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Navier—Stokes system

Field equations
Oro + divx(pu) =0

O¢(ou) + divi(ou ®@ u) + Vip(p) = div<S(Dxu)

Periodic boundary conditions

T = ([-1,1][{_113)", d =2,3

Initial data

9(07 ) = 0o, inf 00 > 07 (QU)(O, ) = Mo = PoUop

p(o) =ao”, a>0, v>1




Concepts of solutions

strong (classical) solutions C weak solutions C dissipative solutions

Strong solutions

Local in time existence for smooth data., global in time existence for the
data close to equilibrium, uniqueness and continuous dependence on the
data

Weak solutions

Global in time existence for v > g, uniqueness — open problem, possibility
to select a solution semigroup, measurable dependence of solutions on the
data

Dissipative solutions
Limits of consistent approximations — numerical schemes.




Dissipative solutions

/ / [Q@tcp + ou - chp] dxdt = —/ 00p(0,-) dx
0 Td Td
for any ¢ € C2([0,00) x T%)

/ /d [Qu -O0rp+ou®u: Vep + p(g)divxgo} dxdt
o Jr

= / S(Dxu) : Vi dxdt—/ oouo-(0, -) dx—/ R Viepdt
o Jrd Td o Jrd

for any ¢ € C2([0,00) x T%; RY)
/ <19‘u|z_~_ P(g)) (") dx+/ @(7—7.)4-/ / S(Dxu) : Deu dxdt
Td 2 Td 0 Td

1
S/ (EQO\UO\Q-FP(QO)) dx
Td

0 <M, 0< trace[R] < c€

Compatibility




Solvability of the Navier—Stokes system
m Local existence of smooth solutions [Valli, Zajaczkowski [1986]]

00 € W3(Q), inf oo >0, up € W*(Q; RY), k>3

+
compatibility conditions
=
There exists a regular (classical) solution
0 € C([0, Tomax): W**(Q)), u € C([0, Trmax); W**(Q; RY)), Tax >0

m Global existence of weak solutions [Lions [1998], EF [2000]]

1 d
00 >0, / {590|U0|2+P(90) dx < oo, 7> >
Q

=

There exists global in time weak solution
0 € C([0, T]; L(@)) N Cuear([0, TI; L(Q)),

ou € Cyeax([0, TT; L%(Q; RY)), u e L>(0, T; W,*(Q; RY)) for any T > 0



Conditional regularity, weak—strong uniqueness

A priori bounds [Sun, Wang, and Zhang [2011]]

llo(t: Ylwraqy + lult, )lwe2(q)

< A (T lloollweay: inf 00, lluollwezqays [ lelli=o.71x s lulli=o. <) |)

te[0,T], k>3

Weak (dissipative) —strong uniqueness [EF, Jin, Novotny [2012], Ab-
batiello, EF [2020]]

Any dissipative solutions emanating from sufficiently regular initial data
coincides with the unique strong solutions as long as the latter exists

Corollary
Any dissipative solution emanating from sufficiently regular initial data that
remain uniformly bounded is a classical solution




Statistical solutions — framework

Data (phase) space
2
D= {[Qo,mo] ’Qo € L(Q), mo € LTL(Q; Rd))/ E(0,mg) dx < oo}
Jq

C Xp = W *(Q) x W *(Q; RY) — Polish space

Probability measures

PB[D] — the set of probability measures on Xp supported by D




Statistical solution

m Family of Markov operators

M: - B[D] — B[D]

[
Mo(v) = v for any v € B[D]
[
N N N
M <Z ail/i) = Zath(Vi), aj >0, Zai =1
i=1 i=1 i=1
[
Miis = My o M for any t > 0 and a.a. s > 0
[
t — M, continuous with respect to the weak topology on B3[D]
[

M:(S105,me1) = S(o(t,),m(t,))
[Q(tv ')7 m(tv )]

solution of the Navier—Stokes system with the data [go, mo]




Statistical solution — pushforward measure

Measurable semiflow selection

U=[o,m]:[0,00) x D — D

Pushforward measure

vy € P[D] given
Me(0)[B] = ro[U~'(t, B)]

/X F(o.m) dMq(vo) = /D FU(t; 00, mo)) dvo(go, mo)

for any
F € BC(Xp)

[Fanelli and EF [2020]]



Tools from probability theory |

Skorokhod (representation) theorem

Let (U)$5_; be a sequence of random variables ranging in a Polish space
X. Suppose that their laws are tight in X, meaning for any € > 0, there
exists a compact set K(g) C X such that

PlUM € X\ K(e)] <eforal M=1,2,....

