Oscillatory solutions to problems in fluid mechanics: Analysis and numerics

Eduard Feireisl

based on joint work with M. Lukáčová-Medviďová (Mainz), H. Mizerová (Bratislava), B. She (Praha)

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

GAMM Annual Meeting, Aachen 15 August – 19 August 2022

Euler system of gas dynamics

Leonhard Paul Euler 1707–1783

Equation of continuity – Mass conservation

$$\partial_t \varrho + \operatorname{div}_x(\varrho \mathbf{u}) = 0$$

Momentum equation - Newton's second law

$$egin{aligned} \partial_t(arrho\mathbf{u}) + \mathrm{div}_x\left(arrho\mathbf{u}\otimes\mathbf{u}\right) +
abla_x p(arrho) = 0, \ p(arrho) = aarrho^\gamma \end{aligned}$$
 $a>0, \ \gamma>1$

Impermeable boundary

$${f u}\cdot{f n}|_{\partial\Omega}=0,~\Omega\subset R^d$$
 (bounded), $d=2,3$ Initial state (data)

$$\varrho(0,\cdot)=\varrho_0,\ (\varrho\mathbf{u})(0,\cdot)=\varrho_0\mathbf{u}_0$$

Navier-Stokes system, real fluids

Equation of continuity - Mass conservation

$$\partial_t \varrho + \operatorname{div}_x(\varrho \mathbf{u}) = 0$$

Claude-Louis Navier 1785–1836

Momentum equation - Newton's second law

$$\partial_t(\varrho \mathbf{u}) + \operatorname{div}_x(\varrho \mathbf{u} \otimes \mathbf{u}) + \nabla_x p(\varrho) = \operatorname{div}_x \mathbb{S}(\nabla_x \mathbf{u})$$

George Gabriel Stokes 1819–1903

Isaac Newton 1642–1727

Newton's rheological law

$$\mathbb{S}(\nabla_{\mathbf{x}}\mathbf{u}) = \mu \left(\nabla_{\mathbf{x}}\mathbf{u} + \nabla_{\mathbf{x}}^{t}\mathbf{u} - \frac{2}{d}\mathrm{div}_{\mathbf{x}}\mathbf{u}\right) + \lambda \mathrm{div}_{\mathbf{x}}\mathbf{u}\mathbb{I}$$

no slip condition: $\mathbf{u}|_{\partial\Omega}=0$

Admissibility, energy balance

Energy

$$E(\varrho,\mathbf{u}) = \frac{1}{2}\varrho|\mathbf{u}|^2 + P(\varrho)$$

Pressure potential

$$P'(\varrho)\varrho - P(\varrho) = p(\varrho), \ P(\varrho) = \frac{a}{\gamma - 1}\varrho^{\gamma}$$

Euler system (conservative)

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} E(\varrho, \mathbf{u}) \, \mathrm{d}x = \boxed{(\leq)} 0$$

Navier-Stokes system (dissipative)

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} E(\varrho, \mathbf{u}) \, \mathrm{d}x + \int_{\Omega} \mathbb{S}(\nabla_{x} \mathbf{u}) : \nabla_{x} \mathbf{u} \, \mathrm{d}x = \boxed{(\leq)} 0$$

Consistent (stable) approximation, Euler system

Approximate equation of continuity

$$\int_0^T \int_{\Omega} \left[\varrho_n \partial_t \varphi + \varrho_n \mathbf{u}_n \cdot \nabla_x \varphi \right] dx dt = - \int_{\Omega} \varrho_0 \varphi(\mathbf{0}, \cdot) dx + e_{1,n}[\varphi]$$

Approximate momentum equation

$$\int_{0}^{T} \int_{\Omega} \left[\varrho_{n} \mathbf{u}_{n} \cdot \partial_{t} \varphi + \varrho_{n} \mathbf{u}_{n} \otimes \mathbf{u}_{n} : \nabla_{x} \varphi + \rho(\varrho_{n}) \operatorname{div}_{x} \varphi \right] dx dt$$
$$= - \int_{\Omega} \varrho_{0} \mathbf{u}_{0} \cdot \varphi(0, \cdot) dx + e_{2,n}[\varphi]$$

