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Abstract

We consider the motion of a viscous compressible and heat conducting fluid confined
in the gap between two rotating cylinders (Taylor–Couette flow). The temperature of the
cylinders is fixed but not necessarily constant. We show that the problem admits a time–
periodic solution as soon as the ratio of the angular velocities of the two cylinders is a rational
number.
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21–02411S. The Institute of Mathematics of the Academy of Sciences of the Czech Republic is supported by
RVO:67985840.

†The work of Y.–S. Kwon was partially supported by the National Research Foundation of Korea
(NRF2020R1F1A1A01049805)

1



2 Hypotheses and main result 5
2.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Weak solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Approximate problem 8
3.1 A priori bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Existence of approximate solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Limit N →∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Limit ε→ 0 11
4.1 Ballistic energy balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Extending boundary velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Uniform bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3.1 Entropy dependent terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.2 Convective term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4 Pressure estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4.1 Integrability of the pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4.2 Equi–integrability of the pressure . . . . . . . . . . . . . . . . . . . . . . . . 19

4.5 Conclusion, limit ε→ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Concluding remarks 21

1 Introduction

The Taylor–Couette flow is one of the iconic examples of turbulent fluid motion driven by the
adherence of a viscous fluid to the kinematic boundary. Specifically, consider two not necessarily
concentric cylinders

C1 = Br(a)× [0, 1], C2 = Br(b)× [0, 1],

Br(a) =
{
xh ≡ (x1, x2)

∣∣∣ |xh − a| ≤ r
}
, Br(b) =

{
xh ≡ (x1, x2)

∣∣∣ |xh − b| ≤ r
}
,

0 < r, |a− b|+ r < r.

For the sake of simplicity, we suppose the motion is periodic in the vertical direction x3 therefore
the fluid domain Ω ⊂ R3 is given as

Ω =
(

int[C2] \ C1

)
× T1, T1 ≡ [0, 1]

∣∣∣
{0,1}

. (1.1)

The cylinders C1, C2 rotate with constant angular velocities ω1, ω2 respectively. Finally, we suppose
the surface temperatures θ1 of ∂C1, θ2 of ∂C2 are independent of time but not necessarily constant.
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We consider a general viscous and heat conducting fluid. Accordingly, the fluid velocity u =
u(t, x) satisfies the no–slip boundary conditions

u|∂Ω = uB, where uB(x) =

{
ω1(xh − a)⊥ on ∂C1,
ω2(xh − b)⊥ on ∂C2.

(1.2)

Similarly, we impose the Dirichlet boundary conditions for the fluid temperature ϑ = ϑ(t, x).
Although the temperature of the cylinders is independent of time, the fact that they rotate enforces
the time dependent boundary conditions:

ϑ|∂Ω = ϑB, ϑB(t, x) =

{
θ1 (a + r[cos(ω1t), sin(ω1t)], x3) on ∂C1,
θ2 (b + r[cos(ω2t), sin(ω2t)], x3) on ∂C2.

(1.3)

If the ratio
ω1

ω2

= k − a rational number (1.4)

the boundary temperature ϑB is periodic in time,

ϑB(t+ T, x) = ϑB(t, x) for a certain T ≥ 0. (1.5)

As pointed out in Yang et al [28]: “Many natural and industrial turbulent flows are subjected to
time-dependent boundary conditions.”

1.1 Field equations

The time evolution of the fluid density % = %(t, x), the (absolute) temperature ϑ = ϑ(t, x) and the
velocity u = u(t, x) is governed by the Navier–Stokes–Fourier (NSF) system of partial differential
equations:

∂t%+ divx(%u) = 0, (1.6)

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = divxS(ϑ,Dxu) + %∇xG, (1.7)

∂t(%e(%, ϑ)) + divx(%e(%, ϑ)u) +∇xq(ϑ,∇xϑ) = S(ϑ,Dxu) : Dxu− p(%, ϑ)divxu, (1.8)

where S is the viscous stress given by Newton’s rheological law

Dxu =
1

2

(
∇xu +∇t

xu
)
, S(ϑ,Dxu) = µ(ϑ)

(
∇xu +∇t

xu−
2

3
divxuI

)
+ η(ϑ)divxuI, (1.9)

and q is the heat flux given by Fourier’s law

q(ϑ,∇xϑ) = −κ(ϑ)∇xϑ. (1.10)

The pressure p = p(%, ϑ) and the internal energy are interrelated by Gibbs’ equation

ϑDs = De+ pD
1

%
, (1.11)

where s is a new thermodynamic function called entropy.

3



1.2 Time periodic solutions

Motivated by the example of the Taylor–Couette flow, our goal is to establish existence of time–
periodic solutions to the NSF system driven by time periodic boundary conditions. Specifically,
we consider a bounded domain Ω ⊂ R3,

Ω of class C∞, ∂Ω = ∪ni=1Γi,

uB = uB(x),uB · n|∂Ω = 0,

ϑB(t+ T, ·)|∂Ω = ϑB(t, ·)|∂Ω for some T > 0. (1.12)

The assumption uB independent of time can be replaced by time–periodicity, the assumption that
uB is tangential to the boundary is however essential as it entails the total mass conservation

M ≡
∫

Ω

%(t, ·) dx for any t. (1.13)

The present work can be seen as a continuation of the papers [13] and [15] devoted to the time
periodic solutions to the NSF system. The main difference between [13] and [15] is the concept
of weak solution. The approach of [15] is based on the mathematical theory developed in the
monograph [16] for essentially energetically closed fluid systems, while the more recent result [13]
requires the new concept of weak solution for general open systems introduced in [10] and further
elaborated in the monograph [17]. Similarly, the present paper needs the new framework [17].

At first glance, the results presented below could be seen as a generalization of [13] to the case
of inhomogeneous boundary velocity. There is, however, a substantial difference due to the choice
of the equation of state. In order to handle the problem driven by the motion of the boundary, the
pressure equation of state must be augmented by the so–called hard–sphere pressure component
already used in [14], see also [17, Chapter 9, Section 9.1.4]. Such a hypothesis is not needed in [13]
therefore the principal part of the analysis based on a priori bounds in [13] is quite complementary
to the present case.