Then there is a subsequence M, — oo and a sequence of random variables
(UMn)22, defined on the standard probability space

(fz = [0, 1], B0, 1],dy)

satisfying:

UM~y UM (they are equally distributed random variables),

UM — U in X for every y € [0,1].




Tools from probability theory Il

Gyongy—Krylov theorem
Let X be a Polish space and (U)y>1 a sequence of X—valued random

variables.
Then (UM)%_, converges in probability if and only if for any sequence of

joint laws of
(U, UM,

there exists further subsequence that converge weakly to a probability mea-
sure 1 on X x X such that

pllxy) € X x X, x=y]=1




Numerical approximation

(Initial) data

00, Mo = goup € D C Xp

Numerical approximation

0", u", h=ht) > 0as l — oo

Numerical scheme
(0",u") € Vi, where Vi, € L>((0, T) x T%); R™) is a finite dimensional
space,

inf Qh > 0 for any h,

A (h, [0, uo, ], Qh,uh) =0,

where
A:(0,00) x Dx Vi = R™, m= m(h)

is a Borel measurable (typically continuous) mapping representing a finite
system of algebraic equations called numerical scheme




Convergent numerical approximation

We say that a numerical approximation is convergent if for any sequence
of data
[0, ud] € D — [0, u0] in Xp as N — oo,

the numerical approximation (o™",u"") satisfies:
]
" >0
]

o = oin L'((0, T) x T,
u™ = uin L0, T) x T R%) as N — oo, h — 0,

for any 0 < T < Tmax, where (o, u) is the unique classical solution
of the problem with the data [0o, uo] defined on the maximal time
interval [0, Tmax)-




Bounded graph property

If N=N(¢) /oo, h=h(£)\,0,

o8] i

00,Uy | € D — [00,u0] in Xp as N — oo,
and the associated numerical approximation satisfies

N N
su ,u’ < 00
,,,,\',) H(g ’ )HLOO((O,T)XTd;Rd“) ’

then
o™ — oin L'((0, T) x T),

"V S uin L1((0, T) x T% T% as h — 0, N — oo,

where (g, u) is the unique classical solution of the Navier—Stokes system
with the initial the data [0, uo].

Corollary
Any convergent numerical scheme possesses the bounded graph property




Random data, weak approach
oo,up € D C Xp

weak approach <« determining distribution (law) of solutions

Generating sequences of random data

[00,ug] € D

N
1 n n
NZF[QmUo] — E[F[oo,uo]] as N — oo

n=1

for any F € BC(Xp)
Expected value

E [F[o0, uo]] :/ F (6,0) dL[go, uo]

Xp

Distribution of the initial data

L[go, uo] € P[D] — probability measure on the space of data




Weak approach, main goal |

h,n

[05,uf] € D — [0"",u™"] numerical approximation

Sequence of empirical measures

1 N
N Z O ghun yhin
n=1

Convergence in law

N
1 n n
Nle[gh’ ,u""] > E[F[o,u]] as h— 0, N — oo
for any F € BC(W*"”’Q((O, T) x T9) x W="2((0, T) x T Rd))
Limit solution

B(Floall = [ F o). al] dLlen, wo

Xp
(0,u) - smooth (whence unique) statistical solution of the Navier-Stokes
system




Weak approach, main goal Il

Convergence of empirical means
NZ(th ") = E[o,u] as N =00, h—0

in L9((0, T) x T%; R, ¢ > 1
Expected value

E[Q> U] :/ (Q,U)[@ ﬁ] dﬁ[Qmuo]

Xp

Bochner integral in a suitable Banach space

§
Neither the approximate sequence [gg, ug] nor the associated numerical
solutions (o™",u™") are uniquely determined by the data [go, uo]. Practical
implementations deal with a large number of samples — sequences [gg, ug] —
generated independently mimicking the Strong law of large numbers

[ Mishra, Schwab et al.]



Random data, strong approach

Data as random variable

[go,UQ] : {Q,B,P} — XD.

Main goal
Identify the exact solution (g,u) as a random variable on the same proba-
bility space

Stochastic collocation method
Q=U),Q), QY P — measurable, QY N QY =0 for i # j, UN,QF =Q

Approximate random data

N
[oo,n; uon] = Zﬂnyv(w)[go,uo](wn), wn € Q.

n=1
N
Z]lgx/(w)[go,uO](wn) — [Qo, uo] in Xp P—a.s.

n=1




Collocation method - convergence of data approximation

Probability space, class R
Q — compact metric space

R(Q,P) = {f Q=R ) f bounded, P{w € Q | f is not continuous at w} = 0}

s )
Unconditional convergence of data approximation
Suppose the (initial data) belong to the class R (in a weak sense - Fourier

modes).

