Introduction to Fine-grained Complexity

Mohan Paturi

Department of Computer Science and Engineering University of California, San Diego

> 18th Eduard Čech Lecture Institute of Mathematics Czech Academy of Sciences May 2022

Outline

- Computational Complexity
 - (Some) Ingredients of a Complexity Theory
 - NP Theory
- 2 What is Fine-grained Complexity?
- Problems in P
 - ORTHOGONAL VECTORS Problem
 - 3-SUM Problem
- 4 Algorithms
- 5 Polynomial Method for ORTHOGONAL VECTORS Algorithm
- 6 NP-complete Problems
- **NP**-complete Problems
 - Satisfiability Problem
 - PPZ Algorithm
 - PPZ Analysis
 - Further Improvements
 - NP-complete Graph Problems
 - Motivating Questions

Computational Complexity

- Study of computation resources, time, space, randomness, ..., required to compute problems
- Guide the design of efficient algorithms for concrete problems
- Goal: Present a theory of fine-grained computational complexity and its progress
- Notes: Complexity is a function of the problem instance size parameters.

Some Ingredients of a Complexity Theory

- Problems and classes of problems
- Algorithms and design techniques
- Notions of reduction and complexity relationships among problems
- Hard and complete problems
- Conjectures
- (Conditional) Lower Bounds

Reductions

- Problem A is reducible to problem B by a reduction f if x ∈ A if and only if f(x) ∈ B.
- To obtain meaningful complexity relationships between A and B, we need to limit the computational power of f
- A reduction is polynomial-time if *f* is polynomial-time computable,
- Under polynomial-time reductions, if A reduces to B and B is polynomial-time computable, then so is A.
- Contrapositively, if A is not polynomial-time computable, then B is also not polynomial-time computable.

NP Theory

- Problems: Satisfiability, Max Independent Set, Hamiltonian Path, Colorability, Clique, Factoring, Graph Isomorphism, Primality, ...
- Classes: P, NP, coNP, L, ...
- Notions of complexity relationships: Polynomial time reductions
- Complexity relationships: The following problems (and many others) are polynomially equivalent.
 k-SAT for k ≥ 3, COLORABILITY, VERTEX COVER, INDEPENDENT SET, CLIQUE, ···
- Completeness: 3-SAT is complete for NP.
- Complexity conjecture: $P \neq NP$.
- Conditional lower bounds: None of the NP-complete problems have a polynomial time algorithm (under the conjecture $P \neq NP$).

What is fine-grained complexity?

- Theory and techniques to reason about
 - exact worst-case complexities of deterministic or randomized algorithms that output exact solutions and
 - complexity relationships among them.
- What improvements can we expect over exhaustive search or standard algorithms?
- What are the obstructions that limit improvements?
- What principles explain the exact complexities of problems?
- Similar to NP-theory but differs from NP-theory in the following respects
 - Problem-centric rather than complexity class-centric.
 - Strives to determine the complexity as exactly as possible.
 - Requires fine-grained reductions

Problems in \mathbf{P}

ORTHOGONAL VECTORS Problem

ORTHOGONAL VECTORS (Bipartite version): Given two sequences A_1, \ldots, A_n and B_1, \ldots, B_n of sets with elements from a universe of size d, do there exist i and j such that $A_i \cap B_j = \emptyset$. If the sets are thought of as characteristic vectors in $\{0,1\}^d$, $A_i \cap B_j = \emptyset$ is equivalent to the proposition that the vectors A_i and A_j are orthogonal.

- Complexity parameters: *n* and *d*
- Straightforward algorithm solves it in time O(n² log d).
 Another straightforward algorithm takes O(2^d n) time.
- $O(n^{2-\frac{1}{O(\log c)}})$ algorithm where $d = c \log n$ by Abboud and Williams, Yu (2015), Chan and Williams (2016).

3-SUM Problem

3-SUM: Given a sequence of integers x_1, x_2, \ldots, x_n where $x_i \in [0, 1, \ldots, d-1]$, do there exist i, j and k such that $x_i + x_j = x_k$?

