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With the growing numbers of nanomaterials (NMs), there is a great demand for
rapid and reliable ways of testing NM safety—preferably using in vitro
approaches, to avoid the ethical dilemmas associated with animal research. Data
are needed for developing intelligent testing strategies for risk assessment of
NMs, based on grouping and read-across approaches. The adoption of high
throughput screening (HTS) and high content analysis (HCA) for NM toxicity
testing allows the testing of numerous materials at different concentrations and
on different types of cells, reduces the effect of inter-experimental variation, and
makes substantial savings in time and cost. HTS/HCA approaches facilitate the
classification of key biological indicators of NM-cell interactions. Validation of
in vitro HTS tests is required, taking account of relevance to in vivo results. HTS/
HCA approaches are needed to assess dose- and time-dependent toxicity, allow-
ing prediction of in vivo adverse effects. Several HTS/HCA methods are being
validated and applied for NM testing in the FP7 project NANoREG, including
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Label-free cellular screening of NM uptake, HCA, High throughput flow cytome-
try, Impedance-based monitoring, Multiplex analysis of secreted products, and
genotoxicity methods—namely High throughput comet assay, High throughput
in vitro micronucleus assay, and γH2AX assay. There are several technical chal-
lenges with HTS/HCA for NM testing, as toxicity screening needs to be coupled
with characterization of NMs in exposure medium prior to the test; possible
interference of NMs with HTS/HCA techniques is another concern. Advantages
and challenges of HTS/HCA approaches in NM safety are discussed. © 2016 The

Authors. WIREs Nanomedicine and Nanobiotechnology published by Wiley Periodicals, Inc.
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INTRODUCTION TO HIGH-
THROUGHPUT SCREENING
OF NANOMATERIALS

Manufactured nanomaterials (NMs—materials
with at least one dimension <100 nm) and

nanoparticles (NPs—NMs with all three dimensions
<100 nm) are considered as distinct from normal
chemical compounds on account of their size, chemi-
cal composition, shape, surface structure, surface
charge, aggregation, and solubility.1,2 The extraordi-
nary physicochemical properties of NMs have accel-
erated their incorporation into diverse industrial and
domestic products. Although their presence in con-
sumer products represents a major concern for public
health safety agencies as well as for consumers, the
potential impact of these products on human health
has been poorly characterized. At present, the very
limited, and often conflicting data derived from pub-
lished literature—and the fact that different NMs are
physicochemically so heterogeneous—make it diffi-
cult to generalize about health risks associated with
exposure to NMs. There is therefore an urgent need
to clarify the toxic effects of NPs and NMs and to
elucidate the mechanisms involved in their toxicity.
In view of the large number of NMs currently in use,
high throughput screening (HTS) techniques aimed
at accurately predicting and assessing toxicity are
clearly needed; given the availability of reliable toxic-
ity metrics, the HTS approach will generate large and
valuable data sets.3,4

Up to now, there has been no consensus regard-
ing models and tests that should be used to analyze
the in vitro toxicity of NPs/NMs and at present no
clear regulatory guidelines on testing and evaluation
are available.5–7 The heterogeneity of NMs severely
limits the feasibility of producing general toxicity
protocols to address NM risk assessment. However,
reliable, robust and validated protocols for testing

NP/NM toxicity (Table 1) are essential for human
and environmental risk assessment.5,8,9

Compared with in vivo approaches, in vitro
methods to address NM-induced toxicity have the
advantages of simplicity, economy, and shorter
time required for investigation; they can aid in
revealing general mechanisms underlying the effects
of NMs on cells, and can provide a basis for eval-
uating potential risks of exposure. However,
obtaining toxicological data from in vitro assays
alone has potential limitations since the behavior
of cells with NMs in culture differs from their
behavior in the complex biological systems of the
whole organism.9 This is attributed to what is
known as ‘coordinated tissue response,’ perhaps
the most under-researched area in the field of toxi-
cology.5 Ideally, when considering screening novel
NMs for toxic effects we should use a combination
of in vitro methods simulating as closely as possi-
ble in vivo conditions.

HTS is defined as the use of automated tools
to facilitate rapid execution of a large number and
variety of biological assays that may include several
substances in each assay.4 HTS was introduced in
the pharmaceutical and chemical industries as a
rapid way of evaluating effects of many novel com-
pounds. With the rapid growth of NM production,
HTS methods are needed to allow toxicity testing of
large numbers of materials in a timely manner and
with savings in labor costs. HTS in vitro facilitates
the hazard ranking of NMs, through the generation
of a database with all reported effects on biological
and environmental systems; thus novel NMs can be
prioritized for in vivo testing. An effective HTS
model for investigating the toxic effects of several
metal-oxide NPs,10 based on a hazard ranking sys-
tem using HTS, gave results that were mostly com-
parable to in vivo results in zebra fish embryos with
the same NPs.
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TABLE 1 | Advantages and Limitations of High Throughput Screening Methods to Study Toxicity of Nanomaterials

Technique Advantages Limitations

Label-free fast qualitative and quantitative assessment of uptake and cellular screening of NMs
Flow cytometry Fast, cost-effective and validated assay.

Multiplexing capabilities.
Interference compensation and gating accounted for
by side scatter versus forward scatter.

Uptake can be followed.
Discriminates cells with and without NPs, to study
heterogeneity.

Recommended for fast cell assay in cases where NMs
do not interfere.

Requires fluorescent labels which may interfere with
surface properties of NMs.

Optical properties of NM can interfere with
measurement of absorbance or fluorescence.

NPs may also adsorb reagents, markers.
NPs situated on cell membranes may bind or mask
surface receptors.

So far only developed for use with 96 wells.
Needs proper controls to identify interference due
to NMs.

HTS flow cytometry Side scatter signal can detect NMs.
Imaging flow cytometry relates physicochemical
characteristics of NMs to their uptake

HTS flow cytometry for
studying specific
cellular uptake

Evaluates specific cellular uptake If uptake is measured using side scatter, increased
cellular density may also be due to apoptosis, so
additional methods must be used for validation.

Confocal laser scanning
spectroscopy

Cost-effective and validated method, with
multiplexing capabilities, Z-stacks option and
combined imaging options.

Recommended for particle localization/uptake.

Assay is low throughput unless automated.

AES Quantifies specific chemical elements of NMs in
cultured cells and tissues with ppb accuracy.

Expensive.
Technical knowledge needed.

ICP-MS High accuracy and low limit of detection (ppb).
Can selectively screen for battery of elements.

Only applicable to inorganic NMs.
Not possible to distinguish between NMs that are
internalized in cells, extracellularly associated
and/or just located between cells or within
extracellular fluid.

Single particle ICP-MS Records pulses related to single NM and distinguishes
between dissolved and particulate forms of NMs

Same as for ICP-MS.

IBM techniques (μPIXE
and/or μRBS)

Powerful tools for spatially resolved elemental
imaging.

Possible to determine concentration of cellular
elements, with sensitivity in ppm range.

Distinguishes between internalized NMs and NMs
attached on outside of plasma membrane. Can
quantify total cellular NP concentration in cells and
tissues.

In most cases, difficult to distinguish between
dissolved and particulate forms of NMs.

EMPA Quantifies and visualizes single elements in biological
specimens.

Low signal/noise ratio and poor penetration of
biological specimens compared to proton beam.

MRI, PET and SPECT Clinical imaging applications, and detection of NPs in
whole organism.

Only applicable with specifically designed and
validated detection probes.

Low resolution (about 1 mm).
TEM, ToF-SIMS Simultaneous visualization of NMs and their

biological environment at sub-cellular level.
TEM and ToF-SIMS methods are relatively costly
and time-consuming, and require heavy
equipment.

CRM Noninvasive fast screening 3D method to visualize
and quantify NMs at sub-cellular level as well as to
study adverse effects of NMs such as apoptosis/
necrosis, ROS, Cyt C redox status, DNA
fragmentation based on spectroscopic marker of
individual cells in vitro and in vivo.

Economical and relatively fast technique highly
recommended for HTS analysis.

CRM is not able to detect dissolved NMs.
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TABLE 1 | Continued

Technique Advantages Limitations

High throughput screening and High Content Analysis for NM-induced cytotoxicity
Flow cytometry Fast, cost-effective and validated assay with

multiplexing capabilities,
Interference compensation and gating accounted for
by side scatter versus forward scatter.
Recommended for fast cell viability testing.

HTS flow cytometry for
studying cell death

Can investigate several parameters in one sample. Further investigation needed to ensure there is no
interference with NMs.

HTS flow cytometry for
ROS

Detects several early intracellular indicators at much
low NM concentrations.

Flexible, allowing for study of several NPs in one
single experiment.

Further investigation needed to ensure there is no
interference with NMs.

