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The aim of the talk is

to present the results about the character of solvability and continuity in
the parameters of solutions to systems of linear di�erential equations of
arbitrary order on a �nite interval with the most general inhomogeneous
boundary conditions. These boundary-value problems have essential
features and require new research methods.
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The question about continuous dependence of the solution in a
parameter to systems of di�erential equations has been studied by various
mathematicians. The importance of such theorems is particularly related
to the fact that they substantiate the well-known M. Bogolyubov
averaging principle (1955).

Linear Cauchy matrix problem

Y ′(t;k) = A(t;k)Y(t;k)+F(t;k), t ∈ [a,b],

Y(a;k) = Im, k ∈ N∪{0},

where the elements of the matrix-valued functions A(·;k), F(·;k) belong
to the Banach space (L1)

m×m, and

∥∥A(·,k)−A(·,0)
∥∥

1 → 0,
∥∥F(·,k)−F(·,0)

∥∥
1 → 0.

Uniform convergence was established by Ya. Tamarkin (1930)

∥∥Y(·,k)−Y(·,0)
∥∥

∞
→ 0, k → ∞. (1)
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In the application to the linear case, M. Krasnosel'skii and S. Krein
(1955) gave more general conditions of convergence than condition (1).
They consist in

∥∥A∨(·,k)−A∨(·,0)
∥∥

∞
→ 0,

∥∥F∨(·,k)−F∨(·,0)
∥∥

∞
→ 0, (2)

where

A∨(t;k) :=
∫ t

a
A(s;k)ds, k → ∞,

and in the existence of an integrated majorant

|A(t;k)| ≤ h(t) ∈ L1, t ∈ [a,b], k ∈ N.
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Then A. Levin (1967) reduced the last inequality to

∥∥A(·;k)
∥∥

1 ≤ const, k ∈ N. (3)

Moreover, if condition (3) holds, condition (2) is not only su�cient but
also necessary for (1).

This result coves the result of W. Reid (1967), in which instead of
conditions (2) there was condition

A(·,k)→ A(·,0), F(·,k)→ F(·,0), k → ∞,

in the sense of weak convergence in the space (L1)
m×m.

More general su�cient condition for the ful�llment of condition (1) is
established by Z. Opial (1967)

∥∥A∨(·,0)−A∨(·,k)
∥∥

∞

(
1+

∥∥A(·;k)
∥∥

1

)
→ 0, k → ∞.

These results were later generalized in the papers of Nguen The Hoan
(1993), and V. Mikhailets and his followers.
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In the case of general boundary-value problems, additional di�culties
arise. They are due to the fact that the solution of such problems can not
be unique or do not exist.

In the paper of I. Kiguradze (1987), for the �rst time su�cient conditions
were obtained for uniform convergence of solutions to boundary-value
problems with general inhomogeneous boundary conditions:

Bny(·,n) = cn,

where linear continuous operators

Bn :
(
C[a,b];R

)m → Rm, n ∈ N∪{0}.

These boundary conditions include classical boundary conditions, but
cannot contain derivatives of the unknown function.
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Kiguradze Theorem

Suppose that a homogeneous boundary-value problem, where n = 0, has
only a trivial solution and the following conditions are satis�ed:

1) sup
n
∥A(·;n)∥1 < ∞;

2) sup
n
∥Bn∥< ∞;

3) ∥A∨(·,n)−A∨(·,0)∥∞ → 0, n → ∞;
4) ∥F∨(·,n)−F∨(·,0)∥∞ → 0, n → ∞;
5) cn → c0;
6) Bny → B0y, y ∈ (W1

1 )
m.

Then for su�ciently large n solutions of boundary-value problems exist,
are unique, and ∥∥y(·,0)− y(·,n)

∥∥
∞
→ 0, n → ∞.
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All conditions in Kiguradze Theorem are essential. But some of them can
be signi�cantly weakened. This was done in the papers of Mikhailets and
his Ph.D.-students. In addition, they managed to generalize all these
results to systems of linear di�erential equations of arbitrary order with
complex Lebesgue summable coe�cients.

