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Leonhard Paul
Euler
1707-1783

Euler system of gas dynamics

Equation of continuity — Mass conservation

Or0 + div(ou) = 0

Momentum equation — Newton’s second law

Ok (ou) + divx (ou ® u) + Vxp(0) = 0, p(e) = a0’

a>0,y>1

Impermeable boundary

u-njagg =0, Q C RY (bounded), d =2,3

Initial state (data)

0(0,-) = 00, (0u)(0,-) = gouo




Navier—Stokes system, real fluids

Equation of continuity — Mass conservation

RAE Oro + divi(ou) =0
Claude-Louis Navier
1785-1836

Momentum equation — Newton’s second law

Ot(ou) + divx (ou ® u) + Vip(0) = diviS(Vxu)

George Gabriel Stokes
1819-1903
Newton’s rheological law

S(Vxu) = <qu + Viu— %divxu) + Adiv,ul

Isaac Newton

no slip condition: u|sq =0
1642-1727




Admissibility, energy balance

Energy

1
E(o.u) = Solul® + P(0)

Pressure potential

P'(0)e — P(o) = p(o), P(o) =

v—1

Euler system (conservative)

(?t/ (o,u dX*O

Navier—Stokes system (dissipative)

T [ Eew ax+ /Q S(Vow) : Vou dx =[ () 0




Consistent (stable) approximation, Euler system

Approximate equation of continuity

T ,
/ / [0n0tp + 0ntin - Vip] dxdt = —/ 00¢(0, -) dx + ex,n[]
0 Q Q

Approximate momentum equation

-
/ / [0nUn - Oep + 0nun @ Uy = Vi + p(on)diviep] dxdt
0o Ja

= */ oouo - (0, ) dx + e2.[¢]
Q
Stability - approximate energy inequality
1 2 1 2
=0nlunl” 4+ P(0n) | dx < Zooluo|” 4+ P(0) | dx + e3;n
al2 al2

Consistency

e1,n[p] = 0, en[] =0, €30 — 0as n— oo




Consistent approximation, Navier—Stokes system

Approximate equation of continuity

T
/ / [0n0cp + nttn - Vxp] dxdt = _/ 00¢(0, +) dx + ex,n[e]
0 Q Q

Approximate momentum equation
T
/ / [0nun - Orip + 0ntln @ Us : Vi + p(0n)diviep] dxdt
0o Ja

.
= / /S(qu) : Vi dxdt — / oouo - p(0,-) dx + e2.4[¢]
o Ja Q

Stability - approximate energy inequality
/ {lgn|un|2+P(gn)} (T,~)dx—|—/ /S(qu) V. dxdt
al2 0o Ja
1
< / |:§QO‘UO‘2 + P(Qo)} dx + e n
Q
Consistency

en[p] =0, e[l = 0, €30 > 0asn— o




Examples of consistent approximations of Euler system

m Zero viscosity limit:

Oron + dive(gnun) =0
Bt(0nup) + divi(nts @ us) + Viep(on) = €ndivxS(Vxu,), €, — 0

m Artificial viscosity limit:

6t.Qn + diVx(Qnun) = SnAx.Qn
B:(0nup) + divi(gntn @ us) + Vep(on) = €ndiviS(Vxun), €, — 0

m Limits of certain numerical schemes: Lax—Friedrichs scheme, MAC
scheme, Godunov scheme, general finite volume scheme etc.



Euler as ill-posed system

Initial state

0(0,-) = 00, (0u)(0,-) = oouo

The initial data are wild if there exists T > 0
such that the Euler system admits infinitely many
(weak) admissible solutions on any time interval
[0,7,0<T<T

Theorem (E. Chiodaroli, EF 2022) The set of
wild data is dense in L2 x L?

E. Chiodaroli (Pisa)




Strong vs. weak convergence

Uniform bounds (stability):

(on)n>1 bounded in L>(0, T; L7(Q))

M, = gsUn, (Mp)a>obounded in L*(0, T; L%(Q; R%))

Weak convergence (up to a subsequence):
on — 0 weakly - (¥) in L=(0, T; L"(Q))

m, — m weakly - (¥) in L(0, T; L371(; R%))

Weak convergence =~ convergence of integral averages:

vp — v weakly < /v,,—>/vforanyBoreIB PN /v,,¢—>/v¢
B B



When weak = strong (pointwise a.a.)