Multiplex analysis of
secreted products

Allows quantification of up to 500 analytes in same
sample at same time.

Reduction of reagents and sample volume, and
number of experimented animals;

Possible to perform repeated measures of multiplex
panels in same experimental assay.

Detection of analytes over broad range of
concentrations.

Assay costs are moderately high.

Impedance-based monitoring of NM-induced cytotoxicity
Impedance-based
spectroscopy/
Impedance-based HTS

Enhanced sensitivity compared to traditional assays
and label free (no interference with
spectrophotometric readings).

Relatively high cost for plates with electrodes and
for microfluidic impedance-based chips.

xCELLigence®, CellKey
and ECIS systems

Not labor-intensive, label-free, noninvasive,
biophysical assay, detecting dynamic cell responses.

Measure real-time electrical impedance, up to 384-
well plate format.

Observes cellular responses to effectors without
giving any indication of underlying mechanisms.

Adherent cells only. Relatively high cost for plates
with electrodes.

Effects of ions and particulate matter difficult to
differentiate for soluble NMs.

IFC,
Ampha Z30

Label-free. Measures single cells in suspension, giving
information about size and number of cells,
membrane capacitance and cytoplasmic
conductivity, with capacity to differentiate between
viable, apoptotic and necrotic cells.

Endpoint assay; does not identify underlying
mechanisms.

Recently introduced; more time needed for
optimisation and validation.

HTS/HCA for imaging and quantitative screening of NMs
HCA and
High content Screening
coupled with CLSM or
EPI

Fast, reliable, real time, 384 wells.
Quantitative and qualitative data.
Allows multiparametric analysis,
Easy to use.

Assay costs are moderately high compared to
standard kit even allowing for multiparametric
screening.

High-throughput omics 96–1536 wells. Label-free. Multiplexing of 50–1500
parallel gene expression measurements.

High sensitivity with linear response: measurements
possible without amplification of the target.

Permits single-cell sensitivity and extremely high
specificity.

Results can be compared to/validated against existing
repositories of gene expression profiles.

Assay costs are moderately expensive, but lower
than traditional microarray or RNA-seq analyses.

Not a substitute for phenotype assays.

Genotoxicity/mutagenicity
HTS Comet Assay Well-known and simple assay allowing testing of

several NMs simultaneously.
Automatic scoring systems have been developed.

Semi-automatic scoring is time-consuming.
Fully automatic scoring is expensive and still might
need validation.

‘CometChip’ Uses microarray on an agarose-coated plate. Long-term sample storage needs to be improved.
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EXPERIMENTAL DESIGN FOR
EFFECTIVE HIGH-THROUGHPUT
SCREENING: ACCELERATING
TOXICITY ANALYSIS

Accurate design and planning of HTS for assessing
the toxicity of NMs/NPs are essential; interlabora-
tory comparisons (before adopting a method for rou-
tine screening) help to reduce confidence variance
and may identify possible sources of variability.11

Adoption of automated and robotic liquid and sam-
ple handling is advisable since this will help to reduce
systematic errors. In order to reduce such bias, the
experimental design needs to be randomized.

HCA and HTS approaches should deliver infor-
mation on key biological indicators of NM-cell inter-
actions, such as cell proliferation, cellular
morphology, membrane permeability, lysosomal
mass/pH, DNA and chromosome damage, activation
of transcription factors, mitochondrial membrane
potential changes, oxidative stress monitoring and
post-translational modification.12

Technical challenges can arise in HTS/HCA
design, as toxicology screening needs to be coupled
with characterization of NPs/NMs in the exposure
medium. Characterization is of necessity time-
consuming and cannot be automated. This limitation
is partially overcome if NMs, once characterized, can
then be tested (in an HTS/HCA mode) on a variety
of cell lines, using different exposure times, a range
of concentrations, etc.

To achieve statistical significance, experiments
should be performed at least three times with repli-
cate samples within each data point (three repeats).

Further basic requirements are: (1) clearly iden-
tified endpoints, (2) assay-related as well as NM-
specific positive and negative controls, (3) toxicologi-
cally relevant (extracellular) concentrations of NMs,

(4) validated assays, (5) multiparametric statistical
analysis of data, e.g., using ANOVA with post Bon-
ferroni analysis, or general linear models, (6) well-
designed graphical display of data (e.g., bar charts)
and—in the case of multiparametric datasets—
various graphical plots to visualize associations
between NP/NM exposure and different endpoints.
For example, a multilevel heatmap matrix has been
used to illustrate effects of dose, concentration, and
time for multiple NMs11–13 (Figure 1).

Various methods have been applied to the study
of toxicity of NMs, employing diverse physical,
chemical, and biological principles and endpoints;
they will now be described in detail, with emphasis
on high throughput adaptations.

LABEL-FREE DOSIMETRY AND
IMAGING TECHNIQUES—TOWARD
HIGH THROUGHPUT

While the intracellular distribution pattern of NMs is
an important factor in investigating toxicological
responses, it is generally difficult to predict and
model, because it is the final result of several translo-
cation events. Flow cytometry as well as confocal
laser scanning spectroscopy have been frequently
applied for studying NM translocation and semi-
quantitative estimation of NM uptake. A potential
problem with these methods is that they require
fluorescently labeled NMs. The comparatively large
dye molecules may significantly change the surface
properties of NMs, and thus falsify the cellular distri-
bution and uptake of NMs. Clearly, label-free dosim-
etry and imaging techniques are advantageous in that
they allow the study of authentic NMs—a crucial
requirement in the regulatory context. For this reason
this section focuses on label-free techniques and on

TABLE 1 | Continued

Technique Advantages Limitations

HCS approach to IVMN Efficient method with high sensitivity and specificity. Requires multiple assays as developed within FP7
(QualityNANO).

Not fully automated.
Tested on polystyrene and iron oxide NMs.

γH2AX assay—foci Several orders of magnitude more sensitive than
method measuring overall protein level. Allows
distinction between pan-nuclear staining and focus
formation.

Automated scoring still needs improvements.
Validation needed against other methods.

AES, Atomic Emission Spectroscopy; ICP-MS, Inductively Coupled Plasma Mass Spectrometry; IBM (μPIXE and/or μRBS), Ion Beam Microscopy; HTS, High
Throughput Screening; HCA, High Content Analysis; CLSM, Confocal Laser Scanning Microscopy; EPI, EMPA-Electron microprobe analysis; MRI, magnetic
resonance imaging; PET, positron emission tomography; SPECT, single-photon computed emission tomography; TEM, Transmission electron Microscopy;
ToF-SIMS, time-of-flight secondary ion mass spectrometry; IVMN, in vitro micronucleus; H2AX, phosphorylated histone H2AX; γH2AX, Foci of
phospho-H2AX.
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the potential and applicability of imaging techniques
for high throughput requirements.

Atom emission spectroscopy (AES) has been
shown to be a useful tool for the quantification of a
large range of elements. AES is based on the emission
of radiation, which is characteristic for every ele-
ment. The method is capable of quantifying specific
chemical elements of NMs in cultured cells and tis-
sues with ppb accuracy.14,15

Mass spectrometry (MS) is another rather sensi-
tive technique for cellular NM quantitation. The ele-
ments of analyzed particles are ionized and separated
by their mass-to-charge-ratio. Predominantly, mass

spectrometry with inductively coupled plasma (ICP-
MS) is used for quantification of NM uptake in cul-
tured cells.16 The specimen to be investigated is either
a suspension of cultured cells or a tissue sample,
which needs to be dissolved prior to ICP-MS. Study-
ing the uptake of organic or inorganic NMs requires
a comparatively large number of cells.17 ICP-MS was
further developed as single particle ICP-MS (sp-ICP-
MS). This technique is able to record pulses related
to a single NM. sp-ICP-MS has the advantage of
being able to distinguish between the dissolved and
particulate form of NMs,18 because the dissolved
analyte does not generate pulses.

Cultured cells

(a)

(b)
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FIGURE 1 | (a) Experimental workflow and (b) experimental design for effective high-throughput screening
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A disadvantage of these techniques is that there
is no possibility to distinguish between NMs that are
internalized into the cells, extracellularly associated
and/or just located between cells or within the extra-
cellular fluid.19 It has been shown that there is a sig-
nificant difference between uptake measured by
means of ICP-MS and uptake based on the analysis
of individual cells.17

Ion beam microscopy (IBM) techniques, such as
micro-proton-induced X-ray emission (μPIXE) and
micro-Rutherford backscattering (μRBS), are power-
ful tools for spatially resolved elemental imaging and
quantitative analysis at the single-cell level. A proton
beam is used for scanning the sample in the xy-plane
at a resolution of about 1 μm. With the combination
of PIXE and RBS it becomes possible to determine the
concentration of cellular elements (for example, P, S,
Ca, K, Zn, and Fe), with a sensitivity in the ppm
range.20,21 Recently, IBM was applied to quantify
NM cellular uptake in cultured cells.17,22 The simulta-
neous application of μRBS and μPIXE methods deli-
vers unique information on the genuine concentration
and distribution of NMs down to the single-cell level.
IBM allows visualization and quantification of a wide
range of NMs in tissues and cells (Figure 2). More-
over, μRBS can reveal the distribution of NMs in the
z-direction with an accuracy of about 100 nm. The
method distinguishes between NMs that are interna-
lized and those that are attached on the outside of the
plasma membrane, owing to the loss of energy of
back-scattered protons from NMs located inside cells.

