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Abstract

We consider the motion of a small rigid object immersed in a viscous compressible fluid
in the 3-dimensional Eucleidean space. Assuming the object is a ball of a small radius ε we
show that the behavior of the fluid is not influenced by the object in the asymptotic limit
ε→ 0. The result holds for the isentropic pressure law p(%) = a%γ for any γ > 3

2 under mild
assumptions concerning the rigid body density. In particular, the latter may be bounded as
soon as γ > 3. The proof uses a new method of construction of the test functions in the
weak formulation of the problem, and, in particular, a new form of the so-called Bogovskii
operator.
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1 Introduction
i

Consider a rigid body immersed in a viscous fluid. Intuitively, the impact of a “small” body on
the fluid motion should be negligible. A rigorous justification of this statement has been obtained
in several recent studies on condition that the fluid is incompressible, see Lacave and Takahashi
[12], Iftimie et al. [10], He and Iftimie [8, 9], Dashti and Robinson [2]. The approach of [12] is
based on the Lp − Lq estimates for the associated solution semigroup available in the 2d-setting,
while He and Iftimie [8] use a specific construction of time dependent test functions vanishing on
the moving body. In [2], a viscous fluid-rigid disc system has been studied where the disc is not
rotating and they proved that the body does not influence the flow in the asymptotic limit. Lacave
[11] studies the limit of a viscous fluid flow in the exterior of a thin obstacle shrinking to a curve.
In [7], the authors consider the motion of a rigid body inside a compressible fluid in planar domain
and establish that the influence of the body on the fluid is negligible if the diameter of the body
is small and the fluid is nearly incompressible (the low Mach number regime).

Recently, Bravin and Nečasová [1] combined the technique of [8] with the pressure estimates
obtained via the new Bogovskii operator introduced in [3] and Lu and Schwarzacher [14] to handle
the 3d compressible case under certain technical restrictions imposed on the pressure–density
equation of state, notably on the value of adiabatic exponent. The above mentioned technique
seems difficult to adapt to the planar (2d) motion of a compressible fluid and the results are not
optimal even in the 3d-setting, where certain additional restrictions are needed on the value of the
adiabatic exponent. Indeed a single point in the d-dimensional space has a positive W 1,p−capacity
as soon as p > d. Accordingly, the approximation technique developed in [8] requires the pressure
to be uniformly d

d−1
integrable when the diameter of the body approaches zero. Unfortunately, the

best known estimates for the standard example of the isentropic pressure p(%) = a%γ read

p(%) ∈ Lq, with q =
d+ 2

d
− 1

γ

see Lions [13], meaning the value q = 2 for d = 2 is never achieved, while q = 3
2

for d = 3 requires
γ ≥ 6.

To handle physically realistic adiabatic exponents, we propose a new approach based on the
concept of weak solution introduced in [5]. We first observe that the test functions used for
the approximate problem need not vanish on the moving body but only satisfy the rigid body
motion constrain. Using this rather straightforward observation we construct a new approximation
operator based on the version of the Bogovskii operator on uniformly John domains due to Diening,
Růžička, and Schumacher [4]. The result seems optimal as we recover the desired convergence
without any additional restrictions on the equation of state, notably on the adiabatic coefficient
γ > 3

2
, d = 3 in agreement with the available existence theory.

The paper is organized as follows. In Section 2, we formulate the problem, recall the concept of
weak solution and state the main result of the paper. The available uniform bounds are summarized
in Section 3. Sections 4 and 5 are the heart of the paper. We construct a general restriction
operator along with its vector valued version preserving the divergence of the extended function.
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The pressure estimates necessary to perform the asymptotic limit for “vanishing” body are derived
in Section 6. Finally, the convergence proof is completed in Section 7.

2 Problem formulation, weak solutions, main results
P

The motion of a compressible viscous fluid in the barotropic regime is governed by

Navier–Stokes system

∂t%+ divx(%u) = 0, (2.1) P1

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS(∇xu), (2.2) P2

supplemented with
Newton’s rheological law

S(∇xu) = µ

(
∇xu +∇t

xu−
2

d
divxuI

)
+ ηdivxuI, µ > 0, η ≥ 0. (2.3) P3

Here, % is the mass density and u is the fluid velocity.
For mostly technical reasons, we focus on the Cauchy problem for d = 3 and neglect the effect

of external forces. Accordingly, the fluid occupies the whole physical space R3, where the density
and the velocity satisfy the far field conditions

u→ 0, %→ 0 as |x| → ∞. (2.4) P4

In particular, we suppose the total mass of the fluid–body system is finite,

ˆ
R3

%(t, ·) dx <∞.

More general far field conditions

u→ 0, %→ %∞ as |x| → ∞, %∞ ≥ 0− constant,

can be handled in a similar fashion.
We suppose the rigid body is a ball of the radius ε occupying at a given time t ≥ 0 the compact

set
Bε,t =

{
x ∈ R3

∣∣∣ |x− hε(t)| ≤ ε
}
.
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We suppose that the mass density of the body %ε,B > 0 is a positive constant and the motion of
the body is determined by the rigid velocity field

uε,B(t, x) = Yε(t) + Qε,t(t)(x− hε(t)),
d

dt
hε(t) = Yε(t).

Accordingly, the fluid domain Qf is defined as

Qf = [0, T )×R3 \ ∪t∈[0,T )Bε,t ⊂ [0, T )×R3.

2.1 Weak solutions

Following [5] we introduce a concept of weak solution of the fluid–body interaction problem.

PD1 Definition 2.1 (Weak solution). We say that (%ε,uε) is weak solution of the fluid–body
interaction problem with the initial state %ε(0, ·) = %ε,0, %εuε(0, ·) = qε,0 if the following holds:

• Compatibility. %ε ∈ L∞(0, T ;L1 ∩ Lγ(R3)),

%ε(t, x) =

{
%ε,B if x ∈ Bε,t,
≥ 0 otherwise

,

ˆ
R3

%ε(t, ·) dx =

ˆ
R3

%ε,0 dx for any t ∈ [0, T );

uε ∈ L2(0, T ;D1,2(R3;R3)),

uε(t, x) = uε,B(t, x) if x ∈ Bε,t;

• Equation of continuity. The integral identity

ˆ T

0

ˆ
R3

[
%ε∂tϕ+ %εuε · ∇xϕ

]
dx dt = −

ˆ
R3

%0,εϕ(0, ·) dx (2.5) P5

holds for any ϕ ∈ C1
c ([0, T )×R3). In addition, the renormalized equation

ˆ T

0

ˆ
R3

[
b(%ε)∂tϕ+ b(%ε)uε · ∇xϕ+ (b(%ε)− b′(%ε)%ε)divxuεϕ

]
dx dt

= −
ˆ
R3

b(%0,ε)ϕ(0, ·) dx (2.6) P6

holds for any ϕ ∈ C1
c ([0, T )×R3) and any b ∈ C1[0,∞), b′ ∈ Cc[0,∞).
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• Momentum equation. The integral identity

ˆ T

0

ˆ
R3

[
%εuε · ∂tϕ + %εuε ⊗ uε : ∇xϕ + p(%ε)divxϕ dx dt

=

ˆ T

0

ˆ
R3

S(∇xuε) : ∇xϕ dx dt−
ˆ
R3

q0,ε ·ϕ(0, ·) dx (2.7) P7

holds for any ϕ ∈ C1
c ([0, T )× Ω;R3) such that

Dxϕ(t, ·) ≡ 1

2

(
∇xϕ +∇t

xϕ
)

(t, ·) = 0 on an open neighborhood of Bε,t. (2.8) P8

• Energy inequality.