To conclude the introductory part, let us recall that there several results concerning the time
periodic solutions to the compressible and/or heat conducting fluid systems driven by smooth and
small data, see e.g. Březina and Kagei [8], [9], Jin and Yang [21] , Kagei and Oomachi [22], Kagei
and Tsuda [23], Tsuda [25], Valli and Zajaczkowski [26], [27] to name only a few. Last but not
least, it is worth mentioning there are alternative approaches to the concept of weak solutions
proposed Bresch and Desjardins [4], [5] or Bresch and Jabin [6]. Neither of them, however, seem
to apply to problems with inhomogeneous boundary conditions.

The paper is organized as follows. In Section 2, we list the main hypotheses and state our
main result. In Section 3, we introduce a family of approximate problems solvable by the methods
developed in [15]. In Section 4, we perform the limit in the sequence of approximate solutions and
prove the main existence result. Section 5 contains concluding remarks.
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2 Hypotheses and main result

In this section, we collect the necessary hypotheses imposed on the constitutive equations and
state our main result.

2.1 Hypotheses

Following [14], [17, Chapter 4, Section 4.3] we impose the following hypotheses concerning the
equation of state:

p(%, ϑ) = pm(%, ϑ) + pr(ϑ) + pHS(%), e(%, ϑ) = eM(%, ϑ) + er(%, ϑ) + eHS(%), (2.1)

where

pm(%, ϑ) = ϑ
5
2P

(
%

ϑ
3
2

)
, pr(ϑ) =

a

3
ϑ4, a > 0, pHS(%) =

b%

(%− %)s
, b > 0, (2.2)

em(%, ϑ) =
3

2

ϑ
5
2

%
P

(
%

ϑ
3
2

)
, er(%, ϑ) =

a

%
ϑ4, eHS(%) =

∫ %

%/2

b

z(%− z)s
dz, s > 3, (2.3)

where P ∈ C1[0,∞) satisfies

P (0) = 0, P ′(Z) > 0 for Z ≥ 0, 0 <
5
3
P (Z)− P ′(Z)Z

Z
≤ c for Z > 0. (2.4)

In particular, the function Z 7→ P (Z)/Z
5
3 is decreasing, and we suppose

lim
Z→∞

P (Z)

Z
5
3

= p∞ ≥ 0. (2.5)

The associated entropy s reads

s(%, ϑ) = sm(%, ϑ) + sr(%, ϑ), sm(%, ϑ) = S
(
%

ϑ
3
2

)
, sr(%, ϑ) =

4a

3

ϑ3

%
, (2.6)

where

S ′(Z) = −3

2

5
3
P (Z)− P ′(Z)Z

Z2
. (2.7)

Finally, in accordance with the Third law of thermodynamics, we suppose

lim
ϑ→0

s(%, ϑ) = 0 for any fixed % > 0, meaning S(Z)→ 0 as Z →∞. (2.8)

The reader may consult [17, Chapter 4] for the physical background of the above hypotheses.
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In addition, the transport coefficients µ, η, and κ are continuously differentiable functions of
the temperature ϑ satisfying

0 < µ (1 + ϑ) ≤ µ(ϑ) ≤ µ (1 + ϑ) , |µ′(ϑ)| ≤ c for all ϑ ≥ 0,
1

2
≤ Λ ≤ 1,

0 ≤ η(ϑ) ≤ η (1 + ϑ) ,

0 < κ
(
1 + ϑβ

)
≤ κ(ϑ) ≤ κ

(
1 + ϑβ

)
, β > 6. (2.9)

The pressure as well as the internal energy are augmented by the so–called hard–sphere com-
ponent pHS, eHS respectively. They are both singular at % and force the density % to be bounded
above by %. This facilitates considerably the analysis leading to new a priori estimates. The
regularizing effect of the hard–sphere pressure has been exploited in a number of recent studies:
[1], [11], [18], the monograph [17] and the references cited therein.

2.2 Weak solution

It is convenient to identify the time periodic functions with distributions defined on the flat torus

ST = [0, T ]|{0,T}.

Suppose that uB, ϑB have been extended inside Ω.

Definition 2.1 (Weak solution). We say that a trio (%, ϑ,u) is weak time periodic solution to
the NSF system (1.6) - (1.11), with the boundary conditions (1.12) if the following holds:

• Integrability.

0 ≤ % < % a.a. in ST × Ω, % ∈ Cweak(ST ;Lq(Ω)) for any 1 ≤ q <∞;

0 < ϑ a.a. in ST × Ω, ϑ ∈ L∞(ST ;L4(Ω)) ∩ L2(ST ;W 1,2(Ω)), ϑ|∂Ω = ϑB;

u ∈ L2(ST ;W 1,2(Ω;R3), u|∂Ω = uB;

%u ∈ Cweak(ST ;L2(Ω;R3)).

• Equation of continuity. ∫
ST

∫
Ω

[%∂tϕ+ %u · ∇xϕ] dx dt = 0

for any ϕ ∈ C1(ST × Ω).

• Momentum balance.∫
ST

∫
Ω

[
%u · ∂tϕ + %u⊗ u : ∇xϕ + p(%, ϑ)divxϕ

]
dx dt

=

∫
ST

∫
Ω

[
S(ϑ,Dxu) : Dxϕ− %∇xG ·ϕ

]
dx dt

for any ϕ ∈ C1
c (ST × Ω;R3).
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• Entropy inequality.

−
∫
ST

∫
Ω

[
%s(%, ϑ)∂tϕ+ %s(%, ϑ)u · ∇xϕ+

q(ϑ,∇xϑ)

ϑ
· ∇xϕ

]
dx dt

≥
∫
ST

∫
Ω

ϕ

ϑ

[
S(ϑ,Dxu) : Dxu−

q(ϑ,∇xϑ) · ∇xϑ

ϑ

]
dx dt

for any ϕ ∈ C1
c (ST × Ω), ϕ ≥ 0.

• Ballistic energy balance.