Stability - approximate energy inequality

$$\int_{\Omega} \left[\frac{1}{2} \varrho_n |\mathbf{u}_n|^2 + P(\varrho_n) \right] \mathrm{d}x \leq \int_{\Omega} \left[\frac{1}{2} \varrho_0 |\mathbf{u}_0|^2 + P(\varrho_0) \right] \mathrm{d}x + e_{3,n}$$

Consistency

$$e_{1,n}[\varphi] \to 0$$
, $e_{2,n}[\varphi] \to 0$, $e_{3,n} \to 0$ as $n \to \infty$

Consistent approximation, Navier-Stokes system

Approximate equation of continuity

$$\int_0^T \int_{\Omega} \left[\varrho_n \partial_t \varphi + \varrho_n \mathbf{u}_n \cdot \nabla_x \varphi \right] \mathrm{d}x \mathrm{d}t = - \int_{\Omega} \varrho_0 \varphi(\mathbf{0}, \cdot) \, \mathrm{d}x + e_{1,n}[\varphi]$$

Approximate momentum equation

$$\int_{0}^{T} \int_{\Omega} \left[\varrho_{n} \mathbf{u}_{n} \cdot \partial_{t} \varphi + \varrho_{n} \mathbf{u}_{n} \otimes \mathbf{u}_{n} : \nabla_{x} \varphi + \rho(\varrho_{n}) \operatorname{div}_{x} \varphi \right] dx dt$$

$$= \int_{0}^{T} \int_{\Omega} \mathbb{S}(\nabla_{x} \mathbf{u}) : \nabla_{x} \varphi \, dx dt - \int_{\Omega} \varrho_{0} \mathbf{u}_{0} \cdot \varphi(0, \cdot) \, dx + e_{2,n}[\varphi]$$

Stability - approximate energy inequality

$$\int_{\Omega} \left[\frac{1}{2} \varrho_{n} |\mathbf{u}_{n}|^{2} + P(\varrho_{n}) \right] (\tau, \cdot) dx + \int_{0}^{\tau} \int_{\Omega} \mathbb{S}(\nabla_{x} \mathbf{u}) : \nabla_{x} \mathbf{u} \, dx dt$$

$$\leq \int_{\Omega} \left[\frac{1}{2} \varrho_{0} |\mathbf{u}_{0}|^{2} + P(\varrho_{0}) \right] dx + e_{3,n}$$

Consistency

$$e_{1,n}[\varphi] \to 0, \ e_{2,n}[\varphi] \to 0, \ e_{3,n} \to 0 \text{ as } n \to \infty$$

Examples of consistent approximations of Euler system

■ Zero viscosity limit:

$$\begin{split} \partial_t \varrho_n + \mathrm{div}_x(\varrho_n \textbf{u}_n) &= 0 \\ \partial_t (\varrho_n \textbf{u}_n) + \mathrm{div}_x(\varrho_n \textbf{u}_n \otimes \textbf{u}_n) + \nabla_x \rho(\varrho_n) &= \varepsilon_n \mathrm{div}_x \mathbb{S}(\nabla_x \textbf{u}_n), \ \varepsilon_n \to 0 \end{split}$$

■ Artificial viscosity limit:

$$\begin{split} \partial_t \varrho_n + \mathrm{div}_x(\varrho_n \mathbf{u}_n) &= \varepsilon_n \Delta_x \varrho_n \\ \partial_t(\varrho_n \mathbf{u}_n) + \mathrm{div}_x(\varrho_n \mathbf{u}_n \otimes \mathbf{u}_n) + \nabla_x \rho(\varrho_n) &= \varepsilon_n \mathrm{div}_x \mathbb{S}(\nabla_x \mathbf{u}_n), \ \varepsilon_n \to 0 \end{split}$$

■ Limits of certain numerical schemes: Lax—Friedrichs scheme, MAC scheme, Godunov scheme, general finite volume scheme etc.