These results were used in the analysis of ordinary di�erential operators
with distributions in the coe�cients and initiated the study of some new
problems.
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In the middle of the last century, di�erential operators with distributions
in coe�cients appeared in the works of physicists. In particular,
Schr�odinger operators with potentials containing Dirac δ -measure, or
even its derivative. Such operators naturally arise in mathematical models
of real physical processes in strongly inhomogeneous media.
The mathematical theory of such operators appeared later and now has
several thousand publications, which are listed in the bibliography of

famous monographs:

1. S. Albeverio, F. Gesctezy, R. Hoegh�Krohn, and H. Holden, Solvable
Models in Quantum Mechanics. Springer, New York (1988).

2. S. Albeverio, P. Kurasov, Singular Perturbations of Di�erential
Operators. Cambridge Univ. Press, Cambridge (2000).
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For ordinary di�erential operators, the mathematical theory of a wide
class of such operators appeared at the beginning of this century. Its idea
is to de�ne such operators as quasi-di�erential with properly selected
quasi�derivatives according to Shin-Zettl. In turn, the analysis of these
operators is reduced to the study of systems of linear di�erential
equations of the �rst order with summable coe�cients.

In this connection, the limit theorems for solutions and Green's matrices
of linear systems of di�erential equations have a special interest. They
allow us to interpret some classes of quasi-di�erential operators as limits
in the sense of norm or strong resolvent convergence of di�erential
operators with smooth coe�cients.
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Let the formal di�erential expression

l(y) =−y′′(t)+q′(t)y(t), q(·) ∈ L2
(
[a,b],C

)
= L2 (4)

be given on a compact interval, where the derivative of a function q is
understood in the sense of distributions.
If q(·) ∈ BV[a,b], then q′ is a signed measur on [a,b].

This expression can be de�ned as the Shin�Zettl quasi-di�erential
expression with following quasi-derivatives:

D[0]y := y, D[1]y := y′−qy,

l(y) = D[2]y :=−
(
D[1]y

)′−qD[1]y−q2y.

If the function q is smooth, then this de�nition is equivalent to the
classical one.
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Let us consider the set of quasi-di�erential expressions lε(·) of the form
(4) with functions qε(·) ∈ L2, ε ∈ [0,ε0]. In the Hilbert space with norm∥∥·∥∥2 each of these expressions generates a dense de�ned closed
quasi-di�erential operator Lε y := lε(y).

Dom
(
Lε

)
= {y ∈ L2 : D[2]y ∈ L2; α(ε)Ya(ε)+β (ε)Yb(ε) = 0} ⊂ W1

1 ,

where matrices α(ε), β (ε) ∈ C2×2, and vectors

Ya(ε) := {y(a), D[1]
ε (a)},Yb(ε) := {y(b), D[1]

ε (b)} ∈ C2.

Note that the set Dom
(
Lε

)
may not contain any nontrivial function from

C1.
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Theorem (Mikhailets, Goriunov (2010))

Suppouse that the resolvent set of the operator L0 is not empty and

i)
∥∥qε −q0

∥∥
2 → 0, ε → 0+;

ii) α(ε)→ α(0), β (ε)→ β (0).
Then Lε → L0 in the sense of norm resolvent convergence.

Thus, each of the introduced operators is the limit of similar operators
with smooth coe�cients.
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Let a �nite interval (a,b)⊂ R and parameters {m, n, r} ⊂ N, 1 ≤ p ≤ ∞,
be given.

Linear boundary-value problem

(Ly)(t) := y(r)(t)+
r

∑
j=1

Ar−j(t)y(r−j)(t) = f (t), t ∈ (a,b), (5)

By = c. (6)

Here matrix-valued functions Ar−j(·) ∈ (Wn
p )

m×m, vector-valued function
f (·) ∈ (Wn

p )
m, vector c ∈ Crm, linear continuous operator

B : (Wn+r
p )m → Crm (7)

are arbitrarily chosen; vector-valued function y(·) ∈ (Wn+r
p )m is unknown.