−
∫
ST

∂tψ

∫
Ω

[
1

2
%|u− uB|2 + %e− ϑ̃%s

]
dx dt+

∫
ST

ψ

∫
Ω

ϑ̃

ϑ

[
S : Dxu−

q · ∇xϑ

ϑ

]
dx dt

≤
∫
ST

ψ

∫
Ω

[
%ε(u− uB) · ∇xG− %su · ∇xϑ̃−

q

ϑ
· ∇xϑ̃− ∂tϑ̃%s

]
dx dt

−
∫
ST

ψ

∫
Ω

[%u⊗ u + p(%, ϑ)I− S(ϑ,Dxu)] : DxuB dx dt

+
1

2

∫
ST

ψ

∫
Ω

%u · ∇x|uB|2 dx dt

for any ψ ∈ C1(ST ), ψ ≥ 0, and any

ϑ̃ ∈ C1(ST × Ω), ϑ̃ > 0, ϑ̃|∂Ω = ϑB. (2.10)

Note carefully that the above definition is the same as in [17, Chapter 12, Definition 7]. As the
density % is bounded, we can use the regularization technique of DiPerna and Lions [12] to obtain
a renormalized version of the equation of continuity∫

ST

∫
Ω

[
b(%)∂tϕ+ b(%)u · ∇xϕ+

(
b(%)− b′(%)%

)
divxuϕ

]
dx dt = 0

for any ϕ ∈ C1(ST × Ω), and any b ∈ C1(R).

2.3 Main result

We are ready to state our main result concerning the existence of time periodic solutions.

Theorem 2.2 (Time periodic solution). Suppose that Ω ⊂ R3 is a bounded domain of class
(1.12), where the boundary data satisfy

uB ∈ C2(∂Ω;R3)), ϑB ∈ C2(ST × ∂Ω), inf
ST×∂Ω

ϑB > 0. (2.11)
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Let G ∈ W 1,∞(Ω), and let the thermodynamic functions p, e, s, and the transport coefficients µ,
η, κ satisfy the hypotheses (2.1)–(2.9), with

s > 3, β > 6. (2.12)

Let
0 < M < %|Ω|

be given.
Then the NSF system (1.6)–(1.10), with the boundary conditions 1.12 admits a time periodic

solution (%, ϑ,u) in the sense specified in Definition 2.1 such that∫
Ω

%(t, ·) dx = M for any t ∈ ST .

The rest of the paper is devoted to the proof of Theorem 2.2.

3 Approximate problem

Following the strategy of [13] we consider an approximate problem replacing the boundary condi-
tions (1.12) by

u · n = 0, [S · n]tan = −1

ε
(u− uB) on ∂Ω, (3.1)

q · n =
1

ε
|ϑ− ϑB|k(ϑ− ϑB), k = β − 1, on ∂Ω, (3.2)

where ε > 0 is a small parameter. Note that (3.1) can be interpreted as Navier’s boundary
condition with friction while (3.2) is a nonlinear Robin type boundary condition introduced in [2],
[13].

Moreover, we replace the hard–sphere component of the pressure by a suitable cut–off, Specif-
ically, we consider

pN(%, ϑ) = pm(%, ϑ) + pr(%, ϑ) +
1

N
%2 + ([%− %− 1]+)Γ + pNHS(%),

pNHS(%) =


pHS(%) if 0 ≤ % ≤ %− 1

N
,

a1%+ a2 if % > %− 1
N
,

(3.3)

where the constants a1, a2 are chosen in such a way that pNHS ∈ C1[0,∞). The associated internal
energy reads

eN(%, ϑ) = em(%, ϑ) + er(%, ϑ) +
1

N
%+

∫ %

%/2

1

z2

(
([z − %− 1]+)Γ + pNHS(z)

)
dz

8



cf. [17, Chapter 8, Section 8.2].
The weak formulation of the approximate problem reads:

∫
ST

∫
Ω

[%∂tϕ+ %u · ∇xϕ] dx dt = 0, (3.4)∫
ST

∫
Ω

[
b(%)∂tϕ+ b(%)u · ∇xϕ+

(
b(%)− b′(%)%

)
divxuϕ

]
dx dt = 0 (3.5)

for any ϕ ∈ C1(ST × Ω), and any b ∈ C1(R), b′ ∈ Cc(R);

∫
ST

∫
Ω

[
%u · ∂tϕ + %u⊗ u : ∇xϕ + pN(%, ϑ)divxϕ

]
dx dt

=

∫
ST

∫
Ω

[
S(ϑ,Dxu) : Dxϕ− %∇xG ·ϕ

]
dx dt− 1

ε

∫
ST

∫
∂Ω

(u− uB) ·ϕ dσx dt (3.6)

for any ϕ ∈ C1(ST × Ω;R3), ϕ · n|∂Ω = 0;

−
∫
ST

∫
Ω

[
%s(%, ϑ)∂tϕ+ %s(%, ϑ)u · ∇xϕ+

q(ϑ,∇xϑ)

ϑ
· ∇xϕ

]
dx dt

≥
∫
ST

∫
Ω

ϕ

ϑ

[
S(ϑ,Dxu) : Dxu−

q(ϑ,∇xϑ) · ∇xϑ

ϑ

]
dx dt

+
1

ε

∫
ST

∫
∂Ω

ϕ
|ϑB − ϑ|k(ϑB − ϑ)

ϑ
dσx dt (3.7)

for any ϕ ∈ C1(ST × Ω), ϕ ≥ 0;

−
∫
ST

∂tψ

∫
Ω

[
1

2
%|u|2 + %eN(%, ϑ)

]
dx dt+

1

ε

∫
ST

ψ

∫
∂Ω

|ϑ− ϑB|k(ϑ− ϑB)dσx dt

+
1

ε

∫
ST

ψ

∫
∂Ω

(u− uB) · u dσx dt ≤
∫
ST

ψ

∫
Ω

%u · ∇xG dx dt (3.8)

for any ψ ∈ C1(ST ), ψ ≥ 0.
Relation 3.8 is the standard energy balance whereas the weak formulation is the same as in

[15] based on the abstract theory developed in [16]. The approximate system is “almost closed”
in the sense that the energy flux through the boundary is controlled by the boundary conditions.
Accordingly, solutions of the approximate problem may be obtained exactly as in [15] as long as
suitable a priori bounds are available. They are discussed in the forthcoming section.
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3.1 A priori bounds

Step 1:
For ψ = 1, the energy inequality (3.8) yields

1

ε

∫
ST

∫
∂Ω

|ϑ− ϑB|k(ϑ− ϑB)dσx dt+
1

ε

∫
ST

∫
∂Ω

(u− uB) · u dσx dt

≤
∫
ST

∫
Ω

%u · ∇xG dx dt = 0

as G is independent of t. Consequently, since ϑ ≥ 0 we obtain

‖ϑ‖Lk+1(ST×∂Ω) + ‖u‖L2(ST×∂Ω;R3)
<∼ 1, (3.9)

where the bound is independent of ε, N . Here and hereafter, the symbol A
<∼ B means there is a

positive constant c > 0 such that A ≤ cB.