Then
N

3 Loy (@)[20, o] (wn) = [e0, uo] in Xp P — as.

n=1
independently of the choice of the collocation points provided diameters
of the partition tend to zero

[EF, Lukatova-Medvidova [2021] ]



Boundedness in probability, weak approach

Approximate solutions

h=h(£), N=N(£), h(£) \,0, N({) oo as l— oo.

N
1
Z 6[9"’",11”'"]
n=1

=|

Boundedness in probability (weak)
For any € > 0, there is M = M(g) such that

# {HQh’n’Uh’nHLOO((o,T)de;RdH) >M, n< N}
N

<egforany £=1,2,...




Boundedness in probability, strong approach

Approximate solutions

h=h(€), N = N(£), h(f) \,0, N(f) /oo as £ — co.
N
[‘Qh,N7 uh,N] _ Z ]lﬂ’,(l ("J)[Qh,n7 uh,n]
n=1

Boundedness in probability (strong)
For any € > 0, there is M = M(g) such that

Z Q)| <efort=1,2,...

<N {1 oo (0.7 wrd e 1) > M }




Weak to strong

Weak (statistical data)

1 N
N 2 L]

Application of Skorokhod representation theorem

L[oo,n,uon] = L

1 N
N 2 L]

[QO,N7 UO,N] — [507’60] in XD dP — a.s.

on a probability basis {Q, B, P}
[0, to] ~ [0, uo]

~ - equivalence in law




Convergence of approximate solutions, |

Approximate (numerical) solutions

h,N h,N h,N h,N
NNy N=12,... P H N H >Mb<e
(o™ ,u™™) { ¢ ,u L50((0, T)x Td;RI+1 — =€

Application of Skorokhod theorem

hN BN . hN BN
Yan = {[Qo,NalJo,N]i(Q Tu );/\h¢N}, with Apy = [l0"", u™ 7| ee,
a sequence of random variables ranging in the Polish space

X=Xpx W ™0, T)x T R™)x R, m>d+1.




Convergence of approximate solutions, |11

L[Yhn] tight in X

=

-~ b N ~hoN ) LT
{[Qo,/vk,uo,/vk]; (Q AT k) ;Ahk,Nk}

~ {[Qo,Nw uo,n, |; (Qhk’Nk7 Uhk’Nk) 7/\hk,Nk}7
[G0.n, » U, ] — [0, To] in Xp P —a.s.,
where [go, o] ~ [go, uo]
(@’”k”vk,ﬁhk’”k) 5 (8,T) in W™2((0, T) x T% R™™) P — ass.,
and B o
Ane, = [[(@" M, @) [0 — AP — as.

on a probability space {ﬁ B; ﬁ}




Convergence of approximate solutions, conclusion

Bounded graph property

<§hk’Nk,ﬁhk"N*> — (3,u) strongly in LY((0, T) x T?; R‘"") P —as.

forany 1 < g < oo

where (g, 1) is the unique (statistical) solution of the Navier-Stokes system

Gyongy—Krylov criterion

(gh’N, uh‘N) — (o,u) in LY((0, T) x T R’*') in P — probability

on the original probability basis




Convergence in expectations

Strong convergence in expectations [EF [2022] ]
Suppose that the energy of the numerical solutions is bounded in expecta-
tions, meaning

Z\Q |/ [1 o +P(Qh")](7' Jdx S 1forre(0,T), £=1,2,.)
Then

r

—+0as{— oo forany 1 <r <7,

N
h,
D 1w -0
n=1

LY((0, T)xTd)

s

haghn _ o —0asf— o0

2y
LYFL((0,T)xT9;RY)

2y
f 1<s< —H
or any s S+l




r-barycenter

r-barycenter
E[Y] of a random variable Y defined on a Polish space (X; dx):

E[Y] € X, Eldx (YiEY])] = minE[dx (¥ 2)], r>1,

meaning
E.(Y) = arg Zmelp(]E [dx (Y;2)7].
If X = L9(0, T) x T% R¥) and 1 < r < oo, then
m there exists a unique r—barycenter for any Y, E[||Y||74] < oo,

m E,[Y] depends only on the distribution (law) of Y




Convergence of barycenters

Strong convergence of barycenters [EF [2022]]
Suppose that the energy of the numerical solutions is bounded in expecta-
tions.

Then
| ]
1 N
N ;gh’" —E[g] in L7((0, T) x T%),
1 n n H 2
N D" = Efou] in L3TI((0, T) x T RY)
n=1
as / — oo
| ]
1 N
. ~ d
E, N;‘;W] — EJo] in LY(TY), 1< r<~,
1 o in [ 25 (T pY 2y
Es NZ(;WW — Esfou] in L3771 (T% RY), 1< s < poor
n=1

as / — oo.
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