- Complexity parameters: *n* and *d*
- Straightforward algorithm solves it in time $O(n^2 \log d)$.
- O(n² log log² d/ log² d) algorithm by Baran, Demaine, Pătrașcu, 2005

Algorithms

Polynomial Method for ORTHOGONAL VECTORS

ORTHOGONAL VECTORS (Bipartite version): Given two sequences A_1, \ldots, A_n and B_1, \ldots, B_n of sets with elements from a universe of size d, do there exist i and j such that $A_i \cap B_j = \emptyset$.

Theorem (Abboud, Williams, and Yu, 2015)

For vectors of dimension $d = c \log n$, the bipartite

ORTHOGONAL VECTORS problems can solved in $n^{2-\frac{1}{O(\log c)}}$ time by a randomized algorithm that is correct with high probability.

Sketch:

- Find a suitable meta problem which has an improved algorithm over straightforward evaluation
- Reduce the problem to the meta problem by approximating it as a polynomial.
- Optimize the parameters.

Computational Complexity What is Fine-grained Complexity? F

ORTHOGONAL VECTORS Algorithm: Details

- Partition inputs A and B into $\frac{n}{s}$ blocks $A_1, \ldots, A_p, B_1, \ldots, B_q$ of size s d-dimensional vectors each where $d = c \log n$.
- Let OV(x₁,..., x_s, y₁,..., y_s) = 1 iff ∃i, j x_i and y_j are orthogonal.
- Construct a polynomial P with a small number of monomials to approximate OV. P[P produces the correct output] ≥ 2/3.
- For each pair of blocks of inputs A_i and B_j , construct an approximate polynomial $h_{i,j}$ for computing OV on A_j and B_j .
- Evaluate each polynomial $h_{j,j}$ in time $s^2 poly log(s)$ time using fast matrix-multiplication.
- Choose $s = 2^{\varepsilon \log n / \log d}$
- Overall time complexity of $n^{2-\frac{1}{O(\log c)}}$ polylog n
- Probability of correctness greater than 2/3.
- Repeat the experiment $O(\log n)$ times to get the probability of correctness arbitrarily close to 1.

Boolean Expressions to GF(2) Polynomials

- Let $a_1, \ldots, a_s, b_1, \ldots, b_s$ be *d*-dimensional 0,1 vectors.
- Let $OV(a_1, \ldots, a_s, b_1, \ldots, b_s) = 1$ if and only if $\exists i, j \ a_i$ and b_j are orthogonal.

$$OV(a_1, \ldots, a_s, b_1, \ldots, b_s) = \bigvee_{i,j} \bigwedge_p (\bar{a}_{i,p} \lor \bar{b}_{j,p})$$
$$= \bigvee_{i,j} \bigwedge_p (1 \oplus a_{i,p} b_{j,p})$$

- Approximate ∨ and ∧ by GF(2) polynomials, controlling for the number of monomials.
- Small circuit complexity of OV yields a polynomial approximation with a small number of monomials.

Approximating \bigwedge and \bigvee by GF(2) Polynomials

- Let $g(\vec{x}) = \bigvee_{i=1}^{q} f_i(\vec{x})$
- Let $\tilde{g}(\vec{x}) = \bigoplus_{i=1}^{q} r_i f_i(\vec{x})$ where r_i are randomly chosen 0,1 values.
- $\mathbf{P}_{r_i}[\tilde{g}(\vec{x}) = g(\vec{x})] \ge 1/2$ for any \vec{x} .
 - If $g(\vec{x}) = 0$, then $\tilde{g}(\vec{x}) = 0$.
 - If $g(\vec{x}) = 1$, then $\mathbf{P}[\tilde{g}(\vec{x}) = 1] = 1/2$.
- Let $h(\vec{x}) = \bigvee_{j=1}^{t} \tilde{g}_j(\vec{x})$
- $\mathbf{P}[g(\vec{x}) = h(\vec{x})] \ge 1 2^{-t}$.
- $h(\vec{x})$ can be written as a degree-*t* GF(2) polynomial in terms of \tilde{g}_{j} .

Approximating \bigwedge and \bigvee by GF(2) Polynomials

- Approximation of \bigwedge is similar due to De Morgan's law: $g(\vec{x}) = \bigwedge_{i=1}^{q} f_i(\vec{x}) = 1 \oplus (\bigvee_{i=1}^{q} \bar{f}_i(\vec{x}))$
- Note: $OV(a_1, \ldots, a_s, b_1, \ldots, b_s) = \bigvee_{i,j} \bigwedge_{\rho} (1 \oplus a_{i,\rho} b_{j,\rho})$
- Approximate the inner ∧ with t = 2 log s and the outer ∨ with t = 2 to obtain the final polynomial h.
- Verify $\mathbf{P}[h \text{ is correct}] \geq 2/3$.
- Verify that the number of monomials in h is $s^4(d+1)^{2\log s} < n^{\varepsilon}$ when $s = \varepsilon \log n / \log d$.

