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TOPOLOGICAL ENDOMORPHISM RINGS OF TILTING COMPLEXES

MICHAL HRBEK

Abstract. In a compactly generated triangulated category, we introduce a class of tilting ob-
jects satisfying certain purity condition. We call these the decent tilting objects and show that
the tilting heart induced by any such object is equivalent to a category of contramodules over the
endomorphism ring of the object endowed with a natural linear topology. This extends the recent
result for n-tilting modules of Positselski and Šťovíček. In the setting of the derived category of
a ring, we show that the decent tilting complexes are precisely the silting complexes such that
their character dual is cotilting. We show that the hearts of cotilting complexes of finite type are
equivalent to the category of discrete modules with respect to the same topological ring. Finally,
we show that decent tilting complexes parametrize pairs consisting of a tilting and a cotilting
derived equivalence as above together with a tensor compatibility condition.
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1. Introduction

In his landmark result [Ric89], Rickard established a full Morita theory for derived categories of
modules: There is a triangle equivalence Db(Mod-R) ∼= Db(Mod-S) between the bounded derived
categories of right modules if and only if there is a compact tilting complex T in Db(Mod-R) with
S ∼= EndD(Mod-R)(T ). In addition, the triangle equivalence can be represented by the derived functor
RHomR(T,−); this fact is best observed using the formal endomorphism dg-ring of T , as explained
by Keller [Kel93]. The whole picture can be made more symmetric following the observation made
in [Ric91]: T also induces a triangle equivalence T ⊗L

R − : Db(R-Mod) ∼= Db(S-Mod) on the side of
left modules, and these equivalences are compatible with the tensor products in the sense that the
following diagram commutes:

(1)
Db(Mod-R)× Db(R-Mod) D(Mod-Z)

Db(Mod-S)× Db(S-Mod) D(Mod-Z)

(RHomR(T,−),T⊗L
R−) ∼=

−⊗L
R−

=

−⊗L
S−

More recently, efforts were made to see to which extent the theory can be stated for tilting objects
which are not necessarily compact. For a survey of both the history and the modern aspects of the
theory of “large” silting and tilting objects we refer to [AH19]. When the tilting complex T is not
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2 MICHAL HRBEK

compact, its endomorphism ring cannot be derived equivalent to R. However, Bazzoni showed in
[Baz10] that if T is a 1-tilting module which has the additional property of being good, then the
derived category of R embeds via RHomR(T,−) to the derived category of EndR(T ), and in fact,
this fully faithful functor is a part of a recollement of triangulated categories. The assumption of
being good is very mild in the sense that every tilting module is additively equivalent to a good
one. This was later extended to n-tilting modules by Bazzoni, Mantese, and Tonolo [BMT11], and
to a general setting of dg categories by Nicolás and Saorín [NS18].

A very recent breakthrough came in the paper [PŠ21]. There, the endomorphism ring of a tilting
module T is endowed with a linear topology such that the resulting topological ring S = EndR(T )
is complete and separated. Such a structure comes associated with an abelian category of right
S-contramodules. This category can be morally viewed as the well-behaved replacement of the ill-
behaved category of complete and separated S-modules. The theory of contramodules, developed
chiefly by Positselski, has quickly found many strong applications in algebra and algebraic geometry,
see e.g. the survey [Pos21] and [Pos12]. Positselski and Šťovíček showed in [PŠ21] that the
heart of the tilting t-structure induced by T is equivalent to the category Ctra-S of right S-
contramodules. Assuming again the mild additional condition of T being good, the forgetful
functor Ctra-S → Mod-S is fully faithful, both on the abelian and the derived level. It follows
that the image of the fully faithful functor RHomR(T,−) in the setting of [BMT11] is now given
an algebraic description as the derived category of contramodules.

In the present paper, we wish to extend the latter result from tilting modules to tilting com-
plexes, or more generally, to silting objects in the sense of Psaroudakis and Vitória [PV18] and
Nicolás, Saorín, and Zvonareva [NSZ19]. It turns out that this does not work without additional
assumptions — there are tilting complexes whose tilting heart cannot be equivalent to a category
of contramodules over any complete and separated topological ring (Example 3.12). Therefore,
we are forced to find a condition on a tilting complex which guarantees a better behavior. The
condition we consider comes from the purity theory of compactly generated triangulated categories
as established by Krause [Kra00], and rely on the new techniques using Grothendieck derivators
developed recently by Laking [Lak20]. In Section 2, we introduce the notion of a decent tilting
object as a silting object such that its definable closure is contained in the silting heart. Such
objects are automatically tilting in the sense of [PV18], and therefore are expected to provide
derived equivalences. In the generality of a compactly generated triangulated category, we show
that the heart of the t-structure induced by a decent tilting object is equivalent to a contramodule
category of the endomorphism ring S endowed with a suitable linear topology we call the compact
topology. The way we prove this is by using the restricted Yoneda functor to reduce the problem
from the triangulated setting to the abelian setting of modules over a ringoid, where the results of
[PŠ21] apply directly.

In Section 3, we specialize to the setting of derived category of modules over a ring. There, it
turns out that our condition has a very natural interpretation: For any ring R, a (bounded) silting
complex T of right R-modules is decent if and only if its character dual is a cotilting complex of
left R-modules (Theorem 3.4). It follows that our notion of a decent tilting complex includes all
tilting modules and all compact tilting complexes, and the decent tilting complexes correspond
bijectively to cotilting complexes of cofinite type via the character duality. Moreover, we discuss
some recently studied sources of interesting examples coming from commutative algebra [PV21],
[HNŠ22].

Motivated by the aforementioned results by Bazzoni et al., we consider in Section 4 an appro-
priate version of the good property of a silting complex T , and show that this allows to represent
the derived equivalence Db(Mod-R)

∼=−→ Db(Ctra-S) induced by a good and decent tilting complex
by the derived functor RHomR(T,−). In Section 5 we focus on the cotilting setting and show
that the cotilting heart associated to the character dual of a good and decent tilting complex is
equivalent to another category induced by the topological ring — the category of left discrete
S-modules. This gives a rather explicit description of the hearts induced by cotilting complexes
of cofinite type (Corollary 5.3). Analogously to Rickard’s result, the cotilting derived equivalence
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can be represented by T ⊗L
R −. In Theorem 5.5, we obtain a commutative square for a good and

decent tilting complex similar to Eq. (1), which shows that the representable derived equivalences
are compatible with the tensor and contratensor structures:

(2)
Db(Mod-R)× Db(R-Mod) D(Mod-Z)

Db(Ctra-S)× Db(S-Discr) D(Mod-Z)

∼=(RHomR(T,−),T⊗L
R−)

−⊗L
R−

=

−⊙L
S−

Note that in this picture, certain asymmetry appears between the tilting and cotilting equivalence
which was not visible in the classical tilting situation Eq. (1). In Proposition 5.6, we also show
that a kind of converse holds, characterizing the derived equivalences induced by decent tilting
complexes: If there is a complete and separated topological ring S, and a couple of triangle
equivalences Db(Mod-R) ∼= Db(Ctra-S) and Db(R-Mod) ∼= Db(S-Discr) which make the square as
in Eq. (2) commute then there is a good and decent tilting complex in Db(Mod-R) such that its
endomorphism ring endowed with the compact topology is topologically Morita equivalent to S.

In the final Section 6, we discuss an example arising from a codimension filtration of the Zariski
spectrum of a one-dimensional commutative noetherian ring.

2. Add-closures in compactly generated triangulated categories

The goal of this section is to partially extend the techniques of [PŠ21, §6, §7] to triangulated
context by giving a description of Add-closure of an object M in terms of a topological structure
of the endomorphism ring of M .

2.1. Contramodules over topological rings. For a comprehensive resource about the theory of
contramodules over complete and separated topological rings as developed by Positselski, we refer
the reader to the survey [Pos21] and references therein, as well as to [PŠ21, §6, §7] where the setting
is very close to ours. Here we recall the basic concept and notation. Let R be a (unital, associative)
ring. We say that R is a (left) topological ring(left) topological ring(left) topological ring(left) topological ring(left) topological ring(left) topological ring(left) topological ring(left) topological ring(left) topological ring(left) topological ring(left) topological ring(left) topological ring(left) topological ring(left) topological ring(left) topological ring(left) topological ring(left) topological ring if it comes endowed with a linear topology of left
ideals, that is, with a filter (Iα)α∈A of left ideals of R such that for each r ∈ R and α ∈ A there is
α′ ∈ A such that Iα′ · r ⊆ Iα. With such a filter fixed, we call the ideals it contains the openopenopenopenopenopenopenopenopenopenopenopenopenopenopenopenopen left
ideals of the topological ring R. There is a natural map λ : R → lim←−I⊆R open

R/I from R to the
completion with respect to the topology of open left ideals. We say that R is completecompletecompletecompletecompletecompletecompletecompletecompletecompletecompletecompletecompletecompletecompletecompletecomplete if the map
λ is surjective and separatedseparatedseparatedseparatedseparatedseparatedseparatedseparatedseparatedseparatedseparatedseparatedseparatedseparatedseparatedseparatedseparated if the map is injective.

Let R be a complete and separated topological ring. Given a set X, let R[[X]] denote the
set of all (possibly infinite) formal linear combinations

∑
x∈X x · rx of elements of the set X with

coefficients rx ∈ R such that the family (rx)x∈X converges to zero in the topology of R, that is,
if for any open ideal I we have rx ∈ I for all but finitely many x ∈ X. This assignment defines
a functor R[[−]] : Sets → Sets on the category of all sets. Indeed, given a map f : X → Y of
sets, the induced map R[[f ]] : R[[X]] → R[[Y ]] is defined by sending an element

∑
x∈X x · rx to∑

x∈X f(x) · rx =
∑

y∈Y y · sy, where the coefficient sy =
∑

f(x)=y rx is well-defined using the fact
that R is complete and separated and the coefficients converge to zero. There is the “opening
of parentheses” map µX : R[[R[[X]]]] → R[[X]] (which is the obvious assignment of a formal
linear combination to a formal linear combination of formal linear combinations) and the “trivial
linear combination” map ϵX : X → R[[X]], the well-defined-ness of µX is again ensured by the
complete and separated assumption on the topology. Then the functor R[[−]] on Sets together
with the two natural transformation µ and ϵ form an additive monad on the category of sets,
and one can therefore speak about modules (=algebras) over this monad — these are precisely the
right R-contramodulesright R-contramodulesright R-contramodulesright R-contramodulesright R-contramodulesright R-contramodulesright R-contramodulesright R-contramodulesright R-contramodulesright R-contramodulesright R-contramodulesright R-contramodulesright R-contramodulesright R-contramodulesright R-contramodulesright R-contramodulesright R-contramodules. Explicitly, a right R-contramodule is a set M together with a contraactioncontraactioncontraactioncontraactioncontraactioncontraactioncontraactioncontraactioncontraactioncontraactioncontraactioncontraactioncontraactioncontraactioncontraactioncontraactioncontraaction
map π : R[[M]] → M satisfying two axioms: first we have two maps µM,R[[π]] : R[[R[[M]]]] →
R[[M]] and these need to equalize after composing with π : R[[M]] →M (“contra-associativity”),
and secondly the composition of π ◦ ϵM : M → R[[M]] → M needs to be the identity map
(“contra-unitality”).
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We denote the category of all right R-contramodules by Ctra-R. It turns out that Ctra-R is a
complete and cocomplete locally presentable abelian category. For any set X, the map µX endows
the set R[[X]] with a natural structure of a right R-contramodule, and in fact, if ⋆ is a singleton
set then R = R[[⋆]] is a projective generator of S, while R[[X]] is the coproduct of X copies of
R in Ctra-R. In particular, Ctra-R has enough projectives and the full subcategory of projective
objects Ctra-Sproj consists precisely of direct summands of objects of the form R[[X]] for some set
X. There is a natural forgetful functor Ctra-R → Mod-R which simply restricts the contraaction
just to finite linear combinations with coefficients in R. This forgetful functor is in general not
fully faithful, and while it respects products, it usually does not preserve coproducts.