ˆ
R3

1

2
%ε|uε|2(τ, ·) dx+

ˆ
R3\Bε,τ

P (%ε)(τ, ·) dx+

ˆ τ

0

ˆ
R3

S(∇xuε) : ∇xuε dx dt

≤
ˆ
R3

1

2

|q0,ε|2

%0,ε

dx+

ˆ
R3\Bε,0

P (%0,ε) dx (2.9) P9

for a.a. τ ∈ (0, T ), where

P ′(%)%− P (%) = p(%) or equivalently P (%) = %

%ˆ

1

p(τ)

τ 2
dτ.

HSS Remark 2.2. The homogeneous Sobolev space D1,2(R3) is defined as

D1,2(R3) =
{
v ∈ L6(R3)

∣∣∣ ∇xv ∈ L2(R3)
}
.

The existence of global–in–time weak solutions under the hypothesis p ≈ %γ, γ > 3
2

in a
bounded domain Ω ⊂ R3 was proved in [5, Theorem 4.1]. The extension to the present setting is
straightforward. The form of the energy inequality(2.9) follows from [5, formula (2.6) and Lemma
3.2].

2.2 Main result

Let us denote
%ε,f (t, ·) = %ε(t, ·)1R3\Bε,t

the fluid density. We are ready to state our main result.
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PT1 Theorem 2.3 (Convergence). Let the pressure p be given by the isentropic equation of state

p(%) = a%γ, a > 0, γ >
3

2
.

Let the density of the rigid body %ε,B be a positive constant satisfying

%ε,B ≥ % > 0, ε−β
<∼ %ε,B

<∼ ε−β as ε→ 0

for some 2

(
3− γ
γ

)
< β ≤ β < 2. (2.10) P10

Finally, suppose that the initial data and energy satisfy

%0,ε > 0, %0,ε → %0 weakly in L1(R3), q0,ε → q0 weakly in L1(R3;R3),ˆ
R3

1

2

|q0,ε|2

%0,ε

dx+

ˆ
R3\Bε,0

P (%0,ε) dx→
ˆ
R3

1

2

|q0|2

%0

dx+

ˆ
R3

P (%0) dx (2.11) P11

as ε→ 0.
Then there is a subsequence (not relabelled) such that

%ε,f → % in Cweak([0, T ];Lγ(R3)) and in L1
loc([0, T ]×R3),

uε → u weakly in L2(0, T ;D1,2(R3;R3)),

where (%,u) is a weak solution to the Navier–Stokes system (2.1)–(2.4) with the initial data
%0, q0.

Rr1 Remark 2.4. Note that we may consider β = β = 0 in hypothesis (2.10) as soon as γ > 3.

Rr2 Remark 2.5. Here and hereafter, the symbol a
<∼ b means there is a positive constant C such

that a ≤ Cb.

The rest of the paper is devoted to the proof of Theorem 2.3. The leading idea is to use the
test functions ϕ in the momentum equation (2.7) that are constant (spatially homogeneous) on a
neighborhood of the rigid body, in particular they satisfy (2.8). More specifically, the momentum
balance yields that integral identity

ˆ T

0

ˆ
R3

[
%εuε · ∂tϕ + %εuε ⊗ uε : ∇xϕ + p(%ε)divxϕ

]
dx dt

=

ˆ T

0

ˆ
R3

S(∇xuε) : ∇xϕ dx dt−
ˆ
R3

q0,ε ·ϕ(0, ·) dx (2.12) P13
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holds for any ϕ ∈ C1
c ([0, T )×R3;R3) such that

ϕ(t, x) =

 
Bε,t

ϕ(t, ·) dx ≡ 1

|Bε,t|

ˆ
Bε,t

ϕ(t, ·) dx for any x in an open neighborhood of Bε,t. (2.13) P14

Using a simple density argument, it is easy to check that validity of (2.12) can be extended to a
larger class of test functions, namely ϕ ∈ W 1,∞

c ([0, T )×R3;R3),

ϕ(t, x) =

 
Bε,t

ϕ(t, ·) dx ≡ 1

|Bε,t|

ˆ
Bε,t

ϕ(t, ·) dx for any x ∈ Bε,t. (2.14) P14bis

3 Uniform bounds, weak convergence
U

3.1 Uniform bounds

We start with uniform bounds that follow immediately from hypothesis (2.11) and the energy
inequality (2.9), namely

ess sup
t∈(0,T )

‖%ε,f‖L1∩Lγ(R3)
<∼ 1, (3.1) U1a

ess sup
t∈(0,T )

‖%ε|uε|2‖L1(R3)
<∼ 1, (3.2) U1c

ess sup
t∈(0,T )

‖%ε,fuε‖
L1∩L

2γ
γ+1 (R3;R3)

<∼ 1 (3.3) U1b

‖Dxuε‖L2(0,T ;L2(R3;R3×3))
<∼ 1. (3.4) U1e

In particular, boundedness of the kinetic energy together with hypothesis (2.10) yield the following
estimate on the velocity of the rigid body

%ε,Bε
3|Yε(t)|2

<∼ 1 ⇒ |Yε(t)|
<∼ ε

1
2

(β−3), Yε =
d

dt
hε(t), t ∈ (0, T ). (3.5) U2

Finally, we deduce (3.4)

‖uε‖L2(0,T ;D1,2(R3;R3))
<∼ 1 ⇒ ‖uε‖L2(0,T ;L6(R3;R3))

<∼ 1. (3.6) U1f

3.2 Convergence in continuity equation

In view of the uniform bounds obtained in the preceding section, we deduce the existence of suitable
subsequences satisfying

%ε,f → % in Cweak(0, T ;Lγ(R3)),

uε → u weakly in L2(0, T ;D1,2(Rd;Rd)),
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%ε,fuε → %u weakly-(*) in L∞(0, T ;L
2γ
γ+1 (R3;R3)), (3.7) U3

where we have used the fact that (%ε,f ,uε) satisfy the equation of continuity (2.5), cf. [5, Lemma
3.2]. Now, it is easy to perform the limit in the equation of continuity (2.5) to conclude

ˆ T

0

ˆ
R3

[
%∂tϕ+ %u · ∇xϕ

]
dx dt = −

ˆ
R3

%0ϕ(0, ·) dx (3.8) U4

for any ϕ ∈ C1
c ([0, T )×R3).