Efficient Polynomial Evaluation on a Rectangle of Inputs

Lemma (Williams 2014)

Given a polynomial $P(x_1, \ldots, x_k, y_1, \ldots, y_k)$ over \mathbb{F}_2 with at most $m^{0.1}$ monomials and inputs $A = \{a_1, \ldots, a_m\} \subseteq \{0, 1\}^k$ and $B = \{b_1, \ldots, b_m\} \subseteq \{0, 1\}^k$, P can be evaluated on all pairs $(a_i, b_j) \in A \times B$ in $O(m^2 \text{poly}(\log m))$ time.

Proof:

- Reduce the problem to fast rectangular matrix multiplication. by constructing two matrices M_A and M_B from $P = \sum_{\mu} m_{\mu}$.
- Rows of M_A are indexed by a_i and the columns are indexed by $m_u = \prod_I x_I \prod_p y_p = m_u^x m_u^y$
- $M_A(a_i, m_u) = m_u^x(a_i).$
- Rows of *M_B* are indexed by *m_u* of *P* and the columns are indexed by *b_i*.
- $M_B(m_u, b_q) = m_u(b_q).$
- Observe $M_A M_B(a_i, b_q) = \sum_u m_u^x(a_i) m_u^y(b_q) = P(a_j, b_q).$

Computational Complexity What is Fine-grained Complexity? F

Fast Matrix Multiplication

Lemma (Coppersmith 1982)

For all sufficiently large N, multiplication of an $N \times N^{0.172}$ matrix with an $N^{0.172} \times N$ can be performed in $O(N^2 \log^2 N)$ arithmetic operations.

Computational Complexity What is Fine-grained Complexity? F

Polynomial Method for ORTHOGONAL VECTORS— Key Ideas

- Load balancing
- Approximation by polynomials
- Fast matrix multiplication meta algorithm for evaluating polynomials

Problems in **NP**

Satisfiability Problem

- Input: a formula or circuit F on n Boolean variables, x_1, x_2, \ldots, x_n .
- Conjunctive formulas: ∧_i C_i where C_i is a disjunction of literals. (x_i ∨ x̄₂ ∨ x₃) ∧ (x̄₁ ∨ x₆ ∨ x₈ ∨ x̄₃) ∧ · · · ∧ (x̄₆ ∨ x₅ ∨ x₂).
- \bar{x}_i is the Boolean complement of x_i . x_i , \bar{x}_i are called literals.
- Check if F is satisfiable: does there exist an assignment of Boolean values for x₁,..., x_n which satisfies all the clauses.
- Decidable in $|F|2^n$ time by exhaustive search.
- Can we improve upon the exhaustive search? Can we obtain a $|F|2^{n(1-\mu)}$ bound for $\mu > 0$?
- μ is a called the satisfiability savings. μ can be a function of the parameters of the class of formulas/circuits and *n*, the number of variables.

Satisfiability for Conjunctive Formulas

- CNF-SAT: Conjunction of disjunctions of literals
- *k*-SAT: Conjunction of disjunctions of literals where each disjunction contains at most *k* literals.
- k-SAT is NP-complete for k ≥ 3. How fast can we solve k-SAT for k ≥ 3? What is the savings over exhaustive search?
- Several algorithmic approaches have been developed.
 - Backtracking algorithms (also known as DPLL algorithms)
 - Local search algorithms
 - Polynomial method
- Best known results are due to PPSZ-style algorithms which themselves is based on PPZ algorithm.'
 - PPZ Paturi, Pudlák and Zane (1997)

PPSZ — Paturi, Pudlák, Saks and Zane (1998/2005)

• PPZ is a DPLL - style algorithm with random ordering of variables

PPZ Algorithm

Algorithm **PPZ**:

1 Let *F* be a k-CNF and σ a random permutation on variables

2 **for**
$$i = 1, \dots, n$$

- 3 **if** there is a unit clause for the variable $\sigma(i)$
- 4 **then** set the variable $\sigma(i)$ so that the clause true
- 5 else set the variable $\sigma(i)$ randomly
- 6 Simplify F
- 7 if F is satisfied, output the assignment

Theorem

PPZ finds a satisfying assignment in time $poly(n)2^{n(1-\frac{1}{k})}$ with constant success probability.