2.2. Modules over ringoids. By a ringoidringoidringoidringoidringoidringoidringoidringoidringoidringoidringoidringoidringoidringoidringoidringoidringoid we understand a skeletally small preadditive category.
A ringoid R gives rise to the category Mod-R of all contravariant additive functors R→ Mod-Z, we
call its objects the right R-modulesright R-modulesright R-modulesright R-modulesright R-modulesright R-modulesright R-modulesright R-modulesright R-modulesright R-modulesright R-modulesright R-modulesright R-modulesright R-modulesright R-modulesright R-modulesright R-modules. Recall that Mod-R is a Grothendieck category with a gener-
ating set of finitely presented projective objects given by the representable functors HomR(−, R),
where R runs over a skeleton of R. The classical case of right modules over an associative unital
ring is recovered by restricting to ringoids with precisely one object.

Given an object X in an additive category C with arbitrary coproducts, we let AddC(X) denote
the full subcategory consisting of direct summands of coproducts of copies of X, dually we also
define ProdC(X) using products. We drop the subscript if the ambient category is clear from
the context. Given a ringoid R and a module M ∈ Mod-R, consider the endomorphism ring
S = EndMod-R(M). Following [PŠ21, §7.1] and the references therein, we endow S with the
finite topologyfinite topologyfinite topologyfinite topologyfinite topologyfinite topologyfinite topologyfinite topologyfinite topologyfinite topologyfinite topologyfinite topologyfinite topologyfinite topologyfinite topologyfinite topologyfinite topology, in which the filter basis of open left ideals consists of ideals of the form IF = {g ∈
EndMod-R(M) | g↾F = 0} where F runs through finitely generated subobjects F of M . Equivalently,
the basis consists of ideals of the form If = {g ∈ EndMod-R(M) | f ◦ g = 0} where f runs through
morphisms f : P → M where P is a finitely generated projective object of Mod-R. The following
result of Positselski and Šťovíček is the initial point of our study.

Theorem 2.1. [PŠ21, Theorem 7.1] Let R be a ringoid and M ∈ Mod-R. Consider the endomor-
phism ring S = EndMod-R(M) endowed with the finite topology. Then S is a complete and sepa-
rated (left) topological ring and the functor HomMod-R(M,−) : Mod-R → Mod-S factors through
the forgetful functor Ctra-S→ Mod-S and induces an equivalence HomMod-R(M,−) : Add(M)

∼=−→
Ctra-Sproj.

Remark 2.2. [PŠ21, Theorem 7.1] shows in particular that the two additive monads on the
category of sets defined by the rules X 7→ HomMod-R(M,M (X)) and X 7→ S[[X]] (see [PŠ21, §6.3])
are isomorphic, which is the reason why the right S-module structure on HomMod-R(M,M (X))
extends to a right S-module structure.

If M ∈ Mod-R is a finitely generated module then the finite topology on S becomes discrete,
in which case Ctra-S = Mod-S. In this case, Theorem 2.1 recovers the classical equivalence
Add(M) ∼= Mod-Sproj of [Dre69].

2.3. Compactly generated triangulated categories. Let T be a triangulated category with
suspension functor −[1] and assume that T has arbitrary coproducts. Recall that an object F ∈ T

is compactcompactcompactcompactcompactcompactcompactcompactcompactcompactcompactcompactcompactcompactcompactcompactcompact if the functor HomT(F,−) : T → Mod-Z preserves coproducts, and denote by Tc the
full subcategory of compact objects. Unless specified otherwise, we assume that the triangulated
category T is compactly generatedcompactly generatedcompactly generatedcompactly generatedcompactly generatedcompactly generatedcompactly generatedcompactly generatedcompactly generatedcompactly generatedcompactly generatedcompactly generatedcompactly generatedcompactly generatedcompactly generatedcompactly generatedcompactly generated, which means that Tc is skeletally small and any object X ∈ T

such that HomT(F,X) = 0 for all F ∈ Tc has to be zero; this assumption also implies that T has
arbitrary products.

Considering Tc to be a ringoid yields a theory of purity in T as developed by Krause [Kra00].
The main ingredient is the restricted Yoneda functorrestricted Yoneda functorrestricted Yoneda functorrestricted Yoneda functorrestricted Yoneda functorrestricted Yoneda functorrestricted Yoneda functorrestricted Yoneda functorrestricted Yoneda functorrestricted Yoneda functorrestricted Yoneda functorrestricted Yoneda functorrestricted Yoneda functorrestricted Yoneda functorrestricted Yoneda functorrestricted Yoneda functorrestricted Yoneda functor y : T → Mod-Tc defined by the assignment
X 7→ HomT(−, X)↾Tc . This is a conservative cohomological functor (however, it is usually not

fully faithful). A triangle X
f−→ Y

g−→ Z −→ X[1] in T is purepurepurepurepurepurepurepurepurepurepurepurepurepurepurepurepure provided that it is sent to a short
exact sequence by y. If this is the case, we say that f (resp. g) is a pure monomorphismpure monomorphismpure monomorphismpure monomorphismpure monomorphismpure monomorphismpure monomorphismpure monomorphismpure monomorphismpure monomorphismpure monomorphismpure monomorphismpure monomorphismpure monomorphismpure monomorphismpure monomorphismpure monomorphism (resp.
pure epimorphismpure epimorphismpure epimorphismpure epimorphismpure epimorphismpure epimorphismpure epimorphismpure epimorphismpure epimorphismpure epimorphismpure epimorphismpure epimorphismpure epimorphismpure epimorphismpure epimorphismpure epimorphismpure epimorphism) in T. An object E ∈ T is pure-injectivepure-injectivepure-injectivepure-injectivepure-injectivepure-injectivepure-injectivepure-injectivepure-injectivepure-injectivepure-injectivepure-injectivepure-injectivepure-injectivepure-injectivepure-injectivepure-injective provided that yE is an injective object
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in Mod-Tc. A pure-injective envelopepure-injective envelopepure-injective envelopepure-injective envelopepure-injective envelopepure-injective envelopepure-injective envelopepure-injective envelopepure-injective envelopepure-injective envelopepure-injective envelopepure-injective envelopepure-injective envelopepure-injective envelopepure-injective envelopepure-injective envelopepure-injective envelope of object X is an object PE(X) together with a map e :
X → PE(X) such that ye : yX → yPE(X) identifies with the injective envelope map in Mod-Tc.
The pure-injective envelope exists for any object X ∈ T and PE(X) is uniquely determined up
to isomorphism. Pure-projectivePure-projectivePure-projectivePure-projectivePure-projectivePure-projectivePure-projectivePure-projectivePure-projectivePure-projectivePure-projectivePure-projectivePure-projectivePure-projectivePure-projectivePure-projectivePure-projective objects in T are defined similarly. A morphism f in T is called
phantomphantomphantomphantomphantomphantomphantomphantomphantomphantomphantomphantomphantomphantomphantomphantomphantom provided that yf = 0. For X,Y ∈ T, the kernel of HomT(X,Y ) → HomMod-Tc(yX,yY )
consists precisely of the phantom morphisms X → Y . If X is pure-projective (in particular, if X
is compact) or if Y is pure-injective, any phantom map X → Y is zero in T. See [Kra00, §1, §2]
for details.

Let M ∈ T and denote its endomorphism ring by S = EndT(M). In complete analogy with the fi-
nite topology, we define a natural linear topology on the ring S which we call the compact topologycompact topologycompact topologycompact topologycompact topologycompact topologycompact topologycompact topologycompact topologycompact topologycompact topologycompact topologycompact topologycompact topologycompact topologycompact topologycompact topology.
The basis of open left ideals of S is given by ideals of the form If = {g ∈ S | g ◦ f = 0} for
all maps f : F → M with F ∈ Tc. The compact topology makes S into a left topological ring.
Indeed, for any f : F → M with F ∈ Tc and any s ∈ S we have Isf · s = {gs ∈ S | gsf = 0} ⊆
If = {g ∈ S | gf = 0}.

Proposition 2.3. Let M ∈ T be such that the restriction y↾Add(M) : Add(M) → Mod-Tc of the
restricted Yoneda functor to Add(M) is fully faithful. Then S endowed with the compact topology
is a complete and separated topological ring and there is an equivalence HomT(M,−) : Add(M)

∼=−→
Ctra-Sproj.

Proof. The assumption yields that y induces an isomorphism S ∼= EndMod-Tc(yM). Since y pre-
serves coproducts, we also have that Add(M) = AddT(M) ∼= AddMod-Tc(yM). Then it follows di-
rectly from Theorem 2.1 that S is complete and separated and Add(M) is equivalent to Ctra-Sproj,
with the caveat that here S is endowed with the finite topology induced on yM ∈ Mod-Tc. The
equivalence is induced by the functor HomMod-Tc(yM,−) : Mod-Tc → Ctra-S, and the restriction of
this functor to AddMod-Tc(yM) is identified with the functor HomT(M,−) : Add(M)→ Ctra-Sproj.

It remains to show that the compact topology induced in T and the finite topology induced in
Mod-Tc on S coincide. But to see that, it is enough to recall that finitely generated subobjects
F ↪−→ yM are precisely the images of morphisms yC → yM with C ∈ Tc, because the objects of
the form yC with C ∈ Tc are precisely the finitely generated projective objects of Mod-Tc. But
any such morphism is of the form y(f) for a morphism f : C → M in T, see [Kra00, Theorem
1.8]. □

Corollary 2.4. Let M be a pure-projective object of T. Then Add(M) ∼= Ctra-Sproj. In particular,
if M is a compact object then Add(M) ∼= Ctra-Sproj = Mod-Sproj.

Proof. If M is pure-projective then the isomorphism follows directly from Proposition 2.3 and
[Kra00, Theorem 1.8]. If M is compact then M is pure-projective and the compact topology on S
becomes discrete, so Ctra-Sproj = Mod-Sproj. □

2.4. Hearts of t-structures. For a short moment, let T be anyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyany triangulated category. Given a
full subcategory C ⊆ T, we define full subcategories C⊥⃝ = {X ∈ T | HomT(C,X[i]) ∀C ∈ C, i ⃝}
of T where⃝ denotes a symbol such as = 0,≤ 0, > 0, ̸= 0 and others which specify a set of integers.
Analogously, we define full subcategories ⊥⃝C = {X ∈ T | HomT(X,C[i]) ∀C ∈ C, i ⃝} and if
C = {C}, we write just C⊥⃝ and ⊥⃝C. Recall that a t-structuret-structuret-structuret-structuret-structuret-structuret-structuret-structuret-structuret-structuret-structuret-structuret-structuret-structuret-structuret-structuret-structure T in T is a pair T = (U,V) of full
subcategories such that:

(i) V = U⊥0 ,
(ii) U is closed under suspension, that is, U[1] ⊆ U,
(iii) each object X ∈ T fits into a triangle U → X → V → U [1] with U ∈ U and V ∈ V.