Next, by virtue of hypothesis (2.10),

%ε = %ε,f + %ε,B1Bε , where %ε,B1Bε → 0 in L∞(0, T ;LΓ(Rd)) for some Γ >
3

2
. (3.9) U5

In particular, the Young measure generated by (%ε,f )ε>0 coincides with that one generated by
(%ε)ε>0. In particular, we may let ε→ 0 in the renormalized equation of continuity (2.6) obtaining

ˆ T

0

ˆ
R3

[
b(%)∂tϕ+ b(%)u · ∇xϕ+ (b(%)− b′(%)%)divxuϕ

]
dx dt = −

ˆ
R3

b(%0)ϕ(0, ·) dx (3.10) U6

for any ϕ ∈ C1
c ([0, T )× R3) and any b ∈ C1[0,∞), b′ ∈ Cc[0,∞). Here and hereafter, the symbol

b(%) denotes the weak limit of the compositions (b(%ε))ε>0 or, equivalently, (b(%ε,f ))ε>0.
Finally, by the same token,

‖%ε,B1Bε,τuε(τ, ·)‖
L

2Γ
Γ+1 (R3;R3)

≤ ‖√%ε,B‖L2Γ(Bε,τ )‖
√
%εuε(τ, ·)‖L2(R3;R3) → 0 uniformly for τ ∈ (0, T );

whence
%ε,B1Bε,τuε(τ, ·)→ 0 in L

2Γ
Γ+1 (R3;R3) uniformly in τ ∈ (0, T ). (3.11) U7

Combining (3.7), (3.9), (3.11) we may infer that

%ε → % in Cweak([0, T ];Lγ(R3)) + L∞(0, T ;LΓ(R3)), (3.12) U8a

%εuε → %u in L∞(0, T ;L
2γ
γ+1 (R3;R3))− weak-(*) + L∞(0, T ;L

2Γ
Γ+1 (R3;R3)). (3.13) U8b

Moreover,

‖%ε‖L∞(0,T ;L1(R3))
<∼ 1,

‖%εuε‖L∞(0,T ;L1(R3;R3))
<∼ 1. (3.14) U9

4 Restriction operators
T

In order to complete the proof of Theorem 2.3 we have to address the following issues:
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• convergence of the convective term %ε,fuε ⊗ uε to its counterpart %u⊗ u;

• uniform estimates and convergence of the pressure p(%ε,f );

• limit passage ε→ 0 in the momentum balance (2.7).

To this end, we need a suitable restriction operator to accommodate the test functions in the class
(2.13). As the result is of independent interest, we consider a general d−dimensional space, d ≥ 2.

4.1 Construction of Restriction operator I

Consider a function

H ∈ C∞(R), 0 ≤ H(Z) ≤ 1, H ′(Z) = H ′(1− Z) for all Z ∈ R,

H(Z) = 0 for −∞ < Z ≤ 1

4
, H(Z) = 1 for

3

4
≤ Z <∞ (4.1) T1

For ϕ ∈ L1(Rd) and h ∈ Rd, we consider Eε(h),

Eε(h)[ϕ](x) =
1

|Bε(h)|

ˆ
Bε(h)

ϕ dz H

(
2− |x− h|

ε

)
+ ϕ(x)H

(
|x− h|
ε

− 1

)
. (4.2) T2

where Bε(h) denotes the ball centred at h with the radius ε > 0.
The following properties are easy to check:

• The function Eε(h) is constant on a small neighbourhood of the ball Bε(h). Specifically,

|x− h|
ε

≤ 1 +
1

4
⇒ |x− h|

ε
− 1 ≤ 1

4
, 2− |x− h|

ε
≥ 3

4

⇒ Eε(h)[ϕ] =

 
Bε(Y )

ϕ dx. (4.3) T3

• Similarly,

|x− h|
ε

≥ 1 +
3

4
⇒ |x− h|

ε
− 1 ≥ 3

4
, 2− |x− h|

ε
≤ 1

4
⇒ Eε(h)[ϕ] = ϕ, (4.4) T4

meaning Eε(h)[ϕ] coincides with ϕ on an open neighbourhood of the set Rd \B2ε(h).

•
supp[Eε(h)[ϕ]] ⊂ U3ε(supp[ϕ]) (4.5) T5

Indeed, if
dist[h; supp[ϕ]] ≥ ε,
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then

Eε(h)[ϕ](x) = ϕ(x)H

(
|x− h|
ε

− 1

)
.

If
dist[h; supp[ϕ]] < ε,

then, in accordance with (4.4),

Eε(h)[ϕ](x) = ϕ(x) = 0 for a.a. x ∈ Rd, dist[x, supp[ϕ]] > 3ε.

• In particular, it follows from (4.5) that if ϕ is compactly supported in an open set Ω ⊂ Rd,
then so is Eε(h)[ϕ] provided ε > 0 is small enough.

Finally, by virtue of Jensen’s inequality,∣∣∣∣ 1

|Bε(h)|

ˆ
Bε(h)

ϕ dz

∣∣∣∣p ≤ 1

|Bε(h)|

ˆ
Bε(h)

|ϕ|p dz, 1 ≤ p <∞.

Consequently, we deduce

Eε(h)[ϕ] = ϕ+ 1B 7
4 ε

(h)e
0
ε,h, ‖e0

ε,h‖Lp(Rd)
<∼ ‖ϕ‖Lp(B 7

4 ε
(h)), 1 ≤ p ≤ ∞. (4.6) lpe

Summarizing we conclude that for any ϕ ∈ C1
c ([0, T )×Ω;Rd), the function Eε(hε(τ))[ϕ(τ, ·)],

τ ∈ [0, T ] is an admissible test function in the momentum equation (2.12). Below, we derive the
necessary error estimates on the spatial and time derivatives in Sobolev norms.

4.1.1 Spatial derivatives

Given h ∈ Rd, the spatial derivatives of Eε(h) can be computed directly using formula (4.2):

∇xEε(h)[ϕ](x) = ∇xϕ(x)H

(
|x− h|
ε

− 1

)
+

(
ϕ(x)− 1

|Bε(h)|

ˆ
Bε(h)

ϕ dz

)
H ′
(
|x− h|
ε

− 1

)
1

ε

x− h

|x− h|
, (4.7) T6

where we have used that

H ′
(
|x− h|
ε

− 1

)
= H ′

(
2− |x− h|

ε

)
.
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4.1.2 Uniform bounds

Seeing that

H ′
(
|x− h|
ε

− 1

)
6= 0 ⇔ 5

4
ε ≤ |x− h| ≤ 7

4
ε

we deduce∣∣∣∣(ϕ(x)− 1

|Bε(h)|

ˆ
Bε(h)

ϕ dx

)
H ′
(
|x− h|
ε

− 1

)
1

ε

x− h

|x− h|

∣∣∣∣ <∼ ‖∇xϕ‖L∞(B 7
4 ε

(h))1B 7
4 ε

(h)

Consequently, we deduce from (4.7) the error estimates

∇xEε(h)[ϕ] = ∇xϕ+ e1
ε,h, |e1

ε,h|
<∼ ‖∇xϕ‖L∞(B 7

4 ε
(h);Rd)1B 7

4 ε
(h) (4.8) T7

4.1.3 Lp−estimates on spatial derivatives

Our goal is to show boundedness of the operator Eε(h) in the Sobolev norms W 1,p. In view of
formula (4.7), it is enough to control(

ϕ(x)− 1

|Bε(h)|

ˆ
Bε(h)