Isolated Solutions and Critical Clauses

- A satisfying solution for *F* is isolated if all its distance 1 neighbors are not solutions.
- Let *F* be a k-CNF and *x* be an isolated satisfying solution of *x*.
- For each variable *i* and isolated solution *x*, *F* must have a clause with exactly one true literal corresponding to the variable *i* at solution *x*.
- Such clause is called a critical clause for the variable *i* at the solution *x*.
- $F = (x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3)$
- For the isolated solution $x_1 = 0, x_2 = 0, x_3 = 0,$ $F = (0 \lor 1 \lor 0) \land (1 \lor 0 \lor 0) \land (0 \lor 0 \lor 1) \land (1 \lor 1 \lor 1)$

PPZ Analysis

Lemma

Algorithm **PPZ** outputs x with probability at least $\frac{1}{n}2^{-n+I(x)/k}$ for any satisfying solution x with I(x) many neighbors which are not solutions.

Proof Sketch:

- E_1 for at least I(x)/k variables, the critical variable appears as the last variable among the variables in the critical clause
- *E*₂ values assigned to the variables in the **for** loop agree with *x*
- $P(E_1) \ge 1/n$
- $P(E_2|E_1) \ge 2^{-n+I(x)/k}$
- $\mathbf{P}(x \text{ is output by } \mathbf{PPZ}) \geq \frac{1}{n} 2^{-n+I(x)/k}$

PPZ Analysis

۲

• Let S be the set of satisfying solutions of F.

• For
$$x \in S$$
, define $value(x) = 2^{-n+l(x)}$

• Fact: $\sum_{x \in S} value(x) \ge 1$

$$P(\exists x \in Sx \text{ is output by } PPZ) \ge \sum_{x \in S} \frac{1}{n} 2^{-n+l(x)/k}$$
$$= \frac{1}{n} 2^{-n+n/k} \sum_{x \in S} 2^{(-n+l(x))/k}$$
$$\ge \frac{1}{n} 2^{-n+n/k}$$

Improved Exponential Time Algorithms for k-SAT

- A lot of effort has gone into improving k-SAT.
 Scheder (2021), Hertli (2012), P, Pudák, Saks, Zane (1998/2005), Schöning (1999), P, Pudlák, Zane (1997), Rolf (2003), Iwama and Tamaki (2004), ··· , Monien and Speckenmeyer (1985)
- Current best approach— PPSZ: PPZ combined with resolution. Nontrivial analysis.
 - 3-SAT 2^{0.386n}
 - 4-SAT 2^{0.554n}
 - k-SAT $2^{(1-\mu_k/(k-1))n}$ where $\mu_k \approx 1.6$ for large k.
- Under mild assumptions, $\mu_k \leq 2$ for PPSZ-style algorithms Scheder and Talebanfard (2020)

NP-complete Graph Problems

- HAMILTONIAN PATH: Given a graph G = (V, E), is there a hamiltonian path?
- *k*-COLORABILITY: Given a graph G = (V, E), is G colorable with k or fewer colors?
- COLORABILITY: Given a graph G = (V, E) and an integer k, is G colorable with k or fewer colors?
- MAX INDEPENDENT SET: Given a graph G = (V, E) and an integer k, does G have an independent set of size at least k?
- Complexity parameters: the number of vertices: n = |V|, the number of edges: m = |E|, the range of edge weights: d

Motivating Questions for Fine-grained Complexity

- Is there an $\varepsilon > 0$ such that ORTHOGONAL VECTORS problem can be computed in time $n^{2-\varepsilon}$ for $d = \omega(\log n)$?
- Is there an ε > 0 such that 3-SUM problem can be computed in time n^{2-ε} for d = ω(log n)?
- Is $s_3 = 0$, where $s_k = \inf\{\delta | \exists 2^{\delta n} \text{ algorithm for } k\text{-sat}\}$?

• Is
$$s_{\infty} = 1$$
, where $s_{\infty} = \lim_{k \to \infty} s_k$?.