Euler as ill-posed system

Initial state

$$\varrho(0,\cdot)=\varrho_0,\ (\varrho\mathbf{u})(0,\cdot)=\varrho_0\mathbf{u}_0$$

The initial data are wild if there exists T>0 such that the Euler system admits infinitely many (weak) admissible solutions on any time interval $[0,\tau]$, $0<\tau< T$

E. Chiodaroli (Pisa)

Theorem (E. Chiodaroli, EF 2022) The set of wild data is dense in $L^2 \times L^2$

Strong vs. weak convergence

Uniform bounds (stability):

$$(\varrho_n)_{n\geq 1}$$
 bounded in $L^{\infty}(0,T;L^{\gamma}(\Omega))$
 $\mathbf{m}_n \equiv \varrho_n \mathbf{u}_n, \ (\mathbf{m}_n)_{n\geq 0}$ bounded in $L^{\infty}(0,T;L^{\frac{2\gamma}{\gamma+1}}(\Omega;R^d))$

Weak convergence (up to a subsequence):

$$arrho_n o arrho$$
 weakly - (*) in $L^{\infty}(0,T;L^{\gamma}(\Omega))$
 $\mathbf{m}_n o \mathbf{m}$ weakly - (*) in $L^{\infty}(0,T;L^{rac{2\gamma}{\gamma+1}}(\Omega;R^d))$

Weak convergence \approx convergence of integral averages:

$$v_n o v$$
 weakly $\Leftrightarrow \int_B v_n o \int_B v$ for any Borel $B \Leftrightarrow \int v_n \phi o \int v \phi$

When weak \Rightarrow strong (pointwise a.a.)

Suppose that at least one of the following holds:

- The (limit) Euler system admits a regular solution (ϱ, \mathbf{m}) in $(0, T) \times \Omega$
- The weak limit (ϱ, \mathbf{m}) belongs to the class C^1 it is continuously differentiable in $[0, T] \times \Omega$
- \blacksquare (*) The limit (ϱ, \mathbf{m}) is a *weak* solution of the Euler system

$$\Rightarrow$$

$$\varrho_n \to \varrho$$
 (strongly) in $L^1((0,T) \times \Omega)$
 $\mathbf{m}_n \to \mathbf{m}$ (strongly) in $L^1((0,T) \times \Omega; R^d)$

in particular (up to a subsequence)

$$\varrho_n \to \varrho$$
, $\mathbf{m}_n \to \mathbf{m}$ a.a. in $(0, T) \times \Omega$

Strong convergence to weak solution

Exterior domain (convex obstacle):

$$\Omega = R^d \setminus C$$
, C – compact convex

Far field conditions:

$$\varrho_n \to \varrho_\infty \ge 0$$
, $\mathbf{m}_n \to \mathbf{m}_\infty$ as $|x| \to \infty$

EF, M. Hofmanová:

The following is equivalent:

 ϱ , **m** weak solution to the Euler system

 $\varrho_n \to \varrho$, $\mathbf{m}_n \to \mathbf{m}$ strongly (pointwise) in Ω

Martina Hofmanová (Bielefeld)

Conclusion:

If the convergence is NOT strong, then the limit is NOT a solution of the Euler system

Weak convergence of consistent approximations

Weak convergence:

If consistent approximations DO NOT converge strongly, the following must be satisfied:

- the limit Euler system does not admit a strong solution
- the limit (ρ, \mathbf{m}) is not C^1 smooth
- the limit (ϱ, \mathbf{m}) is not a weak solution of the Euler system

Visualization of weak convergence?

Oscillations. Weakly converging sequence may develop oscillations. Example:

$$sin(nx) \rightarrow 0$$
 weakly as $n \rightarrow \infty$

Concentrations.

$$n\theta(nx) \rightarrow \delta_0$$
 weakly-(*) in $\mathcal{M}(R)$

if

$$\theta \in C_c^{\infty}(R), \ \theta \geq 0, \int_R \theta = 1$$

Statistical description - Young measure

L. C. Young

Young measure:

 $b(\varrho_n,\mathbf{m}_n) o \overline{b(\varrho,\mathbf{m})}$ weakly-(*) in $L^\infty((0,T) imes \Omega)$ (up to a subsequence) for any $b \in C_c(R^{d+2})$

Young measure:

 \mathcal{V} – a parametrized family of probability measures $\{\mathcal{V}_{t,x}\}_{(t,x)\in(0,\mathcal{T})\times\Omega}$ on the phase space R^{d+2} :

$$\overline{b(\varrho,\mathbf{m})}(t,x) = \langle \mathcal{V}_{t,x}; b(\widetilde{\varrho},\widetilde{\mathbf{m}}) \rangle$$
 for a.a. (t,x)