ϕ dz

)
H ′
(
|x− h|
ε

− 1

)
1

ε

x− h

|x− h|

on the annulus
5

4
ε ≤ |x− h| ≤ 7

4
ε

in terms of the Lp−norm of ∇xϕ on the same set. Without loss of generality, we may assume
h = 0. Thus our goal is to show the bound

1

ε

∥∥∥∥(ϕ− 1

|Bε|

ˆ
Bε

ϕ dz

)∥∥∥∥
Lp( 5

4
ε≤|x|≤ 7

4
ε)

<∼ ‖∇xϕ‖Lp(B 7
4 ε

;Rd×d). (4.9) TT1

This is equivalent, after rescaling to the estimate∥∥∥∥(ϕ− 1

|B1|

ˆ
B1

ϕ dz

)∥∥∥∥
Lp( 5

4
≤|x|≤ 7

4
)

<∼ ‖∇xϕ‖Lp(B 7
4

;Rd×d),

which, in turn, follows from Poincaré inequality

‖ϕ‖Lp(B 7
4

)
<∼ ‖∇xϕ‖Lp(B 7

4
) +

∣∣∣∣ˆ
B1

ϕ dz

∣∣∣∣ .
Thus, together with (4.8), we conclude

∇xEε(h)[ϕ] = ∇xϕ+ 1B 7
4 ε

(h)eε,h, ‖eε,h‖Lp(Rd)
<∼ ‖∇xϕ‖Lp(B 7

4 ε
;Rd×d) 1 ≤ p ≤ ∞. (4.10) TT7
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4.1.4 Derivative with respect to the parameter h

Similarly to the preceding part, we compute

∇hEε(h)[ϕ](x) = ∇h

(
1

|Bε(h)|

ˆ
Bε(h)

ϕ dz

)
H

(
2− |x− h|

ε

)
−
(
ϕ(x)− 1

|Bε(h)|

ˆ
Bε(h)

ϕ dz

)
H ′
(
|x− h|
ε

− 1

)
1

ε

x− h

|x− h|
, (4.11) T8

where, furthermore,

∇h

(
1

|Bε(h)|

ˆ
Bε(h)

ϕ dz

)
=

1

|Bε(h)|

ˆ
Bε(h)

∇xϕ dz.

We therefore obtain

∇hEε(h)[ϕ](x) =
1

|Bε(h)|

ˆ
Bε(h)

∇xϕ dzH

(
2− |x− h|

ε

)
−
(
ϕ(x)− 1

|Bε(h)|

ˆ
Bε(h)

ϕ dz

)
H ′
(
|x− h|
ε

− 1

)
1

ε

x− h

|x− h|
, (4.12) T9

which can be also written as a commutator

∇hEε(h)[ϕ](x) =
1

|Bε(h)|

ˆ
Bε(h)

∇xϕ dzH

(
2− |x− h|

ε

)
+H

(
|x− h|
ε

− 1

)
∇xϕ

−∇xEε(h)[ϕ] = Eε(h)[∇xϕ]−∇xEε(h)[ϕ]. (4.13) T10

4.1.5 Estimates on the time derivative

The time derivative of the restriction operator Eε(h(τ))[ϕ(τ, ·)] can be computed by using formula
(4.13):

∂t (Eε(h(t))[ϕ(t, ·)]) = Eε(h(t))[∂tϕ(t, ·)] +∇hEε(h(t))[ϕ(t, ·)] · d

dt
h(t)

= Eε(h(t))[∂tϕ(t, ·)] + Eε(h(t))[∇xϕ(t, ·)] · Y (t)−∇xEε(h(t))[ϕ(t, ·)] · Y (t), (4.14) T11

where

Y =
d

dt
h.

We conclude this section by summarizing the basic properties of the restriction operator Eε(h).

EP1a Proposition 4.1. The operator Eε(h)[ϕ] is well defined for ϕ ∈ L1
loc(R

d). The following holds
true:
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•

Eε(h)[ϕ] =


1

|Bε(h)|

´
Bε(h)

ϕ dx if |x− h| < ε

ϕ if |x− h| > 2ε

; (4.15) Ta1

•
Eε(h)[ϕ] = ϕ+ 1B 7

4 ε
(h)e

0
ε,h, ‖e0

ε,h‖Lp(Rd)
<∼ ‖ϕ‖Lp(B 7

4 ε
(Y )), 1 ≤ p ≤ ∞; (4.16) Ta2

•

∇xEε(h)[ϕ] = ∇xϕ+ 1B 7
4 ε

(h)e
1
ε,h, ‖e1

ε,h‖Lp(Rd)
<∼ ‖∇xϕ‖Lp(B 7

4 ε
(h);Rd×d) 1 ≤ p ≤ ∞; (4.17) Ta3

• if h = h(t) is Lipschitz and ϕ ∈ W 1,1
loc ((0, T )×Rd), then

∂t (Eε(h(t))[ϕ(t, ·)])
= Eε(h(t))[∂tϕ(t, ·)] + Eε(h(t))[∇xϕ(t, ·)] · Y (t)−∇xEε(Y (t))[ϕ(t, ·)] · Y (t) (4.18) Ta4

for a.a. t ∈ (0, T ), where

Y =
d

dt
h.

5 Restriction operator revisited
E

The drawback of the restriction operator Eε(h(t)) is that it does not preserve the divergence of
a vector valued function. To remedy this, we introduce a new vector–valued restriction operator
Rε(h) acting on vector valued functions.

5.1 Basic structure

We start by introducing shift operator

Sh[f ](x) = f(h + x).

Setting
Eε = Eε(0)

for the restriction operator introduced in the previous section, we check easily the relation

Eε(h)[ϕ] = S−hEε

[
Sh[ϕ]

]
.

We compute
∇hSh[f ](x) = ∇xf(h + x) = Sh[∇xf ], (5.1) E1

which, in particular, yields the commutator formula (4.13).

13



5.2 Bogovskii operator

We use a particular version of Bogovskii operator constructed by Diening, Růžička, Schumacher
[4]. The operator B2ε,ε is a branch of the inverse of the divergence operator defined on the annulus,

B2ε \Bε.

The operator enjoys the following properties:

•
B2ε,ε : Lp0(B2ε \Bε)→ W 1,p

0 (B2ε \Bε), (5.2) E2

Lp0 denoting the space of Lp functions with zero mean,

‖∇xB2ε,ε[f ]‖Lp(B2ε\Bε;Rd×d)
<∼ ‖f‖Lp(B2ε\Bε), (5.3) E3

for any 1 < p <∞, where the embedding constant is independent of ε,

divxB2ε,ε[f ] = f in B2ε \Bε. (5.4) E4

• If, in addition, f = divxg ∈ Lq0(B2ε \Bε), where g ∈ W 1,q(B2ε \Bε), g ·n|∂(B2ε\Bε) = 0, then

‖B2ε,ε[divxg]‖Lq(B2ε\Bε;Rd)
<∼ ‖g‖Lq(B2ε\Bε;Rd) (5.5) E5

for 1 < q <∞, where the embedding constant is independent of ε.

The operator B2ε,ε was constructed by Diening et al [4]. The remarkable property that its
norms are independent of ε follow from the fact that B2ε \ Bε are John domains uniformly in ε,
see Diening et al [4, Theorem 5.2], Lu and Schwarzacher [14, Theorem 1.1].