Following Beilinson, Bernstein, and Deligne [BBD82], any t-structure gives rise to an abelian
category HT = U∩V[1] called the heartheartheartheartheartheartheartheartheartheartheartheartheartheartheartheartheart of the t-structure. The exact sequences in HT are induced
by the triangles of T with all three components lying in the heart. In particular, a morphism
f : X → Y in H is a monomorphism if and only if Cone(f) ∈ H.
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Let now T be again a compactly generated triangulated category. A subcategory C of T is called
definabledefinabledefinabledefinabledefinabledefinabledefinabledefinabledefinabledefinabledefinabledefinabledefinabledefinabledefinabledefinabledefinable provided that there is a set Φ of maps in Tc such that

C = {X ∈ T | HomT(f,X) is the zero map ∀f ∈ Φ}.

Given an object X ∈ T, let DefT(X) (or just Def(X) if T is clear from context) denote the smallest
definable subcategory of T which contains X. Note that Def(X) exists, as it can be defined
using the set Φ of all maps f in Tc such that HomT(f,X) is the zero map. It is clear from the
definition that any definable subcategory is closed under coproducts, products, pure subobjects,
and pure quotients. Here, an object Y ∈ T is a pure subobjectpure subobjectpure subobjectpure subobjectpure subobjectpure subobjectpure subobjectpure subobjectpure subobjectpure subobjectpure subobjectpure subobjectpure subobjectpure subobjectpure subobjectpure subobjectpure subobject of X ∈ T if there is a pure
monomorphism Y → X, the pure quotientspure quotientspure quotientspure quotientspure quotientspure quotientspure quotientspure quotientspure quotientspure quotientspure quotientspure quotientspure quotientspure quotientspure quotientspure quotientspure quotients are defined similarly. By [AHMV17, Corollary 4.4],
definable subcategories are also closed under taking pure-injective envelopes, meaning that PE(X)
belongs to a definable subcategory whenever X does.

Proposition 2.5. Let T be a t-structure in T with heart H and consider an object M ∈ H. Assume
the following condition: DefT(M) ⊆ H.

Then the restriction y↾DefT(M) : DefT(M) → Mod-Tc is fully faithful. As a consequence,
AddT(M) ∼= Ctra-Sproj, where S = EndT(M) endowed with the compact topology is complete and
separated.

Proof. Recall from the discussion above that DefT(M) is closed under pure subobjects, pure quo-
tients, and pure-injective envelopes. Then the condition DefT(M) ⊆ H implies that for any
Y ∈ DefT(M), all three components of the triangle Y → PE(Y ) → L

+−→ belong to DefT(M),
and thus also to H. It follows that the pure-injective envelope map i : Y → PE(Y ) is a
monomorphism in H. If X ∈ H and f : X → Y is a phantom map in T, then i ◦ f is zero
(both in T and H). Since i is a monomorphism in H, it follows that f = 0. We showed that
y : HomT(X,Y )→ HomMod-Tc(yX,yY ) is a monomorphism for any X,Y ∈ H and Y ∈ DefT(M).

Furthermore, we have the following commutative diagram:

HomT(X,Y [−1]) HomT(X,Y ) HomT(X,PE(Y )) HomT(X,L)

0 HomMod-Tc(yX,yY ) HomMod-Tc(yX,yPE(Y )) HomMod-Tc(yX,yL)

The three rightmost vertical arrows are monomorphisms by the previous discussion, while the
third arrow from the left is an isomorphism since PE(Y ) is pure-injective [Kra00, Theorem 1.8].
It follows by Four Lemma that the second vertical arrow from the left is an isomorphism and we
are done.

Finally, since AddT(M) ⊆ DefT(M), we get the last sentence of the statement from Proposi-
tion 2.3. □

Proposition 2.6. Let T be a t-structure in T with heart H and a projective generator P of H.
Assume that DefT(P ) ⊆ H is satisfied for P and let S = EndT(P ) be endowed with the compact
topology. Then S is complete and separated and there is an equivalence of abelian categories
HomH(P,−) : H

∼=−→ Ctra-S.

Proof. By Proposition 2.5, HomT(P,−) restricts to an equivalence AddT(P )
∼=−→ Ctra-Sproj. Note

that the assumption on P ensures that AddT(P ) = AddH(P ) = Hproj.
Clearly, HomH(P,−) is well-defined as a functor H → Mod-S. Following [PŠ21, Corollary 6.3]

(also in view of [PŠ21, Remark 6.4 and §6.3]), this functor actually factorizes as HomH(P,−) : H→
Ctra-S → Mod-S, where the latter is the forgetful functor. Since HomT(P,−) = HomH(P,−) :
H → Ctra-S is an exact functor between two abelian categories with enough projectives which
restricts to an equivalence between the respective categories of projectives, a standard argument
yields that we have the desired equivalence. □
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2.5. Silting objects. In what follows we will focus on t-structures coming from the theory of
(large) silting and cosilting objects, we refer the reader to the survey [AH19, §5, §6] for details.
An object T of T is siltingsiltingsiltingsiltingsiltingsiltingsiltingsiltingsiltingsiltingsiltingsiltingsiltingsiltingsiltingsiltingsilting if the pair (T⊥>0 , T⊥≤0) constitutes a t-structure in T, called the
silting t-structuresilting t-structuresilting t-structuresilting t-structuresilting t-structuresilting t-structuresilting t-structuresilting t-structuresilting t-structuresilting t-structuresilting t-structuresilting t-structuresilting t-structuresilting t-structuresilting t-structuresilting t-structuresilting t-structure. Any object T ′ ∈ T satisfying Add(T ) = Add(T ′) is also a silting object inducing
the same silting t-structure. In this situation, we say that T and T ′ are equivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalent silting objects.
Denote the associated heart by HT and the induced cohomological functor as H0

T : T → HT .
Then HT is an abelian category with exact products such that H0

T (T ) is a projective generator
([AHMV17, Lemma 2.7]). Note also that in this situation we have HT = T ⊥̸=0 . If in addition
Add(T ) ⊆ T⊥<0 , or equivalently Add(T ) ⊆ HT , we call T a tiltingtiltingtiltingtiltingtiltingtiltingtiltingtiltingtiltingtiltingtiltingtiltingtiltingtiltingtiltingtiltingtilting object.

Definition 2.7. A silting object T ∈ T is decentdecentdecentdecentdecentdecentdecentdecentdecentdecentdecentdecentdecentdecentdecentdecentdecent provided that Def(T ) ⊆ HT . Note that since
Add(T ) ⊆ Def(T ), this implies in particular that T is a tilting object. Also, clearly the property
of being decent is invariant under equivalence of silting objects, and therefore can be viewed as a
property of the silting t-structure.

For the next part it will be important to use the fact that definable subcategories are character-
ized by their closure properties in case T admits a good enough enhancement. This was developed
by Laking [Lak20], where the enhancement comes in the form of a compactly generated derivator
and using the notion of a directed homotopy colimit and homotopy coherent reduced product we
refer to [Lak20, §2, Appendix] and references therein. For what comes in the next sections, we re-
call that the unbounded derived category D(Mod-R) of a module category over a ring R underlies a
standard compactly generated derivator, the directed homotopy colimits are in this case computed
as ordinary direct limits of diagrams in the category of cochain complexes of R-modules, see e.g.
[HN21, Appendix].

Theorem 2.8 ([Lak20]). Let C be a full subcategory of triangulated category T which is the base
of a compactly generated derivator. Then:

(1) C is definable if and only if it is closed under products, pure subobjects, and directed ho-
motopy colimits.

(2) For any Y ∈ T, the definable closure DefT(Y ) consists precisely of pure subobjects of
directed homotopy colimits of objects from ProdT(Y ).

Proof. Both the claims are proved in [Lak20, Theorem 3.11] and [Lak20, Corollary 3.12]. □

Lemma 2.9. Let T be a triangulated category which is the base of a compactly generated derivator
and T ∈ T a pure-projective tilting object. Then HT is a definable subcategory of T. In particular,
T is decent.

Proof. Since T is pure-projective, both the subcategories T⊥>0 and T⊥<0 are closed under pure
monomorphisms, pure epimorphisms, and products. It follows that both the subcategories are
closed under directed homotopy colimits and so are definable, this follows by a similar argument
as in the proof of [Lak20, Lemma 4.5]. Then their intersection HT is definable as well, and the
condition Def(T ) ⊆ HT clearly holds and T is decent. □

An object C of T is cosiltingcosiltingcosiltingcosiltingcosiltingcosiltingcosiltingcosiltingcosiltingcosiltingcosiltingcosiltingcosiltingcosiltingcosiltingcosiltingcosilting if the pair (⊥≤0C,⊥>0C) constitutes a t-structure in T. In order to
adhere to the standard notation, it is convenient to consider the associated heart shifted by degree
−1 so that the equality HC = ⊥̸=0C holds. We denote the induced (again, shifted) cohomological
functor as H0

C : T → HC . The heart HC is an abelian category with exact coproducts such that
H0

C(C) is an injective cogenerator. If in addition Prod(C) ⊆ ⊥<0C, or equivalently Prod(C) ⊆ HC ,
we call C a cotiltingcotiltingcotiltingcotiltingcotiltingcotiltingcotiltingcotiltingcotiltingcotiltingcotiltingcotiltingcotiltingcotiltingcotiltingcotiltingcotilting object. Similarly to the cosilting situation, we say that two cosilting objects C
and C ′ are equivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalentequivalent if they induced the same t-structure, which amounts to Prod(C) = Prod(C ′).

Lemma 2.10. Let T be a triangulated category which is the base of a compactly generated derivator
and C ∈ T a pure-injective cotilting object. Then Def(C) ⊆ HC .

Proof. Since C is pure-injective, both the categories ⊥>0C and ⊥<0C are closed under pure
monomorphisms, pure epimorphisms, and coproducts. It follows that their intersection HC is



8 MICHAL HRBEK

closed under pure monomorphisms and directed homotopy colimits (see the proof of [Lak20, Lemma
4.5]). Since C is cotilting, we have ProdC ⊆ HC . Now it is enough to recall from Theorem 2.8(2)
that Def(C) consists precisely of all pure subobjects of directed homotopy colimits of objects in
Prod(C). □

Remark 2.11. Certain asymmetry is now apparent from Lemmas 2.9 and 2.10. First, unlike
for pure-projective tilting objects, it is not always the case that the heart HC of a pure-injective
cotilting object is a definable subcategory.

Secondly, one encounters far fewer pure-projective tilting objects in practice than the pure-
injective cotilting counterparts. Of course, any compact tilting object is pure-projective. There
exist pure-projective tilting complexes which are not equivalent to a compact one but these are
rather exotic, see [BHP+20]. On the other hand, any (bounded) cotilting complex in a derived
category of a ring is known to be pure-injective [MV18, Proposition 3.10]. In fact, the author is not
aware of any example of a cosilting object of a compactly generated triangulated category which
is not pure-injective.

In what follows, we will show that the condition of being decent for a tilting complex T in a
derived category of a ring holds much more generally then under the pure-projective assumption,
but it does not hold always.

3. Tilting complexes and hearts in the derived category of a ring

If A is an abelian category, we let D(A) denote the (unbounded) derived category and Db(A)
the bounded derived category of cochain complexes over A. The abelian categories we consider
never encounter issues with the existence of their derived categories.

Unless said otherwise, R will always denote an arbitrary (associative, unital) ring. An object
T ∈ D(Mod-R) of the derived category of right R-modules is a (bounded) silting complexsilting complexsilting complexsilting complexsilting complexsilting complexsilting complexsilting complexsilting complexsilting complexsilting complexsilting complexsilting complexsilting complexsilting complexsilting complexsilting complex1 if T is
a silting object which is quasi-isomorphic to a bounded complex of right projective R-modules. A
silting complex T is called a tilting complextilting complextilting complextilting complextilting complextilting complextilting complextilting complextilting complextilting complextilting complextilting complextilting complextilting complextilting complextilting complextilting complex in case it is a tilting object in D(Mod-R). Finally, a
silting complex is decentdecentdecentdecentdecentdecentdecentdecentdecentdecentdecentdecentdecentdecentdecentdecentdecent if it is decent as a silting object, that is, if Def(T ) ⊆ HT . We recall that
any decent silting complex is automatically tilting. Note that since T⊥>0 is always a definable
subcategory of D(Mod-R) [MV18, Theorem 3.6], a silting complex T is decent if and only if
Def(T ) ⊆ T⊥<0 .