Step 2: In view of (3.9), the choice ϕ = 1 in the entropy inequality (3.7) yields∫
ST

∫
Ω

1

ϑ

[
S(ϑ,Dxu) : Dxu−

q(ϑ,∇xϑ) · ∇xϑ

ϑ

]
dx dt ≤ c(data, ε), (3.10)

where the right–hand side is independent of N but may blow up for ε→ 0.

3.2 Existence of approximate solutions

With (3.9), (3.10) at hand, the remaining a priori bounds can be deduced exactly as in [15, Section
2.4]. Repeating step by step the arguments of the existence proof in [15], we obtain the existence
of approximate solutions.

Proposition 3.1 (Approximate solutions). In addition to the hypotheses of Theorem 2.2, let

ε > 0, N > 0

be given.
Then the approximate problem (3.4) – (3.8) admits a solution (%ε,N , ϑε,N ,uε,N).

3.3 Limit N →∞
With the a priori bounds (3.9), (3.10) at hand, the limit N → ∞ can be performed similarly to
[17, Chapter 8, Section 8.2]. We therefore obtain a family of approximate solutions (%ε, ϑε,uε)ε>0

satisfying the problem with the original pressure p and the internal energy e.
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4 Limit ε→ 0

Our ultimate goal is to perform the limit ε→ 0 in the family of approximate solutions (%ε, ϑε,uε)
obtained in the previous section. They satisfy the following system of integral identities:

∫
ST

∫
Ω

[%ε∂tϕ+ %εuε · ∇xϕ] dx dt = 0, (4.1)∫
ST

∫
Ω

[
b(%ε)∂tϕ+ b(%ε)uε · ∇xϕ+

(
b(%ε)− b′(%ε)%ε

)
divxuεϕ

]
dx dt = 0 (4.2)

for any ϕ ∈ C1(ST × Ω), and any b ∈ C1(R), b′ ∈ Cc(R);∫
ST

∫
Ω

[
%εuε · ∂tϕ + %εuε ⊗ uε : ∇xϕ + p(%ε, ϑε)divxϕ

]
dx dt

=

∫
ST

∫
Ω

[
S(ϑε,Dxuε) : Dxϕ− %ε∇xG ·ϕ

]
dx dt− 1

ε

∫
ST

∫
∂Ω

(uε − uB) ·ϕ dσx dt (4.3)

for any ϕ ∈ C1(ST × Ω;R3), ϕ · n|∂Ω = 0;

−
∫
ST

∫
Ω

[
%εs(%ε, ϑε)∂tϕ+ %εs(%ε, ϑε)uε · ∇xϕ+

q(ϑε,∇xϑε)

ϑε
· ∇xϕ

]
dx dt

≥
∫
ST

∫
Ω

ϕ

ϑε

[
S(ϑε,Dxuε) : Dxuε −

q(ϑε,∇xϑε) · ∇xϑε
ϑε

]
dx dt

+
1

ε

∫
ST

∫
∂Ω

ϕ
|ϑB − ϑε|k(ϑB − ϑε)

ϑε
dσx dt (4.4)

for any ϕ ∈ C1(ST × Ω), ϕ ≥ 0;

−
∫
ST

∂tψ

∫
Ω

[
1

2
%ε|uε|2 + %εe(%ε, ϑε)

]
dx dt+

1

ε

∫
ST

ψ

∫
∂Ω

|ϑε − ϑB|k(ϑε − ϑB)dσx dt

+
1

ε

∫
ST

ψ

∫
∂Ω

(uε − uB) · uε dσx dt ≤
∫
ST

ψ

∫
Ω

%εuε · ∇xG dx dt (4.5)

for any ψ ∈ C1(ST ), ψ ≥ 0.
In addition, the density is uniformly bounded,

0 ≤ %ε < % a.a. in (0, T )× Ω. (4.6)

4.1 Ballistic energy balance

We start by choosing ϕ = ψ(t)ϑ̃(t, x),

ϑ̃ ∈ C1(ST × Ω), ψ > 0, ϑ̃ > 0, ϑ̃|∂Ω = ϑB,
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as a test function in the approximate entropy balance (4.4). Adding the resulting expression to
the energy balance (4.5) we obtain

−
∫
ST

∂tψ

∫
Ω

[
1

2
%ε|uε|2 + %εe− ϑ̃%εs

]
dx dt+

∫
ST

ψ

∫
Ω

ϑ̃

ϑε

[
S : Dxuε −

q · ∇xϑε
ϑε

]
dx dt

+
1

ε

∫
ST

ψ

∫
∂Ω

|ϑε − ϑB|k+2

ϑε
dσx dt+

1

ε

∫
ST

ψ

∫
∂Ω

(uε − uB) · uε dσx dt

≤
∫
ST

ψ

∫
Ω

[
%εuε · ∇xG− %εsuε · ∇xϑ̃−

q

ϑε
· ∇xϑ̃− ∂tϑ̃%εs

]
dx dt. (4.7)

Next, the choice ϕ = ψ(t)uB(x) in the momentum balance (4.3) yields∫
ST

∫
Ω

[
%εuε · uB∂tψ + ψ%εuε ⊗ uε : ∇xuB + ψp(%ε, ϑε)divxuB

]
dx dt

=

∫
ST

ψ

∫
Ω

[
S(ϑε,Dxuε) : DxuB − %ε∇xG · uB

]
dx dt− 1

ε

∫
ST

ψ

∫
∂Ω

(uε − uB) · uB dσx dt.