5.3 Construction of Restriction operator II

We define the operator

Rε[ϕ] = Eε[ϕ] + B2ε,ε

[
(divxϕ− divxEε[ϕ]) |B2ε\Bε

]
(5.6) E6

A priori the operator is defined for ϕ ∈ W 1,p(Rd;Rd). For the definition to be correct, we have
to verify that (divxϕ− divxEε[ϕ]) has zero mean over the annulus B2ε \ Bε. It is enough if we
consider the functions ϕ with the following properties:

ϕ · n||x|=2ε = Eε[ϕ] · n||x|=2ε, (5.7) E7

and ˆ
|x|=ε

ϕ · n dσ =

ˆ
|x|=ε

Eε[ϕ] · n dσ. (5.8) E8
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On the one hand, equality (5.7) obviously holds as ϕ = Eε[ϕ] if |x| = 2ε. On the other hand, we
have ˆ

|x|=ε
Eε[ϕ] · n dσ = 0

as Eε[ϕ]|Bε is constant. Thus for (5.8) to hold, it is enough to assume

divxϕ|Bε = 0. (5.9) E9

Finally, we set

Rε(h)[ϕ] = S−hRε

[
Sh[ϕ]

]
. (5.10) E10

Summarizing the previous discussion, we get.

EP1 Proposition 5.1 (Continuity in Lp spaces). The operator Rε(h) is well defined for any func-
tion ϕ ∈ W 1,p(Rd;Rd) satisfying

divxϕ = 0 for all x, |x− h| < ε. (5.11) E11

Moreover,

•

Rε(h)[ϕ] =


1

|Bε(h)|

´
Bε(h)

ϕ dx if |x− h| < ε,

ϕ if |x− h| > 2ε;

(5.12) E12

•
divxRε(h)[ϕ] = divxϕ; (5.13) E13

•
‖Rε(h)[ϕ]‖W 1,p(Rd;Rd)

<∼ ‖ϕ‖W 1,p(Rd;Rd) (5.14) E14

for any 1 < p <∞ independently of ε > 0.

5.4 Estimates in the negative norm

In order to estimate time derivatives, we need to find bounds on Rε provided the argument is in
the form

ϕ = B[divxg], (5.15) E15

where B is some right inverse of the divergence operator, divx ◦ B = Id, such that

B ◦ divx is bounded in Lq(Rd;Rd) for any 1 < q <∞,

and
g|Bε(h) = 0.
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If this is the case, then

divxϕ = divxB[divxg] = divxg = 0 on Bε(h)

so the operator Rε(h)[ϕ] is well defined. Below, we consider B = ∇x∆
−1
x , however, B can be also

the standard Bogovskii operator on some domain Ω ⊂ Rd.
Without loss of generality, we may assume

h = 0, Rε(h) = Rε, g|Bε = divxϕ|Bε = 0. (5.16) E16

Our goal is to obtain Lq estimates on Rε[ϕ] in terms of the Lq−norm of g. As Eε is bounded
as an operator on Lq, it is enough to check boundedness of the term

B2ε,ε

[
divxB[divxg]− divxEε

[
B [divxg]

]]
= B2ε,ε

[(
Eε [divxB[divxg]]− divxEε

[
B [divxg]

])
+
(

divxB[divxg]−
(
Eε [divxB[divxg]]

)]
.

(5.17) E17

We get

Eε [divxB[divxg]]− divxEε

[
B [divxg]

]
= Eε [divxg]− divx

(
B[divxg]H

(
|x|
ε
− 1

)
+H

(
2− |x|

ε

)
1

|Bε|

ˆ
Bε

B[divxg] dx

)
= divxgH

(
|x|
ε
− 1

)
− divxgH

(
|x|
ε
− 1

)
− 1

ε
B[divxg]H ′

(
|x|
ε
− 1

)
x

|x|

+
1

ε

x

|x|
H ′
(

2− |x|
ε

)
1

|Bε|

ˆ
Bε

B[divxg] dx

=
1

ε

x

|x|
H ′
(
|x|
ε
− 1

)(
1

|Bε|

ˆ
Bε

B[divxg] dx− B[divxg]

)
. (5.18) E18

Furthermore,

divxB[divxg]− Eε [divxB[divxg]] = divxg − Eε [divxg]

= divxg − divxgH

(
|x|
ε
− 1

)
−H

(
2− |x|

ε

)
1

|Bε|

ˆ
Bε

divxg dx

= divxg − divxgH

(
|x|
ε
− 1

)
= divx

(
g − gH

(
|x|
ε
− 1

))
+

1

ε
gH ′

(
|x|
ε
− 1

)
x

|x|
(5.19) E19
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Summing up the previous relations, we conclude

B2ε,ε

[
divxB[divxg]− divxEε

[
B [divxg]

]]
= B2ε,ε

[
1

ε

x

|x|
H ′
(
|x|
ε
− 1

)(
1

|Bε|

ˆ
Bε

B[divxg] dx− B[divxg]

)
+

1

ε
gH ′

(
|x|
ε
− 1

)
x

|x|

]
+ B2ε,ε

[
divx

(
g − gH

(
|x|
ε
− 1

))]
. (5.20) E20

Seeing that g|Bε = 0 we may use the “negative” estimates (5.5) to deduce∥∥∥∥B2ε,ε

[
divx

(
g − gH

(
|x|
ε
− 1

))]∥∥∥∥
Lp(B2ε\Bε;Rd)

<∼ ‖g‖Lp(B2ε\Bε;Rd) , 1 < p <∞. (5.21) E21

Finally, by means of the Lp−bounds (5.3),∥∥∥∥∇xB2ε,ε

[
1

ε

x

|x|
H ′
(
|x|
ε
− 1

)(
1

|Bε|

ˆ
Bε

B[divxg] dx− B[divxg]

)
+

1

ε
gH ′

(
|x|
ε
− 1

)
x

|x|

]∥∥∥∥
Lp(B2ε\Bε;Rd×d)

<∼ 1

ε

(
‖B[divxg]‖Lp(B2ε\Bε;Rd) + ‖g‖Lp(B2ε\Bε;Rd)

<∼ 1

ε
‖g‖Lp(Rd;Rd)

)
. (5.22) E22

Thus, by virtue of Poincarè inequality on B2ε \Bε,∥∥∥∥B2ε,ε

[
1

ε

x

|x|
H ′
(
|x|
ε
− 1

)(
1

|Bε|

ˆ
Bε

B[divxg] dx− B[divxg]

)
+

1

ε
gH ′

(
|x|
ε
− 1

)
x

|x|

]∥∥∥∥
Lp(B2ε\Bε;Rd)

<∼ ‖g‖Lp(Rd;Rd). (5.23) E32

We have obtained the following result.

EP2 Proposition 5.2 (Continuity in the negative space). Let ϕ ∈ W 1,p
loc (Rd;Rd) can be written

in the form
ϕ = B[divxg], g ∈ Lq(Rd;Rd), g|Bε(h) = 0,

where divx ◦ B = Id and B ◦ divx bounded on Lq(Rd), 1 < q <∞.
Then

‖Rε(h)[B[divxg]]‖Lq(Rd;Rd)

<∼ ‖g‖Lq(Rd;Rd) , 1 < q <∞

uniformly in ε.
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ER1 Remark 5.3. The same result holds for general operators of the form

ϕ = L[g],

provided
g|Bε(h) = 0, divxL[g] = divxg.