Dually, an object C ∈ D(R-Mod) of the derived category of left R-modules is a cosilting complexcosilting complexcosilting complexcosilting complexcosilting complexcosilting complexcosilting complexcosilting complexcosilting complexcosilting complexcosilting complexcosilting complexcosilting complexcosilting complexcosilting complexcosilting complexcosilting complex
if C is isomorphic in D(R-Mod) to a bounded complex of injective R-modules and it is a cosilting ob-
ject in this triangulated category. Any (bounded) cosilting complex is pure-injective in D(R-Mod)
and HC is a Grothendieck category with an injective cogenerator H0

C(C) [MV18, Proposition 3.10],
[AHMV17, Lemma 2.7, Theorem 3.6]. If C is in addition a cotilting object in D(R-Mod), we call
it a cotilting complexcotilting complexcotilting complexcotilting complexcotilting complexcotilting complexcotilting complexcotilting complexcotilting complexcotilting complexcotilting complexcotilting complexcotilting complexcotilting complexcotilting complexcotilting complexcotilting complex. Finally, we say that a cosilting complex is of cofinite typecofinite typecofinite typecofinite typecofinite typecofinite typecofinite typecofinite typecofinite typecofinite typecofinite typecofinite typecofinite typecofinite typecofinite typecofinite typecofinite type if the associated
cosilting t-structure is compactly generated.

Consider the character duality functor (−)+ := HomZ(−,Q/Z) acting as a functor Mod-R →
R-Mod. Since (−)+ is exact, it naturally extends to a functor (−)+ : D(Mod-R) → D(R-Mod).
Note that this is a conservative functor, a property we will utilize throughout the rest of the paper.
We will also need another duality functor (−)∗ := RHomR(−, R) which induces a contravariant
equivalence D(Mod-R)c

∼=−→ D(R-Mod)c on the categories of compact objects. See [AHH21, §2.2] for
details about these dualities, and also the recent preprint [BW22] where the triangulated character
duality is developed in larger generality. By symmetry, we also freely consider both functors going
in the opposite direction.

The cosilting complexes of cofinite type are known to be precisely the character duals of silting
complexes, up to equivalence.
Proposition 3.1. [AHH21, Theorem 3.3] If T ∈ D(Mod-R) is a silting complex then T+ ∈
D(R-Mod) is a cosilting complex. This assignment yields a bijection between equivalence classes

1Silting complexes not necessarily isomorphic to a bounded complex of projectives are also considered in the
literature. In this paper, we focus on the bounded versions of silting and cosilting complexes.
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of silting complexes in D(Mod-R) and equivalence classes of cosilting complexes in D(R-Mod) of
cofinite type.

The following lemma shows that applying the character duality induces a pair of definable cate-
gories which are in the usual terminology from the model theory of modules called dual definabledual definabledual definabledual definabledual definabledual definabledual definabledual definabledual definabledual definabledual definabledual definabledual definabledual definabledual definabledual definabledual definable.

Lemma 3.2. Let Y ∈ D(Mod-R). Then:
(i) For any X ∈ D(Mod-R) we have X ∈ DefD(Mod-R)(Y ) ⇐⇒ X+ ∈ DefD(R-Mod)(Y

+),
(ii) For any Z ∈ D(R-Mod) we have Z ∈ DefD(R-Mod)(Y

+) ⇐⇒ Z+ ∈ DefD(Mod-R)(Y ).

Proof. Let Φ be the set of all maps in f in D(Mod-R)c such that HomD(Mod-R)(f, Y ) is zero so that
Def(Y ) = {X ∈ D(Mod-R) | HomD(Mod-R)(f,X) is zero ∀f ∈ Φ}. Put Φ∗ = {f∗ | f ∈ Φ}. We
recall that f∗ = RHomR(f,R) and Φ∗ is a set of maps between compact objects of D(R-Mod). For
any map f in D(Mod-R)c and any X ∈ D(Mod-R) we have an equivalence

HomD(Mod-R)(f,X) is zero ⇐⇒ HomD(R-Mod)(f
∗, X+) is zero,

see the proof of [AHH21, Lemma 2.3]. Plugging X = Y , we obtain that the set Φ∗ of maps in
D(R-Mod)c defines Def(Y +), and then using it for general X ∈ D(Mod-R) we obtain (i). Since
Φ∗∗ identifies with Φ, we also obtain (ii) by the same argument. □

Lemma 3.3. Let T be a tilting complex in D(Mod-R) and put C = T+. For any X ∈ D(R-Mod)
we have X ∈ HC if and only if X+ ∈ HT .

Proof. Note that HT = T ⊥̸=0 and our convention also ensures that HC = ⊥̸=0C. Using adjunction,
there are isomorphisms for any X ∈ D(R-Mod) and i ∈ Z

HomD(R-Mod)(X,T+[i]) ∼= (T ⊗L
R X[−i])+ ∼= HomD(Mod-R)(T,X

+[i]),

which is enough to conclude the proof. □

We follow with the main result of this section which provides a more intuitive and useful char-
acterization of the decent property of a silting complex.

Theorem 3.4. Let T ∈ D(Mod-R) be a silting complex and put C = T+. The following are
equivalent:

(i) T is decent,
(ii) the cosilting complex T+ is cotilting.

Proof. (i) =⇒ (ii): Since DefD(Mod-R)(T ) is closed under taking the double character dual
(−)++ (this follows e.g. by Lemma 3.2), condition (i) ensures that for any X ∈ Add(T ) we have
X++ ∈ HT . This in turn means X+ ∈ HC by Lemma 3.3. This already shows that Cκ ∈ HC for
any cardinal κ. Since HC is closed under direct summands, we have Prod(C) ⊆ HC as desired.

(ii) =⇒ (i): By Lemma 3.2, the definable closures of T and C = T+ satisfy that X ∈
DefD(Mod-R)(T ) if and only if X+ ∈ DefD(R-Mod)(C). By Lemmas 2.10 and 3.3, we have for any X ∈
DefD(Mod-R)(T ) that X++ ∈ HT . As a consequence, any pure-injective object from DefD(Mod-R)(T )
belongs to HT , see [AHH21, Corollary 2.8].

Now let X ∈ DefD(Mod-R)(T ) be any object. Since T⊥>0 is definable, it is enough to show
X ∈ T⊥<0 to demonstrate that X ∈ HT . There is a sequence of triangles Xi → Pi → Xi+1 → Xi[1]
indexed by i ≥ 0 determined by the following properties: The map Xi → Pi is the pure-injective
envelope for all i ≥ 0 and X0 = X. It follows that Xi ∈ DefD(Mod-R)(T ) for all i ≥ 0. By the
previous paragraph, Pi ∈ HT for all i ≥ 0. Therefore, we have for any l > 0 an isomorphism
HomD(Mod-R)(T,X0[−l]) ∼= HomD(Mod-R)(T,Xi[−l − i]).

For any set of integers I, the full subcategory of D(Mod-R) determined by vanishing of coho-
mology in degrees outside of I is easily seen to be definable. Then since T is a cohomologically
bounded object, there are integers a < b such that any object from DefD(Mod-R)(T ) has coho-
mology vanishing outside of degrees in the interval [a, b]. But then HomD(Mod-R)(T,Xi[−l − i])
has to vanish whenever −l − i < −n for n ≫ 0. Using the above isomorphism, we infer that
HomD(Mod-R)(T,X0[−l]) = 0 for all l > 0, meaning that X0 = X ∈ T⊥<0 as desired. □
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The following is an easy consequence of Theorem 3.4. We will show in Example 3.12 that the
converse implication is not true in general.

Corollary 3.5. Let T be a silting complex in D(Mod-R) such that T+ is a cotilting complex in
D(R-Mod). Then T is tilting.

Corollary 3.6. The assignment T 7→ T+ of Proposition 3.1 restricts to a bijection Decent tilting complexes
in D(Mod-R)

up to equivalence

 1−1←→

 Cotilting complexes of cofinite type
in D(R-Mod)

up to equivalence

 .

Proof. Follows directly from Theorem 3.4, as a silting complex T is decent (and thus in particular,
tilting) if and only if T+ is a cotilting complex. □

Corollary 3.7. Let R be a commutative noetherian ring. The assignment T 7→ T+ of Proposi-
tion 3.1 restricts to a bijection Decent tilting complexes

in D(Mod-R)
up to equivalence

 1−1←→

 Cotilting complexes
in D(R-Mod)

up to equivalence

 .

Proof. In this situation, any cosilting complex is automatically of cofinite type by [HN21, Corollary
2.14] and [MV18, Proposition 3.10]. □

Example 3.8. Let M ∈ Mod-R. Then M is a silting complex in D(Mod-R) if and only if M
is an n-tilting module for some n ≥ 0 (see e.g. [PŠ21, §2]). Then any such n-tilting module is
well-known to satisfy condition (ii) of Theorem 3.4. Together with Lemma 2.9, we see that decent
tilting complexes generalize both n-tilting modules and compact tilting complexes.

3.1. Examples over commutative rings. A silting complex is 2-term2-term2-term2-term2-term2-term2-term2-term2-term2-term2-term2-term2-term2-term2-term2-term2-term if it is isomorphic in
D(Mod-R) to a complex of projectives concentrated in degrees 0 and -1. The main result of
[AHH17] says that 2-term silting complexes T in D(R) over a commutative ring R correspond
up to an equivalence to hereditary torsion pairs (TG,FG) of finite type in Mod-R, which in turn
correspond to Gabriel filters G of finite type. A Gabriel filter of finite type is a linear topology of
open ideals of R with a basis of finitely generated ideals closed under ideal products, see [Hrb16,
Lemma 2.3]. Then TG = {M ∈ Mod-R | Ann(m) ∈ G ∀m ∈ M}, where Ann(m) is the annihilator
ideal of m. Furthermore, given such torsion pair, the tilting heart HT can be described just using
cohomology as

X ∈ HT ⇐⇒ Hi(X)


∈ EG i = −1
∈ DG i = 0

= 0 else
,

where DG = {M ∈ Mod-R | M = IM ∀I ∈ G} is the torsion class of all G-divisible modules and
EG = DG

⊥0 is the corresponding torsion-free class of G-reduced modules, i.e. modules with no
non-zero G-divisible submodule. In other words, HT is obtained as the Happel-Reiten-Smalø tilt
with respect to the torsion pair (DG,EG) of Mod-R.

Denote by tG : Mod-R → Mod-R the torsion radical corresponding to the hereditary torsion
class TG. We say that a G-torsion module M ∈ TG is G-boundedG-boundedG-boundedG-boundedG-boundedG-boundedG-boundedG-boundedG-boundedG-boundedG-boundedG-boundedG-boundedG-boundedG-boundedG-boundedG-bounded if there is I ∈ G such that IM = 0.

Proposition 3.9. Let R be commutative noetherian ring. Then any 2-term silting complex T ∈
D(Mod-R) is decent tilting.