Suppose that at least one of the following holds:
m The (limit) Euler system admits a regular solution (o, m) in (0, T) x Q

m The weak limit (o, m) belongs to the class C' - it is continuously
differentiable in [0, T] x Q

m (*) The limit (0, m) is a weak solution of the Euler system

=

o0 — 0 (strongly) in L*((0, T) x Q)
m, — m (strongly) in L*((0, T) x Q; RY)

in particular (up to a subsequence)

on— 0, mpy > ma.a. in(0,7T)xQ



Strong convergence to weak solution

Exterior domain (convex obstacle):

Q=R \ C, C — compact convex

Far field conditions:

On = Ooo > 0, M, =& My as |x| = o

N
EF, M. Hofmanova:
The following is equivalent:
. s
0, m weak solution to the Euler system j
u Martina
. Hofmanova
on — 0, M, — m strongly (pointwise) in Q (Bielefeld)
. J
Conclusion:

If the convergence is NOT strong, then the limit is NOT a solution of the Euler
system



Weak convergence of consistent approximations
Weak convergence:

If consistent approximations DO NOT converge strongly, the following must be
satisfied:

m the limit Euler system does not admit a strong solution
m the limit (o,m) is not C' smooth

m the limit (o, m) is not a weak solution of the Euler system

Visualization of weak convergence?

m Oscillations. Weakly converging sequence may develop oscillations.
Example:

sin(nx) — 0 weakly as n — oo

m Concentrations.

nf(nx) — do weakly-(*) in M(R)

6 C(R), 920,/9:1
R




Statistical description — Young measure

Young measure:

b(gn, mn) — b(o, m) weakly-(*) in L>((0, T) x Q)
(up to a subsequence) for any b € C.(R9*?)

L. C. Young

Young measure:
V — a parametrized family of probability measures {V: .} e, 1)xa on
the phase space R9*%:

b(o, m)(t, x) = (V¢ x; b(g,m)) for a.a. (t,x)




Limit problem — measure valued solutions

Equation of continuity

)
| [ levo+m-laxat = - [ o0p0.:) dx
0 Q Q

Momentum equation

[ oo

= */ oouo - (0, ) dx
Q

Admisibility - energy inequality

nga + p(o )dlvxap} dxdt

1
dx < / {590|u0|2 n P(QO)} dx
Q




Visualising weak convergence — computing Young measure

visualizing Young measure < computing b(g, m)

Problems:
m b(gn, m,) converge only weakly
m extracting subsequences

m only statistical properties relevant = knowledge of the “tail” of the
sequence of approximate solutions absolutely necessary



Janos Komlos
(Ruthers
Univ.)

Strong instead of weak

Komlos theorem (a variant of Strong Law of Large
Numbers):

(Un)n>1 bounded in L'(Q)

=

N
%ZUnk%Ua.a. in @ as N — oo
k=1

\.

Generating Young measure:

U, = (0s,m,) € R*" phase space
(Un)n>1 bounded in Ll((O7 T)xQ; Rd) ~ Vi = buy (i)

N
%ZV{”‘X — Vi x narrowly in (0, T) x Q) as N — oo
k=1

=

(Utrecht)

[m] =

Erich J. Balder




(S) - convergence, basic idea

Trivial example of oscillatory sequence:

U — 1 for n odd
"7 1 —1 for neven

Convergence via Young measure approach:

Convergence up to a :

01 as k — 0o, ny odd

U,~ 6 U, —
n Un» Hn 0_1 as k — oo, ng even

Convergence via averaging:

1< 1 1
U, %(Sun, N;Un — 5571 + 5(51

=2

1 n 1 1 N n
i 2o () U= 1+ 50w =3 w ()

n=1 n=1




(S)—convergence

(S)—convergent approximate sequence:

An approximate sequence (U,)p>1 is ’ (S) — convergent | if for any
b€ C(RP):

m Correlation limit
.1 . )
lim N ,,Ef / b(U,)b(Un)dy exists for any fixed m

m Correlation disintegration

1 Koy
Jim > /Qb(un)b(um) dy

n,m=1

N N
. 1 . 1
= 2 <N"£“oo w2 [, pueun) dy)