In particular, we may consider

ϕ = ∇xB[r] · V , with g = rV , ϕi = ∂xjBi[r]Vj,

where V ∈ Rd is a constant vector.

6 Pressure estimates
pe

The well known problem connected with the compressible fluid flow is the lack of integrability of
the pressure term p(%) in the x−variable. If γ > 3

2
, the relevant estimates are obtained considering

the quantity
ϕ = Rε(hε(t))[∇x∆

−1
x b(%ε,f )] (6.1) pe1a

as a test function in the momentum equation (2.12), where

b(r) ≥ 0, b(r) = 0 for all 0 ≤ r ≤ 1, b(r) = rα for r ≥ 2, α ∈ (0, γ),

and ∆−1
x denotes the inverse of the Laplace operator on R3,

∆−1
x [v] = F−1

ξ→x

[
1

|ξ|2
Fx→ξ[v]

]
, F − the Fourier transform.

Note carefully that
divx[∇x∆

−1
x b(%ε,f )(t, ·)] = b(%ε,f )(t, ·) = 0 on Bε,t.

In accordance with the uniform bounds (3.1),

ess sup
t∈(0,T )

‖b(%ε,f )(t, ·)‖L1∩L
γ
α (R3)

<∼ 1. (6.2) pe1

Moreover, evoking the standard elliptic estimates, we get

∇x[∇x∆
−1
x b(%ε,f )] bounded in L∞(0, T ;Lr(R3;R3×3)) for any 1 < r ≤ γ

α
,

[∇x∆
−1
x b(%ε,f )] bounded in L∞(0, T ;Lq(Rd;Rd)) for any

3

2
< q ≤ ∞ (6.3) pe2

provided γ
α
> 3.
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6.1 Equi–integrability of the pressure

Using ϕ introduced in (6.1) as a test function in the momentum balance (2.12) we get

ˆ T

0

ψ(t)

ˆ
R3

p(%ε,f )b(%ε,f ) dx dt

=

ˆ T

0

ψ(t)

ˆ
R3

p(%ε,f )divxRε(hε(t))[∇x∆
−1
x b(%ε,f )] dx dt =

5∑
i=1

Ii,ε, (6.4) pe4

for any ψ ∈ C1
c [0, T ), ψ(0) = 1, where

I1,ε =

ˆ T

0

ψ

ˆ
R3

S(∇xuε) : ∇xRε(hε(t))[∇x∆
−1
x b(%ε,f )] dx dt,

I2,ε = −
ˆ T

0

ψ

ˆ
R3

%ε,fuε ⊗ uε : ∇xRε(hε(t))[∇x∆
−1
x b(%ε,f )] dx dt,

I3,ε = −
ˆ
R3

q0,ε ·Rε(Yε(0))[∇x∆
−1
x b(%ε,f )(0, ·)] dx,

I4,ε =

ˆ T

0

∂tψ

ˆ
R3

%εuε ·Rε(hε(t))[∇x∆
−1
x b(%ε,f )] dx,

I5,ε =

ˆ T

0

ψ

ˆ
R3

%εuε · ∂tRε(hε(t))[∇x∆
−1
x b(%ε,f )] dx. (6.5) pe5

Our goal is to show that all integrals Ii,ε, i = 1, . . . , 5 are bounded uniformly for ε → 0 as soon
as α > 0 is chosen small enough. Accordingly, relation (6.4) together with the bound (3.1), yield
equi–integrability of the pressure

ˆ T

0

ˆ
R3

p(%ε,f )%
α
ε,f dx dt

<∼ 1. (6.6) equip

6.1.1 Viscosity and convective term

It follows form (5.14) and (6.3) that(
∇xRε(hε(t))[∇x∆

−1
x b(%ε,f )]

)
ε>0

is bounded in L∞(0, T ;Lr(R3×3)), 1 < r ≤ γ

α
.

In particular, the integral I1,ε remains bounded uniformly for ε→ 0.
Similarly, in view of the energy estimates (3.2),

(%ε,fuε ⊗ uε)ε>0 is bounded in L∞(0, T ;L1(R3, R3×3)).

Moreover, as uε is bounded in L2(0, T ;L6(R3;R3)) (see (3.6)), we get

(%ε,fuε ⊗ uε)ε>0 bounded in L1(0, T ;Ls(R3, R3×3)), s > 1,
1

s
=

1

3
+

1

γ
.
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Consequently, by interpolation,

(%ε,fuε ⊗ uε)ε>0 is bounded inLq(0, T ;Lm(R3, R3×3)) for some q > 1,m > 1. (6.7) inter

In particular, I2,ε remains bounded uniformly for ε→ 0.

6.1.2 Momentum

In accordance with the bounds (3.3), (3.11), we obtain

(%εuε)ε>0 is bounded in L∞
(

0, T ;
(
L

2γ
γ+1 + L

2Γ
Γ+1

)
(R3;R3)

)
.

Moreover, the relation (6.3)2 gives(
Rε(hε(t))[∇x∆

−1
x b(%ε,f )]

)
ε>0

is bounded in L∞(0, T ;Lq(R3;R3)) for any
3

2
< q ≤ ∞.

Thus we conclude that Iε,4, and, similarly, I3,ε remain bounded for ε→ 0.

6.1.3 Time derivative

In order to evaluate the time derivative in I5, we have an analogue of formula (4.14) by using the
relations (5.1) and (5.10):

∂tRε(hε(t))[∇x∆
−1
x b(%ε,f )] = Rε(hε(t))[∇x∆

−1
x ∂tb(%ε,f )]

+ Rε(hε(t))[∇x∇x∆
−1
x b(%ε,f )] · Yε −∇xRε(hε(t))[∇x∆

−1
x b(%ε,f )] · Yε, (6.8) pe6

where %ε,f satisfies the renormalized equation of continuuity,

∇x∆
−1
x ∂tb(%ε,f ) = −∇x∆

−1
x divx(b(%ε,f )uε) +∇x∆

−1
x

[(
b(%ε,f )− b′(%ε,f )%ε,f

)
divxuε

]
.