Proof. This follows from [PV21, Corollary 5.12] and Theorem 3.4. □

Remark 3.10. Much more is proved in [PV21]: Any intermediate and compactly generated t-
structure in D(Mod-R) which restricts to a t-structure in the bounded derived category Db(mod-R)
of finitely generated module is induced by a cotilting complex. Such t-structures are abundant
[ATJLS10, §6] and correspond to decent tilting complexes via Corollary 3.7.
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Another source of decent tilting complexes over commutative noetherian rings is provided in
[HNŠ22, §6, §7]. There, it is shown that any codimension function d : Spec(R)→ Z on the Zariski
spectrum of a commutative noetherian ring R of finite Krull dimension gives rise to a silting
complex Td in the derived category. If R is in addition a homomorphic image of a Cohen-Macaulay
ring, then Td is in fact tilting and its character dual is cotilting. Unless R is itself Cohen-Macaulay,
Td is not quasi-isomorphic to a stalk complex, [HNŠ22, Remark 5.9].

Lemma 3.11. Let R be a commutative ring and T be a 2-term silting complex in D(Mod-R)
corresponding to a Gabriel filter G. Then:

(1) If tG(R) is G-reduced then T is a tilting complex.
(2) tG(R) is G-bounded if and only if T+ is a cotilting complex.

Proof. There is an exact sequence

0→ tG(R)→ R→ D0 → D1 → 0

where D0, D1 ∈ DG. Indeed, this follows since R/tG(R) admits a monomorphic DG-preenvelope.
Then T is tilting by [CHZ19, Theorem A] (cf. Section 4.1).

Now we prove the second statement. By [PV21, Theorem 5.6], T+ is cotilting if and only if
J ∈ G, where J = trR/tG(R)R is the trace ideal of the cyclic module R/tG(R). If the G-torsion in R
is bounded there is I ∈ G such that ItG(R) = 0. This implies I ⊆ J and so J ∈ G. On the other
hand, clearly JtG(R) = 0, and so J ∈ G implies that the G-torsion of R is bounded. □

We are ready to provide an example of an indecent tilting complex.

Example 3.12. There is a commutative ring R and a 2-term tilting complex T in D(R) such the
cosilting complex T+ is not cotilting. Furthermore, we show that the natural map T (ω) → Tω is not
a monomorphism in HT . As a consequence HT cannot be equivalent to a category of contramodules
over any complete and separated topological ring, see [PŠ21, last paragraph of §6.2].

This example follows [Pos16, Example 2.6]. Let k be a field and R be the commutative k-
algebra generated by the infinite sequence x1, x2, x3, . . . and another generator y subject to relations
xixj = 0 and yixi = 0 for all i, j > 0. Consider the Gabriel filter G generated by the principal
ideal (y). Then it is easy to see that the G-torsion tG(R) is not G-bounded, but it is G-reduced, so
the induced silting complex T is tilting, but T+ is not cotilting by Lemma 3.11.

Furthermore, let f : R → R[y−1] be the localization map. Recall from [AHMV19, Proposition
1.3] and [AHH21, Example 4.14(5)] that we can chose T = R[y−1] ⊕ Cone(f) (see also [AHH21,
Proposition 5.15]). We claim that the map g : T (ω) → Tω is not a monomorphism in HT , or
equivalently, that Cone(g) ̸∈ HT . Clearly, H−1Cone(g) ∼= Coker(H−1g). Furthermore, H−1g is
just the map tG(R)(ω) → tG(R)ω. and so Coker(H−1g) ∼= tG(R)ω/tG(R)(ω). Since tG(R)ω/tG(R)(ω)

is precisely the ω-reduced product, any ω-directed limit of copies of tG(R) can be embedded into
it [Pre09, Theorem 3.3.2].

It remains to show that there is a ω-directed limit of copies of tG(R) which is not G-reduced.
Note that tG(R) ∼=

⊕
n>0(xn), and (xn) ∼= k[y]/(yn) with the obvious R-action in which xi = 0 for

i > 0. Then there is an monic endomorphism h of tG(R) which sends xn to yxn+1 for each n > 0.
The direct limit of the system tG(R)

h−→ tG(R)
h−→ tG(R)

h−→ tG(R)
h−→ · · · is not G-reduced because

multiplication by y acts surjectively on the direct limit (and it is non-zero).

4. Good tilting complexes

Let T be a silting complex in D(Mod-R) and let S = EndD(Mod-R)(T ) be the endomorphism
ring which we again consider as a topological ring by endowing it with the compact topology. We
also let A = dgEndR(T )

∼= RHomR(T, T ) be the endomorphism dg-ring of T ; this is a weakly
non-positive dg-ring as Hi(A) = HomD(Mod-R)(T, T [i]) = 0 for i > 0. We have S = H0(A) and
the weak non-positivity ensures that there is the standard t-structure (D≤0,D>0) in the derived
category of right dg-modules D(dgMod-A) defined by vanishing of cohomology; the heart of this
t-structure is Mod-S.
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The following definition was introduced for 1-tilting modules by [Baz10], and then generalized
to n-tilting modules by [BMT11]. Our version for silting complexes is akin to the condition used in
a more general dg setting in [NS18]. Recall that a full triangulated subcategory of a triangulated
category is thickthickthickthickthickthickthickthickthickthickthickthickthickthickthickthickthick if it is closed under direct summands, and we denote the thick closure operator
as thick(−).

Definition 4.1. A silting complex T ∈ D(Mod-R) is goodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgood provided that R ∈ thick(T ).

The assumption of being good is satisfied for any compact silting object. For non-compact
ones being good is not automatic, but it is still a rather mild assumption thanks to the following
well-known observation, which we reprove here in our setting.

Lemma 4.2. For any silting complex T there is a good silting complex T ′ equivalent to T .

Proof. Since T is a silting complex we have R ∈ thick(Add(T )), see [AH19, Proposition 5.3].
In particular, there are T0, . . . , Tn−1 ∈ Add(T ) such that R ∈ thick(T0, . . . , Tn−1). Put T ′ =

T ⊕
⊕n−1

i=0 Ti, then clearly R ∈ thick(T ′) and Add(T ) = Add(T ′). The last equality implies that T ′

is a silting complex and that it is equivalent to T as such. □

We record some adjunction formulas for dg-modules, well-known to experts, for further use.

Lemma 4.3. Let A and B be dg-rings.
There is an evaluation morphism

γX,Y,Z : RHomA(X,Y )⊗L
B Z → RHomA(X,Y ⊗L

B Z)

which is natural in X ∈ D(A-dgMod), Y ∈ D((A⊗Z Bop)-Mod), Z ∈ D(B-dgMod).
There is an evaluation morphism

δX,Y,Z : RHomA(Y,X)⊗L
B Z → RHomA(RHomB(Z, Y ), X)

natural in Y ∈ D(Mod-(A⊗Z Bop)), X ∈ D(dgMod-A), Z ∈ D(B-dgMod).
If Z is a compact object in D(B-dgMod) then both γX,Y,Z and δX,Y,Z are isomorphisms (in

D(Mod-Z).

Proof. For the first morphism we refer to [Yek20, Theorem 12.9.10,Theorem 14.1.22]. The exis-
tence of the second morphism is covered e.g. in [BM17, Lemma 1.3]. The fact that δX,Y,Z is an
isomorphism if Z is compact follows by a standard argument. Indeed, this map is easily checked to
be an isomorphism if Z = B, and therefore it is an isomorphism also if Z ∈ thickD(B-dgMod)(B) =
D(B-dgMod)c. □

The following results are available in [NS18] (see also [BM17]), but we gather the relevant parts
here in a form directly applicable for our purposes.

Theorem 4.4. Let T ∈ D(Mod-R) be a good silting complex. Then:
(i) T is compact as an object of D(A-dgMod),
(ii) the canonical morphism R→ RHomA(T, T ) is a quasi-isomorphism.
(iii) both the functors RHomR(T,−) : D(Mod-R) → D(dgMod-A) and T ⊗L

R − : D(R-Mod) →
D(A-dgMod) are fully faithful.

(iv) the essential images from both the functors from (iii) are thick subcategories.

Proof. (i) : There is a finite sequence of triangles witnessing that R ∈ thickD(Mod-R)(T ), and by
applying RHomR(−, T ) on these triangles we obtain that T ∈ thickD(A-dgMod)(A) = D(A-dgMod)c.

(ii) : Follows as in [BM17, Theorem 1.4]. Indeed, consider the unit morphism αX : X →
RHomA(RHomR(X,T ), T ) of the adjoint pair RHomR(−, T ) : D(Mod-R)op →← D(A-dgMod)op :

RHomA(−, T ). Clearly,

αT : T → RHomA(RHomR(T, T ), T ) ∼= RHomA(A, T ) ∼= T

is an isomorphism. But since R ∈ thickD(Mod-R)T , also

αR : R→ RHomA(RHomR(R, T ), T ) ∼= RHomA(T, T )
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is an isomorphism, and this is easily checked to coincide with the canonical isomorphism.
(iii) : That RHomR(T,−) is fully faithful follows from [NS18, Theorem 6.4] or also [BM17,

Theorem 1.4]. The second statement follows similarly and is also contained in [NS18, Theorem
6.4], but we sketch it here for convenience. It is enough to show that the unit morphism X →
RHomA(T, T ⊗L

R X) is an isomorphism for any X ∈ D(R-Mod). By Lemma 4.3, the natural
morphism γX,T,T : RHomA(T, T ) ⊗L

R X → RHomA(T, T ⊗L
R X) is an isomorphism. Then the

above unit morphism factorizes as

X
∼=−→ R⊗L

R X
∼=−→ RHomA(T, T )⊗L

R X
γX,T,T−−−−→ RHomA(T, T ⊗L

R X),

and therefore it is an isomorphism.
(iv): The functors in question are fully faithful by (iii) and admit a left or right adjoint,

respectively. □

Corollary 4.5. Let T ∈ D(Mod-R) be a good and decent tilting object. Then the forgetful functor
Ctra-S→ Mod-S is fully faithful.
Proof. The functor HomHT

(T,−) : HT → Mod-S factorizes into the composition of the equivalence
HomHT

(T,−) : HT

∼=−→ Ctra-S and the forgetful functor Ctra-S→ Mod-S. On the other hand, the
functor RHomR(T,−) : D(Mod-R)→ D(dgMod-A) is fully faithful by Theorem 4.4. Then also the
restriction of RHomR(T,−) to the heart HT is fully faithful, and this functor naturally identifies
with HomHT

(T,−) : HT → Mod-S (recall that Mod-S can be identified with the heart of the
standard t-structure in D(dgMod-A)). □

4.1. Derived equivalence and realization functors. Given an abelian category A, a t-structure
(U,V) in D(A) (or in Db(A)) is intermediateintermediateintermediateintermediateintermediateintermediateintermediateintermediateintermediateintermediateintermediateintermediateintermediateintermediateintermediateintermediateintermediate if there are integers n < m such that D≤n ⊆ U ⊆ D≤m,
where again D≤n = {X ∈ D(A) | Hi(X) = 0 ∀i > n}. It is easy to check that any intermediate
t-structure in the unbounded derived category restricts to a t-structure in the bounded derived
category and that any t-structure induced by a silting complex in D(Mod-R) is intermediate, and
similarly for cosilting complexes in D(R-Mod).