Electron microprobe analysis (EMPA) is a tech-
nique similar to μPIXE. Here a scanning electron

beam is used instead of a proton beam. EMPA is able
to quantify and visualize single elements in biological
specimens23,24 in a spatially resolved manner.

The advantage of PIXE/RBS over electron-
based X-ray emission is that proton beams are capa-
ble of analyzing a much higher probe thickness and
so can quantify the total cellular NM concentration
in cells and tissues. Moreover, the protons offer a
better signal/noise ratio allowing the accurate detec-
tion of cellular trace elements at very low
concentrations.

Magnetic resonance imaging (MRI), positron
emission tomography (PET) and single-photon emis-
sion computer tomography (SPECT) are commonly
used in clinical imaging applications as well as for
the detection of NMs in the whole organism with a
resolution of about 1 mm.25–27 The activation of
oxygen by the 16O(p,α)13 N reaction within metal-
oxide NMs avoids the undesired surface modification
of NMs. Therefore it becomes possible to study the
distribution of commercially available Al2O3 NMs in
tissues and organs of rats by PET.22

Transmission electron microscopy (TEM),
time-of-flight secondary ion mass spectrometry
(ToF-SIMS)28 and confocal Raman microspectro-
scopy (CRM) are methods which allow the simulta-
neous visualization of NMs and their biological
environment at a sub-cellular level. These techniques
can be considered as semi-quantitative space-
resolved imaging methods. TEM visualizes the intra-
cellular localization of NMs in ultra-thin
(50–100 nm) sections of tissue or cultured cells.29,30

Chemical identification of NMs can be done by

FIGURE 2 | Micro-proton-induced X-ray emission (μPIXE) elemental mapping of A549 cells exposed to different metal-oxide NMs at a
concentration of 30 μg/mL for 48 h. Top and bottom images demonstrate S (Sulfur) and NM related element distributions, respectively. The color
code is as follows: yellow is the maximum, black represents the minimum. The size of all images is 50 × 50 μm. (Reprinted with permission from
Ref 22. Copyright 2014 Wiley)
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X-ray energy-dispersive spectrometry (EDS) and
electron energy-loss spectrometry (EELS) in TEM.
The 3D reconstruction of NMs internalized by tis-
sues and cells with suitable contrast and high depth
resolution has been accomplished by tomography
(‘slice and view’) using Focused Ion Beam-Scanning
Electron Microscopy (FIB-SEM).31 With ToF-SIMS
it is possible to measure the 3D distribution of NMs
in cells and tissues by means of a layer-wise high
energy beam raster technique. The lateral resolution
is about 300 nm. Pathological changes in the pat-
tern of cellular lipids following NM exposure have
been detected.32,33 TEM and ToF-SIMS methods are
relatively cost-intensive and time-consuming, and so
might not be useful as high throughput techniques
for NM screening. CRM, in contrast, is an economi-
cal and relatively fast technique, which could well
be adopted for regulatory purposes in the future.
CRM provides 3D chemical composition images
with a resolution of about 200 nm at tissue and cel-
lular levels. CRM reveals not only the 3D NM dis-
tribution but also their co-localization within cell
compartments. CRM is especially suitable for the
detection of manufactured NMs, as the nanostruc-
tures show a specific Raman signal, which distin-
guishes the NMs from the signals of their chemical
constituents. Biochemical changes in cells that have
been exposed to toxic chemical agents, drugs or
NMs can be detected, identified and quantified.34,35

CRM imaging was used to follow the different
stages of the cell cycle,36 DNA condensation in late
stages of apoptosis and also for the assessment of
cell viability.37,38 DNA damage, lipid changes, and
protein denaturation were analyzed as a response to
drugs and chemicals.39,40 However, the spatial reso-
lution and sensitivity of CRM are limited compared
with TEM which typically has a threshold of
~60 nm.41

The power of CRM regarding cell imaging,
subsequent analysis of biochemical and cell physio-
logical processes as well as diagnostic power has
been demonstrated in a number of studies with cells
and tissues. Label-free imaging of cell organelles,42,43

uptake and intracellular fate of drug carriers44–46

and NMs inside individual cells32,47,48 have been
studied.

CRM has a strong potential as a label-free,
nondestructive technique for time-course imaging of
individual cells and tracking of cell metabolism. It
may become a useful tool for in vitro toxicological
studies for estimation and prediction of cell response
to agents at the cellular level. This qualifies CRM as
an innovative high throughput technique for in vitro
toxicity/uptake studies.

HIGH-THROUGHPUT SCREENING
FOR NM-INDUCED CYTOTOXICITY

Assays for cellular metabolic activity, oxidative stress
evaluation, apoptosis detection, and cell membrane
integrity49–55 have been developed for analyzing
cytotoxicity of chemicals and these are widely used
also in NM-induced cytotoxicity screening. The
methods are time-consuming, labor-intensive, com-
plex, and in some instances unreliable owing to NM
interferences.53,56,57 The reagents employed in such
methods may interact with some of the tested NMs
or may interfere with spectrophotometric readings,
leading to unreliable results.49,50,55 Conventional
assays focus on specific endpoints, without providing
information about the dynamic biological processes
leading to those endpoints, or the specific time points
and concentrations at which different toxic effects
are induced by NMs.54,58 Walker and Bucher59 sug-
gested that, owing to the unpredictable behavior of
many NMs, HTS approaches based on conventional
methods may only be applicable for a few classes of
NMs that are compatible with the available test sys-
tems. However, these issues do not preclude the use
of HTS approaches to screen for NM-induced cyto-
toxicity.60 Assay interferences can be avoided by
using label-free methods.61,62 Impedance-based spec-
troscopy is suggested as a method that does not need
markers or dyes, and that has enhanced sensitivity
compared to traditional assays.63,64 In addition, live
cytotoxicity screening provides information at any
given point throughout the progress of an
experiment—based on which, relevant time points
and concentrations can be identified for further
mechanistic studies.

HIGH CONTENT ANALYSIS

Combining automated image acquisition and power-
ful algorithms designed to quantify and extract a
maximum of information from a population of cells,
HCA generates great quantities of data for a large
number of cellular characteristics, including changes
in fluorescence intensity and distribution of intracel-
lular targets, as well as detailed information on cellu-
lar and nuclear morphology. From its debut in the
mid-1990s, developments in cellular imaging have
rendered HCA an important tool for understanding
biological processes induced by diverse xenobiotic
molecules. Originally an approach used almost exclu-
sively in the pharmaceutical industry to screen poten-
tial drug candidates aimed at specific targets, this
technology is now widely used by researchers in
many disciplines to study a wide range of cellular
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responses. Although a relatively new approach, the
development of HCA technology has been acceler-
ated by advances in optics, automated imaging, and
great improvements in fluorescent molecular probes
and reagents. In addition, rapid advances in informa-
tion technology, including image analysis software,
and increases in computing power and memory for
storage of vast amounts of images and results have
been a driving force in the success of HCA.

Quantitation of fluorescence corresponding to
relevant molecular targets in cellular compartments
allows researchers to characterize and quantify bio-
logical responses at the level of the individual cell
as well as for whole cell populations. Moreover,
since high content imaging allows multiparametric
analyses of several markers at the same time, correla-
tions between cellular markers can be readily ana-
lyzed on the same cell populations. The speed of
analysis, the multiparametric nature of the analysis,
combined with the quantity and quality of data,
make HCA an efficient and powerful approach to
study a wide range of cellular processes and
responses.

A number of commercial benchtop HCA instru-
ments are currently available, each offering specific
advantages for imaging and analysis. These systems
are equipped with powerful image analysis software
based on the automatic identification of cells, and—
depending on the instrument—they offer considera-
ble flexibility for analysis. Currently, most HCA
microscopes have optional environmental control
systems which can regulate temperature, atmosphere,
and humidity, thereby allowing live cell imaging in
real time. Although with most instruments HCA can
be performed on histological samples, the approach
is best adapted to studies using cultured cell lines in
multiwell plates (6–1536 wells) where multiple condi-
tions (various compounds, range of concentrations,
etc.) can be tested in a single experiment.