Relationships among Problems

- If ORTHOGONAL VECTORS problem can be solved in time $n^{2-\varepsilon}$ for some $\varepsilon > 0$ for $d = \omega(\log n)$, does there exists $\delta > 0$ such that k-SAT can be solved in time $2^{(1-\delta)n}$ for all k?
- If 3-SAT is solvable in subexponential time, is 4-SAT solvable in subexponential time?
- Do improved algorithms for 3-SAT imply improved algorithms for 3-COLORABILITY or vice versa?

Fine-grained Reductions

- More generally, what 'fine-grained' reductions are possible among these problems?
 - Assume that problem A has a conjectured complexity $T_A(n)$ and problem B $T_B(n)$.
 - Assume that the complexity of A improved to T^(1-ε)_A(n) for ε > 0.
 - Can we infer if there will be an improvement in the complexity of *B*?
 - Reductions from *B* to *A* that enable the transfer of the improvement are fine-grained reductions.

Computational Complexity What is Fine-grained Complexity? F Satisfiability Problem PPZ Algorithm PPZ Analysis Further In An Obstacle for Developing a Theory of Fine-grained Complexity

- Lack of reductions that preserve the complexity parameter
- In the least, we need reductions that preserve the complexity parameter linearly.

Computational Complexity What is Fine-grained Complexity? F Satisfiability Problem PPZ Algorithm PPZ Analysis Further In Example: An Obstacle for a Reduction from 3-SAT to 3-COLORABILITY

- If 3-COLORABILITY has a subexponential time (2^{εn} for arbitrarily small ε) algorithm, does it imply a subexponential time algorithms for 3-SAT?
- In the standard reduction from 3-SAT of *n* variables and *m* clauses to 3-COLORABILITY, we get a graph on O(n + m) vertices and O(n + m) edges.
- Complexity parameter increases polynomially, thus preventing any useful conclusion about 3-SAT.

Subexponential Time

Definition (Subexponential Time)

A problem is computable in time subexponential in the complexity parameter *n* if there is an effectively computable monotone increasing function $g(n) = \omega(1)$ such that the problem on instance *x* with complexity parameter *n* is computable in time $poly(|x|)2^{n/g(n)}$.

Subexponential Time Reductions

Definition (Subexponential Time Reductions)

Let \mathcal{P} and \mathcal{P}' be problems with complexity parameters p and p' respectively. \mathcal{P} is subexponential time reducible to \mathcal{P}' if there exists a collection of reductions $\{R_{\varepsilon}\}$ such that $\forall \varepsilon > 0$, $\exists c(\varepsilon)$ such that

• R_{ε} takes an instance x of \mathcal{P} and outputs instances y_i of \mathcal{P}' for $1 \le i \le 2^{\varepsilon n}$ where $|y_i| \le \operatorname{poly}(|x_i|)$ and $p'(y_i) \le c(\varepsilon)p(x)$.

2
$$x \in \mathcal{L}(\mathcal{P})$$
 if and only if $y_i \in \mathcal{L}(\mathcal{P}')$ for some *i*.

3
$$R_{arepsilon}$$
 runs in time $extsf{poly}(|x|)2^{arepsilon p(x)}$

Sparsification Lemma

Lemma (Sparsification Lemma)

 \exists algorithm $A \forall k \geq 2, \epsilon \in (0, 1], \phi \in k$ -CNF with n variables, $A_{k,\epsilon}(\phi)$ outputs $\phi_1, \ldots, \phi_s \in k$ -CNF in $2^{\epsilon n}$ time such that

• $s \leq 2^{\epsilon n}$; SAT $(\phi) = \bigcup_i SAT(\phi_i)$, where SAT (ϕ) is the set of satisfying assignments of ϕ

● $\forall i \in [s]$ each literal occurs $\leq O(\frac{k}{\epsilon})^{3k}$ times in ϕ_i .

- Branching on variables alone would require setting almost all the variables resulting in a large tree.
- Branch on frequently occurring subclauses rather than just on variables.
- Clause branching results in less information, and as a result the tree does not grow too much.
- To control for the growth of new clauses, start with small clauses and look for longest subclauses with required

Reducing 3-SAT to 3-COLORABILITY under SERF

- Apply Sparsification Lemma to the given 3- $_{\rm CNF} \phi$.
- Consider each 3-CNF ϕ_i with linearly many clauses and reduce it to a graph with linearly many vertices.
- Now, a subexponential time algorithm for 3-COLORABILITY implies a subexponential time algorithm for 3-SAT.