Following [BBD82], as explained in a more detail in [PV18, §2, §3, §4], for any intermediate
t-structure T in D(Mod-R) there is a triangle functor realT : Db(HT) → Db(Mod-R) which ex-
tends the inclusion HT ⊆ Db(Mod-R). This realization functor may in principle be non-unique2

and in fact it is constructed using, and determined by, a suitable enhancement of Db(Mod-R)
called the f-enhancementf-enhancementf-enhancementf-enhancementf-enhancementf-enhancementf-enhancementf-enhancementf-enhancementf-enhancementf-enhancementf-enhancementf-enhancementf-enhancementf-enhancementf-enhancementf-enhancement, see [PV18, §3]. An example of an f-enhancement is the structure of a
filtered (bounded) derived categoryfiltered (bounded) derived categoryfiltered (bounded) derived categoryfiltered (bounded) derived categoryfiltered (bounded) derived categoryfiltered (bounded) derived categoryfiltered (bounded) derived categoryfiltered (bounded) derived categoryfiltered (bounded) derived categoryfiltered (bounded) derived categoryfiltered (bounded) derived categoryfiltered (bounded) derived categoryfiltered (bounded) derived categoryfiltered (bounded) derived categoryfiltered (bounded) derived categoryfiltered (bounded) derived categoryfiltered (bounded) derived category, which is always available for Db(Mod-R).

Let T ∈ D(Mod-R) be a silting complex. Then the realization functor realT : Db(HT ) →
Db(Mod-R) is a triangle equivalence if and only if T is tilting [PV18, Corollary 5.2]. The analogous
result is also true for bounded cosilting objects in Db(R-Mod).
Proposition 4.6. Let R,S be rings and let R and S be two t-structures in Db(Mod-R) and
Db(Mod-S) respectively. Let F : Db(Mod-R)→ Db(Mod-S) be a triangle functor which satisfies the
following conditions:

(i) F is t-exact with respect to the t-structures R and S, that is, F preserves both the left and
the right constituents of the t-structures,

(ii) F is fully faithful and its essential image is a thick subcategory of Db(Mod-S).
By (i), F restricts to an exact functor F0 : HR → HS between the hearts of the two t-structures.
Then the following diagram commutes (up to natural equivalence):

Db(HR) Db(HS)

Db(Mod-R) Db(Mod-S)

realR

F0

realS

F

2This pathology seems to disappear once we switch to a strong enough enhancement of the derived category, cf.
[Lur17, Proposition 1.3.3.7].
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where in the upper row F0 is naturally extended to the bounded derived categories and the realization
functors are taken with respect to suitable f-enhancements.

Proof. This follows by combining [PV18, Theorem 3.13] and [PV18, Corollary 3.9]. Indeed, by
[PV18, Example 3.2], the bounded derived category Db(Mod-S) admits an f-enhancement in the
form of a filtered (bounded) derived category, see [PV18, §3.1] for the definitions. By (ii) and
[PV18, Corollary 3.9], there is an induced f-enhancement on Db(Mod-R) such that F admits an
f-lifting with respect to the two f-enhancements. Then [PV18, Theorem 3.13] applies. □

For any morphism f : A→ B of dg-rings such that f is a quasi-isomorphism of the underlying
complexes, the forgetful functor Uf : D(dgMod-B) → D(dgMod-A) is a triangle equivalence with
If := −⊗L

A B ∼= RHomA(B,−) : D(dgMod-A)→ D(dgMod-B), the inverse equivalence. Moreover,
both the functors Uf and If preserve the cohomology of the objects. For details, see [Yek20,
Theorem 12.7.2, Lemma 12.7.3].

Now let R be a ring, T ∈ D(Mod-R) a tilting complex, S = EndD(Mod-R)(T ) be the endomorphism
ring endowed with the compact topology, and let A = dgEndR(T ) be the endomorphism dg-ring
of T . Since T is tilting, we have H0(A) = S and Hi(A) = 0 for all i ̸= 0. Then the zig-zag
of quasi-isomorphisms of dg-rings S = τ≥0τ≤0A

r←− τ≤0A
l−→ A induces a triangle equivalence ϵ :

D(dgMod-A)→ D(Mod-S), where ϵ = Ir◦Ul. Clearly, ϵ restricts to an equivalence Db(dgMod-A)→
Db(Mod-S) of the corresponding bounded derived categories. By abuse of notation, we will denote
by ϵ also the analogous equivalence D(A-dgMod)

∼=−→ D(S-Mod) on the side of left (dg-)modules.
Note that T being isomorphic in D(Mod-R) to a bounded complex of projectives implies that

both the functors RHomR(T,−) and T ⊗L
R − restrict to functors between the respective bounded

derived categories.

Theorem 4.7. Assume that T is good and decent. Then the forgetful functor Db(Ctra-S) →
Db(Mod-S) is fully faithful, and the functor G = ϵ ◦RHomR(T,−) induces a triangle equivalence
G : Db(Mod-R)→ Db(Ctra-S) with inverse equivalence (−⊗L

A T ) ◦ (ϵ−1)↾D(Ctra-S).

Proof. Observe that the functor G restricted to HT is equivalent to the functor HomHT
(T,−) :

HT → Ctra-S ⊆ Mod-S, the last inclusion being fully faithful is provided by Corollary 4.5.
Since T is a tilting complex, the realization functor realT : Db(HT ) → Db(Mod-R) is a triangle
equivalence [PV18, Corollary 5.2]. The functor G is clearly t-exact with respect to the tilting t-
structure (T⊥>0 , T⊥≤0) in D(Mod-R) and the standard t-structure in D(Mod-S). By Theorem 4.4,
G is a fully faithful functor realizing Db(Mod-R) as a thick subcategory of Db(Mod-S). Then
Proposition 4.6 applies and yields a commutative diagram as follows:

Db(HT ) Db(Mod-S)

Db(Mod-R) Db(Mod-S)

realT∼=

HomHT
(T,−)

=

G

Since G is fully faithful, and since HomHT
(T,−) factorizes through Db(Ctra-S), it follows from the

upper row that the forgetful functor Db(Ctra-S)→ Db(Mod-S) is fully faithful. Then the essential
image of HomHT

(T,−) : Db(HT ) → Db(Mod-S) is precisely the full subcategory Db(Ctra-S) and
the commutative square above yields another commutative square

Db(HT ) Db(Ctra-S)

Db(Mod-R) Db(Ctra-S)

realT∼=

HomHT
(T,−)

∼=
=

G

with the upper functor being an equivalence. It follows that G is a triangle equivalence.
The inverse equivalence is (− ⊗L

A T ) ◦ (ϵ−1)↾Db(Ctra-S) since this is the left adjoint to G and
Db(Ctra-S) is a full subcategory of Db(Mod-S). □
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Corollary 4.8. In the setting as above, the equivalence of Theorem 4.7 restricts to an equivalence
H0 RHomR(T,−) : HT

∼= Ctra-S : − ⊗L
A T , when we consider Ctra-S as a full subcategory of the

standard heart of D(dgMod-A).

5. Cotilting hearts and discrete modules

5.1. Discrete modules and contratensor product. Let R be a (left) topological ring. A left R-
module N is called discretediscretediscretediscretediscretediscretediscretediscretediscretediscretediscretediscretediscretediscretediscretediscretediscrete if for any element n ∈ N its annihilator AnnR(n) = {r ∈ R | rn = 0}
is open. The full subcategory R-Discr of R-Mod consisting of all discrete left R-modules is a
locally finitely generated Grothendieck category with an injective cogenerator obtained by taking
the maximal discrete submodule of an injective cogenerator of R-Mod.

Now assume that R is complete and separated. For any N ∈ R-Discr and any abelian group
V , the right R-module HomMod-Z(N,V ) structure naturally extends to a structure of a right R-
contramodule. There is the contratensor productcontratensor productcontratensor productcontratensor productcontratensor productcontratensor productcontratensor productcontratensor productcontratensor productcontratensor productcontratensor productcontratensor productcontratensor productcontratensor productcontratensor productcontratensor productcontratensor product functor − ⊙R − : Ctra-R × R-Discr → Mod-Z,
which is defined as a suitable quotient of the ordinary tensor product. The defining property of this
functor is the adjunction isomorphism HomMod-Z(M⊙R N,V ) ∼= HomCtra-R(M,HomMod-Z(N,V )).
We refer to [PŠ21, §7.2] for more details. Finally, we record the following observation.

Lemma 5.1. Let T be a good and decent tilting complex in D(Mod-R) and S as before. Then the
contratensor product −⊙S− : Ctra-S×S-Discr→ Mod-Z is naturally equivalent to (the restriction
of) the ordinary tensor product −⊗S −.

Proof. By Corollary 4.5, the forgetful functor Ctra-R → Mod-R is fully faithful and this implies
our claim, see [PŠ21, Lemma 7.11]. □

5.2. Cotilting hearts. We are ready to characterize cotilting hearts obtained from character
duals of decent tilting complexes as categories of discrete modules.

Theorem 5.2. Let T ∈ D(Mod-R) be a good and decent tilting complex and C = T+. The functor
H0(T ⊗L

R −) induces an equivalence HC → S-Discr with the inverse equivalence RHomA(T,−),
where we consider S-Discr as a full subcategory of the heart S-Mod of the standard t-structure in
D(A-dgMod).

Proof. We start by checking that the two functors are well-defined. First, the functor H0(T ⊗L
R−)

constitutes a well-defined functor D(R-Mod)→ S-Mod. This is because the functor T ⊗L
R − takes

values in D(A-dgMod), which is sent to S-Mod by H0. We show that this functor lands in the
full subcategory S-Discr; in fact, we show that H0(T ⊗L

R X) is a discrete left S-module for any
X ∈ D(R-Mod). First, assume that X is a compact object of D(R-Mod). The compactness of X
yields an isomorphism H0(T⊗L

RX) ∼= H0 RHomR(X
∗, T ) where X∗ = RHomR(X,R) is a compact

object in D(Mod-R), see §3 or Lemma 4.3. But then H0 RHomR(X
∗, T ) = HomD(Mod-R)(X

∗, T ) is
clearly a discrete left S-module by the definition of the compact topology on S. Now consider a
general object X ∈ D(R-Mod), we may and will assume that X is a dg-flat complex. By [CH15,
Theorem], we can write X as a direct limit X = lim−→i∈I

Xi of complexes Xi which are compact.
Then H0(T ⊗L

R X) = H0(T ⊗L
R lim−→i∈I

Xi) ∼= lim−→i∈I
H0(T ⊗L

R Xi). Since a direct limit of discrete
modules is discrete, this argument is finished.

On the other hand, let N ∈ S-Discr, then by compactness of T ∈ D(A-dgMod) we have that
RHomA(T,N)+ ∼= N+ ⊗L

A T (see Lemma 4.3), and so RHomA(T,N)+ ∈ HT ⊆ D(Mod-R) by
Corollary 4.8 since N+ ∈ Ctra-S. In view of Lemma 3.3, RHomA(T,−) induces a well-defined
funtor S-Discr → HC . Moreover, since (T ⊗L

R X)+ ∼= RHomR(X,C) and HC = ⊥̸=0C, we have
that T ⊗L

RX has cohomology concentrated in degree 0 for any X ∈ HC . Therefore, H0(T ⊗L
R−) is

naturally identified with T ⊗L
R − as functors from the heart HC , and so the two functors from the

statement are well-defined and also mutually adjoint. Therefore, to establish the equivalence it is
enough to show that both the unit and the counit morphism of this adjunction are isomorphisms.

Let N ∈ S-Discr, and consider the counit morphism ν : H0(T ⊗L
R RHomA(T,N)) → N . Then

we compute using a similar isomorphism utilizing Lemma 4.3 as above:

H0(T ⊗L
R RHomA(T,N))+ ∼= H0 RHomR(T,RHomA(T,N)+) ∼=
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∼= H0 RHomR(T,N
+ ⊗L

A T ).

It follows that ν+ is identified with the unit morphism of the equivalence of Corollary 4.8 evaluated
at N+ ∈ Ctra-S, so ν+ is an isomorphism, and therefore ν is an isomorphism.