The wide selection of high quality primary anti-
bodies and specific fluorescent molecular probes has
given rise to limitless possibilities for analysis of bio-
logical responses. In addition, a broad range of fluo-
rescent secondary antibodies with relatively narrow
excitation and emission characteristics allows the
multiplexing of several markers simultaneously.
Many cell-permeable fluorescent probes are currently
available which allow the visualization of changes in
membrane permeability, reactive oxygen species
(ROS), mitochondrial and lysosomal functions,
among many other cellular processes, in fixed or liv-
ing cells. Indeed, the vast array of possible analyses
of specific cellular endpoints has made HCA a key
approach in various domains including toxicology,

genotoxicology, oncology, neurobiology, and
research on metabolic disorders.65

HCA approaches offer a number of advantages
regarding assay cost and data output. Miniaturiza-
tion of HCA runs on 96-, 384- or 1536-well plates
increases the number of compounds analyzed, and
reduces the volumes of reagent used. The incorpora-
tion of robotic handling systems into the workflow,
combined with automated image and data analysis,
permit a significant reduction in hands-on time in the
laboratory. Furthermore, the throughput, speed and
the number of cells analyzed using HCA approaches
generate great quantities of statistically robust quan-
titative data in considerably less time when compared
to manual image acquisition and analysis.

HCA approaches have been widely used for
many years by the biotech and pharmaceutical indus-
tries in drug discovery and toxicity testing66 of exten-
sive libraries of chemical compounds,67 and have
accurately predicted the toxicity of novel compounds.
Indeed, a multiparametric assay quantifying oxida-
tive stress, mitochondrial membrane potential and
intracellular glutathione levels was capable of accu-
rately predicting hepatotoxicity with a low false posi-
tive rate.68

There is an urgent need to develop HCA assays
to evaluate the toxicity of manufactured NMs. The
sheer number of NMs currently being used in con-
sumer products means that HCA-based approaches
will undoubtedly be key tools for safety testing, as
suggested by the growing number of published HCA
studies in the field of nanotoxicology. HCA can pro-
vide detailed information concerning the pathways of
cellular responses to treatment with NMs.69–71

Recently, several studies have applied high content
imaging to hazard characterization of NMs.10,72,73

High content imaging represents a promising
approach in the prediction and evaluation of toxicity
of NMs. Combined with complementary HTS meth-
ods as described in this article, HCA will provide val-
uable information on the mechanistic pathways
involved in toxicity and cellular responses.

HIGH-THROUGHPUT FLOW
CYTOMETRY

From simple cell-based fluorescent, colorimetric,
luminescent, and radiologic plate reader assays, to
high-content fluorescent imaging systems, the ability
to screen NMs in the context of living cells is essen-
tial in toxicology-screening programs. The emerging
field of high throughput flow cytometry extends the
capabilities of cell-based screening technologies.74
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The process involves the rapid introduction of multi-
ple samples through a single length of tubing, and it
is even possible to process samples from microplates
through a flow cytometer. This allows the implemen-
tation of large screening campaigns using assays with
multiple readouts per well. High throughput flow
cytometry is an ideal tool for cell-based applications
involving screening of cells in suspension, where mul-
tiple readouts are desired.75 Potential applications
include cell viability, intracellular incorporation of
NMs, and ROS detection. However, careful consider-
ation should be given to the selection of appropriate
flow cytometry assays in the light of possible NM
interference with fluorescent markers.

Cell Death (Apoptosis/Necrosis
Determination)
Cellular death may be divided into programmed cell
death, commonly referred to as apoptosis, and necro-
sis, which indicates accidental cell death. Cellular
apoptosis occurs in a sequential manner, starting
from cell shrinkage, increased cellular permeability,
membrane asymmetry and chromatin condensation.
Flow cytometry analysis coupled to a high through-
put system allows investigation of several parameters
in one sample, producing a complete picture of the
cell death profile. Collapse of the mitochondrial
membrane, an early stage in apoptosis, can easily be
assessed by positively charged fluorescent probes that
are able to locate inside the negatively charged mito-
chondria. As mitochondrial potential is lost, the
emission of the fluorescent probe changes, indicating
the onset of apoptosis in affected cells. Intermediate
apoptotic events include the activation of caspases,
which can be easily detected in permeable cells upon
incubation with nonfluorogenic substrates.

Loss of membrane asymmetry can be studied
by incubating cells with Annexin-V conjugated with
green-fluorescent dye—apoptotic cells giving a posi-
tive fluorescent signal. Subsequent incubation with
propidium iodide detects necrotic cells. Proportions
of apoptotic and necrotic cells are estimated by flow
cytometry.76 However, unpublished experiments58

indicate that Annexin V may not be a reliable assay,
as false negatives were obtained; the more TiO2 NMs
were added, the lower was the apparent percentage
of apoptotic (Annexin V-positive) cells. Obviously,
some type of interference occurred: cell membrane
attachment masking NMs, or adsorption of Annexin
V to the NMs (possibly both).

Final steps in apoptosis usually include chroma-
tin condensation and fragmentation. At this stage,

cells are smaller and can be detected with the tradi-
tional UV-excited Hoechst 33342.

Reactive Oxygen Production
ROS occur as by-products of mitochondrial respira-
tion and inflammation processes. In addition, xeno-
biotics can induce ROS production, either directly or
via inflammation. The physicochemical characteris-
tics of NMs enable them, in many cases, to catalyze
ROS production and oxidative damage to biomole-
cules, with potential pathological consequences.
Most of the commercially available probes to moni-
tor ROS production by flow cytometry in living cells
are cell-permeating chemicals that undergo changes
in their fluorescence spectral properties once oxidized
by ROS. Two such probes are represented by dihy-
droethidium (DHE, also called hydroethidine) and
CM-H2DCFDA (chloromethyldichlorodihydrofluor-
escein diacetate). DHE emits blue fluorescence in the
cytoplasm until oxidized by superoxide to 2-hydro-
xyethidium, which intercalates within the DNA stain-
ing the cell nucleus a bright fluorescent red. On the
other hand, the nonfluorescent CM-H2DCFDA is
first hydrolysed to DCFH by intracellular esterases
and DCFH is then oxidized to form the highly fluo-
rescent DCF in the presence of ROS77 (Figure 3).
Detection of ROS species by flow cytometry coupled
to a high-throughput system allows the detection of
several early intracellular indicators at much lower
NM concentrations than those needed for standard
cytotoxicity assays. This system is also very flexible,
allowing for the study of several NMs in one single
experiment, or alternatively, a few NMs in cell lines

FL1 Log

ROS+Cells
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0

FIGURE 3 | Flow cytometric detection of reactive oxygen species
produced in 3T3 cells after 24 h CeO2 NP exposure. FL1 represents
fluorescence from oxidation of chloromethyldichlorodihydrofluorescein
diacetate (CM-H2DCFDA). Blue area, control group without CeO2 NP
exposure; Red area, 0.1 mg/mL CeO2 NP exposure.
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representing different tissues susceptible to NM
exposure.

Specific Cellular Uptake
Uptake of NMs labeled with rhodamine fluorescent
probe is measured by flow cytometric detection of
rhodamine-positive cells. In the case of nonlabeled
NMs, it is possible to analyze the specific cellular
uptake through forward scatter (FS) (size) and side
scatter (SS) (Figure 4). Higher side scatter can also be
indicative of apoptosis, and so additional methods
such as microscopy should be used for validation.

While particular properties of NMs can inter-
fere with conventional cytotoxicity assays and induce
bias, this can be turned to advantage in the case of
flow cytometry. It was demonstrated that TiO2

78–80

and Ag81 NMs induce an increase of SS signal in cell
populations after exposure to both NMs. SS indicates
the granularity of the cells and is strongly linked to
their content of NMs. As few as 5–10 NMs per cell
can be detected.79 Recently, SS signal analysis was
successfully applied for detecting carboxylated nano-
diamonds and tungsten carbide-cobalt (WC-Co)
NMs in cells, results being validated by Raman and
confocal microscopy associated with 3D reconstruc-
tion.82,83 Finally, imaging flow cytometry
(an integrative approach combining flow cytometry
analyses with confocal microscopy) relates the physi-
cochemical characteristics of NMs to their uptake,
with a view to designing safe NMs.84 Flow cytometry
appears to be a good alternative method to detect
NM internalization compared to TEM which is very
time-consuming and requires heavy equipment.