Basic properties of (S)—convergence

Equivalence to convergence of ergodic (Cesaro means):

N
Z (Us) = b(U) [ strongly | in L'(Q)

(Un)n>1 (S)—convergent <

2 \

(S)- limit (parametrized measure):

U 2V, (Wheas ¥y € BRY), (Vib(0)) = bU)(Y)

Convergence in Wasserstein distance:

/|U,,\p dy < c uniformly forn=1,2,..., p>1
Q

Un@V :>/
Q

s

dw, dy - 0as N — o0, s<p

1 N
DL Vy]
n=1




Computing defect numerically -EF, M.Lukacova, B.She

U, = (on, m,) consistent approximation of the Euler system

~
Monge—Kantorowich (Wasserstein) distance:
dist < th G vt,x> =0
L9((0, T)x Q)
for some g > 1
~

Convergence in the first variation:

N ~

L (o h3u]) o (o)
k=1

in L*((0, T) x Q)

Maria
Lukacova
(Mainz)

Bangwei She
(CAS Praha)



Experiment, density for
Kelvin—Helmholtz problem (M. Lukacova, Yue Wang)

density o density o density ¢ density ¢
n=128, T =2 n=256, T =2 n=512, T =2 n=1024, T =2

05
X

Cesaro averages Ceésaro averages Cesaro averages Ceésaro averages
density o density o density ¢ density o
n=128, T =2 n=256, T =2 n=512, T =2 n=1024, T =2




Consistent approximation of Navier—Stokes system

Bounded consistent approximations

u
(00, u0) smooth initial data satisfying compatibility conditions
[
(0n,un)n>0 consistent approximation of Navier—Stokes system
[

sup ||(gn, Un)||zee < € uniformly for n — oo
n>1
=

o0 — 0in L'((0, T) x Q), u, — uin L'((0, T) x Q; R

(o, u) a regular solution of Navier—Stokes system

J

L

strong uniqueness by EF, Novotny, Gwiazda, Swierczewska-Gwiazda,
Wiedemann, and (iii) conditional regularity by Sun, Wang, Zhang

Proof based on (i) the local regularity result of Valli, Zajaczkowski, (ii) weak



Random (uncertain) data — framework

Initial data (conservative variables):

Qo, Mo = QoUo

Data (phase) space
2
D= {(eo.m0) [on € (@), mo € L71(2 R) [ o, mo) ax < o0
Q

C Xp = WR3(Q) x W*%(Q: R?) — Polish space
p

Probability measures

PB[D] — the set of probability measures on Xp supported by D




Random data, weak approach
oo,up € D C Xp

weak approach <« determining distribution (law) of solutions

Generating sequences of random data
(00, mg) €D

N
1 n n
NZF(QmmO)‘)E[F[QO’mO” as N — oo

n=1

for any F € BC(Xp)
Expected value

E [F(g0,mo)] :/ F (8,0) dL[go, mo]

Xp

Distribution of the initial data

L[ 0o, mg] € P[D] — probability measure on the space of data




Main goal, convergence

h,n

(05, m§) € D — (o"",m™") consistent (numerical) approximation

Sequence of empirical measures:

1 N
N Z 6gh,n’mh,n
n=1

Convergence in law:
1
N Z Flo"", m""] = E[F[o,m]] as h— 0, N — oo
n=1

for any F € BC(W*"’@((O, T) x Q) x W="2((0, T) x Q; Rd))
Limit solution:

B(Floml] = | F{(o.m)[a. ] dLoo, mo]

Xp
(0, m)[p, M] - smooth (whence unique) solution of the Navier-Stokes sys-
tem with the initial data [g, M|




Boundedness in probability

Consistent (numerical) approximation

h=h(£), N=N(£), h(f) \ 0, N({) oo asl— oo.

1 N
} : h, h,n__h,
N 5[gh,n7mh,n], m"" = o Tu™"
n=1

Boundedness in probability:
For any € > 0, there is M = M(g) such that

# {lle"", u""|

Lo ((0, Ty xRe+1) > M, n < N}
N

<eforany {=1,2,...

Convergence (EF, M. Lukatova):
Any sequence of consistent approximations that is bounded in probability
converges in law to a (statistical) solution of the Navier—Stokes system