Let X ∈ HC and consider the unit morphism η : X → RHomA(T, T ⊗R X). Then we compute:

RHomA(T, T ⊗L
R X)+ ∼= (T ⊗L

R X)+ ⊗L
A T ∼=

∼= RHomR(T,X
+)⊗L

A T.

It follows that η+ is the counit morphism of the equivalence of Corollary 4.8 evaluated at X+ ∈ HT ,
and therefore η is an isomorphism. □

As a consequence, we obtain a description of the hearts induced by cotilting complexes of cofinite
type. Recall that if R is commutative noetherian then any cotilting complex is of cofinite type
[HN21, Corollary 2.14].

Corollary 5.3. Let C ∈ D(R-Mod) be a cotilting complex of cofinite type. Then there is a complete
and separated topological ring S such that HC

∼= S-Discr.

Proof. By Corollary 3.6, there is a decent tilting complex T ∈ D(Mod-R) such that C is equivalent
to T+ as cosilting complexes. By Lemma 4.2, there is a good and decent tilting complex T ′ which
is equivalent to T . Putting S = EndD(Mod-R)(T

′) and endowing S with the compact topology, the
proof is finished by noting that HC

∼= HT ′+ ∼= S-Discr where the last equivalence follows from
Theorem 5.2. □

5.3. Cotilting derived equivalence and tensor compatibility.

Theorem 5.4. Assume that T ∈ D(Mod-R) is a good and decent tilting complex and let again
S = EndD(Mod-R)(T ). Then the forgetful functor Db(S-Discr)→ Db(S-Mod) is fully faithful and
the functor H = ϵ ◦ (T ⊗L

R −) induces a triangle equivalence H : Db(R-Mod)→ Db(S-Discr).

Proof. This is proved similarly to Theorem 4.7. By Theorem 4.4, (T ⊗L
R −) : Db(R-Mod) →

Db(A-dgMod) is fully faithful. Arguing as in Theorem 4.7, Proposition 4.6 yields a commutative
square:

Db(HC) Db(S-Mod)

Db(R-Mod) Db(S-Mod)

realC∼=

H0(T⊗L
R−)

=

H

Since H0(T ⊗L
R −) factorizes as HC

∼=−→ S-Discr → S-Mod, we obtain that the forgetful functor
Db(S-Discr)→ Db(S-Mod) is fully faithful. Then the square above induces another commutative
square

Db(HC) Db(S-Discr)

Db(R-Mod) Db(S-Discr)

realC∼=

H0(T⊗L
R−)

=

H

where the upper arrow is an equivalence. □

Theorem 5.5. In the setting of Theorem 5.4, there is a commutative square as follows:

Db(Mod-R)× Db(R-Mod) D(Mod-Z)

Db(Ctra-S)× Db(S-Discr) D(Mod-Z)

G×H∼=

−⊗L
R−

=

−⊙L
S−
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Proof. Note first that here the contratensor product − ⊙S − identifies with the ordinary tensor
product −⊗S − by Lemma 5.1. For X ∈ Db(Mod-R) and Y ∈ Db(R-Mod), we have a sequence of
natural isomorphisms in D(Z) as follows:

G(X)⊗L
S H(Y ) = ϵ(RHomR(T,X))⊗L

S ϵ(T ⊗L
R Y ) ∼= RHomR(T,X)⊗L

A (T ⊗L
R Y ) ∼=

∼= (RHomR(T,X)⊗L
A T )⊗L

R Y ∼= X ⊗L
R Y.

In the second isomorphism we use the fact that the equivalence ϵ : D(dgMod-A) → D(Mod-S)
(resp. ϵ : D(A-dgMod) → D(S-Mod)) preserves quasi-isomorphism and derived tensor products,
see [Yek20, Theorem 12.7.2]. The last isomorphism follows from Theorem 4.4(iii). □

5.4. A kind of a converse result. There is a theory of Morita theory of complete and separated
topological ring developed in [PŠ21] and [PŠ19b], which we recall now. Let R be a complete and
separated (left) topological ring and P ∈ Ctra-R a projective generator. Then the endomorphism
ring R′ = EndCtra-R(P) admits a naturally induced linear topology of open left ideals such that
R′ is complete and separated and there is an equivalence Ctra-R ∼= Ctra-R′ which takes P to
R′. In this situation, we say that R and R′ are topologically Morita equivalenttopologically Morita equivalenttopologically Morita equivalenttopologically Morita equivalenttopologically Morita equivalenttopologically Morita equivalenttopologically Morita equivalenttopologically Morita equivalenttopologically Morita equivalenttopologically Morita equivalenttopologically Morita equivalenttopologically Morita equivalenttopologically Morita equivalenttopologically Morita equivalenttopologically Morita equivalenttopologically Morita equivalenttopologically Morita equivalent. In particular, if
T ∈ D(Mod-R) is a tilting complex with S = EndD(Mod-R)(T ) endowed with the compact topology
and T ′ is a tilting complex equivalent to T then S′ = EndD(Mod-R)(T ) admits a linear topology
which makes it topologically Morita equivalent to S. Furthermore, one can check directly that this
topology described in [PŠ21, Corollary 7.6] coincides with the compact topology defined on the
endomorphism ring S′ (see also [PŠ19b, §5]). Finally, in this situation there is also an equivalence
S-Discr ∼= S′-Discr of the discrete module categories [PŠ19b, Proposition 5.2].

If A is an abelian category with enough projectives, let Kb(Aproj) denote the homotopy category
of bounded complexes of projectives objects of A, considered as a full subcategory of Db(A).

Proposition 5.6. Assume that there is a complete, separated topological ring R and a pair of
triangle equivalences Db(Mod-R)

∼=−→ Db(Ctra-R) and Db(R-Mod)
∼=−→ Db(R-Discr) which make the

following diagram commute:

Db(Mod-R)× Db(R-Mod) D(Mod-Z)

Db(Ctra-R)× Db(R-Discr) D(Mod-Z)

∼=

−⊗L
R−

=

−⊙L
R−

Then there is a good and decent tilting complex T ∈ D(Mod-R) such that its endomorphism ring
S = EndD(Mod-R)(T ) endowed with compact topology is topologically Morita equivalent to R.

Proof. Under the equivalence Db(Mod-R)
∼=−→ Db(Ctra-R), the projective generator R of Ctra-R

corresponds to an object T ∈ Db(Mod-R), and similarly an injective cogenerator W ∈ R-Discr
corresponds to an object C in Db(R-Mod). The equivalences transfer the standard t-structures to t-
structures of the form TT = (T⊥>0 , T⊥≤0) and TC = (⊥≤0C,⊥>0C) in Db(Mod-R) and Db(R-Mod),
respectively. We also have Add(T ) ⊆ HT and Prod(C) ⊆ HC , where HT and HC are the hearts of
the two t-structures. Then Add(T ) ⊆ T ⊥̸=0 and Prod(C) ⊆ ⊥̸=0C.

The equivalence Db(Mod-R)
∼=−→ Db(Ctra-R) restricts to Kb(Mod-Rproj)

∼=−→ Kb(Ctra-Rproj). In-
deed, as in the proof of [PV18, Theorem 5.3] which refers to the argument [Ric89, Proposition 6.2],
if A is a cocomplete abelian category with enough projectives then we can characterize Kb(Aproj)
inside Db(A) internally as a full subcategory consisting of those objects X such that for any Y we
have HomDb(A)(X,Y [i]) for i≫ 0. It follows in the same fashion as in [PV18, Theorem 5.3] that T
is isomorphic in Db(Mod-R) to a bounded complex of projective R-modules and furthermore, that
thick(Add(T )) = Kb(Mod-Rproj). Then by [AHH21, Proposition 5.3], T is a bounded tilting object
in D(Mod-R). An analogous argument using [AHH21, Proposition 6.8] shows that C is a bounded
cotilting object in D(R-Mod).

Recall that by an adjunction argument we have HomD(R-Mod)(X,T+[i]) = 0 if and only if
H−i(T ⊗L

R X) = 0. Via the identification of T ⊗L
R − and R ⊙L

R −, we see that the equivalence



18 MICHAL HRBEK

Db(R-Mod)
∼=−→ Db(R-Discr) identifies the standard t-structure in Db(R-Discr) with the cosilting

t-structure induced by T+. It follows that the cosilting complexes C and T+ are equivalent, and
so in particular, T+ is cotilting and HC = HT+ . It follows from Theorem 3.4 that T is decent.
Passing to a direct sum T (X) of copies of T for some set X, we can assume that T is also good
by Lemma 4.2. As discussed above, this adjustment will replace the original topological ring R by
the endomorphism ring of R(X) ∈ Ctra-R, so it only changed up to topological Morita equivalence.
Therefore, we may assume that T is good without loss of generality.

We have R = EndD(R)(T ) as ordinary rings. Let S be the same ring as R but endowed with
the compact topology. Then we know from Corollary 4.8 and Theorem 5.2 that HT

∼= Ctra-S and
HC
∼= S-Discr. Using Theorem 5.5, we obtain a commutative square as follows

Ctra-S×S-Discr D(Mod-Z)

Ctra-R×R-Discr D(Mod-Z)

G′×H′∼=

−⊗S−

=

−⊙R−

in which the equivalence G′ is obtained as a composition of the equivalences HT
∼= Ctra-R and

HT
∼= Ctra-S, and similarly for H ′. It follows from this square that for any N ∈ R-Discr, we have

N ∼= R ⊙R N ∼= S ⊗S H ′(N) ∼= H ′(N), where the isomorphisms are natural and computed in
Mod-Z. It follows that the equivalence H ′ induces an equivalence between the forgetful functors
S-Discr → Mod-Z and R-Discr → Mod-Z. Then it follows from [PŠ19b, Proposition 4.2] that R
and S are isomorphic as topological rings. □

6. Example: Commutative noetherian rings of dimension one

In this section, R is a commutative noetherian ring of Krull dimension equal to one. Let
d : Spec(R) → Z be a codimension function on the Zariski spectrum (e.g., we can choose d to
be the height function ht which assigns to a prime ideal p its height ht(p)). Following [HNŠ22,
Theorem 4.6], there is a silting complex of the form Td =

⊕
p∈Spec(R) RΓpRp[d(p)], where RΓpRp

is the local cohomology of the local ring Rp considered as an object in D(Mod-R). It follows from
[HNŠ22, Theorem 6.10] and Theorem 3.4 that Td is a decent tilting complex. Since the tilting
heart and the endomorphism ring of Td does not depend on the choice of the codimension function
d, see [HNŠ22, Remark 4.10], we assume d = ht and denote simply T = Td from now on. Let Wi

be the set of all primes of height i for i = 0, 1; that is, W0 consists of all minimal primes and W1 of
all maximal primes of Spec(R). Let Q =

∏
p∈W0

Rp and R̂ =
∏

m∈W1
R̂m, where R̂m is the m-adic

completion of the local ring Rm. Note that we have the canonical flat ring epimorphism R → Q

and the faithfully flat map R→ R̂. We remark that if R is Cohen-Macaulay then R→ Q is monic
and Q is precisely the total ring of quotients of R. In any case, we can write the tilting complex
as T = Q ⊕ K, where K = Cone(R → Q), see [HNŠ22, end of §4]. From this description, one
can also see that T is good. Indeed, there is a triangle of the form R → Q → K → R[1], and so
R ∈ thick(T ).

The endomorphism ring S = EndD(Mod-R)(T ) can be written explicitly, this is discussed already
in [PŠ19a, Example 8.4] in the case when Q is the total ring of quotients; the non-Cohen-Macaulay
situation is covered in [HNŠ22, Example 6.5]. The endomorphism ring has the following matrix
presentation:

S =

(
Q 0

Q⊗R R̂ R̂

)
.