(4.8)

Note that ϕ = ψ(t)uB(x) is an admissible test function as uB · n|∂Ω = 0.
Finally, taking ϕ = ψ(t)1

2
|uB|2 in the equation of continuity (4.1) we get

−
∫
ST

∫
Ω

[
1

2
%ε|uB|2∂tψ + ψ%εuε · uB · ∇xuB

]
dx dt = 0. (4.9)

Summing up (4.7)–(4.9) we obtain an approximate ballistic energy balance in the form

−
∫
ST

∂tψ

∫
Ω

[
1

2
%ε|uε − uB|2 + %εe− ϑ̃%εs

]
dx dt+

∫
ST

ψ

∫
Ω

ϑ̃

ϑε

[
S : Dxuε −

q · ∇xϑε
ϑε

]
dx dt

+
1

ε

∫
ST

ψ

∫
∂Ω

|ϑε − ϑB|k+2

ϑε
dσx dt+

1

ε

∫
ST

ψ

∫
∂Ω

|uε − uB|2 dσx dt

≤
∫
ST

ψ

∫
Ω

[
%ε(uε − uB) · ∇xG− %εsuε · ∇xϑ̃−

q

ϑε
· ∇xϑ̃− ∂tϑ̃%εs

]
dx dt

−
∫
ST

ψ

∫
Ω

[%εuε ⊗ uε + p(%ε, ϑε)I− S(ϑε,Dxuε)] : DxuB dx dt

+
1

2

∫
ST

ψ

∫
Ω

%εuε · ∇x|uB|2 dx dt (4.10)

for any ψ ∈ C1(ST ), ψ ≥ 0.
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4.2 Extending boundary velocity

Following Galdi [19, Lemma IX.4.1], see also Kozono and Yanagisawa [24, Proposition 1], we may
extend uB

uδ,B(t, x) = curlx(dδ(x)zB(x)), curlx zB = uB, (4.11)

where

|dδ| ≤ 1, dδ(x) ≡ 1 for all x in an open neighborhood of ∂Ω,

dδ(x) ≡ 0 whenever dist[x, ∂Ω] > δ,

|Dα
xdδ(x)| ≤ c

δ

dist|α|[x, ∂Ω]
, |α| = 1, 2, 0 < δ < 1, x ∈ Ω. (4.12)

The specific value of the parameter δ > 0 will be fixed in the next section.

4.3 Uniform bounds

The desired uniform bounds will follow from the ballistic energy balance with the ansatz

ψ = 1, ϑ̃ = ϑB,

where ϑB is the harmonic extension of the boundary temperature,

∆xϑB(t, ·) = 0 for any t ∈ ST , ϑB satisfies (1.12) . (4.13)

In accordance with the extension of uB introduced in the preceding section, we have divxuB = 0,
and the ballistic energy balance (4.10) gives rise to∫

ST

∫
Ω

ϑB
ϑε

[
S(ϑε,Dxuε) : Dxuε +

κ(ϑε)|∇xϑε|2

ϑε

]
dx dt

+
1

ε

∫
ST

∫
∂Ω

|ϑε − ϑB|β+1

ϑε
dσx dt+

1

ε

∫
ST

∫
∂Ω

|uε − uB|2 dσx dt

≤ −
∫
ST

∫
Ω

[
%εuB · ∇xG+ %εs(%ε, ϑε)uε · ∇xϑB +

q

ϑε
· ∇xϑB + ∂tϑB%εs(%ε, ϑε)

]
dx dt

−
∫
ST

∫
Ω

[%εuε ⊗ uε − S(ϑε,Dxuε)] : DxuB dx dt, (4.14)

where we have used∫
ST

∫
Ω

%εuε · ∇xG dx dt = 0 =

∫
ST

∫
Ω

%εuε · ∇x|uB|2 dx dt.

Our goal is to show that all integrals on the right–hand side of (4.13) are either bounded or
dominated be those on the left–hand side.
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First, as a consequence of the standard maximum principle,

inf
ST×Ω

ϑB ≥ inf
ST×∂Ω

ϑB > 0.

Consequently, by virtue of hypothesis (2.9) and the standard Sobolev embedding,

‖uε‖2
L6(Ω;R3)

<∼ ‖uε‖2
W 1,2(Ω;R3)

<∼
∫

Ω

ϑB
ϑε

S(ϑε,Dxuε) : Dxuε dx+

∫
∂Ω

|uε − uB|2 dσx + 1. (4.15)

Similarly,

‖ϑ
β
2
ε ‖2

W 1,2(Ω)
<∼
∫

Ω

ϑB
ϑ2
ε

κ(ϑε)|∇xϑε|2 dx+

∫
∂Ω

|ϑε − ϑB|β+1

ϑε
dσx + 1. (4.16)

Next, it follows from the uniform bound (4.6) that∣∣∣∣∫
ST

∫
Ω

%εuB · ∇xG dx dt

∣∣∣∣ <∼ 1.

In addition, by virtue of hypothesis (2.9),∣∣∣∣∫
Ω

S(ϑε,Dxuε) : DxuB dx

∣∣∣∣ <∼ ω‖∇xuε‖2
L2(Ω;R3×3) + c(ω)‖ϑε‖2

L2(Ω)

for any ω > 0. Choosing ω > 0 small enough, this integral can be absorbed by the left–hand side
of (4.14).

Thus, in view of (4.15), (4.16), the previous observations, and boundedness of the density,
inequality (4.14) gives rise to∫

ST

(
‖uε‖2

W 1,2(Ω) + ‖ϑ
β
2
ε ‖2

W 1,2(Ω) + ‖∇x log(ϑε)‖2
L2(Ω;R3)

)
dt

+
1

ε

∫
ST

∫
∂Ω

|ϑε − ϑB|β+1

ϑε
dσx dt+

1

ε

∫
ST

∫
∂Ω

|uε − uB|2 dσx dt

<∼
∣∣∣∣∫
ST

∫
Ω

[
%εs(%ε, ϑε)uε · ∇xϑB +

q

ϑε
· ∇xϑB + ∂tϑB%εs(%ε, ϑε)

]
dx dt

∣∣∣∣
+

∣∣∣∣∫
ST

∫
Ω

%ε(uε ⊗ uε) : DxuB dx dt

∣∣∣∣+ 1. (4.17)

4.3.1 Entropy dependent terms

Our goal is to control the first integral on the right–hand side of (4.17). Denoting

K(ϑ) =

∫ ϑ

1

κ(z)

z
dz,
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we obtain,

−
∫

Ω

q

ϑε
· ∇xϑB dx =

∫
Ω

κ(ϑε)∇xϑε
ϑε

· ∇xϑB dx =

∫
Ω

∇xK(ϑε) · ∇xϑB dx

=

∫
∂Ω

K(ϑε)∇xϑB · ndσx,

where we have used the fact that ϑB is harmonic inside Ω. It follows from hypothesis (2.9)∣∣∣∣∫
∂Ω

K(ϑε)∇xϑB · ndσx

∣∣∣∣ <∼ (1 +

∫
ST

∫
∂Ω

|ϑε − ϑB|β+1

ϑε
dσx dt

)
.