Reducing 4-sat to 3-sat under Subexponential-time Reductions

- Let $\varepsilon > 0$ be arbitrary.
- Apply Sparsification Lemma to the given 4-CNF φ to obtain a disjunction of 2^{εn} φ_i in time 2^{εn} where each φ_i has linearly many clauses.
- Reduce 4-CNF ϕ_i to a 3-SAT formula with only linearly many new variables.

 $(l_1 \vee l_2 \vee l_3 \vee l_4) = \exists y (l_1 \vee l_2 \vee y) (\bar{y} \vee l_3 \vee l_4)$

- Now, a subexponential time algorithm for 3-SAT implies a subexponential time algorithm for ϕ_i .
- Since $\varepsilon > 0$ is arbitrary, ϕ can be solved in subexponential-time.

SNP

- SNP class of properties expressible by a series of second order existential quantifiers, followed by a series of first order universal quantifiers, followed by a basic formula —Papadimitriou and Yannakakis 1991
- SNP includes k-SAT and k-COLORABILITY for $k \ge 3$. $\exists S \forall (y_1, \dots, y_k) \forall (s_1, \dots, s_k) [R_{(s_1, \dots, s_k)}(y_1, \dots, y_k) \implies$ $\land_{1 \le i \le k} S_{s_i}(y_i)$, where $s_i \in \{+, -\}$ and S is a subset of [n].
- VERTEX COVER, CLIQUE, INDEPENDENT SET and *k*-SET COVER are in size-constrained **SNP**.
- HAMILTONIAN PATH is **SNP-hard**.

Completeness of 3-SAT in SNP

Theorem (IPZ 1997)

3-SAT admits a subexponential-time algorithm if and only if every problem in (size-constrained) **SNP** admits one.

- Proof Sketch: Show that every problem in **SNP** is strongly many-one reducible to *k*-SAT for some *k*. Complexity parameter is the number of Boolean existential quantifiers.
- Reduce *k*-SAT to the union of subexponentially many linear-size *k*-SAT using Sparsification Lemma.
- Reduce each linear-size *k*-SAT to 3-SAT with linearly many variables.

Exponential Time Hypothesis (**ETH**)

- Let $s_k = \inf\{\delta | \exists 2^{\delta n} \text{ algorithm for } k\text{-sat}\};$
- 3-SAT has a subexponential time algorithm $\implies s_k = 0$ for all k and $s_{\infty} = 0$. Moreover, all problems in **SNP** have subexponential time algorithms.
- Our plan is to make progress by assuming this statement
- Exponential Time Hypothesis $(ETH) s_3 > 0$

Explanatory Burden of **ETH**

- We have very little understanding of exponential time algorithms.
- For ETH to be useful,
 - it must be able to provide an explanation for the known complexities of various problems,
 - ideally, by providing lower bounds that match the upper bounds from the best known algorithms.
- **ETH** will be useful if it helps factor out the essential difficulty of dealing with exponential time algorithms for **NP**-complete problems.

Explanatory Value of ETH — I

- All the following results assume **ETH**.
- None of the problems in (size-constrained) **SNP** have a subexponential time algorithm
- Furthermore, **SNP**-hard problems such as HAMILTONIAN PATH cannot have a subexponential time algorithm.

Explanatory Value of **ETH** — II

- We follow the nice summary provided by Lokshtanov, Marx and Saurabh (2011).
- Subexponential time lower bounds: There is no $2^{o(\sqrt{n})}$ algorithm for VERTEX COVER, 3-COLORABILITY, and HAMILTONIAN PATH for planar graphs.
- Lower bounds for FPT problems: There is no $2^{o(k)}n^{O(1)}$ algorithm to decide whether the graph has a vertex cover of size at most k.

Similar results hold for the problems

FEEDBACK VERTEX SET and LONGEST PATH. Cai and Juedes (2003)

• Lower bounds for *W*[1]-complete problems: There is no $f(k)n^{o(k)}$ algorithm for CLIQUE or INDEPENDENT SET. Chen, Chor, Fellows, Huang, Juedes, Kanj, and Xia (2005, 2006)

Computational Complexity What is Fine-grained Complexity? F

SETH — Strong Exponential Time Hypothesis

Theorem (IP, 1999)

If **ETH** is true, s_k increases infinitely often

• Let
$$s_{\infty} = \lim_{k \to \infty} s_k$$
.