IMPEDANCE-BASED MONITORING

Real-time cell monitoring using electrical properties
(electric cell-substrate impedance sensing, or ECIS)

was introduced by Giaever and Keese over 20 years
ago.85 As a label-free, noninvasive biophysical assay
detecting dynamic cell responses, it provides a valua-
ble tool for the investigation of NM toxicity and
early stage efficacy testing of NP-linked drugs.
Impedance-based methods have been used in applica-
tions ranging from food processing to clinical
research86–90 and recently have been adapted to HTS
techniques in order to examine the impedance char-
acteristics of cell monolayers after exposure to cer-
tain bio-reactive agents, for instance in the
pharmaceutical industry.86

Impedance-based devices used for adherent cells
consist essentially of electrodes attached to cell cul-
ture vessels. When cells are grown in such vessels,
their growth, attachment and proliferation result in
changes in the measured impedance output, as grow-
ing cells—with their insulating bilipid membranes—
act as dielectric objects.55,85,91 An alternating electri-
cal current (AC) is applied through the electrodes
and the extent to which the cells impede that current
is measured.58,89 When the cells grow and attach to
the electrodes at the bottom of the culture vessels the
impedance increases; this provides information about
the cell count, cell morphology, attachment to the
substrate and viability. When cells die, they detach
from the electrode surface, causing a drop in the
recorded impedance, which indicates a reduction in
the number of viable cells.53,58

Commercially available impedance-based
instruments for in vitro analysis on cell monolayers
monitor the changes in impedance properties of cells
after exposure to bioactive agents. The
xCELLigence®, CellKey, and ECIS systems, probably
the most used such instruments, work on essentially
the same principle. They utilize cell culture well
plates with gold-plated electrodes attached to the
bottom of the wells and measure the real-time oppo-
sition of the seeded cells to the applied electric
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FIGURE 4 | Forward scatter (FS)/side scatter (SS) plots to determine NP uptake in 3T3 cell line after 24 h CeO2 NP exposure. Blue box, cells
with no NP incorporation; Red box, uptake of NPs by 3T3 cells. (a) Control group with no CeO2 NPs. (b) CeO2 NP exposure at 0.01 mg/mL.
(c) CeO2 NP exposure at 0.1 mg/mL.
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current, providing information about the cells’
attachment to the well, their proliferation and their
reaction to the bioactive agent in question.86,92 The
format of cell culture plates that these instruments
employ varies from 16-well to 96-well and 384-well
plates, allowing the live screening of a large number
of materials.86,93,94 A limitation of such impedance-
based devices is that they observe cellular responses
to effectors without giving any indication of how the
effects took place. However, they enable real-time
observations to be made of cell changes throughout
an experiment without the need for destructive cell
sampling. They collect data about both short-term
and long-term responses of cells to NMs,95 facilitat-
ing the identification of key time points (Figures 5
and 6). Toxicity assays with other endpoints can then
be applied to investigate the underlying mechanisms.
Impedance-based methods, being easy to implement,
can also be used in HTS fashion to test several NMs
at different concentrations simultaneously.54,96

Real-time measuring of cellular impedance is a
useful and sensitive method for screening effects of
NMs, at different concentrations, on a range of cell
lines simultaneously,97 without variation due to arti-
facts affecting the measured signal.82,98–100 It can
also be used to assess changes in cellular motility and
adhesion in physiological conditions.101

In contrast to the real-time impedance methods,
impedance-based flow cytometry (IFC) is an endpoint

assay for cells in suspension that examines the imped-
ance characteristics directly for each single cell. A
microfluidic chip-based IFC developed by Amphasys
AG (Switzerland) can analyze single cells without
any specific sample preparation prior to measure-
ment.97,101,102 Compared to other impedance-based
cytometers, e.g., Z series Coulter Counters or the
CASY from Roche, the microfluidic chip-based IFC
can cover impedance measurements at a broader fre-
quency range, and thus yield information regarding
the size and number of cells and, in addition, their
membrane capacitance and cytoplasmic conductiv-
ity.54,103 IFC gives a snapshot of the cellular state of
single cells based on the changed resistance within
the chip-channel caused by the passing cells.102 The
advantages of microfluidic chip-based IFC are that it
measures the dielectric properties of cells directly; it
can analyze the state of each single cell (Figure 7);
and it is suitable for cells in suspension.102 Addition-
ally, it can apply multifrequency impedance measure-
ments to obtain diverse information regarding the
state of the cells and cellular identity.

Impedance-based methods have been compared
with conventional cytotoxicity assays, examining
effects on various types of cells induced by NMs as
well as other chemicals. Toxicological information
obtained by impedance-based methods were found to
be consistent with results obtained via conventional
methods, and impedance-based methods have been
recommended as a fast and reliable alternative to
conventional methods for cytotoxicity test-
ing.53,54,58,104 Recently, impedance-based monitoring
was used to screen TiO2 NM-induced cytotoxicity on
fibroblasts58; the authors suggested that the method
has merit when addressing NM-induced cytotoxicity.
In another study, Moe et al.103 investigated the cyto-
toxic effects of nano-TiO2 and nano-Ag on three cell
lines simultaneously. The authors recommended such
techniques for the initial assessment of the potential
cytotoxic effects of NMs and to direct further toxico-
logical testing.

A chip-based system measuring electrochemical
impedance was used to monitor cytotoxicity in
human hepatocellular carcinoma cells (HepG2) and
immortalized mouse fibroblasts (BALB/3T3). The
results were consistent with findings from the tradi-
tional MTT assay.105

In summary, impedance-based methods for
cytotoxicity testing are simple, cost-effective, label-
free, lend themselves to HTS, and importantly allow
in situ monitoring of not just cytotoxicity but also
other aspects of cell physiology such as proliferation,
morphology, attachment, and intercellular adhesion.
These methods are widely used in pharmaceutical
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research, oncology, cardiology, and other fields of
biomedicine and clinical research, to investigate
responses of cells to exposure to bioactive chemical
agents and toxicants. However, further validation of
HTS applications of impedance-based instruments/
techniques is advisable. To date, several studies using
cell impedance have demonstrated its ability to dis-
criminate cytostatic from cytotoxic effects106 and
also to predict different outcomes in cell-based func-
tional assays.92 Various cell types have already been
tested: astrocytes,107 cardiomyocytes,94,108,109,110

cervix cells,111,112 eye cells,94 intestinal cells,99,113

lung cells,82,94,99,100,103 hepatocytes,82,93,94,99 kidney
cells,82,99 macrophages,100 fibroblasts,58 breast,83

and neuronal cells.114

In conclusion, besides eliminating interferences
and allowing continuous follow-up measurement,
cellular impedance provides qualitative and quantita-
tive cytotoxicity data, and also directs further studies
into the mode of action (toxicity) of a NM.103

MULTIPLEX ANALYSIS
OF SECRETED PRODUCTS

Cytotoxic effects induced by NMs may be detected
by conventional methods. Besides the possibility of
interference effects of certain NMs that impact on
interpretations of cytotoxicity, these methods only
focus on specific endpoints and do not consider rele-
vant intracellular biological events. Secreted proteins
such as cytokines, chemokines, and growth factors
are the largest class of soluble factors, and are gener-
ally determined by enzyme-linked immunosorbent
assays (ELISA). ELISA allows the quantification of a
single protein in serum, supernatants of cultured
cells, and tissue lysates. ELISA depends on an enzy-
mic reaction, for instance between hydrogen peroxide
and horseradish peroxidase (HRP), which means that
possible interference by NMs in the reaction could
affect the estimation of protein levels.61,115,116

Multiplex analysis of soluble factors has
emerged as the ‘next generation’ of ELISA and can
be applied in different systems such as flow cytome-
try and chemiluminescence and fluorescence measure-
ments. The purpose of this HTS technology is to
quantify several analytes in the same sample at the
same time, avoiding enzymic reactions and minimiz-
ing eventual biochemical interferences. Instruments
are available that analyze up to 500 analytes in the
same assay kit. Multiplex panels comprise polysty-
rene or magnetic beads developed by biotechnology
companies, where each capture antibody is conju-
gated to a specific bead. In general, a common

biotinylated detection antibody is added to the sam-
ples (beads plus analytes) followed by incubation
with phycoerythrin-labeled streptavidin. Beads and
binding events are recognized and quantified by red
and green lasers or LEDs, respectively. Advantages of
this technology include the reduced use of reagents
and sample volume, the possibility to perform
repeated measures of the multiplex panels in the
same experimental assay condition, detection of ana-
lytes in a broad range of concentrations, and custo-
mization of analytes in the assay plates. In addition,
there is a considerable positive impact in reduced
time and cost for the assay development.117,118 Pro-
teins related to intracellular signaling pathways are
also covered by multiplex assay kits, and it is possi-
ble to study the effect of an exogenous effector on
multiple pathways in the same cell population.

