}

Let X be a sBS. Then (X)E is a Borel set.

Proof:
@ the relation of linear isometry is Borel bireducible with an
orbit equivalence relation (Melleray, 2007)
@ orbit equivalence relations have Borel equivalence classes [

Let X be a sBS. Then (X)B is an analytic set but not necessarily
Borel.

Proof: These spaces do not have a Borel isomorphism class:
C(2¥), Lp([0,1]) 1 <p<oo,p#2), oc,-.- 0



Hilbert space and isometry classes

Uy is the unique, up to isometry, infinite-dimensional sBS X such
that (X)E is a closed set.

Note that (X)Z is never an open set.
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Hilbert space and isometry classes

Uy is the unique, up to isometry, infinite-dimensional sBS X such
that (X)E is a closed set.

Note that (X)Z is never an open set.

Proof: ¢, is characterized by the parallelogram law
20xI2 + 2llyll? = lIx +yI> + lIx =y, x,y € ba.

Thus (¢2)8 is a closed set.

Now suppose that (X)2 is a closed set.

By Dvoretzky's theorem, /5 is finitely representable in X.

So (X)E contains all i € B for which X, = 0».

On the other hand, all elements of (X)8 = (X)E are codes for
spaces isometric to X. ]
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Hilbert space and isomorphism classes

£y is the unique, up to isomorphism, infinite-dimensional sBS X
such that (X)B is an F, set.

We do not know whether (X)Z can be a Gj set but the only
candidate is the Guraril space.

Note that (X)Z is never an open/closed set.
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Hilbert space and isomorphism classes

£y is the unique, up to isomorphism, infinite-dimensional sBS X
such that (X)B is an F, set.

Note that (X)Z is never an open/closed set.

We do not know whether (X)Z can be a Gj set but the only
candidate is the Guraril space.

Proof: By Kwapieri's theorem, /5 is the unique (up to
isomorphism) sBS that has type 2

(3c> 0w, mex: (B]SL £x)?)? < ¢ (S, 112)?) and cotype 2
(3c> 0w, ome x: (S Ixl?) " < € (5120 £x)2) %)

‘Having type/cotype 2’ are F, conditions.

So <€2>£ is an F, set.

The other implication is based on the solution to the homogeneous
subspace problem (Komorowski, Tomczak-Jaegermann, 1995;
Gowers, 2002). O
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The Gurarii space

Definition

The Gurarii space is the unique, up to isometry, sBS G such that
for every € > 0, every finite-dimensional Banach spaces A C B and
every isometric embedding e: A — G there is an extension

f: B — G of e such that f is an e-isometric embedding.

B

The isometry class (G)Z is a dense Gs set.

We do not know the descriptive complexity of the isomorphism
class (G)B.
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The isometry class of L,

For every 1 < p < oo, p # 2, the isometry class (L,([0,1]))E i
Gs-complete set.
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The isometry class of L,

For every 1 < p < oo, p # 2, the isometry class (L,([0,1]))E i
Gs-complete set.

Proof:

@ The class of gp71+ SBSS is a G§ set (A sBS X is called an &£}, 1 -space if for
every finite-dimensional E C X and € > 0 there is a finite-dimensional E C F C X and a linear

isomorphism T : F — £ with NTIT=4 <1+ s.)

e An Z, 14 sBS X is isometric to L([0, 1]) if and only if

Vx € Sx Ve >0V >0 dxg,x € X:
(x1,x2) e 6,2, and ||2Y/Px — x; — xo|| < 4.

O
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The isometry class of /,

oy

is an

For every 1 < p < o0, p # 2, the isometry class ({p)
F,s-complete set.
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The isometry class of /,

oy

is an

For every 1 < p < o0, p # 2, the isometry class ({p)
F,s-complete set.

Proof:
@ The class of £}, 1+ sBSs is a Gs set.
@ An %, 1+ sBS X is isometric to £, if and only if

Vx € Sx V0 € (0,1) Je >03IN e NVxy,...,xy € X :

N
1
(NYPx)Ly 0 g = Ix = x|l > 0.
=1

O
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The isometry class of ¢

The isometry class (co)Z is an F,s5-complete set.
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The isometry class of ¢

&

The isometry class (cp)

is an F,5-complete set.

Proof:

o The C|aSS Of ‘,S/ﬂoo’]_Jr SBSS |S a G(S set (A sBS X is called an £ 14 -space if for

every finite-dimensional E C X and € > 0 there is a finite-dimensional E C F C X and a linear

isomorphism T : F — €7 with || T|[| 77| <1+ 5.)

o Let 0 < e < 1. An Z 14+ sBS X is isometric to cq if and only
if

/
(Bx+)2: = (1 —€)Bx-,
where FEI = {X* € F:U> x*is w*-open = diam(U N F) > 5} is the Szlenk derivative.

@ Let € > 0. The mapping
F— F., FC X*is w*-compact,

is of Baire class 2. Ol
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