Limit problem - measure valued solutions

Equation of continuity

$$\int_0^T \int_{\Omega} \left[\varrho \partial_t \varphi + \mathbf{m} \cdot \nabla_x \varphi\right] \mathrm{d}x \mathrm{d}t = -\int_{\Omega} \varrho_0 \varphi(0, \cdot) \, \, \mathrm{d}x$$

Momentum equation

$$\int_{0}^{T} \int_{\Omega} \left[\mathbf{m} \cdot \partial_{t} \boldsymbol{\varphi} + \frac{\overline{\mathbf{m} \otimes \mathbf{m}}}{\varrho} : \nabla_{x} \boldsymbol{\varphi} + \overline{\boldsymbol{p}(\varrho)} \mathrm{div}_{x} \boldsymbol{\varphi} \right] \mathrm{d}x \mathrm{d}t$$
$$= - \int_{\Omega} \varrho_{0} \mathbf{u}_{0} \cdot \boldsymbol{\varphi}(0, \cdot) \, \mathrm{d}x$$

Admisibility - energy inequality

$$\int_{\Omega} \left[\frac{1}{2} \frac{\overline{|\mathbf{m}|^2}}{\varrho} + \overline{P(\varrho)} \right] dx \le \int_{\Omega} \left[\frac{1}{2} \varrho_0 |\mathbf{u}_0|^2 + P(\varrho_0) \right] dx$$

Visualising weak convergence – computing Young measure

visualizing Young measure \Leftrightarrow computing $\overline{b(\varrho, m)}$

Problems:

- $b(\rho_n, \mathbf{m}_n)$ converge only weakly
- extracting subsequences
- only statistical properties relevant ⇒ knowledge of the "tail" of the sequence of approximate solutions absolutely necessary

Strong instead of weak

Janos Komlos (Ruthers Univ.)

Komlos theorem (a variant of Strong Law of Large Numbers):

$$(U_n)_{n\geq 1}$$
 bounded in $L^1(Q)$ \Rightarrow $\frac{1}{N}\sum_{k=1}^N U_{n_k} o \overline{U}$ a.a. in Q as $N o \infty$

Generating Young measure:

$$\mathbf{U}_n = (\varrho_n, \mathbf{m}_n) \in R^{d+1} \text{ phase space}$$

$$(\mathbf{U}_n)_{n \geq 1} \text{ bounded in } L^1((0, T) \times \Omega; R^d) \approx \mathcal{V}_{t, x}^n = \delta_{\mathbf{U}_n(t, x)}$$

$$\Rightarrow$$

$$\frac{1}{N} \sum_{t=1}^{N} \mathcal{V}_{t,x}^{n_k} \to \mathcal{V}_{t,x} \text{ narrowly } \boxed{a.a.} \text{ in } ((0,T) \times \Omega) \text{ as } N \to \infty$$

Erich J. Balder (Utrecht)

(S) - convergence, basic idea

Trivial example of oscillatory sequence:

$$U_n = \left\{ egin{array}{ll} 1 ext{ for } n ext{ odd} \\ -1 ext{ for } n ext{ even} \end{array}
ight.$$

Convergence via Young measure approach:

Convergence up to a subsequence:

$$U_n pprox \delta_{U_n}, \ U_{n_k}
ightarrow \left\{ egin{array}{l} \delta_1 \ {
m as} \ k
ightarrow \infty, \ n_k \ {
m odd} \ \delta_{-1} \ {
m as} \ k
ightarrow \infty, \ n_k \ {
m even} \end{array}
ight.$$

Convergence via averaging:

$$\begin{split} U_n &\approx \delta_{U_n}, \ \frac{1}{N} \sum_{n=1}^N U_n \to \frac{1}{2} \delta_{-1} + \frac{1}{2} \delta_1 \\ &\frac{1}{w_N} \sum_{n=1}^N w\left(\frac{n}{N}\right) U_n \to \frac{1}{2} \delta_{-1} + \frac{1}{2} \delta_1, \ w_N \equiv \sum_{n=1}^N w\left(\frac{n}{N}\right) \end{split}$$

(S)-convergence

(S)-convergent approximate sequence:

An approximate sequence $(\mathbf{U}_n)_{n\geq 1}$ is (S) - convergent if for any $b\in C_c(R^D)$:

■ Correlation limit

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\int_Q b(\mathbf{U}_n)b(\mathbf{U}_m)\mathrm{d}y \text{ exists for any fixed } m$$

■ Correlation disintegration

$$\lim_{N \to \infty} \frac{1}{N^2} \sum_{n,m=1}^{N} \int_{Q} b(\mathbf{U}_n) b(\mathbf{U}_m) \, dy$$

$$= \lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{N} \left(\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{Q} b(\mathbf{U}_n) b(\mathbf{U}_m) \, dy \right)$$

Basic properties of (S)-convergence

Equivalence to convergence of ergodic (Cesàro means):

$$(\mathbf{U}_n)_{n\geq 1}$$
 (S)-convergent $\Leftrightarrow \frac{1}{N}\sum_{n=1}^N b(\mathbf{U}_n) \to \overline{b(\mathbf{U})}$ strongly in $L^1(Q)$

(S)– limit (parametrized measure):
$$\mathbf{U}_n \overset{(S)}{\to} \mathcal{V}, \ \{\mathcal{V}_y\}_{y \in \mathcal{Q}}, \ \mathcal{V}_y \in \mathfrak{P}(R^D), \ \left\langle \mathcal{V}_y; b(\widetilde{U}) \right\rangle = \overline{b(\mathbf{U})}(y)$$

Convergence in Wasserstein distance:

$$\int_{\Omega} |\mathbf{U}_n|^p \, dy \le c \text{ uniformly for } n = 1, 2, \dots, p > 1$$

$$\mathbf{U}_n \overset{(s)}{\to} \mathcal{V} \ \Rightarrow \ \int_{\mathcal{Q}} \left| d_{W_s} \left[\frac{1}{N} \sum_{j=1}^{N} \delta_{\mathbf{U}_n(y)}; \mathcal{V}_y \right] \right|^s \ \mathrm{d}y \to 0 \ \mathrm{as} \ N \to \infty, \ s < p$$

Computing defect numerically -EF, M.Lukáčová, B.She

 $\mathbf{U}_n = (\varrho_n, \mathbf{m}_n)$ consistent approximation of the Euler system

Monge-Kantorowich (Wasserstein) distance:

$$\left\| \operatorname{dist} \left(\frac{1}{N} \sum_{k=1}^{N} \mathcal{V}_{t,x}^{n_k}; \mathcal{V}_{t,x} \right) \right\|_{L^q((0,T) \times \Omega)} \to 0$$

for some q>1

Convergence in the first variation:

$$\left.\frac{1}{N}\sum_{k=1}^{N}\left\langle \mathcal{V}_{t,x}^{n_{k}};\left|\widetilde{\boldsymbol{U}}-\frac{1}{N}\sum_{k=1}^{N}\boldsymbol{U}_{n}\right|\right\rangle \rightarrow\left\langle \mathcal{V}_{t,x};\left|\widetilde{\boldsymbol{U}}-\boldsymbol{U}\right|\right\rangle$$

in $L^1((0,T)\times\Omega)$

Mária Lukáčová (Mainz)

Bangwei She (CAS Praha)

Experiment, density for Kelvin-Helmholtz problem (M. Lukáčová, Yue Wang)

Cèsaro averages density ϱ $n=128,\ T=2$

density ϱ n = 256, T = 2

Cèsaro averages density ϱ n = 256, T = 2

density ϱ

Cèsaro averages density ϱ n = 512, T = 2

density ϱ n = 1024, T = 2

Cèsaro averages density ϱ n = 1024, T = 2

Consistent approximation of Navier-Stokes system

Bounded consistent approximations

 $(\varrho_0, \textbf{u}_0)$ smooth initial data satisfying compatibility conditions

 $(\varrho_n, \mathbf{u}_n)_{n\geq 0}$ consistent approximation of Navier–Stokes system

$$\sup_{n\geq 1}\|(\varrho_n,\mathbf{u}_n)\|_{L^\infty}\leq c \text{ uniformly for } n\to\infty$$

 \Rightarrow

$$\varrho_n \to \varrho \text{ in } L^1((0,T) \times \Omega), \ \mathbf{u}_n \to \mathbf{u} \text{ in } L^1((0,T) \times \Omega; \mathbb{R}^d)$$
(ϱ , \mathbf{u}) a regular solution of Navier–Stokes system