The solutions of equation (5) �ll the space (Wn+r
p )m if its right-hand side

f (·) runs through the space (Wn
p )

m. Hence, the condition (6) with
operator (7) is generic condition for this equation.

It includes all known types of classical boundary conditions and numerous
nonclassical conditions containing the derivatives (in general fractional)
of an order ≥ r .
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Complex Sobolev space Wn+r
p := Wn+r

p
(
[a,b];C

)
Wn+r

p
(
[a,b];C

)
:=

{
y ∈ Cn+r−1[a,b] : y(n+r−1) ∈ AC[a,b], y(n+r) ∈ Lp[a,b]

}
This space is Banach relative to the norm∥∥y

∥∥
n+r,p =

n+r−1

∑
k=0

∥∥y(k)
∥∥

p +
∥∥y(n+r)∥∥

p,

where ∥ · ∥p is the norm in Lp
(
[a,b];C

)
.

By ∥ · ∥n+r,p, we also denote the norms in Banach spaces

(
Wn+r

p
)m := Wn+r

p
(
[a,b];Cm) and

(
Wn+r

p
)m×m := Wn+r

p
(
[a,b];Cm×m).

They consist of the vector-valued functions and matrix-valued functions,
respectively, all components of which belong to Wn+r

p .
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With problem (5), (6), we associate the linear operator

(L,B) : (Wn+r
p )m → (Wn

p )
m ×Crm. (8)

A linear continuous operator T : X → Y, where X and Y are Banach
spaces, is called a Fredholm operator if its kernel kerT and cokernel
Y/T(X) are �nite-dimensional. If this operator is Fredholm, then its range
T(X) is closed in Y and the index indT := dimkerT −dim(Y/T(X)) ∈ Z.
By [BYk], we denote the numerical m×m matrix, in which j-th column is
result of the action of B on j-th column of Yk(·).
De�nition 1.

A block numerical matrix

M(L,B) := ([BY0] , . . . , [BYr−1]) ∈ Crm×rm (9)

is characteristic matrix to problem (5), (6). It consists of r rectangular
block columns [BYk(·)] ∈ Cm×m.

Theorem 1.

The operator (8) is invertible if and only if the matrix M(L,B) is
nondegenerate.
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Boundary-value problem depending in a parameter ε ∈ [0,ε0), ε0 > 0

L(ε)y(t,ε) := y(r)(t,ε)+
r

∑
j=1

Ar−j(t,ε)y(r−j)(t,ε) = f (t,ε), t ∈ (a,b), (10)

B(ε)y(·;ε) = c(ε). (11)

Here Ar−j(·,ε) ∈ (Wn
p )

m×m, f (·,ε) ∈ (Wn
p )

m, c(ε) ∈ Crm, linear continuous
operator B(ε) : (Wn+r

p )m → Crm are arbitrarily chosen; vector-valued
function y(·,ε) ∈ (Wn+r

p )m is unknown.

Problem (10), (11) is a Fredholm one with zero index for every
ε ∈ [0,ε0).

De�nition 2.

The solution to the problem (10), (11) depends continuously
in a parameter ε at ε = 0 if the conditions are satis�ed:

(∗) there exists a positive number ε1 < ε0 such that, for any ε ∈ [0,ε1)
and arbitrary chosen f (·;ε) ∈ (Wn

p )
m, c(ε) ∈ Crm, this problem has a

unique solution y(·;ε) ∈ (Wn+r
p )m;

(∗∗) the convergence of right-hand sides f (·;ε)→ f (·;0) and c(ε)→ c(0)
implies the convergence of solutions

y(·;ε)→ y(·;0) in (Wn+r
p )m as ε → 0+ .
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Consider the following conditions:

(0) the homogeneous boundary-value problem

L(0)y(t,0) = 0, t ∈ (a,b), B(0)y(·,0) = 0

has only the trivial solution;

(I) Ar−j(·;ε)→ Ar−j(·;0) in (Wn
p )

m×m for every j ∈ {1, . . . ,r};
(II) B(ε)y → B(0)y in Crm for every y ∈ (Wn+r

p )m.