Consequently, inequality (4.17) reduces to∫
ST

(
‖uε‖2

W 1,2(Ω) + ‖ϑ
β
2
ε ‖2

W 1,2(Ω) + ‖∇x log(ϑε)‖2
L2(Ω;R3)

)
dt

+
1

ε

∫
ST

∫
∂Ω

|ϑε − ϑB|β+1

ϑε
dσx dt+

1

ε

∫
ST

∫
∂Ω

|uε − uB|2 dσx dt

<∼
∣∣∣∣∫
ST

∫
Ω

[%εs(%ε, ϑε)uε · ∇xϑB + ∂tϑB%εs(%ε, ϑε)] dx dt

∣∣∣∣
+

∣∣∣∣∫
ST

∫
Ω

%ε(uε ⊗ uε) : DxuB dx dt

∣∣∣∣+ 1. (4.18)

Next, using hypothesis (2.8), we easily obtain

0 ≤ %sm(%, ϑ)
<∼
(
% log+(%) + % log+(ϑ) + 1

)
, (4.19)

see [17, Chapter 4, Section 12.4.2]. Consequently, by means of (4.6),

|%εs(%ε, ϑε)uε|
<∼ |%εsm(%ε, ϑε)uε|+ |ϑε|3|uε|

<∼ (1 + |ϑε|3)|uε|.

Since β > 6, the integral ∫
ST

∫
Ω

(1 + |ϑε|3)|uε| dx dt

can be absorbed by the left–hand side of (4.18). The integral∫
ST

∫
Ω

∂tϑB%εs(%ε, ϑε) dx dt

can be handled in a similar fashion. We conclude∫
ST

(
‖uε‖2

W 1,2(Ω) + ‖ϑ
β
2
ε ‖2

W 1,2(Ω) + ‖∇x log(ϑε)‖2
L2(Ω;R3)

)
dt

+
1

ε

∫
ST

∫
∂Ω

|ϑε − ϑB|β+1

ϑε
dσx dt+

1

ε

∫
ST

∫
∂Ω

|uε − uB|2 dσx dt

<∼
∣∣∣∣∫
ST

∫
Ω

%ε(uε ⊗ uε) : uB dx dt

∣∣∣∣+ 1. (4.20)
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4.3.2 Convective term

It remains to handle the convective term

%εuε ⊗ uε = %ε(uε − uB)⊗ (uε − uB) + %εuB ⊗ uε + %ε(uε − uB)⊗ uB.

Writing∫
Ω

%ε(uε ⊗ uε) : DxuB dx =

∫
Ω

%ε(uε − uB)⊗ (uε − uB) : DxuB dx

+

∫
Ω

%εuB ⊗ uε : DxuB dx+

∫
Ω

%ε(uε − uB)⊗ uB : DxuB dx

we immediately see that the only problematic term is∫
Ω

%ε(uε − uB)⊗ (uε − uB) : DxuB dx.

Let wε be the unique solution of the Dirichlet problem

∆xwε = 0, wε|∂Ω = (uε − uB). (4.21)

Write∫
Ω

%ε(uε − uB)⊗ (uε − uB) : DxuB dx =

∫
Ω

%ε(uε − uB −wε)⊗ (uε − uB −wε) : DxuB dx

+

∫
Ω

%εwε ⊗ (uε − uB) : DxuB dx+

∫
Ω

%ε(uε − uB −wε)⊗wε : DxuB dx. (4.22)

By means of the uniform bound on the density, we get∣∣∣∣∫
Ω

%ε(uε − uB −wε)⊗ (uε − uB −wε) : DxuB dx

∣∣∣∣
<∼
∫

Ω

|uε − uB −wε|2

dist2(x, ∂Ω)
dist2(x, ∂Ω)|DxuB| dx.

By virtue of Hardy–Sobolev inequality, we obtain∫
Ω

|uε − uB −wε|2

dist2(x, ∂Ω)
dx

<∼ ‖uε − uB −wε‖2
W 1,2

0 (Ω;R3)

<∼ ‖uε‖2
W 1,2(Ω;R3) + 1.

Thus going back to Section 4.2, we can choose δ = δ(ω) > 0 so small that∣∣∣∣∫
Ω

%ε(uε − uB −wε)⊗ (uε − uB −wε) : DxuB dx

∣∣∣∣ ≤ δ‖uε‖2
W 1,2(Ω;R3) + c. (4.23)
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for any ω > 0.
To control the remaining two integrals in (4.22), we first evoke the Lp−elliptic estimates applied

to (4.21):

‖wε‖W 1,p(Ω)
<∼ ‖uε − uB‖

W
1− 1

p ,p(∂Ω)
.

In particular, for p = 4
3
, we get

‖wε‖W 1, 43 (Ω)

<∼ ‖uε − uB‖W 1
4 ,

4
3 (∂Ω)

.

Moreover, we use the interpolation to obtain the following inequality

‖uε − uB‖W 1
4 ,

4
3 (∂Ω)

<∼ ‖uε − uB‖W 1
4 ,2(∂Ω)

≤ ‖uε − uB‖
1
2

W
1
2 ,2(∂Ω)

‖uε − uB‖
1
2

L2(∂Ω).

Finally, we recall the standard Sobolev embedding

‖wε‖Lq(Ω)
<∼ ‖wε‖W 1, 43 (Ω)

, 1 ≤ q ≤=
12

5
.