The multiplex analysis of secreted products is
important for identification of alterations that con-
ventional methods would not detect efficiently. For
instance, gold NMs are considered nontoxic, nonim-
munogenic and have biocompatibility relevant to
applications in nanomedicine.119–121 A recent study
demonstrated that PEGylated gold nanoparticles did
not affect viability in C2C12 muscle cells determined
by conventional methods (MTT conversion into for-
mazan or altered intracellular calcein activity). How-
ever, multiplex analysis based on magnetic beads for
several soluble factors contained in the cell superna-
tant showed a sharp increase of IFN-γ, a pleiotropic
cytokine related to induction of pro-inflammatory
mediators as well as differentiation of T and B cells,
macrophages, granulocytes, endothelial cells, fibro-
blasts, and NK cells. Also, levels of TGF-β1
increased, suggesting an involvement in fibrosis
induction in muscle cells. These data suggest that this
NM has the potential to induce inflammation and
fibrosis, promoting cell vulnerability, and susceptibil-
ity to death stimuli.122 It is unlikely that these results
would have been obtained if analytes had been cho-
sen at random for conventional analysis.

HIGH-THROUGHPUT COMET
ASSAY

The mismatch between the speed with which new
NMs appear on the market and the current low-
throughput, time-consuming, and laborious
approaches for evaluating their genotoxicity73 has
led to the development of rapid, efficient, and high-
throughput genotoxicity testing strategies for safety/
risk assessment of NMs. It is important to identify
and distinguish the existing genotoxicity testing
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methods that are amenable to HTS/HCA
approaches.

The comet assay is the method of choice for
measuring DNA damage in cellular DNA. Briefly,
cells in suspension are embedded in a thin layer of
agarose on a microscope slide, lysed, and electro-
phoresed. Lysis removes membranes, releases soluble
cell components, strips histones from DNA, and
leaves compact structures known as nucleoids in
which the DNA is attached at intervals to the nuclear
matrix. The DNA is in effect a series of supercoiled
loops. Under electrophoresis (normally at alkaline
pH), the DNA is attracted to the anode, but only
those loops that contain breaks, relaxing supercoil-
ing, are able to extend significantly. They form
comet-like structures when viewed by fluorescence
microscopy, and the relative intensity of the tail (‘%
tail DNA’) reflects the frequency of DNA breaks.
While the basic comet assay detects strand breaks, a
common modification—incorporating digestion with
a lesion-specific endonuclease after the lysis step—
allows detection of damaged bases. Formamidopyri-
midine DNA glycosylase (FPG) has been particularly
useful; its primary substrate is the oxidized base 8-
oxoGua, and it has therefore been employed to meas-
ure the effects of oxidative stress on DNA.

The comet assay is popular on grounds of sen-
sitivity, accuracy, simplicity, and economy. However,
it has limitations. The number of samples that can be
analyzed in one experiment is limited by the size of
the electrophoresis tank, typically accommodating
20 slides with one or two gels each. Also, it is rela-
tively labor-intensive, especially at the stage of scor-
ing; normally 50 or 100 comets per gel are selected
by the operator for analysis of % tail DNA using
dedicated comet image analysis software. Various
approaches have been used to increase the number of
samples per experiment; the higher throughput
entails a commensurate increase in scoring time, and
fully automated scoring becomes a necessity.

Increasing Throughput
Options for increasing throughput include increasing
the size of tank, for instance incorporating a stack of
platforms for slides, and reducing the size of gels.
The latter approach has been more popular to date.
The standard gel of 70–100 μL, covering an area of
about 4 cm2, contains thousands of cells, of which
only a tiny fraction are actually scored. Reducing the
gel to a volume of 4 or 5 μL, with just a few hundred
cells, allows twelve gels to be set on a standard slide,

FIGURE 6 | Impedance-based measurements: cell index (CI) real-time monitoring and viability of cells exposed to WC-Co NPs. Index real-time
monitoring and viability of A549 (a), Caki-1 (b), and Hep3B (c) cells exposed to tungsten carbide-cobalt (WC-Co) NPs. Impedance measurements
(one representative experiment among three independent experiments) were carried out for 72 h and cell indices were normalized at time 0 to
ensure no inter-well variability prior to the addition of NPs. Control cells were not exposed to WC-Co NPs. Positive control cells were exposed for
72 h to 0.005% Triton in the case of Caki-1 and Hep3B cells and to 0.01% Triton for A549 cells. The histograms correspond to CI values at three
endpoints (24, 48, and 72 h) for control cells, to a positive control (Triton), and to cells exposed to 1, 5, 25, 50, 75, 100, and 150 μg/mL of WC-
Co NPs. Statistical analysis was performed for each exposure condition compared to nonexposed cells (Student’s t-test, *p < 0.01; **p < 0.001;
***p < 0.0001).
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FIGURE 7 | Impedance-based measurements of U937 monoblastoid cells exposed to NM 300 K silver particles (15 nm, spherical):
Representative data collected with the Ampha Z30 microchip-based flow cytometer (Amphasys AG, Switzerland) (See Figure 8 for illustration).
The figure shows the dotplots of (a) necrotic cells (heated at 70�C), (b) unexposed cells, and (c) cells exposed for 24 h to 100 μg/mL NM 300 k.
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or 96 as a standard 8 × 12 array. Such formats are
available commercially (Figure 8(a)). For the 12-gel
format, standard slides precoated with agarose are
placed on a metal template and gels are set on the
positions marked on the template. If gels are to be

treated with different reagents or enzymes, the slides
are clamped in a chamber device creating individual
wells above the gels. The throughput is further
increased with the 96 gel arrays, four of which can
be fitted into one tank. The gels can be set on films

FIGURE 8 | Legend on next page.
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of GelBond, which are then held under slight tension
in special frames.

These HTS approaches were developed in the
EC-FP6 project COMICS, and for nanogenotoxicity
in the FP7 NanoTEST.71,123 The performance of the
12-gel and 96-gel formats was compared with that of
the standard comet assay124; the damage induced in
cultured cells by X-rays or methylmethanesulphonate
(MMS) was detected equally well by the three
formats—and with very similar coefficients of varia-
tion between replicate experiments. Further charac-
terization of the 96-gel format has been published.125

The HTS comet assay, together with FPG, has
recently been applied to study the potential induction
of ROS by NMs. Cos-1 fibroblast-like kidney cells
were treated with different concentrations of iron
oxide NMs, and cells embedded in minigels (12 per
slide) Subsequent incubation with FPG revealed dam-
age not seen with the basic assay for strand breaks
(without FPG).71 Further, Huk et al. used the 12 gel
system to study genotoxicity of nine well-defined
nanosilvers in relation to their size and surface prop-
erties.126,127 Reservations have been expressed about
the use of the comet assay, because of potential inter-
ference of NMs with the assay. However, recent
studies128,129 showed that this is unlikely for most
NMs; the comet assay can therefore be considered
reliable and useful for testing NM genotoxicity, espe-
cially in the HTS version.

Automated Scoring
Automated scoring systems are dependent on accu-
rate positioning of gels on slide or GelBond film,
optimal intensity of comets and low background
fluorescence, and a density of embedded cells such
that few comets overlap. The gels are located and
comet images focused automatically; images are cap-
tured, and later the comets are analyzed one by one
to obtain % tail DNA. Noncomet fluorescence, from
cell debris, fibers, etc. must be recognized and

eliminated from the analysis. Automated scoring is
fraught with difficulties, but has been successfully
developed by a few companies, notably Imstar with
the Pathfinder system, and MetaSystems with Meta-
fer. (High content imaging systems have also been
adapted for automated comet scoring.) In the
COMICS project the Pathfinder system of Imstar was
compared with semi-automated image analysis
(comets selected by the operator for analysis), and
also with manual scoring (comets categorized by vis-
ual examination into one of 5 classes). While there
were differences between the three methods, all were
capable of accurate damage measurement, with com-
parable sensitivities.130

The ‘CometChip’ integrates a HTS comet assay
with automated scoring in a novel way; cells are
deposited at predefined positions stamped in a micro-
array on an agarose-coated plate, so that it is possi-
ble to locate comets precisely for image capture and
analysis.131,132

The comet assay is currently the most used
method for genotoxicity testing of NMs/NPs. The
need for NM-specific positive and negative controls
(reference standards) should be met with the candi-
date materials identified in projects such as FP7
NanoTEST and Nanogenotox.123,133

HIGH-THROUGHPUT IN VITRO
MICRONUCLEUS ASSAY

The in vitro micronucleus assay is a likely choice
among a battery of genotoxic assays for rapid and
effective screening of NMs using HTS/HCA plat-
forms. Different approaches have been proposed to
increase the speed of this assay. Classically, the long
and tedious visual scoring of slides has been relieved
by using automated platforms scoring many slides in
each run.134–136 Different commercial automatic
scoring devices are now on the market and the time
saving, based on person-hours, due to the automa-
tion is approximately 70%.