Theorem 2.

The solution to the problem (10), (11) depends continuously in the
parameter ε at ε = 0 if and only if this problem satis�es Conditions (0),
(I), and (II).
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Gnyp, Mikhailets, and Murach (2016) gave a constructive criterion of
continuous dependence in a parameter in Sobolev spaces Wn+r

p , where
1 ≤ p < ∞. The proof of criterion is based on the fact that the linear
continuous operator B : (Wn+r

p )m → Crm admits the unique analytic
representation

By =
n+r−1

∑
k=0

αky(k)(a)+
∫ b

a
Φ(t)y(n+r)(t)dt, y(·) ∈ (Wn+r

p )m. (12)

Here, the matrices αk ∈ Crm×m, and the matrix-valued function
Φ(·) ∈ Lp′

(
[a,b];Crm×m

)
, 1/p+1/p

′
= 1.

Our method of proof allows to investigate such problems in Sobolev
spaces Wn+r

p , where 1 ≤ p ≤ ∞, and some others function spaces.
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We supplement our result with a two-sided estimate of the error∥∥y(·;0)− y(·;ε)
∥∥

n+r,p of solution y(·;ε) via its discrepancy

d̃n,p(ε) :=
∥∥L(ε)y(·;0)− f (·;ε)

∥∥
n,p +

∥∥B(ε)y(·;0)− c(ε)
∥∥
Crm .

Here, we interpret y(·;0) as an approximate solution to problem (10),
(11).

Theorem 3.

Let the problem (10), (11) satis�es Conditions (0), (I), and (II). Then
there exist positive numbers ε2 < ε1, γ1, and γ2, such that

γ1 d̃n,p(ε)≤
∥∥y(·;0)− y(·;ε)

∥∥
n+r,p ≤ γ2 d̃n,p(ε)

for any ε ∈ (0,ε2). Here, the numbers ε2, γ1, and γ2 do not depend on
y(·;0), and y(·;ε).

Thus, the error and discrepancy of the solution to problem (10), (11) are
of the same degree of smallness [2, 5].
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For any ε ∈ [0,ε0), ε0 > 0, we associate with the system (10)

multipoint Fredholm boundary condition

B(ε)y(·,ε) =
N

∑
j=0

ωj(ε)

∑
k=1

n+r−1

∑
l=0

β
(l)
j,k (ε)y

(l)(tj,k(ε),ε) = q(ε), (13)

where the numbers {N,ωj(ε)} ⊂ N, vectors q(ε) ∈ Crm, matrices

β
(l)
j,k (ε) ∈ Cm×m, and points {tj, tj,k(ε)} ⊂ [a,b] are arbitrarily given.

It is not assumed that the coe�cients Ar−j(·,ε), β
(l)
j,k (ε) or points tj,k(ε)

have a certain regularity on the parameter ε as ε > 0. It will be required
that for each �xed j ∈ {1, . . . ,N} all the points tj,k(ε) have a common
limit as ε → 0+, but for the zero-point series t0,k(ε) this requirement will
not be necessary. We consider the case where the points of the interval
[a,b] appearing in boundary conditions are not �xed and depend on a
numerical parameter and the number of these points may change.