Thus we may infer that

‖wε‖L2(Ω,R3)
<∼ ‖uε − uB‖

1
2

W
1
2 ,2(∂Ω;R3)

‖uε − uB‖
1
2

L2(∂Ω;R3)

<∼ ‖uε − uB‖
1
2

W 1,2(Ω;R3)‖uε − uB‖
1
2

L2(∂Ω;R3) (4.24)

where we have here used the trace theorem.
Going back to (4.22), we have to estimate the products∫

Ω

|uε||wε| dx ≤ ‖uε‖L2(Ω;R3)‖wε‖L2(Ω;R3).

It follows from (4.24)

‖uε‖L2(Ω;R3)‖wε‖L2(Ω;R3)
<∼ ‖uε‖L2(Ω;R3)‖uε − uB‖

1
2

W 1,2(Ω;R3)‖uε − uB‖
1
2

L2(∂Ω;R3)

≤ ω‖uε‖L2(Ω;R3)‖uε − uB‖W 1,2(Ω;R3) + c(ω)‖uε‖L2(Ω;R3)‖uε − uB‖L2(∂Ω;R3),

where the first term on the right–hand side may be absorbed by the left–hand side of (4.20) if
ω > 0 is small enough. Finally, repeating the same argument,

‖uε‖L2(Ω;R3)‖uε − uB‖L2(∂Ω;R3) ≤ ω‖uε‖2
L2(Ω;R3) + c(ω)‖uε − uB‖2

L2(∂Ω;R3)

we conclude that also this term is controlled by the left–hand side of (4.20) if ω > 0 is fixed small
enough and ε→ 0.

In view of the preceding argument, inequality (4.20) gives rise to the desired conclusion∫
ST

(
‖uε‖2

W 1,2(Ω) + ‖ϑ
β
2
ε ‖2

W 1,2(Ω) + ‖∇x log(ϑε)‖2
L2(Ω;R3)

)
dt

+
1

ε

∫
ST

∫
∂Ω

|ϑε − ϑB|β+1

ϑε
dσx dt+

1

ε

∫
ST

∫
∂Ω

|uε − uB|2 dσx dt
<∼ 1 (4.25)

uniformly for ε→ 0.
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4.4 Pressure estimates

The uniform bounds (4.6), (4.25) are strong enough to control all terms in the field equations with
the only exception of the pressure and the associated integral energy that are singular for %→ %.
The desired estimates can be derived following the arguments of [7].

First, we introduce the so–called Bogovskii operator

B : Lq0(Ω) ≡
{
f ∈ Lq(Ω)

∣∣∣ ∫
Ω

f dx = 0

}
→ W 1,q

0 (Ω, Rd), 1 < q <∞,

divxB[f ] = f.

The operator B can be constructed by means of the original ansatz of Bogovskii [3] elaborated by
Galdi [19, Chapter 3], and later revisited by Geissert, Heck, and Hieber [20]. B maps bounded sets
of Lq0(Ω) into bounded sets of W 1,q

0 (Ω;Rd) and bounded sets in (W 1,q(Ω))∗ ⊥ 1 to bounded sets of
Lq(Ω;Rd) provided Ω is a Lipschitz domain.

4.4.1 Integrability of the pressure

We consider the quantity

ϕ = B
[
%ε −

1

|Ω|

∫
Ω

%ε dx

]
as a test function in the approximate momentum balance (4.3). After a straightforward manipu-
lation, we get∫

ST

∫
Ω

p(%ε, ϑε)

[
%ε −

1

|Ω|

∫
Ω

%ε dx

]
dx dt

=

∫
ST

∫
Ω

[
%εuε · B[divx(%εuε)]− %εuε ⊗ uε : ∇xB

[
%ε −

1

|Ω|

∫
Ω

%ε dx

] ]
dx dt

+

∫
ST

∫
Ω

S(ϑε,Dxuε) : DxB
[
%ε −

1

|Ω|

∫
Ω

%ε dx

]
dx dt

−
∫
ST

∫
Ω

%ε∇xG · B
[
%ε −

1

|Ω|

∫
Ω

%ε dx

]
dx dt (4.26)

As %ε are uniformly bounded, it is easy to check that the right–hand side of (4.26) is bounded by
means of the uniform estimates established in (4.25). Since the total mass is constant, we get

1

|Ω|

∫
Ω

%ε dx < %.

In particular, boundedness of the integral on the right–hand side of (4.26) yields a uniform bound∫
ST

∫
Ω

p(%ε, ϑε) dx dt
<∼ 1 (4.27)
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uniformly for ε→ 0. Moreover, as observed in [7, Section 2.1, formula (2.4)], uniform integrability
of the hard–sphere pressure yields equi–integrability of the associated internal energy. Specifically,

(%εe(%ε, ϑε))ε>0 is L1 − equi–integrable. (4.28)

Finally, using (4.28), we may deduce from the ballistic energy inequality (4.10), exactly as for
the initial–value problem,

(%ε|uε|2)ε>0, (%εe(%ε, ϑε))ε>0 bounded in L∞(ST ;L1(Ω)). (4.29)

4.4.2 Equi–integrability of the pressure

The ultimate goal of this section is to establish L1–integrability of the pressure. To this end, we
repeat the above procedure with the test function

ϕ = B
[
b(%ε)−

1

|Ω|

∫
Ω

b(%ε) dx

]
in (4.3), where b is a function compatible with the renormalized equation of continuity (4.2). After
a straightforward manipulation, we get∫

ST

∫
Ω

p(%ε, ϑε)

[
b(%ε)−

1

|Ω|

∫
Ω

b(%ε) dx

]
dx dt

= −
∫
ST

∫
Ω

%εuε ⊗ uε : ∇xB
[
b(%ε)−

1

|Ω|

∫
Ω

b(%ε) dx

]
dx dt

+

∫
ST

∫
Ω

S(ϑε,Dxuε) : DxB
[
b(%ε)−

1

|Ω|

∫
Ω

b(%ε) dx

]
dx dt

−
∫
ST

∫
Ω

b(%ε)∇xG · B
[
b(%ε)−

1

|Ω|

∫
Ω

b(%ε) dx

]
dx dt

+

∫
ST

∫
Ω

%εuε · B
[
(b(%ε)− b′(%ε)%ε)divxuε −

1

|Ω|

∫
Ω

(b(%ε)− b′(%ε)%ε)divxuε dx

]
dx dt

−
∫
ST

∫
Ω

%εuε · B[divx(b(%ε)uε)] dx dt. (4.30)