• Conjecture:

Strong Exponential Time Hypothesis (SETH): $s_{\infty} = 1$

SETH and Its Equivalent Statements

Theorem

The following statements are equivalent:

- ∀ε < 1, ∃k, k-SAT, the satisfiability problems for n-variable k-CNF formulas, cannot be computed in time O(2^{εn}) time.
- ∀ε < 1, ∃k, k-HITTING SET, the HITTING SET problem for set systems over [n] with sets of size at most k, cannot be computed in time O(2^{εn}) time.
- ∀ε < 1, ∃k, k-SET SPLITTING, the SET SPLITTING problem for set systems over [n] with sets of size at most k, cannot be computed in time O(2^{εn}) time.

— Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto, P, Saurabh, Wahlstrom, 2012

Explanatory Power of **SETH**

- Under **SETH**, we will show that there is no $\varepsilon > 0$ such that ORTHOGONAL VECTORSproblem has a $n^{2-\varepsilon}$ algorithm for $d = \omega(\log n)$.
- Reduce *k*-sat to Orthogonal Vectors
- Each clause of a k-CNF corresponds to a coordinate of the vector.
- Assume that the variables come in two colors. For each color and for each setting of variables of the color, we will derive a vector from the set of clauses.
- Let C_i = (x₁ ∨ x̄₂ ∨ y₁ ∨ ∨y₂). α is a setting for the x variables and β a setting for the y variables.
- Define $a_i(\alpha) = \neg(x_1 \vee \bar{x}_2)(\alpha)$ and $b_i = \neg(x_1 \vee \bar{x}_2)(\beta)$
- C_i is false under (α, β) if and only if $a_i(\alpha)b_i(\beta) = 1$

Reducing *k*-SAT to ORTHOGONAL VECTORS

- Assume that the ORTHOGONAL VECTORS problem can be solved in time n^{2-ε} for ε > 0 for d = ω(log n).
- Let $\varepsilon' = \varepsilon/3$ and ϕ be a k-CNF with *n* variables for k > 0.
- Sparsify ϕ in $2^{\varepsilon' n}$ time into $2^{\varepsilon' n}$ many k-SAT instances ϕ_i with at most $c_{\varepsilon'} n$ many clauses.
- For each φ_i, construct two families L and R of sets which are subsets of a universe of size c_{ε'}n where |L| = |R| = N = 2^{n/2}.
- ϕ_i is satisfiable if and only if there is a pair of sets $A \in L$ and $B \in R$ such that $A \cap B = \emptyset$.
- Total time for solving the satisfiability of ϕ is $2^{\varepsilon' n} + N^{2-\epsilon} 2^{\varepsilon' n} \approx 2^{(1-\varepsilon/6)n}$
- Since k is arbitrary, this implies that **SETH** is false.
- Conclusion: If SETH, there is no $\epsilon > 0$ such that ORTHOGONAL VECTORS problem can be solved in time $n^{2-\epsilon}$ for a universe of size $\omega(\log n)$.

Conclusions

- If ORTHOGONAL VECTORS problem can be solved in time $n^{2-\varepsilon}$ for some $\varepsilon > 0$ for $d = \omega(\log n)$, does there exists $\delta > 0$ such that k-SAT can be solved in time $2^{(1-\delta)n}$ for all k? Yes
- If 3-SAT is solvable in subexponential time, is 4-SAT solvable in subexponential time? Yes
- Do improved algorithms for 3-SAT imply improved algorithms for 3-COLORABILITY or vice versa? Yes (due to Sparsification Lemma)
- Is there an ε > 0 such that ORTHOGONAL VECTORS problem can be computed in time n^{2−ε} for d = ω(log n)?
 No, if SETH is true.

Open Problems

- Prove or disprove **ETH**
- Prove or disprove **SETH**
- Assuming ETH or other suitable assumption, prove
 - a specific lower bound on s_3
 - $s_{\infty} = 1$ (SETH)
- Assuming **SETH**, can we prove a 2ⁿ lower bound on COLORABILITY?

Thank You