The solution y(·,ε) to problem (10), (13) is continuous in the parameter
ε if it exists, is unique, and satis�es the limit relation∥∥y(·,ε)− y(·,0)

∥∥
n+r,p → 0 as ε → 0+ . (14)



The limit theorem in the case of p = ∞ 23/28

Assumptions as ε → 0+:

(α) tj,k(ε)→ tj for all j ∈ {1, . . . ,N}, and k ∈ {1, . . . ,ωj(ε)};

(β )
ωj(ε)

∑
k=1

β
(l)
j,k (ε)→ β

(l)
j for all j ∈ {1, . . . ,N}, and l ∈ {0, . . . ,n+ r−1};

(γ)
ωj(ε)

∑
k=1

∥∥β
(l)
j,k (ε)

∥∥∣∣tj,k(ε)− tj
∣∣→ 0 for all j ∈ {1, . . . ,N},

k ∈ {1, . . . ,ωj(ε)}, and l ∈ {0, . . . ,n+ r−1};

(δ )
ω0(ε)

∑
k=1

∥∥β
(l)
0,k(ε)

∥∥→ 0 for all k ∈ {1, . . . ,ω0(ε)}, and

l ∈ {0, . . . ,n+ r−1}.

Assumptions (β ) and (γ) imply that the norms of the coe�cients β
(l)
j,k (ε)

can increase as ε → 0+, but not too fast.

Theorem 4.

Let the boundary-value problem (10), (13) for p = ∞ satis�es the
assumptions (α), (β ), (γ), (δ ). Then it satis�es the limit condition (II).
If, moreover, the conditions (0) and (I) are ful�lled, then for a su�ciently
small ε its solution exists, is unique and satis�es the limit relation (14).
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Assumptions as ε → 0+:

(γp)
ωj(ε)

∑
k=1

∥∥β
(n+r−1)
j,k (ε)

∥∥∣∣tj,k(ε)− tj
∣∣1/p

′

= O(1) for all j ∈ {1, . . . ,N}, and

k ∈ {1, . . . ,ωj(ε)};

(γ ′)
ωj(ε)

∑
k=1

∥∥β
(l)
j,k (ε)

∥∥∣∣tj,k(ε)− tj
∣∣→ 0 for all j ∈ {1, . . . ,N},

k ∈ {1, . . . ,ωj(ε)}, and l ∈ {0, . . . ,n+ r−2}.

Theorem 5.

Let the boundary-value problem (10), (13) for 1 ≤ p < ∞ satis�es the
assumptions (α), (β ), (γp), (γ

′), (δ ). Then it satis�es the limit
condition (II). If, moreover, the conditions (0) and (I) are ful�lled, then
for a su�ciently small ε its solution exists, is unique and satis�es the
limit relation (14) [4, 6].

Remark 2.

The systems of conditions (α), (β ), (γ), (δ ) and (α), (β ), (γp), (γ
′), (δ )

do not guarantee uniform convergence of continuous operators B(ε) to
B(0) as ε → 0+.
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Linear boundary-value problem

(Ly)(t) := y(r)(t)+
r

∑
j=1

Ar−j(t)y(r−j)(t) = f (t), t ∈ (a,b), (15)

By = c, (16)

where 1 ≤ p < ∞, Ar−j(·), f (·), c, and linear continuous operator B satisfy
the above conditions to problem (5), (6).

A sequence of multipoint boundary-value problems

(Lkyk)(t) := y(r)k (t)+
r

∑
j=1

Ar−j(t)y
(r−j)
k (t) = f (t), t ∈ (a,b), (17)

Bkyk :=
N

∑
j=0

n+r−1

∑
l=0

β
(l,j)
k y(l)(tk,j) = c. (18)
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Suppose that for boundary-value problem (15), (16), the corresponding
homogeneous boundary-value problem has only a trivial solution. Then
the inhomogeneous problem has a unique solution for arbitrary right-hand
sides.

Theorem 6.

For the boundary-value problem (15), (16) there is a sequence of
multipoint boundary-value problems of the form (17), (18) such that they
are well-posedness for su�ciently large k and the asymptotic property is
ful�lled

yk → y in (Wn+r
p )m for k → ∞.

The sequence can be chosen independently of f and c, and constructed
explicitly.
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