The main idea is to consider b(%) = pνHS(%), where ν > 0 is sufficiently small. In view of (4.27),
pνHS(%ε) is uniformly bounded in the Lebesgue space Lq((0, T )×Ω), where q > 1 can be arbitrarily
large provided ν > 0 is small. It would follow that

p(%ε, ϑε)
1+ν is bounded in L1((0, T )× Ω)

provided we can show that all integrals on the right–hand side of (4.30) are bounded uniformly
for ε→ 0.
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There are certain technical difficulties to carry out the above programme. To begin, pHS is
singular therefore not directly eligible for the renormalized equation (4.2). Fortunately, we may
consider b any C1 truncation of pHS as %ε are uniformly bounded and behaviour of b for large
argument is irrelevant. In particular, we may consider

b(%ε) = (pNHS)ν(%ε),

with PN
HS given by (3.3). The desired conclusion then follows as soon as we are able to show that

the right–hand side of (4.30) remains bounded uniformly for N →∞, ε→ 0. Given the properties
of the operator B, the only problematic term is the integral∫

ST

∫
Ω

%εuε · B
[
((pNHS)ν(%ε)− [(pNHS)ν ]′(%ε)%ε)divxuε

− 1

|Ω|

∫
Ω

((pNHS)ν(%ε)− [(pNHS)ν ]′(%ε)%ε)divxuε dx
]

dx dt. (4.31)

Indeed this integral contains the derivative [(pNHS)ν ]′ that is more singular than (pNHS)ν in the
neighbourhood of % when N →∞.

On the one hand,

[(pNHS)ν ]′(%) ≈

 (%− %)−(νs+1) if % ≤ %− 1
N

Nνs+1, if % > %− 1
N
,

(4.32)

On the other hand, in accordance with (4.29),

(%εe(%ε, ϑε))ε>0 bounded in L∞(ST ;L1(Ω)).

Thus, by means of hypothesis (2.3),(
(%− %)1−s)

ε>0
bounded in L∞(ST ;L1(Ω)). (4.33)

Comparing (4.32) with (4.33) we conclude

[(pNHS)ν ]′(%ε)%ε) bounded in L∞(ST ;Lq(Ω)) provided s ≥ qνs+ q + 1. (4.34)

If s > 3, we can find ν small enough so that q > 2 in (4.34). Consequently,

([(pNHS)ν ]′(%ε)%ε)divxuε)ε>0 is bounded in L2(ST ;Lβ(Ω)) for some β > 1;

whence

B
[
((pNHS)ν(%ε)− [(pNHS)ν ]′(%ε)%ε)divxuε −

1

|Ω|

∫
Ω

((pNHS)ν(%ε)− [(pNHS)ν ]′(%ε)%ε)divxuε dx
]

is bounded in L2(ST ;L
3
2 (Ω;R3)). In view of the uniform bounds (4.25), we conclude that the

integral (4.31) remains bounded uniformly for N →∞, ε→ 0. Thus we have obtained the desired
conclusion ∫

ST

∫
Ω

p(%ε, ϑε)
1+ν dx dt

<∼ 1 for some ν > 0. (4.35)
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4.5 Conclusion, limit ε→ 0

In the previous section, we have obtained all available uniform bounds, specifically, the uniform
density estimates (4.6), the “dissipative estimates” (4.25), and the pressure estimates (4.35). Now
it is standard, extracting suitable subsequences as the case may be, to identify the limits

%ε → % in Cweak(ST ;Lq(Ω)) for any finite q,

uε → u weakly in L2(0, T ;W 1,2(Ω;R3),

ϑε → ϑ weakly in L2(0, T ;W 1,2(Ω). (4.36)

Moreover, it follows from (4.25) that the limit velocity and temperature satisfy the desired bound-
ary conditions

u|∂Ω = uB, ϑ|∂Ω = ϑB. (4.37)

Finally, it is a routine matter to perform the limit in the approximate equation of continuity
(4.1), (4.2), the momentum equation (4.3), the entropy inequality (4.4), and the ballistic energy
balance (4.10) as long as we can show strong (pointwise a.a.) convergence

%ε → %, ϑε → ϑ a.a. in (0, T )× Ω. (4.38)

This is a non–trivial task, however nowadays well understood. In particular, the compactness
arguments based on Div-curl Lemma and Lions’ identity can be modified to accommodate the
time periodic setting exactly as in [15, Section 9.3].

We have proved Theorem 2.2.

5 Concluding remarks

As already pointed out, the above result can be easily extended to the case of time periodic
boundary velocity as well as time periodic potential G. A more delicate issue would be considering
general inflow/outflow boundary conditions in the spirit of [1]. The present approximation does
not apply as the total mass is generally not conserved. Adopting the indirect method of [1] based
applying a fixed point argument to the associated Poincaré map would result in essential technical
difficulties due to the presence of the internal energy equation.

The possibility of eliminating the hard–sphere pressure component remains largely open as long
as the boundary velocity is non–zero. The main and possibly the only unsurmountable problem
is controlling the convective term as in Section 4.3.2. Note that the same difficulty arises at the
level of stationary solutions, cf. [11].
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Mathematical Fluid Mechanics. Birkhäuser/Springer, Cham, 2017. Second edition.

[17] E. Feireisl and A. Novotný. Mathematics of open fluid systems. Birkhäuser–Verlag, Basel,
2022.

[18] E. Feireisl and P. Zhang. Quasi-neutral limit for a model of viscous plasma. Arch. Ration.
Mech. Anal., 197(1):271–295, 2010.

[19] G. P. Galdi. An introduction to the mathematical theory of the Navier - Stokes equations,
Second Edition. Springer-Verlag, New York, 2003.

[20] M. Geißert, H. Heck, and M. Hieber. On the equation div u = g and Bogovskĭı’s operator
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