FIGURE 8 | Examples of high throughput equipment. (a) Apparatus for performing comet assay on 12 minigels on one slide. Right:
Component parts of 12-gel chamber unit (Severn Biotech, Kidderminster, UK), including metal base with marks for positioning gels on slide,
silicone rubber gasket, plastic top-plate with wells, and silicone rubber seal. Left: chamber unit assembled. (b) The xCELLigence® instruments
(ACEA Biosciences Inc, San Diego, CA, USA) employ impedance-based label-free real-time monitoring of cells. Cell number, proliferation, viability,
morphology, and adhesion are quantified. Electronic microtiter plates: 16-well (left), 96-well (middle), and 384-well (not shown), can be used for
high throughput nanotoxicity screening. The instrument is placed in a standard CO2 incubator and is cable-connected with analysis and control
units outside the incubator (right). The data and the performance of the instrument are displayed real-time (right). (c) The Ampha™ Z30
impedance flow cytometer (left) (Amphasys AG, Lucerne, Switzerland) uses microfluidic chips with microelectrodes (right) to measure changes in
the electrical resistance of the fluid, in which cells are suspended, when cells pass through the applied AC electric field. Cell viability and mode of
cell death (apoptosis vs. necrosis) can be detected and quantified. (d) GE Healthcare Cytell Cell Imaging System captures cellular and sub-cellular
images in a benchtop unit equipped with on-board data analysis and visualization tools. It streamlines and simplifies routine assays, such as cell
cycle and cell viability assays, to save time and help research progress more rapidly.
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Another high-throughput change in the micro-
nucleus assay includes the use of flow cytometry,
based on the pioneering work of Nüsse and Kra-
mer.137 The standard protocol involves (1) the lysis
of membranes by a nonionic detergent; (2) the use of
one or more nucleic acid dyes that can permit dis-
crimination between the liberated nuclei and micro-
nuclei, according to their DNA-dye associated
fluorescence intensities; (3) the separation of micro-
nuclei and nuclei by flow cytometry. Further modifi-
cations use a 96-well format in conjunction with a
robotic auto-sampling device. This adaptation
requires less test material than conventional test
methods, and has a greater compatibility with HTS
instrumentation.138–141

The use of Chinese Hamster Ovary K1 (CHO-
K1) and human hepatocarcinoma (HepG2) cells in a
HCA approach has demonstrated its potential as an
alternative to labor-intensive manual scoring of
micronuclei.142–145 The micronucleus assay on this
HTS platform has proved to be an efficient method-
ology with high sensitivity and specificity to detect
genotoxic compounds. Cells are cultured in 96-well
plates pre-loaded with a dye that stains the cyto-
plasm. After incubation with the test compounds the
cells are fixed and their DNA is stained with a
Hoechst dye. The visualization and scoring of the
cells are done using an automated fluorescent micro-
scope coupled with proprietary automated image
analysis software.

Until now, these approaches have not been
applied to evaluating the genotoxic potential of
NMs. However, a recent collaboration between Flin-
ders University, University of South Australia,
CSIRO and Safe Work Australia has developed an
automated HTS procedure for assessing the geno-
toxic potential of NMs.146 As a proof of concept, the
development and validation of the method was car-
ried out in several steps. A mixture of HR1K (Burkitt
lymphoma) cells stained with Vybrant™ DiO Cell-
labeling, and Jurkat cells (an immortalised line of T
lymphocytes ) stained with Hoechst-33342, was
separated on an antibody microarray slide printed
with different antibodies. Three monoclonal antibo-
dies that were capable of differentiating between
human leukocytes were used; anti-CD2 (specific for
T lymphocytes), anti-CD20 (specific for B lympho-
cytes), and anti-CD 45 (common for T and B lym-
phocytes). Silver NPs (citrated and PVP-capped), and
H2O2 as a positive control were used in the genotoxi-
city assay. Results showed the usefulness of the
method; 10 nm citrate-capped AgNPs induced a
strong genotoxic effect after 24 h exposure, double
that induced by 70 nm citrate-capped AgNPs, and

greater than the effect of treatment for 1 h with
20 μM H2O2. In addition, 10 nm citrate-capped
AgNPs induced much greater genotoxicity than did
10 nm PVP-capped AgNPs.

A crucial aspect of the HTS micronucleus
assay—as with other assays—is the choice of suitable
NM-based positive and negative controls. This has
been a focus of many European Union funded pro-
jects including NANOGENOTOX and FP7 Quality-
NANO or FP7 NanoTEST.

Overall, we can conclude that the micronucleus
assay can be the subject of HTS approaches and that
this can be applied to the testing of the genotoxic
potential of NMs. Nevertheless these different
approaches need to be validated with a wide range
of NMs.

THE γH2AX ASSAY

A number of studies have proposed C-terminal
phosphorylated histone protein, γH2AX, as a poten-
tial biomarker of DNA double-strand breaks (DSB)
caused by genotoxicants.147–150 After DSB formation
large numbers of γH2AX molecules accumulate
around the break site, making possible their detec-
tion. The importance of this biomarker arises from
the fact that DSB are considered the most critical
kind of DNA damage, initiating genomic instability
and, potentially, leading to cancer.151,152 Paradoxi-
cally, DSB can also help to kill cancer cells.153 Thus,
this method is used in different fields ranging from
cancer chemo- and radiotherapy154 or drug discov-
ery155 to in vitro toxicology testing of environmental
pollutants.150

Two types of methods are often used for
γH2AX detection; those counting foci or other
γH2AX-containing structures in images of cells and
tissues (by immunofluorescence microscopy), and
those measuring overall γH2AX protein levels
(by immunoblotting or flow cytometry). Although
both methods are currently used, counting γH2AX
foci is several orders of magnitude more sensitive,
and allows the distinction between pan-nuclear stain-
ing and focus formation, and it is this approach that
is being employed in efforts to develop high through-
put techniques.147

Although initially this biomarker was used to
identify ionizing radiation effects, several studies
have already used the γH2AX phosphorylation tech-
nique to measure DSB caused by different NMs,
including carbon nanotubes,156,157 zinc oxide,149

gold,158 silica,159 nanodiamonds,83,99 tungsten
cobalt,82 polystyrene,100 TiO2 NPs,160,161 and WC-
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Co NPs (Figure 9) showing that this technique can be
a useful tool to assess the genotoxic potential of
NMs. However, counting γH2AX foci is usually
done manually by microscopy, which is time-
consuming and cumbersome. yH2AX dots are some-
times very small and need to be detected by sophisti-
cated confocal microscopy. A highly advanced

confocal based high content imaging system may be
needed. In addition, a 100× objective is required for
imaging, which reduces the speed of the instrument,
rendering high throughput as low throughput. There-
fore, efforts have been made to improve this method,
based on microscopy techniques such as imaging
modalities in cell culture and in tissues,162 and
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FIGURE 9 | Tungsten carbide-cobalt (WC-Co) NP genotoxicity determined by measuring foci of γ-H2Ax (phosphorylated H2Ax histones), which
are directly proportional to the number of DNA double-strand breaks. Counts of γ-H2Ax foci were performed on at least 200 cells per condition
and the results are depicted as box plot distribution values [minimum (min), maximum (max), median, 25th and 75th percentiles] of the number of
foci obtained for each tested condition. A Wilcoxon rank test was performed for statistical comparisons (i.e., vs. control cells not exposed to NPs;
*p < 0.01). For both cell lines Caki-1 and Hep3B, WC-Co NPs were found to be genotoxic in a dose-dependent manner (b). For γ-H2Ax positive
control, Caki-1 cells were exposed to γ irradiation (a).
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computer-assisted approaches.163 The computational
approaches are supported by image analysis software
such as NIH Image and its Windows counterpart
ScionImage, ImageJ, HistoLab, AutoQuantX, or
Image Pro, among others, which rely on different
computational algorithms for foci identification or
the calculation of quantitative foci parameters.164–166

High content imaging systems are also capable of
γH2AX quantitation. Specialized software for count-
ing foci (FociCounter) has been developed.167 The
latest development is the incorporation of focus
counting into an automated high throughput image
acquisition and processing platform.168 Recently,
Harris et al.71 have analyzed the H2AX phosphoryla-
tion induced by iron oxide NPs using a high content
platform, demonstrating the possibility of using this
technique with exposures such as NPs. These differ-
ent computational approaches render conventional
γH2AX assay as a highly efficient HTS technique. At
the same time they allow the analysis of other para-
meters in a cell population, while avoiding possible
operator manipulation error.

These are some of the several options that
could contribute to utilizing the full potential of the
γH2AX assay for assessing the DSB produced
by NMs.