Now, in accordance with Proposition 5.2 and Remark 5.3, we get

‖Rε(hε(t))[∇x∇x∆
−1
x b(%ε,f )] · Yε‖Lr(R3)

<∼ |Yε| ‖b(%ε,f )‖Lr(R3)
<∼ |Yε|, 1 < r ≤ γ

α
,

‖Rε(hε(t))[∇x∆
−1
x divx(b(%ε,f )uε)]‖Lq(R3)

<∼ ‖b(%ε,f )uε‖Lq(R3), 1 < q <∞. (6.9) pe7

In addition,

‖∇xRε(hε(t))[∇x∆
−1
x b(%ε,f )] · Yε‖Lr(R3)

<∼ |Yε| ‖b(%ε,f )‖Lr(R3)
<∼ |Yε|, 1 < r ≤ γ

α
. (6.10) pe8

Finally, ∥∥∥Rε(hε(t))
[
∇x∆

−1
x

[(
b(%ε,f )− b′(%ε,f )%ε,f

)
divxuε

]]∥∥∥
Ls(R3)

<∼ 1
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for all
3

2
< s ≤ 3r

3− r
,

1

2
+
α

γ
=

1

r
. (6.11) pe9

Seeing that

(%εuε)ε>0 bounded in L∞
(

0, T ;
(
L

2γ
γ+1 + L

2Γ
Γ+1

)
(R3;R3)

)
,

(uε)ε>0 bounded in L2(0, T ;L6(R3;R3)),

(%ε)ε>0 bounded in L∞
(
0, T ;

(
Lγ + LΓ

)
(R3)

)
we may combine (6.9), (6.11) to obtain

ˆ T

0

ψ

ˆ
R3

%εuε ·Rε(hε(t))[∇x∆
−1
x ∂tb(%ε,f )] dx dt bounded uniformly for ε→ 0.

We conclude by estimatingˆ
R3

%εuε ·
[
Rε(hε(t))[∇x∇x∆

−1
x b(%ε,f )] · Yε −∇xRε(hε(t))[∇x∆

−1
x b(%ε,f )] · Yε

]
dx

=

ˆ
B2ε(Yε)

%εuε ·
[
Rε(hε(t))[∇x∇x∆

−1
x b(%ε,f )] · Yε −∇xRε(hε(t))[∇x∆

−1
x b(%ε,f )] · Yε

]
dx. (6.12) pe10

This integral can be decomposed asˆ
B2ε(Yε)

%εuε ·
[
Rε(hε(t))[∇x∇x∆

−1
x b(%ε,f )] · Yε −∇xRε(hε(t))[∇x∆

−1
x b(%ε,f )] · Yε

]
dx

=

ˆ
Bε(Yε)

%ε,Buε ·
[
Rε(hε(t))[∇x∇x∆

−1
x b(%ε,f )] · Yε −∇xRε(hε(t))[∇x∆

−1
x b(%ε,f )] · Yε

]
dx

+

ˆ
B2ε(Yε)

%ε,fuε ·
[
Rε(hε(t))[∇x∇x∆

−1
x b(%ε,f )] · Yε −∇xRε(hε(t))[∇x∆

−1
x b(%ε,f )] · Yε

]
dx. (6.13) pe11

Now, in accordance with (6.9), (6.10),∣∣∣∣ˆ
B2ε(Yε)

%ε,fuε ·
[
Rε(hε(t))[∇x∇x∆

−1
x b(%ε,f )] · Yε −∇xRε(hε(t))[∇x∆

−1
x b(%ε,f )] · Yε

]
dx

∣∣∣∣
<∼ ‖%ε,f‖Lγ(R3)‖uε‖L6(R3;R3)‖b(%ε,f )‖L γα (R3)

|Yε|ε3s, s = 1− 1

γ
− α

γ
− 1

6
(6.14) pe12

In view of (3.5),

|Yε|
<∼ ε

1
2

(β−3), β > 2
3− γ
γ

.

Consequently,

|Yε|ε3s <∼ ε
1
2
β− 3

2
+3− 3

γ
− 3α

γ
− 1

2 , with
1

2
β − 3

2
+ 3− 3

γ
− 3α

γ
− 1

2
=

1

2
β − 3− γ

γ
− 3α

γ
> 0
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as long as α > 0 is small enough.
Finally,∣∣∣∣ˆ

Bε(Yε)

%ε,Buε ·
[
Rε(hε(t))[∇x∇x∆

−1
x b(%ε,f )] · Yε −∇xRε(hε(t))[∇x∆

−1
x b(%ε,f )] · Yε

]
dx

∣∣∣∣
<∼ %ε,B|Yε|‖uε‖L6(R3;R3)‖b(%ε,f )‖L γα (R3)

ε3(1− 1
6
−α
γ ),

where
%ε,B|Yε|

<∼ ε−
3
2 ε−

β
2 , β < 2.

Thus if α > 0 is small enough, we get

%ε,B|Yε|ε3(1− 1
6
−α
γ ) → 0 as ε→ 0.

We have shown that the integrals I5,ε remain bounded as ε→ 0, which completes the proof of
the pressure estimates claimed in (6.6).

7 Convergence
c

Our ultimate goal is to perform the limit in the momentum equation (2.12). To this end, we
consider a smooth function

ϕ ∈ Ck
c ([0, T )×R3;R3), k ≥ 2 and its restriction Eε(hε(t)))[ϕ(t, ·)],

where the latter is an eligible test function in (2.12).

7.1 Time derivative

We start with the time derivative

ˆ T

0

ˆ
R3

%εuε(t, ·) · ∂t (Eε(hε(t)))[ϕ(t, ·)]) dx dt.

By virtue of formula (4.14),

ˆ T

0

ˆ
R3

%εuε(t, ·) · ∂t (Eε(hε(t)))[ϕ(t, ·)]) dx dt =

ˆ T

0

ˆ
R3

%εuε(t, ·) · (Eε(hε(t)))[∂tϕ(t, ·)]) dx dt

+

ˆ T

0

ˆ
R3

%εuε(t, ·) ·
[
Eε(hε(t))[∇xϕ(t, ·)] · Yε(t)−∇xEε(hε(t))[ϕ(t, ·)] · Yε(t)

]
dx dt.

(7.1) c1
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In accordance with the convergence (3.13) and the estimate (4.6), we get:

ˆ T

0

ˆ
R3

%εuε(t, ·) · (Eε(hε(t)))[∂tϕ(t, ·)]) dx dt→
ˆ T

0

ˆ
R3

%u · ∂tϕ(t, ·) dx dt as ε→ 0. (7.2) c2

As for the remaining integral in (7.1), we use (4.10) obtainingˆ
R3

%εuε(t, ·) ·
[
Eε(hε(t))[∇xϕ(t, ·)] · Yε(t)−∇xEε(hε(t))[ϕ(t, ·)] · Yε(t)

]
dx

=

ˆ
B 7

4 ε
(hε)

%εuε(t, ·) ·
[
Eε(hε(t))[∇xϕ(t, ·)] · Yε(t)−∇xEε(hε(t))[ϕ(t, ·)] · Yε(t)

]
dx

=

ˆ
Bε(hε)

%ε,Buε(t, ·) ·
[
Eε(hε(t))[∇xϕ(t, ·)] · Yε(t)−∇xEε(hε(t))[ϕ(t, ·)] · Yε(t)

]
dx

+

ˆ
B 7

4 ε
(hε)

%ε,fuε(t, ·) ·
[
Eε(hε(t))[∇xϕ(t, ·)] · Yε(t)−∇xEε(hε(t))[ϕ(t, ·)] · Yε(t)

]
dx. (7.3) c3

By virtue of (4.10), (3.5), and hypothesis (2.10),∣∣∣∣ˆ
Bε(hε)

%ε,Buε(t, ·) ·
[
Eε(hε(t))[∇xϕ(t, ·)] · Yε(t)−∇xEε(hε(t))[ϕ(t, ·)] · Yε(t)

]
dx

∣∣∣∣
<∼

ˆ
Bε(hε)