Here, R̂ is identified with EndD(Mod-R)(K). In fact, we have the primary decomposition K =⊕
m∈W1

Km, and for each m we can write K = hocolimn≥0K(snm) where K(snm) is the Koszul
complex over any non-unit non-zerodivisor element sm ∈ Rm, see e.g. [PŠ21, Example 5.7]. Since
Koszul complexes are compact, this allows to describe the compact topology of left open ideals of
S. The induced topology on the corner rings Q and R̂ makes them into topological rings. The
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ring Q is an artinian and as such its topology is discrete. From the presentation of K above,
one can compute directly that R̂ carries the product topology of the m-adic topologies on R̂m’s.
Finally, Q⊗R R̂ is endowed with a topology of R-submodules induced as follows. First, note that
Q⊗R R̂ is identified with the restricted product of Q⊗R R̂m’s with respect to images of the maps
Rm → Q ⊗R R̂m for each m ∈ W1. In other words, this is a submodule of

∏
m∈W1

(Q ⊗R R̂m)
consisting of those sequences (qm ⊗R cm) with qm ∈ Q and cm ∈ Rm such that qm = 1 for almost
all m ∈ W1. For each m ∈ W1, the topology on Q⊗R R̂m has the base of open submodules of the
form s−k

m (mnR̂m) with k, n ≥ 0. The topology on
∏

m∈W1
(Q⊗R R̂m) is then the induced restricted

product topology.
By a standard argument, the category S-Mod of left S-modules can be identified with the

category in which the objects are R-module morphisms V
φ−→ M where V ∈ Mod-Q and M ∈

Mod-R̂ and the morphisms are commutative squares

V M

V ′ M ′

φ

ν γ

φ′

where η is a morphism of Q-modules and γ a morphism of R̂-modules. The action of an element
q ⊗R c ∈ Q ⊗R R̂ ⊆ S on an object as above takes an element v ∈ V to cφ(qv) ∈ M . The
category Mod-S of right S-modules has an analogous description with arrows M

φ−→ V going in
the opposite direction and the right S-action of an element q ⊗R c ∈ Q ⊗R R̂ defined using the
rule m(q ⊗R c) = φ(mc)q for m ∈M .

Then the tilting heart HT can be described explicitly as follows. By Corollary 4.8 and Corol-
lary 4.5, we know that HT

∼= Ctra-S and Ctra-S is a full subcategory of Mod-S. Then HT

identifies with a full subcategory of the above described category of R-linear morphisms M
φ−→ V

with M ∈ Mod-R̂ and V ∈ Mod-Q. Furthermore, it is clear from the contraaction of S that
the action of R̂ on M extends to the unique contraaction; note that Ctra-R̂ ⊆ Mod-R̂ is a full
subcategory [Pos17, Corollary 13.13]. On the other hand, for any morphism M → V as above
with M ∈ Ctra-R̂ the right S-action on M ⊕ V extends to a right S-contraaction. The con-
traaction of the two corner rings of S is clear: R̂ acts on the R̂-contramodule M and Q acts
as an ordinary ring on V . It remains to see how the contraaction is defined given a sequence
(qα ⊗R cα)α∈A of elements of Q⊗R R̂ which converges to zero in the topology. By the description
of the topology above, all but finitely many qα’s can be assumed to be 1’s. Then for any collec-
tion mα ∈ M, α ∈ A, the contramodule action is computed as follows:

∑
α∈A(mα)(qα ⊗R cα) =∑

α∈F (mα)(qα⊗R cα)+
∑

α∈A\F (mα)(1⊗R cα) =
∑

α∈F φ(mαcα)qα+φ(
∑

α∈A\F mαcα), where F

is a finite subset of A such that qα = 1 whenever α ∈ A \ F . Note that (cα)α∈A converges to zero
in the topology of R̂, which ensures that

∑
α∈A\F mαcα is well-defined using the R̂-contramodule

structure of M. One can check directly that all this defines an assignment S[[M⊕ V ]]→M⊕ V
satisfying the conditions of contra-associativity and contra-unitality, and thus we obtain the con-
traaction. Since Ctra-S is a full subcategory of Mod-S, this shows that HT is equivalent to
the full subcategory of Mod-S consisting of R-linear morphisms M

φ−→ V with M ∈ Ctra-S and
V ∈ Mod-Q. We remark that M decomposes into a product

∏
m∈W1

Mm where Mm ∈ Ctra-R̂m;
for a module-theoretic description of this category see [Pos17, Corollary 13.13].

We are left with the task of describing the cotilting heart induced by C = T+. Using Theo-
rem 5.4, HC is equivalent to S-Discr. Arguing similarly (in fact, more easily) to above, we see
that HC is identified with the full subcategory of objects of the form V

φ−→ M where M is in
R̂-Discr. Here, it is well-known that R̂-Discr is naturally identified with the full subcategory of
R-Mod consisting of modules which are W1-torsion, meaning that they are supported on the set
W1 ⊆ Spec(R). Yet another description is that these are those modules M such that M ⊗RQ = 0.
Finally, we remark that one can identify HC with the data of the Zariski torsion modelZariski torsion modelZariski torsion modelZariski torsion modelZariski torsion modelZariski torsion modelZariski torsion modelZariski torsion modelZariski torsion modelZariski torsion modelZariski torsion modelZariski torsion modelZariski torsion modelZariski torsion modelZariski torsion modelZariski torsion modelZariski torsion model constructed
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in [BGPW20, Remark 8.8, see also Example 8.9, §9.3] by Balchin, Greenlees, Pol, and Williamson,
while HT is seemingly different from the complete modelcomplete modelcomplete modelcomplete modelcomplete modelcomplete modelcomplete modelcomplete modelcomplete modelcomplete modelcomplete modelcomplete modelcomplete modelcomplete modelcomplete modelcomplete modelcomplete model of Balchin and Greenlees in [BG22], see
[BG22, §10] in particular.
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[BBD82] A. A. Bĕılinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular

spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171. MR 751966
[BG22] Scott Balchin and JPC Greenlees, Separated and complete adelic models for one-dimensional noetherian

tensor-triangulated categories, Journal of Pure and Applied Algebra (2022), 107109.
[BGPW20] Scott Balchin, JPC Greenlees, Luca Pol, and Jordan Williamson, Torsion models for tensor-triangulated

categories: the one-step case, arXiv preprint arXiv:2011.10413 (2020).
[BHP+20] Silvana Bazzoni, Ivo Herzog, Pavel Příhoda, Jan Šaroch, and Jan Trlifaj, Pure projective tilting modules,

Doc. Math. 25 (2020), 401–424. MR 4106898
[BM17] Simion Breaz and George Ciprian Modoi, Derived equivalences induced by good silting complexes, arXiv

preprint arXiv:1707.07353 (2017).
[BMT11] Silvana Bazzoni, Francesca Mantese, and Alberto Tonolo, Derived equivalence induced by infinitely

generated n-tilting modules, Proc. Amer. Math. Soc. 139 (2011), no. 12, 4225–4234.
[BW22] Isaac Bird and Jordan Williamson, Duality pairs, phantom maps, and definability in triangulated

categories, arXiv preprint arXiv:2202.08113 (2022).
[CH15] Lars Winther Christensen and Henrik Holm, The direct limit closure of perfect complexes, J. Pure Appl.

Algebra 219 (2015), no. 3, 449–463. MR 3279365
[CHZ19] Xiao-Wu Chen, Zhe Han, and Yu Zhou, Derived equivalences via HRS-tilting, Adv. Math. 354 (2019),

106749. 26. MR 3989131
[Dre69] Andreas Dress, On the decomposition of modules, Bull. Amer. Math. Soc. 75 (1969), 984–986.

MR 244227
[HN21] Michal Hrbek and Tsutomu Nakamura, Telescope conjecture for homotopically smashing t-structures

over commutative noetherian rings, J. Pure Appl. Algebra 225 (2021), no. 4, 106571, 13 pp.
[HNŠ22] Michal Hrbek, Tsutomu Nakamura, and Jan Št́ovíček, Tilting complexes and codimension functions over

commutative noetherian rings, In preparation (2022).
[Hrb16] Michal Hrbek, One-tilting classes and modules over commutative rings, J. Algebra 462 (2016), 1–22.

MR 3519496
[Kel93] Bernhard Keller, A remark on tilting theory and dg algebras, Manuscripta mathematica 79 (1993),

no. 1, 247–252.
[Kra00] Henning Krause, Smashing subcategories and the telescope conjecture—an algebraic approach, Invent.

Math. 139 (2000), no. 1, 99–133. MR 1728877
[Lak20] Rosanna Laking, Purity in compactly generated derivators and t-structures with Grothendieck hearts,

Math. Z. 295 (2020), no. 3-4, 1615–1641. MR 4125704
[Lur17] Jacob Lurie, Higher algebra, 2017, available at https://people.math.harvard.edu/ lurie/papers/HA.pdf.
[MV18] Frederik Marks and Jorge Vitória, Silting and cosilting classes in derived categories, J. Algebra 501

(2018), 526–544.
[NS18] Pedro Nicolás and Manuel Saorín, Generalized tilting theory, Appl. Categ. Structures 26 (2018), no. 2,

309–368. MR 3770911



TOPOLOGICAL ENDOMORPHISM RINGS OF TILTING COMPLEXES 21

[NSZ19] Pedro Nicolás, Manuel Saorín, and Alexandra Zvonareva, Silting theory in triangulated categories with
coproducts, J. Pure Appl. Algebra 223 (2019), no. 6, 2273–2319.

[Pos12] Leonid Positselski, Contraherent cosheaves, arXiv preprint arXiv:1209.2995 (2012).
[Pos16] , Dedualizing complexes and MGM duality, J. Pure Appl. Algebra 220 (2016), no. 12, 3866–3909.

MR 3517561
[Pos17] , Contraadjusted modules, contramodules, and reduced cotorsion modules, Moscow Mathemati-

cal Journal 17 (2017), no. 3, 385–455.
[Pos21] , Contramodules, Confluentes Math. 13 (2021), no. 2, 93–182. MR 4400900
[Pre09] Mike Prest, Purity, spectra and localisation, Encyclopedia of Mathematics and its Applications, vol.

121, Cambridge University Press, Cambridge, 2009. MR 2530988
[PŠ19a] Leonid Positselski and Jan Šťovíček, ∞-tilting theory, Pacific J. Math. 301 (2019), no. 1, 297–334.

MR 4007380
[PŠ19b] Leonid Positselski and Jan Šťovíček, Topologically semisimple and topologically perfect topological

rings, to appear in Publ. Mat, arXiv preprint arXiv:1909.12203 (2019).
[PŠ21] Leonid Positselski and Jan Šťovíček, The tilting-cotilting correspondence, Int. Math. Res. Not. IMRN

(2021), no. 1, 191–276. MR 4198495
[PV18] Chrysostomos Psaroudakis and Jorge Vitória, Realisation functors in tilting theory, Math. Z. 288 (2018),

no. 3-4, 965–1028.
[PV21] Sergio Pavon and Jorge Vitória, Hearts for commutative Noetherian rings: torsion pairs and derived

equivalences, Doc. Math. 26 (2021), 829–871. MR 4310223
[Ric89] Jeremy Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), no. 3,

436–456. MR 1002456
[Ric91] , Derived equivalences as derived functors, Journal of the London Mathematical Society 2 (1991),

no. 1, 37–48.
[Yek20] Amnon Yekutieli, Derived categories, Cambridge Studies in Advanced Mathematics, vol. 183, Cambridge

University Press, Cambridge, 2020. MR 3971537

(M. Hrbek) Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, 115 67 Prague,
Czech Republic

Email address: hrbek@math.cas.cz

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