HIGH-THROUGHPUT OMICS
ASSAYS

Omics-based methods have the potential broadly to
indicate toxicity of NMs on a systems biology level.
Recent studies have shown that data from such meth-
ods, in combination with phenotypical HTS results,
can be integrated to reveal complex physiological
and toxicological effects of NMs as well as of chemi-
cals, drug molecules, or the complex mixtures in con-
sumer products (reviewed in Refs 169,170). Omics
analysis is normally classified as a form of HCA, but
is relatively costly and slower than typical robotics-
assisted HTS methods. Typically, omics testing
involves the use of chip-based or sequencing technol-
ogies for genome-wide profiling of gene activities,
e.g., measuring mRNA levels following a toxic insult.
However, reduced sets of toxicity-associated genes
can be assayed at higher throughput and lower cost,
e.g., with Luminex® technology.171 Future high-
throughput transcriptomics platforms, e.g., in the
LINCS and the Tox21 Phase III projects, enable
rapid gene profiling experiments with both several
doses and biological replicates using multiple model
of 800–1500 genes.172,173 NM effects analyzed using
traditional microarrays, such as Affymetrix

GeneChips®, form the basis for most existing gene
profiling analyses of NMs,174,175 providing reference
values for recent next-generation sequencing (e.g.,
Ref 176 and future generation of HTS data from
selected toxicity-reflective gene sets. Open source or
commercial bioinformatics tools, such as—respec-
tively—InCroMap or Ingenuity Pathway Analysis
(Ingenuity® Systems, www.ingenuity.com), rapidly
sort omics-derived data into mechanistically mean-
ingful results, enabling grouping of NMs into clusters
by gene or pathway activation levels.177 Connectivity
mapping, i.e., grouping for similarities in gene
expression profiles, can be viewed as a form of bio-
logical read-across.178 Modeling efforts have indi-
cated a need for investigating more than 200 and
even thousands of agents, whether NMs or chemi-
cals, to effectively characterize toxicity mechanisms
through omics analysis.179 The well-known Connec-
tivity Map project,180 and its successor LINCS, have
addressed this issue with over 1.5 million gene
expression profiles covering over 105 variables to
date.173 Overall, data integration across high-
throughput, high-content, pathway-based cellular
assays and omics profiling will enable a diversified
view of the potential toxicological activity of a
NM. Tiered HTS approaches including toxicity
assessment and immunochemical assays followed by
omics analysis, lead to gradually broader characteri-
zation of intoxicating concentrations of selected,
potentially class-representative NMs.169,170 Such
efforts promise efficiently to define relevant toxic
modes-of-action of NMs, via comprehensive evalua-
tions of existing omics data collections aimed at sys-
tems toxicology.

COST-EFFECTIVENESS OF HIGH-
THROUGHPUT SCREENING OF
NANOMATERIALS

Even though only safe NPs/NMs should reach the
market place, the conventional methodologies for
conducting hazard assessment have not been able to
keep pace with innovation, leading to the urgent
need for innovative high throughput and cost-
effective technologies. It has recently been estimated
that the time taken to complete evaluation of existing
NMs would be more than 30 years and the costs for
testing them on an individual basis would be prohibi-
tive.181 The HTS approaches for hazard assessment
of NMs described above clearly allow a reduction of
the time required for toxicity testing while increasing
data outcomes, but the cost-effectiveness of those
approaches needs also to be considered. Analyses of
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cost-effectiveness involve complex economic indica-
tors and have been used to measure the relative value
of a new or modified technology in terms of the cost
per benefit gained. This type of analysis takes into
account short-term costs, e.g., the cost per new end-
point identified or per time saved, and long-term
costs, e.g., the cost per hazardous NM identified ver-
sus the gains in terms of human disease prevention
and environment protection. Thus, while short-term
costs comprise mainly the direct costs associated with
laboratory expenditure, the long-term costs are
related to the societal costs and are much more com-
plex to measure. Focusing merely on direct costs,
HTS for toxicity is expected to reduce the costs of
NM development, as has happened in drug
discovery,182 as a result of the greater number of
NPs/NMs and experimental conditions simultane-
ously assayed, and the lower amounts of test samples
and consumables required, provided that the ade-
quate equipment or accessories are available in the
laboratory. There should also be savings related to
direct labor (e.g., decreased time required to com-
plete each task and lower degree of expertise or train-
ing necessary) (Figures 1 and 10). Pictures of some of
the most recent equipment used in high throughput
assays are shown in Figure 8.

These advantages have been realized in an inte-
grated study of iron oxide NP toxicity in which high-
content-imaging endpoints for cell viability, oxidative
stress and DNA damage (double-strand breaks) were
employed, as well as the HTS comet assay.71 Three
laboratories using the comet assay have estimated the
time taken to process one sample in the form of a
mini-gel (excluding scoring) as between 4 and 9 times
less than the time taken to process a sample in the
conventional large gel format. Scoring time per gel
using nonautomated image analysis was roughly
halved with minigels compared with standard gels, as
time was saved on changing slides and refocusing.
However, scoring is still the main bottleneck, and it
needs to be made fully automatic.

Another example is the replacement of tradi-
tional microscopy by automated imaging in the
micronucleus assay, also contributing to time saving
and consequent decrease in labor costs. Moreover,
the faster scanning of micronucleus slides using an
automated platform has given the possibility of
increasing the statistical power of results, through
maximizing the number of cells scored, while still
saving time compared with visual scoring.183 Fur-
thermore, the flow cytometric micronucleus assay
allows the possibility of scoring tenfold more cells in
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FIGURE 10 | Savings in time and cost with HTS comet assay.
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the same period of time compared with the conven-
tional microscopic evaluation, also increasing the sta-
tistical power of the assay.

Despite the unequivocal direct gains from
applying HTS to nanotoxicology, the costs incurred
by the laboratory can be prohibitive if the acquisition
of expensive laboratory equipment (e.g., fully auto-
mated equipment for image analysis), and sophisti-
cated tools for data analysis or on-line data storage
capacity are needed for its implementation.184 The
investment can, however, be justified depending on
the number of tests and samples to be analyzed,
among other factors related to laboratory
management.

Finally, regarding long-term costs versus socie-
tal benefits, the promotion of more robust, diverse
and adaptable HTS techniques for the safety assess-
ment of NMs, providing information early in the
process of NM development, will further minimize
the costs resulting from a delayed finding of potential
harm to human health and/or the environment, thus
maximizing the benefits of innovation.

CONCLUSIONS AND FUTURE
PERSPECTIVES

With the growing numbers of engineered NMs, there
is a huge demand from the scientific community as
well as the legislative institutions to come up with
ways of accurate and rapid testing of NM safety
in vitro. The adoption of HTS techniques for this
task not only allows the examination of large num-
bers of different materials at different concentrations
and on different types of cells, but also makes sub-
stantial savings in time and cost, as well as reducing
the effect of experimental variation.

Validation of in vitro HTS tests is essential,
with regard to their relevance to in vivo conditions.
Also, validated HTS approaches to assess dose- and
time-dependent toxicity that are predictive of in vivo
adverse effects are required. HTS/HCA methods for
studying cellular uptake and intercellular transfer,
with automated imaging and image analysis, and
reduced-feature gene sets and biomarkers predictive
of toxicity effects should be developed. The crucial

toxicity endpoints include cytotoxicity, oxidative
stress, genotoxicity and markers indicative of cell
transformation and carcinogenicity.

Automation should further streamline testing
procedures, and—linked with appropriate standard
operating procedures—this should contribute sub-
stantially to reducing variability and operator bias.
HTS is bound to generate large data collections, and
to encourage research groups to establish databases
on relevant toxicological determinants of NMs. The
availability of a bank of reliable information about
NM toxicity will facilitate grouping approaches and
the selection of class-representative materials that
require animal testing. Finally, future efforts of HTS
and HCA should also consider means of potentially
automating the preparation and dispersion of NMs,
as this task is so far mostly manually performed,
leading to a less than desirable output of data from
the increasingly growing array of HTS approaches
reviewed here.

NMs display singular physicochemical proper-
ties that can bias the results of conventional toxicity
assays61,185,186 depending both on the assay and on
the NM. Positive and negative controls should be
systematically included in experiments, in order to
confirm the sensitivity of the techniques used, to
assess potential NM interferences with assays or
detection systems, and to benchmark the cytotoxic/
genotoxic effects of tested NMs. Recently, several
suitable candidate control NMs have been described.
Iron oxide was suggested as a positive control for
cytotoxicity, oxidative stress and genotoxicity end-
points and PLGA-PEO as a negative control.123,133

Also aminated polystyrene nanobeads were suggested
as a positive control for acute toxicity,99,110 including
cytotoxicity and membrane damage187 but also acti-
vation of the inflamasome pathway,188,189 while car-
boxylated nanodiamonds (as negative control) were
found to be neither cytotoxic nor genotoxic on sev-
eral human cell lines.99 These last two kinds of NMs
have already been assessed on the xCELLigence® sys-
tem, and results were very close to (1) those obtained
by cell mortality detection using flow cytometry,99

and (2) results using conventional toxicity evaluation
methods110,190–192
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