√
%ε,B|uε(t, ·)|ε−

3
2 dx. (7.4) c4

Thus, in view of the uniform bounds (3.6), we conclude

ˆ T

0

ˆ
Bε(hε)

%ε,Buε(t, ·) ·
[
Eε(hε(t))[∇xϕ(t, ·)] ·Yε(t)−∇xEε(hε(t))[ϕ(t, ·)] ·Yε(t)

]
dx dt→ 0 (7.5) c6

as ε→ 0.
The second integral on the right–hand side of (7.3) can be handled by using (4.6) and (4.8):∥∥∥%ε,fuε(t, ·) · [Eε(hε(t))[∇xϕ(t, ·)] · Yε(t)−∇xEε(hε(t))[ϕ(t, ·)] · Yε(t)

]∥∥∥
L1(R3)

<∼ ‖%ε,f (t, ·)‖Lγ(R3)‖uε(t, ·)‖L6(R3)‖Yε1B2ε(hε)‖Ls(R3)‖∇xϕ‖L∞(R3),
1

γ
+

1

6
+

1

s
= 1, (7.6) c7

Moreover, by virtue of (3.5),

|Yε(t)| ≤
1
√
%ε,B

ε
−3
2

<∼ ε
β−3

2 . (7.7) c8

Thus, it follows from hypothesis (2.10) and a direct manipulation

ˆ T

0

∣∣∣∣∣∣
ˆ
B 7

4 ε
(hε)

%ε,fuε(t, ·) ·
[
Eε(hε(t))[∇xϕ(t, ·)] · Yε(t)−∇xEε(hε(t))[ϕ(t, ·)] · Yε(t)

]
dx dt

∣∣∣∣∣∣
23



→ 0 as ε→ 0. (7.8) c9

Summing up (7.2), (7.5), and (7.8) we conclude

ˆ T

0

ˆ
R3

%εuε(t, ·) · ∂t (Eε(hε(t)))[ϕ(t, ·)]) dx dt→
ˆ T

0

ˆ
R3

%u · ∂tϕ(t, ·) dx dt as ε→ 0. (7.9) c10

7.2 Convective term and the viscous stress

Repeating the arguments of the previous section, we easily establish

ˆ T

0

ˆ
R3

%εuε ⊗ uε(t, ·) : ∇x (Eε(hε(t)))[ϕ(t, ·)]) dx dt

=

ˆ T

0

ˆ
R3

%ε,fuε ⊗ uε(t, ·) : ∇x (Eε(hε(t)))[ϕ(t, ·)]) dx dt

→
ˆ T

0

ˆ
R3

%u⊗ u : ∇xϕ dx dt as ε→ 0, (7.10) c11

and

ˆ T

0

ˆ
R3

S(∇xuε) : ∇x (Eε(hε(t)))[ϕ(t, ·)]) dx dt

→
ˆ T

0

ˆ
R3

S(∇xu) : ∇xϕ dx dt as ε→ 0. (7.11) c12

Here, in view of the uniform bounds (6.7),

%ε,fuε ⊗ uε → %u⊗ u weakly in Lploc([0, T ]×R3;R3×3) for some p > 1.

Our ultimate goal in the section is to prove the identity

%u⊗ u = %u⊗ u. (7.12) c13

To this end, consider

ϕ = Eε(hε(t)))[ψ(t)φ(·)], ψ ∈ C1
c (0, T ), φ ∈ C1

c (R3;R3)

as a test function in the momentum equation (2.12). We easily compute

ˆ T

0

ˆ
R3

[
%εuε · ∂t (Eε(hε(t)))[ψ(t)φ(·)]) dx dt = −

ˆ T

0

ψ(t)

ˆ
R3

%εuε ⊗ uε : ∇xEε(hε(t)))[φ(·)] dx dt

−
ˆ T

0

ψ(t)

ˆ
R3

p(%ε)divxEε(hε(t)))[φ(·)] dx dt
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+

ˆ T

0

ψ(t)

ˆ
R3

S(∇xuε) : ∇xEε(hε(t)))[φ(·)] dx dt. (7.13) c14

Moreover, by virtue of formula (4.14),

ˆ T

0

ˆ
R3

[
%εuε · ∂t (Eε(hε(t)))[ψ(t)φ(·)]) dx dt

=

ˆ T

0

∂tψ(t)

ˆ
Ω

%εuε · Eε(hε(t)))[φ(·)] dx dt

+

ˆ T

0

ψ(t)

ˆ
R3

%εuε · Eε(hε(t))[∇xφ(·)] · Yε(t) dx dt

−
ˆ T

0

ψ(t)

ˆ
R3

%εuε · ∇xEε(hε(t))[φ(·)] · Yε(t) dx dt. (7.14) c15

If φ is smooth (C1
c (R3;R3)), the last two integrals in (7.14) can be handled exactly as their

counterpart in (7.5), (7.8), specifically,∥∥∥∥ˆ
R3

%εuε · (Eε(hε(t))[∇xφ(·)]−∇xEε(hε(t))[φ(·)]) · Yε(t) dx

∥∥∥∥
L2(0,T )

≤ c(‖φ‖C1) independently of ε→ 0. (7.15) c16

Combining (7.13)–(7.15) we may infer that the function

t ∈ [0, T ] 7→
ˆ
R3

%εuε(t, ·) · Eε(hε(t)))[φ] dx, φ ∈ C1
c (R3;R3), (7.16) c17

is Hölder continuous with a positive exponent and norm depending solely on ‖φ‖C1(Ω;Rd).
Finally, by virtue of the error estimates (4.10),

Eε(hε(t)))[φ]→ φ in W 1,2(R3;R3) for any φ ∈ W 1,2(R3;R3) uniformly in t ∈ (0, T ),

and we deduce from (7.16) that

%εuε precompact in L2(0, T ;W−1,2
loc (R3;R3)), (7.17) c18

which, together with (3.7) yields (7.12).

7.3 The pressure and strong convergence of the density

In view of the pressure estimates (6.6), it is easy to establish the limit

ˆ T

0

ˆ
R3

p(%ε,f )divxEε(hε)[ϕ] dx dt→
ˆ T

0

ˆ
R3

p(%)divxϕ dx dt,

25



where p(%) stands for a weak limit of the sequence (p(%ε,f ))ε>0.
Thus the remaining issue is to establish the equality

p(%) = p(%)

which is the standard and nowadays well understood problem in the theory of compressible fluids,
see e.g. [6], Lions [13]. The proof requires ϕ = ψ(t)φ(x)∇x∆

−1
x [b(%ε,f )] to be used as test functions

in the momentum balance, where b is a bounded functions and ψ ∈ C1
c (0, T ), φ ∈ C1

c (R3). In the
present setting, similarly to the above, we use the quantity

ϕ = ψEε(hε)
[
φ∇x∆

−1
x [b(%ε,f )]

]
,

which is a legal test function for the momentum balance (2.12). As shown above, the resulting
error terms vanish in the asymptotic limit ε → 0 and the proof of the strong convergence of the
density is therefore the same as in the fluid without moving objects. Thus exactly the same method
as in [6, Chapter 6] can be used to complete the proof of Theorem 2.3.
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