Proof based on (i) the local regularity result of Valli, Zajaczkowski, (ii) weak strong uniqueness by EF, Novotny, Gwiazda, Swierczewska-Gwiazda, Wiedemann, and (iii) conditional regularity by Sun, Wang, Zhang

Random (uncertain) data – framework

Initial data (conservative variables):

$$\varrho_0, \ \mathbf{m}_0 = \varrho_0 \mathbf{u}_0$$

Probability measures

 $\mathfrak{P}[\mathcal{D}]$ — the set of probability measures on $X_{\mathcal{D}}$ supported by \mathcal{D}

Random data, weak approach

$$\varrho_0, \textbf{u}_0 \in \mathcal{D} \subset \textbf{X}_{\mathcal{D}}$$

weak approach ⇔ determining distribution (law) of solutions

Generating sequences of random data

$$(\varrho_0^n, \mathbf{m}_0^n) \in \mathcal{D}$$

$$\frac{1}{N}\sum_{n=0}^{N}F\left(\varrho_{0}^{n},\mathbf{m}_{0}^{n}\right)\rightarrow\mathbb{E}\left[F[\varrho_{0},\mathbf{m}_{0}]\right]\text{ as }N\rightarrow\infty$$

for any $F \in BC(X_D)$

Expected value

$$\mathbb{E}\left[F(\varrho_0,\mathbf{m}_0)\right] = \int_{Y_0} F\left(\hat{\varrho},\hat{\mathbf{u}}\right) \; \mathrm{d}\mathcal{L}[\varrho_0,\mathbf{m}_0]$$

Distribution of the initial data

$$\mathcal{L}[\varrho_0, \mathbf{m}_0] \in \mathfrak{P}[\mathcal{D}]$$
 — probability measure on the space of data

Main goal, convergence

 $(\varrho_0^n, \mathbf{m}_0^n) \in \mathcal{D} \rightarrow (\varrho^{h,n}, \mathbf{m}^{h,n})$ consistent (numerical) approximation

Sequence of empirical measures:

$$\frac{1}{N} \sum_{n=1}^{N} \delta_{\varrho^{h,n},\mathbf{m}^{h,n}}$$

Convergence in law:

$$\frac{1}{N} \sum_{n=1}^{N} F[\varrho^{h,n}, \mathbf{m}^{h,n}] \to \mathbb{E}[F[\varrho, \mathbf{m}]] \text{ as } h \to 0, \ N \to \infty$$

for any $F \in BC\Big(W^{-m,2}((0,T) imes \Omega) imes W^{-m,2}((0,T) imes \Omega; R^d)\Big)$

Limit solution:

$$\mathbb{E}\left[F[\varrho,\mathbf{m}]\right] = \int_{X_0} F\left[(\varrho,\mathbf{m})[\hat{\varrho},\hat{\mathbf{m}}]\right] d\mathcal{L}[\varrho_0,\mathbf{m}_0]$$

 $(\varrho,\mathbf{m})[\hat{\varrho},\hat{\mathbf{m}}]$ - smooth (whence unique) solution of the Navier-Stokes system with the initial data $[\hat{\varrho},\hat{\mathbf{m}}]$

Boundedness in probability

Consistent (numerical) approximation

$$h = h(\ell), \ N = N(\ell), \ h(\ell) \searrow 0, \ N(\ell) \nearrow \infty \text{ as } \ell \to \infty.$$

$$\frac{1}{N} \sum_{n=1}^{N} \delta_{[\varrho^{h,n},\mathbf{m}^{h,n}]}, \ \mathbf{m}^{h,n} = \varrho^{h,n} \mathbf{u}^{h,n}$$

Boundedness in probability:

For any $\varepsilon > 0$, there is $M = M(\varepsilon)$ such that

$$\frac{\#\left\{\|\varrho^{h,n},\mathbf{u}^{h,n}\|_{L^{\infty}((0,T)\times\Omega;R^{d+1})}>M,\ n\leq N\right\}}{N}<\varepsilon \text{ for any }\ell=1,2,\ldots$$

Convergence (EF, M. Lukáčová):

Any sequence of consistent approximations that is bounded in probability converges in law to a (statistical) solution of the Navier–Stokes system